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Theory of double magnetophonon resonance in a two-dimensional electron gas
in a tilted magnetic field
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A theory of double magnetophonon resonance~MPR! in quantum wells in magnetic field is developed. The
magnetic field is assumed to be tilted at an angleu to the perpendicular to the plane of quantum well. The
resonance is due to the resonant interaction of two-dimensional conduction electrons with the longitudinal
optic phonons. The electrons are assumed to be nondegenerate. Theu dependence of MPR maxima is inves-
tigated. The existence of a double resonance, i.e., two resonant peaks for each value ofN ~the number of
resonance! and sharpness of theu dependence is explained by the screening in conjunction with the combined
role of the phonon and electon damping and variation of electron concentration in the well with magnetic field.
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I. INTRODUCTION

Magnetophonon resonance~MPR! in semiconductors is
an internal resonance that is reached when the limiting
quency of a longitudinal optic phonon equals the cyclotr
frequency of an electronV times some small integerN ~for
instance, Ref. 1!. Since its theoretical prediction2 and subse-
quent experimental observation3,4 in three-dimensional~3D!
semiconductor structures MPR, along with cyclotron re
nance, has become one of the main instruments of semi
ducting compound spectroscopy.

The advances in semiconductor nanofabrication in rec
years have made available materials of great crystalline
fection and purity. The electrical conduction and some ot
transport phenomena in such nanoscale structures has b
focus of numerous investigations, both theoretical and
perimental, with a number of important discoveries. In p
ticular, the discovery of MPR in the quantum wells too
place in the pioneering paper by Tsui, Englert, Cho, a
Gossard.5 After this publication a number of papers has a
peared where various aspects of this physical phenome
have been investigated. The most detailed experimenta
vestigation has been done by Nicholas with co-workers~see
Ref. 6, and references therein!. It has been shown that the 2
MPR qualitatively differs from the same phenomenon in
3D structures. As first steps in developing theory of 2D MP
in the perpendicular magnetic field we can quote the theo
ical papers.7,8 They consider the MPR within the perturbatio
theory approximation with regard of collisional broadeni
of the electron state. A theory in tilted magnetic field is d
veloped in Ref. 9 where transitions to a higher band of s
tial quantization are taken into consideration. In our opini
these theories do not provide detailed interpretation of
existing experimental data. Our purpose is to give an in
pretation of experimental findings,6 such as the double reso
nance, by simultaneously taking into account the screen
of the phonon potential by 2D conduction electrons as w
as the phonon and electron damping. For such a program
we have indicated in Ref. 10, the lowest approximation
the perturbation theory is not sufficient. As is shown in t
0163-1829/2002/65~11!/115301~10!/$20.00 65 1153
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present paper, the relative role of screening is determined
by temperature~as has been suggested in Ref. 11! but by the
interplay between the screening and the electron and pho
collisional damping that is usually weakly temperature d
pendent.

There are two main groups of the MPR experiments
quantum wells. The first group deals with the MPR in t
perpendicular~to the plane of 2DEG! magnetic field. The
main features of the findings in this case are~i! the fact that
the resonance is determined by the transverse optic
quencyv t ~rather than the longitudinal frequencyv l) and
~ii ! a rather narrow interval of electron concentrations wh
the MPR is observable. The second group concerns with
experiments in a magnetic field tilted at an angleu to the
perpendicular. Its characteristic feature may be called
double resonance.For small values ofu the MPR is deter-
mined by v t . Then, for somewhat larger values ofu its
amplitude sharply goes down within a narrow angular int
val typically of the order of 10°. For even bigger values ofu
there is another maximum, this time determined byv l .12

These two types of resonance may be called thev t and v l
resonances as their positions are determined by the freq
ciesv t andv l , respectively.

In Ref. 10 we have given an interpretation for the fir
group of experiments. In the present paper we offer an in
pretation of the second group. It is shown that the angu
and concentration dependencies of the MPR amplitudes
deeply interrelated.

The magnetic fieldB is assumed to be in the (y,z) plane,
the z axis being perpendicular to the 2DEG, while the ext
nal electric field is oriented along they axis. The
ryy(5rxx) component of the resistivity tensor will be calcu
lated. This is the transport coefficient expressed through
2D conductivitysmn ~averaged over the width of the well! as

ryy5sxx /~sxy!
2.

As usual, it is assumed thatsxy
2 @sxxsyy . We consider the

situation where the well is so narrow that only one electr
band of spatial quantization is filled. Hence one can assu
that thez component of electron velocity vanishes. Then
©2002 The American Physical Society01-1
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ṗx5eEx1
eB

c
vycosu, ṗy5eEy2

eB

c
vxcosu, ~1.1!

wherepx ,py andvx ,vy are, respectively, the components
the electron quasimomentum and velocity. These class
equations illustrate the physics describing a 2D circular m
tion of an electron with the angular frequency

V cosu5
eB

mc
cosu ~1.2!

wherem is the effective mass, so thatpx,y5mvx,y . It fol-
lows from Eq.~1.1! that

sxy5
enc

B cosu
, ~1.3!

wheree and n are the electron charge and concentration
means that within one miniband approximation the magn
field enters the problem only in the combinationB cosu.

