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Long-wavelength limit „homogenization… for two-dimensional photonic crystals
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Using the Fourier expansion method in the low-frequency limit we develop an effective-medium theory for
two-dimensional~2D! periodic composites. We give a rigorous proof that, in this limit, a periodic medium
behaves like a homogeneous one and we derive compact analytical formulas for the effective dielectric
constants of a 2D photonic crystal, i.e., a periodic arrangement of infinite cylinders. These formulas are very
general, namely the Bravais lattice, the cross-sectional form of cylinders, their filling fractions, and the dielec-
tric constants are all arbitrary. So is the direction of propagation of the Bloch wave—out of plane in general,
with special attention paid to the limiting cases of propagation in the plane of periodicity and parallel to the
cylinders. In the latter case we report a behavior that is qualitatively different from that encountered in natural
crystals and in 3D photonic crystals. Namely, for propagation along the cylinder axes, the wave fronts are not
plane but rippled, with the distribution of the ripples following the pattern of the 2D Bravais lattice. We also
demonstrate that the other long-wavelength optical properties can be described by means of the index ellipsoid.
This allows us to apply the classification used in the optics of natural crystals~‘‘crystal optics’’! to photonic
crystals. Namely, we characterize the photonic crystal entirely in terms of its three ‘‘principal’’ dielectric
constants. One of these is associated with the direction parallel to the cylinders, and is given simply by the
spatially averaged dielectric constant. For the two in-plane principal dielectric constants we derive three
representations that are equivalent in principle, however, give rise to different rates of numerical convergence,
depending on whether the dielectric constant or its reciprocal have been expanded in a Fourier series~respec-
tively, ‘‘ « representation’’ and ‘‘h representation’’!. Numerical results are given for a uniaxial~biaxial! pho-
tonic crystal with square~rectangular! lattice and circular cylinders. We conclude that for dielectric cylinders
in air theh representation leads to much better convergence than the« representation. The opposite holds for
air cylinders in a dielectric. The accuracy is checked by applying Keller’s theorems to conjugate structures.

DOI: 10.1103/PhysRevB.65.115208 PACS number~s!: 42.70.Qs, 41.20.Jb, 42.25.Lc
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I. INTRODUCTION

Control of light propagation by means of photonic crys
devices is mostly based on the idea of photonic band st
ture with a forbidden frequency band for the propagation
electromagnetic waves in the periodic composite. Photo
crystals which are used in waveguides, light emission
vices, antenna substrates, etc., have wide enough band
and just this property gives rise to the their numerous po
tial applications. The materials that the photonic crystals
fabricated from are mostly low-loss, high quality dielectri
with large contrast of the constituent materials. On the ot
hand, these artificial periodic composites can be also
ployed in the frequency region well below the gap, where
dispersion law is close to linear. Here the possible appl
tions of photonic crystals as traditional optical elements l
polarizers, prisms, and lenses were given very li
consideration.1,2 At the same time, in this long-wavelengt
regime the desirable optical characteristics of artificial pe
odic structures may be custom tailored by appropri
choices of the materials and the lattice geometry. These c
acteristics may be quite different from those of natural cr
tals and give rise, for instance, to unusually large birefr
gence.

In this paper we develop an analytic approach to the
tical properties of two-dimensional~2D! photonic crystals.
We are using the term ‘‘optical’’ in the sense that the wav
length of the propagating wave is much larger than the lat
0163-1829/2002/65~11!/115208~17!/$20.00 65 1152
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period of the crystal; for natural crystals this condition fi
the spectral region up to the ultraviolet.3 For photonic crys-
tals the lattice constant is, of course, a variable quan
Therefore the long-wavelength regime’s upper limit may
anywhere between radio waves and the far infrared. In p
tice, many photonic band gap materials exhibit a linear d
persion law, for both propagating modes, almost up to
gap frequency. This rather wide region~usually wider than
the band-gap! can be considered as the domain of ‘‘photon
crystal optics.’’ Due to the linearity of the dispersion law
each mode is characterized by a unique parameter—its e
tive dielectric constant. It appears in the homogenized so
tion of Maxwell’s equations for the periodic medium, whic
thus can be replaced by an effective homogeneous med

For a long time, there have been extensive efforts to c
struct effective-medium theories for inhomogeneous me
The well-known Maxwell-Garnett approximation4 has been
improved and generalized for diverse configurations, b
periodic and disordered.5–11 This phenomenological ap
proach gives good results for very small filling fractionsf
!1 or 12 f !1) but it fails otherwise. It also does not tak
into account the microstructure of the inhomogeneous m
dium. Another approach, which is sensitive to the mic
structure, concerns Maxwell’s or Laplace’s equation appl
to periodic media.12–18 This approach allows us to calcula
parameters of the effective media with high accuracy, ho
ever, usually this requires rather hard numerical calculatio
Recently a useful modification of the plane-wave expans
©2002 The American Physical Society08-1
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method was proposed by Lalanne.19 His numerical method
permits us to calculate the parameters of the effective
dium for intermediate filling fractions, and even at finite fr
quencies. However, it is restricted to a particular geometry
the inclusions, namely, when planes of permittivity discon
nuities are parallel to the crystallographic axes of the pho
nic crystal.

