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Theory of double magnetophonon resonance in a two-dimensional electron gas
in a tilted magnetic field
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A theory of double magnetophonon resonafld®R) in quantum wells in magnetic field is developed. The
magnetic field is assumed to be tilted at an angjl® the perpendicular to the plane of quantum well. The
resonance is due to the resonant interaction of two-dimensional conduction electrons with the longitudinal
optic phonons. The electrons are assumed to be nondegeneraté.dependence of MPR maxima is inves-
tigated. The existence of a double resonance, i.e., two resonant peaks for each va&luthefnumber of
resonanceand sharpness of tiedependence is explained by the screening in conjunction with the combined
role of the phonon and electon damping and variation of electron concentration in the well with magnetic field.
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[. INTRODUCTION present paper, the relative role of screening is determined not
by temperaturéas has been suggested in Ref) kit by the
Magnetophonon resonanc¢®PR) in semiconductors is interplay between the screening and the electron and phonon
an internal resonance that is reached when the limiting frecollisional damping that is usually weakly temperature de-
quency of a longitudinal optic phonon equals the cyclotronP€ndent.
frequency of an electrof) times some small intege¥’ (for There are two main groups of the MPR experiments in
instance, Ref. L Since its theoretical predictiérand subse- duantum wells. The first group deals with the MPR in the
quent experimental observatithin three-dimensiona3p) ~ Perpendicular(to the plane of 2DEGmagnetic field. The
semiconductor structures MPR, along with cyclotron resoMain features of the findings in this case @hethe fact that

nance, has become one of the main instruments of semicofl® esonance is determined by the transverse optic fre-
ducting compound spectroscopy. quency w; (rather than the longitudinal frequeney) and

- . T ii) a rather narrow interval of electron concentrations where
The advances in semiconductor nanofabrication in recen[ )

: . . e MPR is observable. The second group concerns with the
years have made available materials of great crystalline per- . . - .
experiments in a magnetic field tilted at an anglé¢o the

fection and purity. The. electrical conduction and some othe erpendicular. Its characteristic feature may be called a
transport phenomena in such nanoscale structures has bee Aible resonance=or small values oB the MPR is deter-
focus of numerous investigations, both theoretical and €Xrhined by w;. Then, for somewhat larger values 6fits

penmental, Wlth a number of |rr_1portant discoveries. In Par-amplitude sharply goes down within a narrow angular inter-
tlcular,_ the dlspovery_ of MPR in the quantum wells took /4, typically of the order of 10°. For even bigger valuesfof
place in the pioneering paper by Tsui, Englert, Cho, andnere is another maximum, this time determined day.*2
Gossard. After this publication a number of papers has ap-These two types of resonance may be calleddhend o,
peared where various aspects of this physical phenomeng@sonances as their positions are determined by the frequen-
have been investigated. The most detailed experimental inties w, and w;, respectively.

vestigation has been done by Nicholas with co-workeee In Ref. 10 we have given an interpretation for the first
Ref. 6, and references thergiit has been shown that the 2D group of experiments. In the present paper we offer an inter-
MPR qualitatively differs from the same phenomenon in thepretation of the second group. It is shown that the angular
3D structures. As first steps in developing theory of 2D MPRand concentration dependencies of the MPR amplitudes are
in the perpendicular magnetic field we can quote the theoreideeply interrelated.

ical papers:® They consider the MPR within the perturbation  The magnetic fiel® is assumed to be in thg/(z) plane,
theory approximation with regard of collisional broadeningthe z axis being perpendicular to the 2DEG, while the exter-
of the electron state. A theory in tilted magnetic field is de-nal electric field is oriented along theg axis. The
veloped in Ref. 9 where transitions to a hlgher band of spapyy(:pxx) component of the resistivity tensor will be calcu-
tial quantization are taken into consideration. In our opinionated. This is the transport coefficient expressed through the
these theories do not provide detailed interpretation of thep conductivityo,, (averaged over the width of the we#s
existing experimental data. Our purpose is to give an inter-

pretation of experimental findingssuch as the double reso- Pyy= Uxx/(gxy)z_

nance, by simultaneously taking into account the screening

of the phonon potential by 2D conduction electrons as wellAs usual, it is assumed thaﬁy> oxxTyy. We consider the

as the phonon and electron damping. For such a program, aguation where the well is so narrow that only one electron
we have indicated in Ref. 10, the lowest approximation ofband of spatial quantization is filled. Hence one can assume
the perturbation theory is not sufficient. As is shown in thethat thez component of electron velocity vanishes. Then
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. eB . eB
px=€eE+ Tvycosa, py=eE,— ?vxcose, (1.7

wherep,,p, andv, v, are, respectively, the components of

equations illustrate the physics describing a 2D circular mo-
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phonons. The expression fot,, can be presented in such a
form (we remind the reader that we calculate the conductiv-
ity averaged over the width of the wgll