II. GENERAL EQUATIONS

To calculate thex component of the dc current it is con
venient to consider the motion of a center of Landau os
lator. The conductivitysxx averaged over the width of th
well is given by~see Ref. 13!

sxx5
e2

2kBTSE2`

`

dt^Ẋ~0!Ẋ~ t !&, ~2.1!

whereS is the area of the 2DEG,T is the temperature,X is
the operator of coordinate of the center of Landau oscilla
in the Heisenberg representation. According to Eq.~1.1!, in
the Schro¨dinger representation

X52
ic

eBcosu

]

]y
1x

~cf. Ref. 14, Sec. 112!. It commutes with the free electro
HamiltonianH in magnetic fieldB as well as with the op-
erator of Coulomb electron-electron interaction. This is
consequence of the quasimomentum conservation
electron-electron collisions. HerêẊ(0)Ẋ(t)& is the en-
semble averaged correlation function of velocities of the c
ters of Landau oscillators. In the present and the follow
sections we will usually assume\51,kB51 and will restore
these symbols in the resulting formulas.

Now

Ẋ~ t !5(
s

E c†~r ,s!i @H,X#c~r ,s!d3r

5(
s

c

eBcosuE c†~r ,s!
]Û

]y
c~r ,s!d3r . ~2.2!

The summation is over the spin variable. Herec is the op-
erator of the electron wave function whileÛ(t,r ) is the op-
erator of phonon field interacting with electrons. For the tim
being, we consider it as an external random field; later on
will average over all its realizations introducing the op
11530
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phonons. The expression forsxx can be presented in such
form ~we remind the reader that we calculate the conduc
ity averaged over the width of the well!

sxx5
e2

2TSS c

eBcosu D 2E
2`

`

dtE d3r E d3r 8

3K n̂~0,r 8!
]

]y8
Û~0,r 8!n̂~ t,r !

]

]y
Û~ t,r !L , ~2.3!

where n̂(t,r ) is the electron density operator. Represent
the ensemble average in Eq.~2.3! as a sum over the exac
quantum states of the system~see Ref. 15, Sec. 36! we get16

sxx5
e2

2T S c

eBcosu D 2E
2`

` dv

2pE d2q

~2p!2E dzE dz8

3
qy

2N~v!

12exp~2v/T!
@DR~2v;q;z,z8!

2DA~2v;q;z,z8!#@PR
(3)~v;q;z8,z!

2PA
(3)~v;q;z8,z!# ~2.4!

~see details of the derivation in Ref. 10!. We made use of the
quasimomentum conservation along the plane of the qu
tum well; q is a 2D wave vector parallel to the plane of th
well. N(v) is the Bose function.PR

(3)(v;q;z8,z) is the exact
3D electron polarization operator.

Now, DR(v;q;z,z8) is the phonon propagator with regar
of the direct Coulomb electron-electron (e-e) interaction
@see below Eq.~2.7!#. In the present paper we consider th
magnetophonon resonant contribution tosxx . This means
that the phonon contribution to the Green functionDR is
determined by the optic phonons. Further on we will assu
that one can neglect the difference between the lattice p
erties within and outside the well. This assumption sho
not affect the qualitative results of the theory.@Equation~2.4!
permits us to consider also a more general~nonhomoge-
neous! case.# Without regard ofe-e interaction the phonon
propagator has the form

DR,A
(0) ~v!5

4pe2

~q21k2!«c

v l

2 S 1

v2v l6 id
2

1

v1v l6 id D ,

~2.5!

wherek is the z component of the wave vector while«c is
given by

1

«c
5

1

«`
2

1

«0
. ~2.6!

Here «0 and «` are the dielectric susceptibilities forv→0
and v→`, respectively. We have included the Fro¨lich
electron-phonon interaction17 into the definition of the zero-
order phonon Green function.

When calculating the exact phonon propagator it will
necessary to insert along with the phonon linesDR,A

(0) the
direct Coulomb interaction lines
1-2
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V(C)~q,k!5
4pe2

«`~q21k2!
. ~2.7!

One should, however, observe the following important po
Both ends of the exact phonon propagator should be ordin
phonon linesD (0) without Coulomb interaction lines. This i
due to the fact that the operatorX commutes with the
electron-electron interaction operator@see Eq.~2.2!# as the
latter conserves the electron quasimomentum.

Further we assume for the electrons a parabolic confin
potentialmv0

2z2/2 with the following gauge for the vecto
potential A5(2By cosu1Bzsinu,0,0). It is also assumed
that

\v0@\V,kBT ~2.8!

~where V5eB/mc is the cyclotron frequency!. In other
words, we assume the confining potential to be strong.
diagonalization of quadratic Hamiltonian is a well-know
procedure~for instance, Ref. 18!. We wish, however, to em
phasize that the actual form of the confining potential is
essential for the present theory provided that\v l is much
smaller than the distance to the bottom of the second m
band@see below — Eq.~2.12!#.