A few mathematical theorems in the theory of homoge
zation permit making certain general conclusions about
effective medium and also checking the accuracy of the
merical calculations. It is worthwhile to mention th
Hashin-Shtrikman20 and Coriell-Jackson21 limits, Keller’s
theorems for conjugate structures,22,23 and the spectra
representation.24

In the case of one-dimensional periodicity there are
plicit analytical solutions for the dielectric constants of t
effective medium. These are obtained by taking the lim
v,k→0 of the dispersion relations for the TE and T
modes.25 The effective medium for a 1D superlattice is
‘‘negative’’ uniaxial crystal.26 The 1D superlattice is the onl
case where the dispersion relation is known in analyt
form for all frequencies, thanks to the simplicity of th
Kronig-Penney model.27 For periodicity in a plane~2D! or
spatial~3D! periodicity, the plane-wave expansion method
widely used to calculate the band structure. For any fin
Bloch wave-vectork the dispersion relation has an infini
number of solutionsvn(k), wheren is the band serial num
ber. Fork→0 ~in the reduced Brillouin zone! all nonzero
solutionsvn(0)Þ0 correspond to an infinite number of op
tical modes which are irrelevant to the problem of homo
enization. Two solutions with frequenciesv→0 ~and k
→0) describe ‘‘acoustic’’ modes with two different polariza
tions; their finite slopesv1,2/k5c/A«e f f

(1,2) determine the two
effective dielectric constants for every direction of propag
tion. Due to this uniqueness, the acoustic modes can be
vestigated analytically by taking the limitsv,k→0 in the
characteristic equation. This approach has been propose
Ref. 28 and later developed in Ref. 29 for 3D photonic cr
tals. The effective medium for 3D photonic crystals may
isotropic, uniaxial or biaxial,29,30depending on the symmetr
of the lattice and that of the unit cell of the photonic cryst
A particularly compact result for the homogenization of 2
photonic crystals has been recently accomplished in R
31,10,32, and 33. As we will see, for the 2D case, where
inclusions of the photonic crystal are infinitely long paral
rods, the effective medium is always birefringent, i.e., it
either uniaxial or biaxial; thus a specific feature of the 2
geometry is the impossibility of isotropy.32 This can give rise
to unusually large anisotropy31 of 2D photonic crystals in
comparison to natural crystals.

In this paper we derive the homogenized equations
arbitrary 2D photonic crystals and give the details of cal
lations which have been omitted in Refs. 31–33. The pa
is organized as follows. In Sec. II we solve Maxwell’s equ
tions for the magnetic field in the low-frequency limit and
Sec. III obtain the two dielectric constants of the effecti
medium for propagation in the plane of periodicity; the
describe the propagations of the ‘‘ordinary’’ and ‘‘extraord
nary’’ waves. In Sec. IV we demonstrate that the lon
11520
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wavelength optical properties of 2D photonic crystals can
described by the index ellipsoid,3 namely, we derive the three
principal dielectric constants in terms of the microstructu
In this section we also analyze different 2D Bravais lattic
and different shapes of inclusions and make conclusions c
cerning optical symmetries of the corresponding photo
crystals. Section V is dedicated to the comparison with ot
works. Section VI contains results for propagation paralle
the axes of the cylinders. Here we solve the Maxwell eq
tions for the displacement vector and derive two alternat
representations for the principal dielectric constants. In S
VII and VIII we consider, respectively, the special cases
the rectangular and square lattices with circular cylinde
The accuracy of the numerical calculations is checked
Keller’s theorem.22,23 The conclusions are given in Sec. IX
Finally, we relegate the proofs of a few formulas to fo
appendixes.