Oxx

T 2Ts

the electron quasimomentum and velocity. These classical e? c 2 (= 3 3
eBcosd dt] d°r | d°r’

tion of an electron with the angular frequency

eB
() cos#= —cosb 1.2
mc

wherem is the effective mass, so that ,=muv, . It fol-
lows from Eq.(1.1) that

enc

9y~ Bcosh’ (1.3

wheree andn are the electron charge and concentration. It

><< ﬁ(O,r’)iU(O,r’)ﬁ(t,r)iU(t,r)> , (2.3
ay’ Iy

whereﬁ(t,r) is the electron density operator. Representing
the ensemble average in E@.3) as a sum over the exact
quantum states of the systesee Ref. 15, Sec. 36ve get®

means that within one miniband approximation the magnetic

field enters the problem only in the combinatiBrcosé.

Il. GENERAL EQUATIONS

To calculate thex component of the dc current it is con-
venient to consider the motion of a center of Landau oscil-
lator. The conductivityo,, averaged over the width of the

well is given by(see Ref. 1B

e (= . .
Uxx:mjdex(o)x(t)), (2.1

whereSis the area of the 2DEG] is the temperatureX is

€ c wadwj d?q de,
72T | eBcost) J_.2m) (2m)? ) @z
dyN(w)

XW[DR(—(D;Q;Z,Z,)

—Da(—;0;2,2) [N w;9;2',2)

~I¥(w;0;2',2)] (2.4

(see details of the derivation in Ref.)LOVe made use of the
guasimomentum conservation along the plane of the quan-
tum well; g is a 2D wave vector parallel to the plane of the
well. N(w) is the Bose functionl'[g)(w;q;z’,z) is the exact
3D electron polarization operator.

Now, Dg(w;Q;z,2") is the phonon propagator with regard

the operator of coordinate of the center of Landau oscillatoof the direct Coulomb electron-electrore-¢) interaction

in the Heisenberg representation. According to @&ql), in
the Schrdinger representation

B ic (9+
T eBcoshay  \

(cf. Ref. 14, Sec. 112 It commutes with the free electron

Hamiltonian in magnetic fieldB as well as with the op-

erator of Coulomb electron-electron interaction. This is

consequence of the quasimomentum conservation
electron-electron collisions. HeréX(0)X(t)) is the en-

semble averaged correlation function of velocities of the cen- o
ters of Landau oscillators. In the present and the following D(R,)A(w)=

sections we will usually assunte=1,kg=1 and will restore
these symbols in the resulting formulas.
Now

X(t)=> f T(r,0)i[H,X]w(r,o)d3r

- ;J yi(r U)Qlﬁ(f o)d’r. (2.2
~ eBcosd oy T -

The summation is over the spin variable. Heras the op-
erator of the electron wave function whilé(t,r) is the op-

[see below Eq(2.7)]. In the present paper we consider the
magnetophonon resonant contribution d¢9,. This means
that the phonon contribution to the Green functibg is
determined by the optic phonons. Further on we will assume
that one can neglect the difference between the lattice prop-
erties within and outside the well. This assumption should
not affect the qualitative results of the thedfgquation(2.4)
permits us to consider also a more gendr@nhomoge-

"?‘neou$ case} Without regard ofe-e interaction the phonon

Bropagator has the form

4me’ w, 1 1
(P+Kke. 2 \w—w£i6 wtw=xid)’
(2.9

wherek is thez component of the wave vector whiks, is
given by

1 1 1
== 2.6

g €x &g

Hereey and e, are the dielectric susceptibilities fas— 0
and w—, respectively. We have included the "Hech
electron-phonon interactidhinto the definition of the zero-
order phonon Green function.

erator of phonon field interacting with electrons. For the time  When calculating the exact phonon propagator it will be
being, we consider it as an external random field; later on wa&ecessary to insert along with the phonon Iir[egf)\ the
will average over all its realizations introducing the optic direct Coulomb interaction lines
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4rre? Here 1, is the modified Bessel function, «
V©(q,k)= TN (2.7 =hQ cosbi2ksT,a3=ch/eB, ng is the 2D electron concen-
£x(q°+k%) tration. The polarization operatdi(® of Eq. (2.4) differs

2 "2 _
One should, however, observe the following important point.from g by the factory(2)“y(z')” due to the electron mo

Both ends of the exact phonon propagator should be ordlnartlon along thez axis. Herey(z) 'S the_ wave function of the
) (©) (o ) S g west level of transverse quantization.
phonon linedD '™’ without Coulomb interaction lines. This is : : :
; The e-e interaction can take place both via exchange of a
due to the fact that the operatot commutes with the . . . . )
. ; phonon and as a direct interaction describedW$’, Eq.
electron-electron interaction operat@ee Eq.(2.2)] as the i . )
. (2.7). The sum of two interactions is
latter conserves the electron quasimomentum.