The energy of confined electron in the magnetic field
fined by the vector potentialA is

U5
1

2
mV2cos2u~y2y0!22

1

2
mV2sin~2u!z~y2y0!

1
1

2
m~v0

21V2sin2u!z2, ~2.9!

wherey052cpx /eBcosu while px is the electron quasimo
mentum component that is conserved. We will see in
Appendix that in the leading order in (V/v0)2 one can retain
in Eq. ~2.9! only the terms describing the electron motion
the magnetic fieldB cosu perpendicular to the plane of th
well ~cf. Ref. 19!. This can be visualized in the following
way. One can obviously neglect the magnetic field correct
to the confinement potential, i.e.,V2sin2u as compared to
v0

2. This means that the characteristic values ofz are of the
order of l 5A\/v0m. The mixed term, i.e., the second ter
on the right-hand side of Eq.~2.9! for the typical values ofz
can be also discarded provided that\v0 is the biggest energy
in our problem. Therefore the 2D polarization operator~cal-
culated in detail in the Appendix! for the case of Boltzmann
statistics and a small gas parameter we are interested in
the same structure as the polarization operator of Ref. 1
the perpendicular fieldB with the replacementB→B cosu:

PR522nsexpF2
~qaB!2cotha

2 cosu G
3 (N52`

`
sinhNa

v2NV cosu1 id
I NS q2aB

2

2 cosu sinha D .

~2.10!
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Here I N is the modified Bessel function, a
5\V cosu/2kBT,aB

25c\/eB, ns is the 2D electron concen
tration. The polarization operatorP (3) of Eq. ~2.4! differs
from PR by the factorc(z)2c(z8)2 due to the electron mo
tion along thez axis. Herec(z) is the wave function of the
lowest level of transverse quantization.

Thee-e interaction can take place both via exchange o
phonon and as a direct interaction described byV(C), Eq.
~2.7!. The sum of two interactions is

VR,A~q,k!5
4pe2

~q21k2!«R,A~v!
,

«R,A~v!5«`

v l
22~v6 id!2

v t
22~v6 id!2

. ~2.11!

Herev t
25v l

2(12«` /«c).
Equation~2.10! shows that the electron-electron intera

tion cannot be treated within the perturbation theory. Let
frequency v in Eq. ~2.10! be close to the frequenc
NV cosu so that only one term of the series is importa
The higher orders of the perturbation theory~without regard
of the electron dampingGe) give powers of an extra facto
1/(v2NV cosu1id). Therefore, thee-e interaction must be
a sum of chains of loop diagrams~see Ref. 10!. Physically
this means taking into account the screening of phonon
larization potential by the conduction electrons. Thus in
case in a resonance the screening can be very important
reason as to why one does not need to take the screening
account in 3D case has been discussed in Ref. 10. The
point demanding some attention is taking into account
spatial nonhomogeneity. However, the procedure is es
tially facilitated by the fact thatP(z1 ,z2) depends on
c(z1)2c(z2)2 as factors. Then the index of the progressi
generated by the loops is proportional to

E E dz1dz2VR~q,z12z2!c2~z1!c2~z2! ~2.12!

that can be presented in the form

E dk

2p
VR~q,k!F E ds

2p
cscs1kG2

,

wherecs is the Fourier component ofc(z). This result is
valid for a well of any form so far as the the distance to t
bottom of the second miniband remains much bigger th
\v l . It is only necessary to insert into Eq.~2.12! the appro-
priate wave functionc(z).

For a quadratic confining potential we get a theory of 2
electrons with the interaction potential

VR~v,q!5
4pe2

«R~v!
E

2`

` dk

2p

exp~2k2l 2/2!

k21q2 . ~2.13!

Further on we will also need the expression

V(C)~q!5
4pe2

«`
E

2`

` dk

2p

exp~2k2l 2/2!

k21q2 ~2.14!
1-3
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as well as the equation for the exact phonon Green func

DR~v,q!5
VR~v,q!

11VR~v,q!PR~v,q!
. ~2.15!

Now we take into account the aforementioned point t
both ends of the chain in Eq.~2.4! should be ordinary pho
non lines~without the Coulomb interaction!. We have

DR~v,q!5DR
(0)~v,q!

1DR
(0)~v,q!

1

PR
212VR~v,q!

DR
(0)~v,q!,

~2.16!

where

DR
(0)~v,q!5E dk

2p
DR

(0)~v,q,k!exp~2k2l 2/2! ~2.17!

and a purely 2D equation for the MPR

sxx5
1

4T S c

B cosu D 2E
2`

` dv

2pE d2q

~2p!2

q2N~v!

12exp~2v/T!

3@DR~2v;q!2DA~2v;q!#@PR~v;q!2PA~v;q!#.

~2.18!

Here we made use of the fact that for\v0@\V the inte-
grand in Eq.~2.18! is symmetric inqx andqy .