II. MAXWELL’S EQUATIONS IN THE LOW-
FREQUENCY LIMIT

We consider an inhomogeneous 3D medium with diel
tric permittivity «(r ). In a photonic crystal this function is
periodic in space and so is the inverse dielectric funct
h(r )51/«(r ). The functions«(r ) andh(r ) are given by the
Fourier series

«~r !5(
G

«~G!exp~ iG•r !, h~r !5(
G

h~G!exp~ iG•r !,

«~G!5
1

Vc
E

Vc

«~r !exp~2 iG•r !dr ,

h~G!5
1

Vc
E

Vc

h~r !exp~2 iG•r !dr . ~1!

HereG are the reciprocal-lattice vectors and the integrat
runs over the unit cell with volumeVc . @Note that we are not
restricted to the case of a periodic heterostructure where«(r )
is a piecewise continuous function.# It is a simple matter to
prove that

(
G9

«~G2G9!h~G92G8!5dG,G8 , ~2!

wheredG,G8 is the Kronecker delta function. It follows tha
«(G,G8) and h(G,G8) are mutually reciprocal matrices
That is,«21(G,G8)5h(G,G8) andh21(G,G8)5«(G,G8).

The wave equation for the monochromatic fieldH(r ,t)
5H(r )exp(2ivt) is written as follows:

¹3[h~r !¹3H~r …#5
v2

c2
H~r !. ~3!

In the periodic medium the Bloch theorem is applicable
H(r ):

H~r !5exp~ ik•r !(
G

hk~G!exp~ iG•r !. ~4!
8-2
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LONG-WAVELENGTH LIMIT ~HOMOGENIZATION! FOR . . . PHYSICAL REVIEW B 65 115208
Using the transversality of the magnetic field,

~k1G!•hk~G!50, ~5!

a set of linear equations for the amplitudesh(G) is obtained:

S v2

c2
2h̄uk1Gu2D hk~G!

52 (
G8ÞG

h~G2G8!~k1G!3@~k1G8!3hk~G8!#.

~6!

Here

h̄[h~0!5
1

Vc
E

Vc

h~r !dr ~7!

is the average inverse dielectric constant. For a binary c
positeh̄5 f ha1(12 f )hb , with ha,b51/«a,b , where«a and
«b are the dielectric constants of the constituents andf is the
filling fraction of material a. Our theory, however, isnot
restricted to binary composites.

Equation ~6! is an infinite set of homogeneous line
equations for the eigenfunctionshk(G). The nontrivial solu-
tion is obtained by requiring that the determinant of the
efficients of hk(G) vanishes. This gives rise to the ban
structurev5vn(k), where n is the band index. Being an
analytic function,vn(k) may be expanded in a power seri
of k ~for any direction ofk) aroundk50. For the lowest
~acoustic! band of the spectrumv(0)50 and the expansion
starts from the linear term, i.e.,v(k)}k. In the static limit
v→0 there can be no magnetic field (H50). Therefore all
Fourier coefficientshk(G) must vanish ifk→0. The rates
that they approach zero are different: the Fourier coefficie
hk„GÞ0) vanish faster than the zero harmonichk(G50).
This follows from Eq.~6! if we substituteG50 in both sides
and take the limitk→0,

hk~G50!52
1

v2/c22h̄k2 (
G8Þ0

h~2G8!k

3@G83hk~G8!#. ~8!

Since the coefficients ofhk„G8… are inversely proportional to
k, all nonzero harmonics must approach zero at a higher
thanhk(0) does. Namely,hk„GÞ0) is of the same order a
hk(0)kVc

1/3.
If the wavelengthl52p/k is much larger than the size o

the unit cell, the inhomogeneous medium behaves like a
mogeneous one. Equations~4!, ~6!, and ~8! form the math-
ematical basis for theory of homogenization of photo
crystals. Because, in this long-wavelength limit,hk(0)
@hk„GÞ0), the right-hand side~r.h.s.! of Eq. ~4! reduces to
the plane wave, i.e., the wave equation solution in a hom
geneous medium,
11520
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H~r !5hk~0!exp~ ik•r !. ~9!

Moreover, because@according to Eq.~8!# hk(0)'k, this is a
transverseplane wave. Terms withGÞ0 are corrections to
this homogenized solution; the amplitudeshk(G) can be
written as power series with respect to the small param
kVc

1/3. Thus our approach to the homogenization problem
essentiallyquasistatic; it is based on the asymptotic solutio
of Maxwell’s equations. The static approach, based on
solution of the Laplace equation, has been developed in
34 ~special case of a square lattice and circular cylinders! and
later in Ref. 15~arbitrary 3D structure!.

The effective dielectric constant is defined as

«e f f~ k̂!5 lim
v,k→0

S kc

v D 2

. ~10!