Further we assume for the electrons a parabolic confining 2

potential mwézzlz with the following gauge for the vector Ve a(Q,k)= 4W—e,
potential A= (— By cos#+Bzsin,0,0). It is also assumed ' (0*+k?)eg Al @)
that
wl—(w+i6)? -
hwo>hQ ksT 2.9 eRAlO) = e ria) 219

(where Q=eB/mc is the cyclotron frequengy In other  Here w?=w?(1—¢../s).

words, we assume the confining potential to be strong. The Equation(2.10 shows that the electron-electron interac-
diagonalization of quadratic Hamiltonian is a well-known tjon cannot be treated within the perturbation theory. Let the
procedurg(for instance, Ref. 18 We wish, however, to em- frequency w in Eq. (2.10 be close to the frequency
phasize that the actual form of the confining potential is notA/ () cosg so that only one term of the series is important.

essential for the present theory provided that; is much  The higher orders of the perturbation thegwithout regard
smaller than the distance to the bottom of the second minipf the electron dampind,) give powers of an extra factor

band[see below — Eq(2.12]. _ o 1/(w— NQ cosé+ié). Therefore, thee-e interaction must be
_ The energy of conﬂnedl eIeptron in the magnetic field de4 sym of chains of loop diagrantsee Ref. 10 Physically
fined by the vector potentia is this means taking into account the screening of phonon po-

larization potential by the conduction electrons. Thus in 2D
case in a resonance the screening can be very important. The
reason as to why one does not need to take the screening into
account in 3D case has been discussed in Ref. 10. The only
point demanding some attention is taking into account the
spatial nonhomogeneity. However, the procedure is essen-
tially facilitated by the fact thatll(z,,z,) depends on
wherey,= — cp,/eBcosé while p, is the electron quasimo- (z;)?(z,)? as factors. Then the index of the progression
mentum component that is conserved. We will see in theyenerated by the loops is proportional to

Appendix that in the leading order i) w,)? one can retain

in Eqg. (2.9 only the terms describing the electron motion in _ 2 2

the magnetic field cosé perpendicular to the plane of the j j 42,02,VR(0,21=2)y(20)§7(22) - (2.12

well (cf. Ref. 19. .ThIS can be visualized in the foIIowmg that can be presented in the form

way. One can obviously neglect the magnetic field correction
to the confinement potential, i.eQ?sin’d as compared to dk ds
w2. This means that the characteristic valueg afe of the f EVR(qyk)[I o Ystsik
order ofl = y/wgm. The mixed term, i.e., the second term

on the right-hand side of E@2.9) for the typical values of ~ where 5 is the Fourier component af(z). This result is
can be also discarded provided thaid is the biggest energy valid for a well of any form so far as the the distance to the
in our problem. Therefore the 2D polarization operdtzal-  bottom of the second miniband remains much bigger than
culated in detail in the Appendixor the case of Boltzmann #w,. Itis only necessary to insert into E.12 the appro-
statistics and a small gas parameter we are interested in hpgate wave functionj(z).

the same structure as the polarization operator of Ref. 10 in For a quadratic confining potential we get a theory of 2D

1 1 .
U= EmQ2co§0(y—y0)2—§mﬂzsm(za)z(y—yo)

1
+§m(w(2)+ﬂzsin20)zz, (2.9

2

the perpendicular fiel@ with the replacemen8— B cosé: electrons with the interaction potential
2 ro _ 2|2
(qag)2cotha _ dme % exp(—k“14/2)
HR=—2nseX[{—Tosa Vr(,q) er(®) ) w2 —k2+q2 (2.13
sinhNa q2a2 Further on we will also need the expression
X - - .
N 0—NQ C030+|5|N( 2 cosd SInha) VO 47Tezj‘oo dk exp( —k22/2) -
(2.10 @=="] .2« K+ g? (214
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as well as the equation for the exact phonon Green function

VR(‘WQ)
1+ Ve(o,q)1lg(w,q)

Dr(w,q)= (2.19

Now we take into account the aforementioned point tha

both ends of the chain in E¢2.4) should be ordinary pho-
non lines(without the Coulomb interaction\We have

Dr(®,9)=DP(w,q)

+D(w,q) — DO(w,9),

HRl_VR(‘”1q)
(2.19

where

dk

D&")(w,q):fEDS”(w,q,k)exp(—k?lZ/z) (2.17)
and a purely 2D equation for the MPR
1 c ZJw dwj d’q a°N(w)
“4T\Bcost) | .2m) (27)2 1-exp(—wl/T)