We will not insert directly Eq.~2.16! into Eq. ~2.18! as it
seems to have poles atv5v l that in fact disappear afte
integration and some algebra. It is convenient instead
present Eq.~2.16! in the form

DR~v,q!5DR~v,q!2V(C)1
2V(C)VR~q!

PR
211VR~q!

2
~V(C)!2

PR
211VR~q!

.

~2.19!

One can see that neither of these terms has a polev5v l @see
Eq. ~2.13! in combination with Eq.~2.11!#. This is a mani-
festation of the influence of screening. It means that
screening may play a certain role even for relatively sm
electron concentrations.

The MPR is, as we will see, determined by the last te
while the contribution of all the rest terms in Eq.~2.18!
vanishes~provided that one neglects the electron and pho
damping!. As a result, we have for theNth resonance ofsxx

sxx5
2nsc

2\2

«`kBTB2cos2u

N~v t!sinh~\v t/2kBT!

12exp~2\v t /kBT!

3JNd@1/«~NV cosu!#, ~2.20!

where
11530
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JN5E
0

`

dqq3V(C)~q!I NS aB
2q2

2 cosu sinha D
3expS 2

aB
2q2cotha

2 cosu D . ~2.21!

As is indicated in Sec. I, it is natural that in the lowest a
proximation inV2/v0

2 only the combinationB cosu enters
the equations describing the 2D motion of an electron in
quantum well. The integrals in the rest terms in Eq.~2.19!
are either real or proportional to«21d(«21). This can be
easily checked if one takes into consideration thatd(«21)
comes from the pole@PR

211VR(q)#21 and the terms in
question in Eq.~2.19! have the factor«21.

Further we will be interested in the caseql!1 when the
effective e-e interaction does not depend on the form
potential and is equal to

V(C)~q!5
2pe2

«`q
. ~2.22!

Then one can presentJN as

JN5
4iApe2

«`aB
3

cos3/2u sinh1/2S \V cosu

2kBT D
3QN21/2

1 S cosh
\V cosu

2kBT D , ~2.23!

whereQN21/2
1 (z) is the associated Legendre function of t

second kind~we remind the reader thatQN21/2
1 is an imagi-

nary function of a real argument!. We will consider the case
a!1. Then the characteristic values ofq are of the order of
qT5A2mkBT/\ and one can presentJN in the following
form:

JN5
4A2pe2cosu

«`aB
3

AkBT

\V
. ~2.24!

As «21(v) @Eq. ~2.11!# has a zero atv5v t , sxx exhibits
in this approximation an infinitely narrow magnetophon
resonance at

NV cosu5v t . ~2.25!

Physically this is due to the fact that thee-e interaction with-
out regard of the damping is very strong in the resonanc

III. ANGULAR DEPENDENCE OF MPR MAXIMA

In the present section we will investigate dependence
the positions of the MPR maxima on the angleu. As we have
indicated, in the limit of vanishing phonon and electro
damping (G andGe , respectively! the screening in the reso
nance is very strong. If we take into account that the dam
ings are finite one can calculate the critical concentrationns
where the screening ceases to play a role. As the interac
depends also onu for each value ofns one can indicate the
corresponding critical value~s! of u.
1-4
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We will start with taking into account the phonon dam
ing. Finite optic phonon damping is due to the decay of
optic phonon into two acoustic ones~see Ref. 10!. Techni-
cally it can be taken into account by replacementv→v
6 iG in the retarded and advanced phonon Green functio
respectively. One can easily see that in such a case the M
acquires a finite width which one can take into account
the following replacement in Eq.~2.20!

d~«21!→ 1

p
Im «R . ~3.1!

Here

1

p
Im «R5

v l
22v t

2

2pv t

«`G

~NV cosu2Av t
21G2!21G2

.

~3.2!

In what follows we will assume that

Ge ,G!v l2v t!v t . ~3.3!

One needs the first inequality to be able to discriminate
tween frequenciesv l andv t . The second inequality is ful
filled for such systems as GaAs/GaAlAs and facilitates
calculations.

Now we will discuss the role of the electron dampin
Good examples of importance of the damping for the M
are given in Refs. 8,20. For us it is important as it may b
destroy the resonance and determine the angular interva
its existence we are looking for. We assume thatGe
!V cosu. The electron Green function in magnetic field h
been investigated by Ando and Uemura21 and in more detail
by Laikhtman and Altshuler22 for Ge determined by an elas
tic short range scattering. In the case we are particul
interested in, i.e., GaAs the temperature variation of mobi
from the liquid helium temperature to the temperature
experiment~about 200 K! is substantial~in the typical cases
at least, by several times!. It means that the acoustic phono
scattering~that can be considered as short range elas!
should be predominant. It was shown in Refs. 21,22 tha
this case the electron Green function has a non-Lorent
form with the characteristic widthGe given by

Ge5Ge
(0)Acosu, Ge

(0)5AV/2pt, ~3.4!

wheret is the relaxation time forB50 obtained by assum
ing the same scatterers as for finiteB.