X[Dgr(~;0) = Da(—w;a) [[Hg(w;q) —ITA(w;q)].
(2.18

Here we made use of the fact that fbw,>7%Q the inte-

grand in Eq.(2.18 is symmetric inq, andq, .
We will not insert directly Eq(2.16 into Eq.(2.18 as it

Oxx

seems to have poles at=w, that in fact disappear after
integration and some algebra. It is convenient instead t

present Eq(2.16 in the form

2v(Cy V(€2
Dr(®,0) =Dg(w,q) ~ VO + — R ,(1 ) :
[Mg"+Vg(q) Ig"+Vg(q)
(2.19

One can see that neither of these terms has agsle, [see
Eqg. (2.13 in combination with Eq(2.11)]. This is a mani-

festation of the influence of screening. It means that th
screening may play a certain role even for relatively small

electron concentrations.
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xd © aéqz
jN_fo qq3V ()l 2 cosf sinha

a3qg’cotha
xexp — —=———]|.
ex 2 cosd

(2.29

tAs is indicated in Sec. I, it is natural that in the lowest ap-
proximation in % w3 only the combinatiorB cosé enters
the equations describing the 2D motion of an electron in the
quantum well. The integrals in the rest terms in E219
are either real or proportional to~*8(¢~1). This can be
easily checked if one takes into consideration thét 1)
comes from the pO|QH§1+VR(Q)]_1 and the terms in
question in Eq(2.19 have the factoe 1.

Further we will be interested in the cagé<1 when the
effective e-e interaction does not depend on the form of
potential and is equal to

2

Ve (q)= 2" (2.22

oo

Then one can presedk as

4i \[me?
=
&85

cos’2¢ sinhl’z( M)

2KgT

cosh————

2kgT (223

1
X Q- 172

rQ cose)

whereQ3-1,(2) is the associated Legendre function of the
second kindwe remind the reader th&;,,,, is an imagi-
nary function of a real argumentWe will consider the case
a<<1. Then the characteristic valuesare of the order of
gt=v2mkgT/A and one can preseniy in the following

4\2me’cosh [kgT
=23 Via

swag

(gorm:

(2.24)

As ¢ Y(w) [Eq.(2.1D)] has a zero ab= w,, oy exhibits
in this approximation an infinitely narrow magnetophonon
resonance at

NQ cosf= w;. (2.25

%hysically this is due to the fact that thee interaction with-

out regard of the damping is very strong in the resonance.

The MPR is, as we will see, determined by the last term

while the contribution of all the rest terms in ER.18

vanishegprovided that one neglects the electron and phonon

damping. As a result, we have for th&th resonance ofr,

_2nc?h? N(wpsinhio/2kgT)
e.kgTB2c0g0 1—exp—fiw/kgT)

X InO[ Ue(NQ cosb)],

Oxx

(2.20

where

IIl. ANGULAR DEPENDENCE OF MPR MAXIMA

In the present section we will investigate dependence of
the positions of the MPR maxima on the angléAs we have
indicated, in the limit of vanishing phonon and electron
damping (" andI'., respectively the screening in the reso-
nance is very strong. If we take into account that the damp-
ings are finite one can calculate the critical concentratipn
where the screening ceases to play a role. As the interaction
depends also o# for each value ohg one can indicate the
corresponding critical valys) of 6.
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We will start with taking into account the phonon damp- cies taking the residues in the poles= NQ cos#=il's. To
ing. Finite optic phonon damping is due to the decay of anyet the result one should remove the facse %) in Eq.
optic phonon into two acoustic ong¢see Ref. 1f) Techni-  (2.20 and insert instead into the integrand of E2.21)
cally it can be taken into account by replacement:

+iI" in the retarded and advanced phonon Green functions, 1 Im s;1+27
respectively. One can easily see that in such a case the MPR A= p 13 ey (3.6)
acquires a finite width which one can take into account by (2y+Ime, )"+ (Reey )
the following replacement in Eq2.20 where
5(8_1)—>£|m8 (3.2 r. — 2wée?
m R ' y==; o= R(NQ cosb,q)
1) q
Here . .
while e, should be calculated ab=NQ cosd+i(I'+T).
1 02— w2 e T One can see that integri@.21) is dominated by the values of
—Imeg= ! ! ~ ) g where the asymptotic expansion of the Bessel function is
m 2wy (NQ cosf— w2+ T7?)2+T1? valid, so that
(3.2
2
In what follows we will assume that _ ns Mdcosg Q a9
Ry= ex - (3.7
V27 Taag T 497
Fe,r<w|—wt<wt. (33)

_ Note addedWe remind the reader that E(R.20 is de-
rived within the so-called RPAoop) approximatior{see Eq.
e(2.16)] as it takes into account the resonant interaction of
electrons with optic phonons. Such resonant terms should

Now we will discuss the role of the electron damping. probably be added also to the vertex parts describing the