Further on our formulas should be considered as order
magnitude estimates giving the correct dependencies on
parameters, though not the parameter-independent nume
coefficients of the order of unity. For such estimates it will
sufficient to use the Lorentzian form ofP(v,q). As has been
indicated, in the resonance approximation one should re
only the resonant term of all the series~2.10! for PR(v,q)

PR~v,q!52
RN~v,q!

v2NV cosu1 iGe
, ~3.5!

whereRN is the residue at the polev5NV cosu2iGe. Cal-
culatingsxx one can evaluate the integral over the frequ
11530
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cies taking the residues in the polesv5NV cosu6iGe. To
get the result one should remove the factord(«21) in Eq.
~2.20! and insert instead into the integrand of Eq.~2.21!

D[
1

p

Im «A
2112g

~2g1Im «A
21!21~Re«A

21!2
, ~3.6!

where

g5
Ge

v̄
; v̄5

2pe2

q
RN~NV cosu,q!

while «A should be calculated atv5NV cosu1i(G1Ge).
One can see that integral~2.21! is dominated by the values o
q where the asymptotic expansion of the Bessel function
valid, so that

RN5
ns

A2p

NV cos2u

TqaB
AV

T
expS 2

q2

4qT
2D . ~3.7!

Note added.We remind the reader that Eq.~2.20! is de-
rived within the so-called RPA~loop! approximation@see Eq.
~2.16!# as it takes into account the resonant interaction
electrons with optic phonons. Such resonant terms sho
probably be added also to the vertex parts describing
polaron effects. These terms may be essential in the ma
tophonon maxima. However, we are looking for the critic
values of the parameters such as electron concentra
where the resonant interaction disappears, so that the M
signal sharply goes down. In such a situation the pola
effects should be also suppressed. Thus we believe tha
theory, though probably not permitting the exact calculat
of the MPR amplitude, still gives the correct characteris
values of the electron concentrations and the angles w
the MPR signal rapidly decreases.

In the present paper we limit ourselves with the su
ciently low concentrationsns where the MPR maxima are
well defined. As is shown in Ref. 10, an additional mech
nism of electron level broadening due to the electro
electron interaction appears at high electron concentra
@see Eq.~6.10! of Ref. 10#. Here we consider the concentra
tions that are not so large that one would have to take
consideration this effect.

For small values ofg Eq. ~3.6! turns into ImeR(v t) as one
can neglect the terms 2g. When g has reached the critica
value(1/2)ueA

21(v t)u the amplitude of the maximum begin
to go down. This condition can be written as

2g'Im~eA!21. ~3.8!

for

NVcosu5v t . ~3.9!

Under the MPR condition~3.9! Im(eA)21 is small. Therefore
even a small variation of the quantities determiningg can
violate Eq. ~3.8!. The screening is important provided th
the parameter

b[Im@eA~NVcosu1 iGe1 iG!#21/2g ~3.10!
1-5
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is bigger than~or of the order of! unity. If it is much bigger
than unity the screening is strong and the result is indep
dent ofb. The MPR maxima becomeb-dependent whenb is
of the order of unity. Then a relatively small variation ofb
might drastically change the result~see Figs. 4 and 5 of Ref
10!. To achieve such a change one needs a variation ofb that
need not be large.

Let us follow a variation of the MPR signal as a functio
of u. One can write for an arbitrary magnetic fieldB~u! that
is near theNth resonance valueBN(u)

B~u!5BN~u!1DB. ~3.11!

BN(u)5\v tmc/eN is the position of theNth MPR maxi-
mum foru50. The field corresponding to theNth resonance,
varies for finite values ofu according to

BN~u!cosu5BN~0!. ~3.12!

Thus the MPR amplitudes for various anglesu ~and the same
resonance numberN! correspond to the same value ofb and
therefore should coincide.~Only the width of the maximum
should enhance with decrease ofu!. This conclusion of the
theory is in drastic disagreement with the experiment.6

We think that this is due to the assumption that the el
tron concentrationns is a constant independent ofB. It is
known, however, that in the course of temperature varia
from 77 to 300 K atB50 the variation of the carrier concen
tration may comprise several tens per cent. This means
the energy variation of some donors on the scale of the o
of hundredK, or so noticeably shifts the electron concent
tion balance between the donors and the well.

Let us give a rough estimate of the variation of impur
level positions as a function ofB. If one assumes a
hydrogen-like states the variation ofde of their lowest level
position e~B! under the shift of magnetic fielddB is ~for
instance, Ref. 14, section 112!

de'2
dB

B

ue~B!u
2ln@\V~B!/e0#

~3.13!

wheree05me4/2\2e`
2 is the Bohr energy whilee~B! is the

position of the level in magnetic fieldB, mark thate(B)
,0. This is a lower estimate as with the overlap of atom
orbits the influence of the magnetic field should enhance
in our case ln@\V(B)/e0# is, roughly, of the order of unity we
will accept the estimatede/e'2dB/B. This should result in
redistribution of electrons between the donors and the w
In other words, the electron concentration in the well w
decrease~see below!. The chemical potentialm can be ob-
tained from the equation

Ni5expS m

kBTD H NiexpF2
e i~B!

kBT G
1

S

2paB
2cos2u (

L
expF2

hVL~Bcosu!

kBT G J ,

~3.14!

whereNi is the total number of donors. Further on we w
assume that the number of electrons bound to the dono
11530
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much bigger than in the well. This seems to be a rat
typical experimental situation. Practically the actual form
the impurity states and the distribution of impurity leve
may be ~and usually is! much more complicated. What i
actually relevant to bring about a variation of the electr
concentrationns in the well is the magnetic field dependen
of the positions of impurity levels in the proper interval
energies.