Good examples of importance of the damping for the MPRpOIaron effects_. These terms may be essgntial in the magne-
are given in Refs. 8,20. For us it is important as it may bothtophonon maxima. However, we are looking for the critical

destroy the resonance and determine the angular interval fglUes of the parameters such as electron concentration

its existence we are looking for. We assume tHat where the resonant interaction disappears, so that the MPR
<() cosé. The electron Green function in magnetic field hasSlgnal sharply goes down. In such a situation the polaron

been investigated by Ando and Uenfirand in more detail effects should be also suppressed. Thus we believe that our
by Laikhtman and Altshul@? for T, determined by an elas- theory, though probably not permitting the exact calculation

tic short range scattering. In the case we are particularl f the MPR amplitude, still gives the correct characteristic

interested in, i.e., GaAs the temperature variation of mobiIityﬂ;"‘(lul\e/lspgf then;I?;:tr%rlw %%rgigtr:tlons and the angles where
from the liquid helium temperature to the temperature of sl9 pialy ASES. . .
In the present paper we limit ourselves with the suffi-

experiment(about 200 K is substantialin the typical cases, . ) .

at least, by several timgdt means that the acoustic phonon ciently I.OW concentratlonsl_s where the MPR maxima are
scattering(that can be considered as short range el)atstic\’v.eII defined. As is shown in Ref._ 10, an additional mecha-
should be predominant. It was shown in Refs. 21,22 that ifusm of electron level broadening due to the electron-

this case the electron Green function has a non-LorentziaﬁleCtron interaction appears at high ellectron concentration
form with the characteristic widtl', given by see Eq(6.10 of Ref. 10. Here we consider the concentra-

tions that are not so large that one would have to take into
_170) [nen O — [0/Pmm consideration this effect.

Fe=Te veosd, T Mz, 34 For small values of Eq.(3.6) turns into Imeg(w;) as one
where 7 is the relaxation time foB=0 obtained by assum- can neglect the termsy2 When y has reached the critical
ing the same scatterers as for finBe value(1/2)| e,}l(wt)| the amplitude of the maximum begins

Further on our formulas should be considered as order-ofto go down. This condition can be written as
magnitude estimates giving the correct dependencies on the
parameters, though not the parameter-independent numerical 2y~Im(es) . (3.9
coefficients of the order of unity. For such estimates it will befor
sufficient to use the Lorentzian form bf(w,q). As has been
indicated, in the resonance approxw_natlon one should retain NQcod= o, . (3.9
only the resonant term of all the seri€x10 for I1x(w,q)

One needs the first inequality to be able to discriminate be
tween frequencies, and w;. The second inequality is ful-
filled for such systems as GaAs/GaAlAs and facilitates th
calculations.

Under the MPR conditiof3.9) Im(e,) ~* is small. Therefore
B Rpw,q) even a small variation of the quantities determinipgan
g(w,q)=- w—NQ cosf+iTl,’ (3.9 vri]olate Eqg.(3.8). The screening is important provided that
the parameter

whereR  is the residue at the potle= N cosé—iT. Cal-
culating o, one can evaluate the integral over the frequen- B=Im[epA(NMQcoH+iT+iT)] 12y (3.10
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is bigger than(or of the order of unity. If it is much bigger much bigger than in the well. This seems to be a rather
than unity the screening is strong and the result is indepertypical experimental situation. Practically the actual form of
dent of 8. The MPR maxima becom@-dependent whegis  the impurity states and the distribution of impurity levels
of the order of unity. Then a relatively small variation 8f may be(and usually i$ much more complicated. What is
might drastically change the resq#tee Figs. 4 and 5 of Ref. actually relevant to bring about a variation of the electron
10). To achieve such a change one needs a variatightbét  concentratiomg in the well is the magnetic field dependence

need not be large. of the positions of impurity levels in the proper interval of
Let us follow a variation of the MPR signal as a function energies.
of 6. One can write for an arbitrary magnetic fiedd6) that The variation of electron concentration for the value8of
is near theNth resonance valuB ( 6) given by Eq.(3.12 is
B-(a) BN(Q-)-‘FAB. (3.1])- éng :§§ with = €(B)/kgT (3.15
B(#)=homdeN is the position of theNth MPR maxi- ng(B) ° B 1+ng(B)/ni(B)

mum for =0. The field corresponding to th¥th resonance,

. e . wheren;(B) is the 2D concentration of the electrons bound
varies for finite values of according to

by the donors. It will be natural to assume below for the
B.\( 6)cos=B(0). (3.12 estimates thalg] is of the order of unity.
It is convenient to presenB8 as a ratio of the electron
Thus the MPR amplitudes for various angke&@nd the same concentrations to some characteristic value
resonance numbeéy) correspond to the same value@fnd
therefore should coincidéOnly the width of the maximum B=ng(B)/Ngown (3.1
should enhance with decrease &f This conclusion of the