The variation of electron concentration for the values oB
given by Eq.~3.12! is

dns

ns~B!
5j

dB

B
with j5

e~B!/kBT

11ns~B!/ni~B!
~3.15!

whereni(B) is the 2D concentration of the electrons bou
by the donors. It will be natural to assume below for t
estimates thatuju is of the order of unity.

It is convenient to presentb as a ratio of the electron
concentrations to some characteristic value

b5ns~B!/ndown ~3.16!

where

1

ndown
5

A2p\e3v tBN~0!

e`qTT2Gemc
•

Ge1G

v l2v t
. ~3.17!

ndown is the lower critical concentration where the screen
ceases to play a role. ForN53 in GaAs its characteristic
value is about 1010 cm22. Equation~3.17! differs from the
equation forndown given in Ref. 10 as we have assumed the
qT'aB

21 and \v t'2kBT that is valid for GaAs under cer
tain conditions and may differ for other situations.

The paramterb depends on the electron concentrationns .
This fact permits one to compare the dependence of the M
amplitudes in perpendicular magnetic field under the va
tion of concentration~i.e., in different samples! and the an-
gular dependence of the MPR maxima under variation ou.
This will permit to check as to whether the magnetic fie
induced variation ofns is sufficient to explain the decrease
the MPR amplitude as a function ofu on the one hand and
the existence of the subsidiary~side! maximum in the angu-
lar dependence of the MPR amplitude on the other hand~see
Ref. 6!.

We start with discussion of the behavior of the MPR a
plitude under magnetic field rotation at small anglesu!1.
We will consider the concentration intervalns'ndown where
there is a sharp dependence of the MPR amplitude onb.
According to Eq.~3.12! the MPR maximum will shift by

dBN'BN~0!~12cosu!. ~3.18!

This will result in the relative variation of concentratio
dns/ns'j(12cosu) that manifests itself in the angular de
pendence of the MPR amplitude. As is known from the e
periment in the perpendicular magnetic field, in this regi
of concentrations whenns goes down it brings about a shar
decrease of the amplitude.

As a reasoning supporting our view we will consider t
following numerical example. According to Ref. 6, Fig. 6 th
variation of the MPR amplitude is about 60% provided t
1-6



8
e
fo
n
e

re
an

t

he

a
o

ed
s

its

is
ng
o
m

-

, o
l
an
,

PR

es
o-
ion
s

.

ta-
s

t

fre-

of
arac-

on
ds
e
ave

on-
n of

we
re-

k
he
15-

a

t
ro

for

THEORY OF DOUBLE MAGNETOPHONON RESONANCE IN . . . PHYSICAL REVIEW B65 115301
concentration varies within the interval from 1.
31010 cm22 to 231010 cm22. The same decrease of th
amplitude induced by magnetic field should take place
dns/ns'0.1, i.e., for u of the order of 20°. This shows a
order-of-magnitude correspondence with the results of R
6. Further increase ofu gets the system into the region whe
n,ndown and a well defined resonant peak with the reson
condition ~3.9! disappears.

The behavior of this sort takes place provided thatb*1.
for such concentrations whereb@1 small variation of this
parameter does not play an essential role. This means tha
the samples that have a maximal MPR amplitude (ns'5
31010 cm22) its u dependence should be absent.

Now we will treat the region of large angles. Consider t
samples with the concentration of the order ofndown. The
angleu going up,ns can become so small that the perturb
tion approach becomes applicable. In other words, one
serves the resonance determined by the condition

NVcosu5v l . ~3.19!

The screening is not important provided thatb,1. In view of
Eq. ~3.19! one should insert in~3.10! eA(v l1 iGe1 iG). As a
result, one can write

b l5
ns~u!

ndown
S v l2v t

Ge1G D 2

. ~3.20!

If the last factor in this equation is large enough one ne
rather small concentrationsns(u). Let us estimate the angle
where they can be achieved. It follows from Eq.~3.14! under
the same assumptions provided thatdB/B is not small

ns~DB1B!5ns~B!exp~de/kBT!. ~3.21!

Very rough estimates in the spirit of Ref. 23 give@the
dependencee~B! is rather smooth and we believe that
expansion up to the linear term can be justified#

de'2ze0S \V

e0
D52z\V ~3.22!

wherez is a number of the order of unity. This estimate
based on the idea that the level shift depends on a si
parameter, i.e., the ratio of the magnetic energy to the C
lomb one~cf., the analytical treatment of the hydrogen ato
in magnetic field in Ref. 14, Sec. 112!.