theory is in drastic disagreement with the experinfent. where

We think thafc this js due to the qssumption that thg elec- 1 \/ﬁhe%tB,\AO) [o+T
tron concentratiomg is a constant independent &f It is = ToT P— (3.17
known, however, that in the course of temperature variation Ndown  €xGr1™leMC o=y

from 77 to 300 K aB=0 the variation of the carrier concen- n - is the lower critical concentration where the screening

tration may comprise several tens per cent. This means thakases to play a role. Fov=3 in GaAs its characteristic

the energy variation of some donors on the scale of the ordefalue is about 18 cm™2. Equation(3.17) differs from the

of hundredK, or so noticeably shifts the electron concentra-equation fom,,, given in Ref. 10 as we have assumed there

tion balance between the donors and the well. gr~ag' andfw~2kgT that is valid for GaAs under cer-
Let us give a rough estimate of the variation of impurity tain conditions and may differ for other situations.

level positions as a function oB. If one assumes &  The paramteg depends on the electron concentratign

hydrogen-like states the variation 6¢ of their lowest level  Tpjs fact permits one to compare the dependence of the MPR

position &(B) under the shift of magnetic fieldB is (for  amplitudes in perpendicular magnetic field under the varia-

instance, Ref. 14, section 112 tion of concentratior(i.e., in different samplgsand the an-
SB |e(B)| gular dependence of the MPR maxima under variatiod. of

Se~— — — (3.13  This will permit to check as to whether the magnetic field

B 2In[#Q(B)/ €] induced variation ofig is sufficient to explain the decrease of

where ;= me*/ 24262 is the Bohr energy while(B) is the the MPR amplitude as a function #fon the one hand and
position of the level in magnetic fiel®, mark thate(B)  the existence of the subsidiafgid® maximum in the angu-
<0. This is a lower estimate as with the overlap of atomic/@" dependence of the MPR amplitude on the other taed

orbits the influence of the magnetic field should enhance. AKef. 6.

in our case IQ(B)/ey] is, roughly, of the order of unity we i V\ge star(tjwith discu;si?nlgf the _behavior of"the MIS;R am-
will accept the estimatée/ e~ — §B/B. This should result in plitude under magnetic field rotation at small angtes1.

redistribution of electrons between the donors and the well\.’r\]/e will consrl]der tge coné:entratl(;n rl]nterwail%ndOWT_WZere
In other words, the electron concentration in the well will t€ré 1S @ sharp dependence of the MPR amplitudgson

decreasdsee below. The chemical potentiglk can be ob- According to Eq.(3.12) the MPR maximum will shift by
tained from the equation

5B ~B(0)(1—cos). (3.18
N:exr{i) N l{— fi(B)} This will result in the relative variation of concentration
! kgT : kgT ongng~ &(1—cos) that manifests itself in the angular de-

pendence of the MPR amplitude. As is known from the ex-
periment in the perpendicular magnetic field, in this region
' of concentrations wheng goes down it brings about a sharp
(3.14 decrease of the amplitude.
' As a reasoning supporting our view we will consider the
whereN; is the total number of donors. Further on we will following numerical example. According to Ref. 6, Fig. 6 the
assume that the number of electrons bound to the donors iariation of the MPR amplitude is about 60% provided the

S
> ex

N hQ, (Bcos)
2magcosh T

kgT
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concentration varies within the interval from 1.8 Itis interesting to note that in the region of small angles
X100 cm 2 to 2x 10 cm~2. The same decrease of the the width of a maximum goes up with the number of reso-
amplitude induced by magnetic field should take place fomanceN. It can be easily seen if one takes into consideration
sndng~0.1, i.e., for § of the order of 20°. This shows an enhancement afs with decrease of magnetic field as well as
order-of-magnitude correspondence with the results of Refenhancement ofi. with AV. All these conclusions are in a
6. Further increase dof gets the system into the region where qualitative agreement with the results described in Ref. 6.
N<Ngyown @nd a well defined resonant peak with the resonant
condition (3.9) disappears. IV. CONCLUSION

The behavior of this sort takes place provided tAatl.
for such concentrations wheyg>1 small variation of this
parameter does not play an essential role. This means that fi
the samples that have a maximal MPR amplitude~(5
X 10%° cm™?) its ¢ dependence should be absent.

Now we will treat the region of large angles. Consider the ) X
samples with the concentration of the ordermgf,,,. The duenciesw; andw, respectively. . .
angle 6 going up,n, can become so small that the perturba- Important points to provide theoretical mterpre_tc_';ltlon of
tion approach becomes applicable. In other words, one Ot}_he_s_e resonances are the dependence of all quantities c_harac-
serves the resonance determined by the condition terizing the 2D motion of electrons on the combination

B cos¥ whereas their total concentration in the well depends

NQcoH=w, . (3.19  onB. Had only theB cosy dependence existed, the amplitude
of the resonances, i.e., the heights of the maxima would have
The screening is not important provided tigat1. In view of  peen independent of the angleWe think that the only way
Eq.(3.19 one should insert if8.10 ex(w +il+il). Asa  to preserve the theory of 2D electron gas describing the con-
result, one can write centration dependence of the MPR is to assume variation of
the electron concentration witB. It manifests itself in the
_ ns(6) (3.20 angular dependence of the MPR amplitude. In this way we
Ngown ' ' have been able to give a qualitative interpretation of the re-
gults given in Ref. 6.

To summarize, we would like to stress that the interpreta-
jpn of behavior of the MPR in a tilted magnetic field has
een a long-standing probleti2 Two types of resonant

maxima have been discovered on experiment, i.e.wthend
| resonances as their positions are determined by the fre-

W~ W z

To+T

If the last factor in this equation is large enough one need
rather small concentratiomg( 6). Let us estimate the angles
where they can be achieved. It follows from Eg.14) under
the same assumptions provided tia8B is not small V. V. A. and V. L. G. acknowledge support for this work
by the Academy of Finland, the Wihuri Foundation, and the
Ns(AB+B)=ny(B)exp(5e/kgT). (321 Russian Foundation for Basic Research, Grant No. 00-15-
96748.
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Very rough estimates in the spirit of Ref. 23 gi{the
dependence(B) is rather smooth and we believe that its

expansion up to the linear term can be justified APPENDIX: CALCU&-@;::}SF': POLARIZATION
56%_&0(@) = —(hQ (3.22 As indicated in Sec. Il, we assume for the electrons a
€0 parabolic confining potentiahwézZ/Z with the gauge for the

where{ is a number of the order of unity. This estimate is vector potentialA=(—By cos§+Bzsin6,0,0). In spite of

based on the idea that the level shift depends on a singl@e first inequality(2.8), it is convenient to look for the exact

parameter, i.e., the ratio of the magnetic energy to the Co ransformation of the Hamiltonian and solution of the Sehro

lomb one(cf., the analytical treatment of the hydrogen atomdinger equation and only then go to the limit
in magnetic field in Ref. 14, Sec. 1112

Thus the discussed, maximum exists for the angles big- Y wo<l. (AL)
ger thané. given by the equation Applying a standard procedure of diagonalization we get for
the bigger eigenvalue
1 1 2NkBT | — Wy
sed .~ —+ \/—+ In . (323 Q3=wi+0%-02 (A2)
2 4  [ho F+T

] ] while the smaller eigenvalue is
The second term under the sign of root is, most probably, of

the order of unity. In this caséis somewhere in the interval 2, 2 2 2

: . +
between 40° and 70°, or so. Thus in the regions of small and QZZQ @o 1- \/1_ 4Q%wgcos'd . (A3)
large angles we have well-definesl and w, resonances, ¢ 2 (Q%+ w3)?

respectively. Their positions depend Boosd. In the inter-
mediate interval of angles there are no well-defined MPR The variables Y,Z) diagonalizing the Hamiltonian are
maxima. expressible through the initial variableg,£) as
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V. V. AFONIN, V. L. GUREVICH, AND R. LAIHO

Y)_l Y—Yo— 12 "
Z) Clr(y—yo)+z/ (Ad)
HereC=1/\/1+r2,
02-02cog0
"~ Q%cosfsing

As a result, we get two noninteracting oscillators, i.e., Yhe
oscillator and the& oscillator

PHYSICAL REVIEW B 65 115301

1 1
> mex;{—ngw"“)—nyw Ha(y)Ha(y")
1 l-e 7@
— _ A 2yw\—1/2 _ = 12
(1-e"2%) exp[ 2YHY) e
,1+e” Ye
——(y Y e va| (A10)

whereH(y) is the Hermite polynomial. It is convenient to

1 42 1 9% m o - replace the summation over the quantum nungdboy inte-
_ﬁa_yf 2m —Z-i— —0 Y +—= Q Z°. (A5) gralflig\?voveryo_
We are interested in the eigenfrequency of thescillator ’
that is
G » a,CeBcosd hyQ.sinhyQg) 12
r,r',y)=——————(sin sin
Q.= cosh (AB) ( 4 Jra, (sinhyfdcsinhy{lo
plus small terms proportional tﬁlzlw§<1. The eigenfre- y a2r2 e -1/2
quency of theZ oscillator is equal towy (with the same X | tanh 5 = 12 tanh 20)
accuracy. a2
Now we turn to calculation of the polarization operator 1 Q 22
for nondegenerate free electrons in magnetic field by a slight xexp — — cotf( Y C) (AY)2— _12
modification of the method proposed by Sondheimer and 4 2 4a;
Wilson2* The method is based on the spectral representation o o
(see Sec. 36 of Ref. 15 ><cotr< Yito (AZ)2— —b }‘( 207 (z+7')?2
, (m[n(0z")[1){1/n(0.2)|m) ,
lg(w,z ,z)=mZI w, pr— 1 CYAx+ibtanhQy/2)(z+2)]?
4 tanh(y€)/2) +(afr’/ag)tant( yQe/2) |
X[1—exp—w,/T)]. (A7)
(A11)
Sondheimer and Wilson introduced a Green function of a
complex time argumeny Here
G(rt )=, wh(r ) d(rex—egy), Rey>0 air
noTag e TR prn ' b=—5, bi=r; (A12)
(A8) 2