Thus the discussedv l maximum exists for the angles big
ger thanuc given by the equation

secuc'
1

2
1A1

4
1

2NkBT

z\v l

lnS v l2v t

Ge1G
D . ~3.23!

The second term under the sign of root is, most probably
the order of unity. In this caseu is somewhere in the interva
between 40° and 70°, or so. Thus in the regions of small
large angles we have well-definedv t and v l resonances
respectively. Their positions depend onBcosu. In the inter-
mediate interval of angles there are no well-defined M
maxima.
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It is interesting to note that in the region of small angl
the width of a maximum goes up with the number of res
nanceN. It can be easily seen if one takes into considerat
enhancement ofns with decrease of magnetic field as well a
enhancement ofnc with N. All these conclusions are in a
qualitative agreement with the results described in Ref. 6

IV. CONCLUSION

To summarize, we would like to stress that the interpre
tion of behavior of the MPR in a tilted magnetic field ha
been a long-standing problem.5,6,12 Two types of resonan
maxima have been discovered on experiment, i.e., thev t and
v l resonances as their positions are determined by the
quenciesv t andv l , respectively.

Important points to provide theoretical interpretation
these resonances are the dependence of all quantities ch
terizing the 2D motion of electrons on the combinati
B cosu whereas their total concentration in the well depen
on B. Had only theB cosu dependence existed, the amplitud
of the resonances, i.e., the heights of the maxima would h
been independent of the angleu. We think that the only way
to preserve the theory of 2D electron gas describing the c
centration dependence of the MPR is to assume variatio
the electron concentration withB. It manifests itself in the
angular dependence of the MPR amplitude. In this way
have been able to give a qualitative interpretation of the
sults given in Ref. 6.
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APPENDIX: CALCULATION OF POLARIZATION
OPERATOR

As indicated in Sec. II, we assume for the electrons
parabolic confining potentialmv0

2z2/2 with the gauge for the
vector potentialA5(2By cosu1Bzsinu,0,0). In spite of
the first inequality~2.8!, it is convenient to look for the exac
transformation of the Hamiltonian and solution of the Sch¨-
dinger equation and only then go to the limit

V/v0!1. ~A1!

Applying a standard procedure of diagonalization we get
the bigger eigenvalue

V2
25v0

21V22Vc
2 ~A2!

while the smaller eigenvalue is

Vc
25

V21v0
2

2
F12A12

4V2v0
2cos2u

~V21v0
2!2 G . ~A3!

The variables (Y,Z) diagonalizing the Hamiltonian are
expressible through the initial variables (y,z) as
1-7
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S Y

ZD 5
1

C S y2y02rz

r ~y2y0!1zD . ~A4!

HereC51/A11r 2,

r 5
Vc

22V2cos2u

V2cosu sinu
.

As a result, we get two noninteracting oscillators, i.e., theY
oscillator and theZ oscillator

H52
1

2m

]2

]Y2 2
1

2m

]2

]Z2 1
m

2
Vc

2Y21
m

2
V2

2Z2. ~A5!

We are interested in the eigenfrequency of theY oscillator
that is

Vc5V cosu ~A6!

plus small terms proportional toV2/v0
2!1. The eigenfre-

quency of theZ oscillator is equal tov0 ~with the same
accuracy!.

Now we turn to calculation of the polarization operat
for nondegenerate free electrons in magnetic field by a sl
modification of the method proposed by Sondheimer a
Wilson.24 The method is based on the spectral representa
~see Sec. 36 of Ref. 15!.

PR~v,z8,z!5(
m,l

wl

^mun̂~0,z8!u l &^ l un̂~0,z!um&
v2v lm1 id

3@12exp~2v lm /T!#. ~A7!

Sondheimer and Wilson introduced a Green function o
complex time argumentg

G~r ,r 8,g!5(
b

cb* ~r 8!cb~r !exp~2«bg!, Reg.0.

~A8!

Here b is the set of all quantum numbers of an electro
while «b is the energy of the quantum stateb. One can
express the polarization operator through the Green funct
of a complex time argument.

The retarded polarization operator for Hamiltonian~A5!
is

PR
(3)~r ,r 8,t !52i cosh

V21Vc

2T
expS m

T DQ~ t !

3FGS r 8,r ,
1

T
2 i t DG~r ,r 8,i t !

2G~r 8,r ,2 i t !GS r ,r 8,
1

T
1 i t D G . ~A9!

Herecb(r ) is a product of the eigenfunctions of theY andZ
oscillators,Q(t) is the step function.

In order to sum up the series in Eq.~A8! over theY- and
Z-oscillator quantum numbers we will use the followin
relation:25
11530
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n

a

,

ns

(
0

`
1

2nn!
expF2

1

2
~y21y82!2ngvGHn~y!Hn~y8!