Here B is the set of all quantum numbers of an electron,the variables in Eq(All) are made dimensionless by the
while &4 is the energy of the quantum stag One can transformations

express the polarization operator through the Green functions
of a complex time argument.

T o AY=(Y-Y")a,, AZ=(Z-7Z')lay, z—17lay,
The retarded polarization operator for Hamiltonigkb)
is
z'—27'laq, (A13)
Q,+0Q
I(r,r t)=2i cosh% exr{%)@(t) where
1 2_ —
“le r,,r’?_it)e(r’r,'it) a2=1mQ,, a2=1/mQ,. (A14)
1 To calculate the polarization operator it is convenient to
—G(r’,r,—it)G(r,r’,TJrit) . (A9) use the Green functions in the momentum representation.

After rather involved but straightforward calculations we get
Here 4(r) is a product of the eigenfunctions of tNeandZ
oscillators,0 (t) is the step function.

In order to sum up the series in E@8) over theY- and
Z-oscillator quantum numbers we will use the following
relation®®

11®(q,q,,Q,,1)=P(9,d,,Q,,t) + P*(—0,—d,,Q;,t),

(A15)

where the asterisk means a complex conjugation
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. 2 QC+QO IT ” )
2iCa; B COShT('B(t)E’u exq—ZCOSA):E e'”A|n(z)’
P(0:92,Q2. 0 = = SR Q2T sinh 0g/2T) )
, 92 exp(—zsinA)= >, €I (iz). (A17)
xXexp —| dyt =2]91(2c) -
whereJ,, are the ordinary Bessel functions. Combining them
q 3 with Eq. (A16) one can see thdtis a linear function of time,
qz+ ?})7 1(Q0) so that one can easily calculate the Fourier components. Dis-
a carding the poles describing the transitions to the higher
Q2 [a2 .2 minibands one gets
2
2| =292(Q0) + 502(Qc) 2 g2
- ac?ag 2 = —2cnexd —| ¥+ 2 |eoth8
R 2 " 2c7) Ot
qXQZ
202 [93(Qc) — 93(90)]] Qz r o Q. a2 qz rzq)z(
~C?l a2 T SOty T 2¢?
(A16)
2 22
where <3| qy+qX/C r-Q;
1 0 & "N 2sinh(Q/2T) ) '™ 8C%sinh(Q/2T)
(Q)— cot cos(QH )/sm
% hZ_ ik ; irg,Q, \sinh(Q.n/2T) AL
i0 M 2C%sinh(Q/2T) | w—Qcn+id (A18)
92(2)= COth2_+COS( QH_) / smhz— There are elegant formulas to calculate this sum. How-
_ _ ever, as we are interested in the limiting c&% w3<1 one
)= sinQ(t+i/2T) can see the result immediately from H&18). Indeed, the
95(81)= sinhQ/2T) Bessel functions having in their arguments as a factor the

) .. small parameter can be discarded unles m=m=0 and
Hereq andq, refer to the Fourier components over the dif- |\ o 51 |eft with

ferences —r’ andz—z' while Q, is related to ¢+2z')/2.
We are looking for a frequency representation of the po- O 5 _q§+ q; Q. a_% Q_%_ a_% q_i
larization operator. We are going to take into consideration IIg’=—2nsex 5 Cothr— 25~ 225
only the lowest level of transverse quantization, i.e., the low- ! !
est miniband. At the first sight one could try to average Eq. E ( q§+ q)z( ) sinh(nQ./2T)
X |

(A16) over the time interval bigger than d4 but smaller 2SNOL2T)) w—Qn+is" (A19)

than 10) cosé. However, some spurious terms can appear as

a result of the direct averaging due to the even powers obne can see thdi®) Eq. (A19) coincides withIT&) of Eq.
sinwgt and cosygt. Therefore we will look for the frequency (2.4) and (2.10 if one takes into consideration that within
representation of the whole expression E&L16). One can the accepted approximatidd.= () cosé and that we use in
find it with the help of the identities Eqg. (A19) dimensionless variables.
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