5~12e22gv!21/2 expF2
1

4
~y1y8!2

12e2gv

11e2gv

2
1

4
~y2y8!2

11e2gv

12e2gvG , ~A10!

whereHn(y) is the Hermite polynomial. It is convenient t
replace the summation over the quantum numberpx by inte-
gration overy0.

Now,

G~r ,r 8,g!5
a1CeBcosu

Apa2

~sinhgVcsinhgV0!21/2

3S tanh
gVc

2
1

a1
2r 2

a2
2 tanh

gV0

2 D 21/2

3expH 2
1

4
cothS gVc

2 D ~DY!22
a1

2

4a2
2

3cothS gV0

2 D ~DZ!22
1

4
b1

2tanhS V0g

2 D ~z1z8!2

2
1

4

C2@Dx1 ib tanh~V0g/2!~z1z8!#2

tanh~gVc/2!1~a1
2r 2/a2

2!tanh~gV0/2!J .

~A11!

Here

b5
a1

2r

a2
2 , b15

b

r
; ~A12!

the variables in Eq.~A11! are made dimensionless by th
transformations

DY5~Y2Y8!/a1 , DZ5~Z2Z8!/a1 , z→z/a1 ,

z8→z8/a1 , ~A13!

where

a1
251/mVc , a2

251/mV0 . ~A14!

To calculate the polarization operator it is convenient
use the Green functions in the momentum representat
After rather involved but straightforward calculations we g

P (3)~q,qz ,Qz ,t !5P~q,qz ,Qz ,t !1P* ~2q,2qz ,Qz ,t !,
~A15!

where the asterisk means a complex conjugation
1-8
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P~q,qz ,Qz ,t !5

2iCa1B2cosh
Vc1V0

2T
Q~ t !em/T

pa2sinh~Vc/2T!sinh~V0/2T!

3expH 2S qy
21

qx
2

C2Dg1~Vc!

2S qz
21

r 2qx
2

C2 Da2
2

a1
2 g1~V0!

2
Qz

2

4C2 Fa2
2

a1
2 g2~V0!1

r 2

2
g2~Vc!G

1
rqxQz

2C2 @g3~Vc!2g3~V0!#J ,

~A16!

where

g1~V!5
1

2 Fcoth
V

2T
2cosS Vt1

iV

2TD Y sinh
V

2TG ,
g2~V!5

1

2 Fcoth
V

2T
1cosS Vt1

iV

2TD Y sinh
V

2TG ,
g3~V!5

sinV~ t1 i /2T!

sinh~V/2T!
.

Hereq andqz refer to the Fourier components over the d
ferencesr2r 8 andz2z8 while Qz is related to (z1z8)/2.

We are looking for a frequency representation of the
larization operator. We are going to take into considerat
only the lowest level of transverse quantization, i.e., the lo
est miniband. At the first sight one could try to average E
~A16! over the time interval bigger than 1/v0 but smaller
than 1/V cosu. However, some spurious terms can appea
a result of the direct averaging due to the even powers
sinv0t and cosv0t. Therefore we will look for the frequency
representation of the whole expression Eq.~A16!. One can
find it with the help of the identities
.

rd

ev

ev
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-
n
-
.

s
of

exp~2z cosA!5(
2`

`

einAI n~z!,

exp~2z sinA!5(
2`

`

einAJn~ iz!. ~A17!

whereJm are the ordinary Bessel functions. Combining the
with Eq. ~A16! one can see thatA is a linear function of time,
so that one can easily calculate the Fourier components.
carding the poles describing the transitions to the hig
minibands one gets

PR
(3)522CnsexpF2S qy

2

2
1

qx
2

2C2D coth
Vc

2T

2
Qz

2

C2S a2
2

8a1
2 1

r 2

8
coth

Vc

2TD 2
a2

2

a1
2S qz

2

2
1

r 2qx
2

2C2 D G
3(

lmn
I n1 l S qy

21qx
2/C2

2sinh~Vc/2T!
D I l 2mS r 2Qz

2

8C2sinh~Vc/2T!
D

3JmS irq xQz

2C2sinh~Vc/2T! D sinh~Vcn/2T!

v2Vcn1 id
. ~A18!

There are elegant formulas to calculate this sum. Ho
ever, as we are interested in the limiting caseV2/v0

2!1 one
can see the result immediately from Eq.~A18!. Indeed, the
Bessel functions having in their arguments as a factor
small parameterr can be discarded unlessl 2m5m50 and
we are left with

PR
(3)522nsexpF2

qx
21qy

2

2
coth

Vc

2T
2

a2
2

a1
2

Qz
2

8
2

a2
2

a1
2

qz
2

2 G
3(

n
I nS qy

21qx
2

2sinh~Vc/2T!
D sinh~nVc/2T!

v2Vcn1 id
. ~A19!

One can see thatP (3) Eq. ~A19! coincides withPR
(3) of Eq.

~2.4! and ~2.10! if one takes into consideration that withi
the accepted approximationVc5V cosu and that we use in
Eq. ~A19! dimensionless variables.
d
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