It turns out to be dependent not only on the average cha
teristics of the inhomogeneous medium, like«̄ or h̄, but also
on the details of microstructure, i.e., the geometry of the u
cell, the dielectric constants of the constituents, and the
rection of propagation,k̂5k/k.

From Faraday’s Law for¹3H it follows that D(r )
5A«e f fH(r )3 k̂. Then, by Eq.~9! the displacement vecto
D(r ) is also a transverse plane wave. Further, from Farad
Law we get thatH(r )5A«e f fk̂3E(r ), so thatE(r ) is also a
plane wave. However, while the electric field must lie in t
plane perpendicular toH ~the plane formed by the vectorsk
andD), it is not a transverse wave. These conclusions are
accord with crystal optics.

Seemingly, the above analysis regarding the nature of
fieldsH(r ), D(r ), andE(r ) holds for any direction of propa
gationk̂. Actually, it turns out that propagation parallel to th
cylinders (k̂5 ẑ) is an exception.35 Section VI will be de-
voted to this interesting case.

To calculate the limit in Eq.~10! one needs to derive th
dispersion relationv5v(k) which follows from the eigen-
value problem given by Eqs.~6! and~8!. Keeping in Eq.~6!
terms of the same order with respect tok, we get forGÞ0

hk~G!5
1

h̄G2 H h~G!G3@k3hk~0!#1 (
G8ÞG

h~G2G8!G

3@G83hk~G8!#J . ~11!

Now we substitutehk(0) from Eq. ~8! into Eq. ~11!. Using
Eqs.~5!, ~10!, and~11!, and introducing new variables,

ak~G!5G3hk~G!, ~12!

after some algebra~see Appendix A! we arrive at an infinite
set of linear equations,
8-3
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A. A. KROKHIN, P. HALEVI, AND J. ARRIAGA PHYSICAL REVIEW B 65 115208
G3H (
G8Þ0

h~G2G8!ak~G8!

2
h~G!

«e f f
212h̄

(
G8Þ0

h~2G8!k̂3@ k̂3ak~G8!#J 50. ~13!

It is seen that the coefficients ofak(G8) in Eq. ~13! are now
independent of the magnitude ofk. Hence, Eq.~13! is the
homogenized Eq.~6!, i.e., the long-wavelength limitk→0
has been accomplished.

Equation~13! is identically satisfied if the vector in th
curly brackets is parallel to the vectorG, namely if

(
G8Þ0

h~G2G8!ak~G8!

2
h~G!

«e f f
212h̄

(
G8Þ0

h~2G8!k̂3@ k̂3ak~G8!#5aG,

~14!

wherea is a scalar. By Eq.~12!, the vectorak(G) lies in the
plane perpendicular toG. In this plane it is given by the
projectionsa1(G) anda2(G) on two orthogonal unit vectors
n̂1(G) and n̂2(G) respectively, namelya(G)5a1(G)n̂1(G)
1a2(G)n̂2(G). To get equations for the scalar quantiti
a1(G) anda2(G) we take projections of Eq.~14! on n̂1(G)
and n̂2(G). Since G•n̂1,2(G)50, the right-hand sides o
these equations are zeros and thus the indefinite scala
disappears. The algebra simplifies with the use of the iden

@ k̂•n̂1,2~G!#@ k̂•n̂1,2~G8!#2n̂1,2~G!•n̂1,2~G8!

52@ n̂1,2~G!3 k̂#•@ n̂1,2~G8!3 k̂#. ~15!

Then a set of equations fora1 and a2 can be written in a
compact matrix form,

(
G8Þ0

H f 1~G,G8!S n̂1•n̂18 n̂1•n̂28

n̂2•n̂18 n̂2•n̂28
D 1 f 2~G,G8!

3S ~ n̂1• k̂!~ k̂•n̂18! ~ n̂1• k̂!~ k̂•n̂28!

~ n̂2• k̂!~ k̂•n̂18! ~ n̂2• k̂!~ k̂•n̂28!
D J S a1~G8!

a2~G8!
D 50.

~16!

Here n̂1,28 [n̂1,2(G8),

f 1~G,G8!5h~G2G8!1~«e f f
212h̄ !21h~G!h~2G8!,

~17!

and

f 2~G,G8!52~«e f f
212h̄ !21h~G!h~2G8!. ~18!

Equation~16! is applicable for any periodic 3D structure
The effective dielectric constant is determined from the c
dition of existence of nontrivial solutions of this set of h
mogeneous equations. Two different sets of linear equat
11520
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were obtained in Ref. 29, using the wave equations for
electric and magnetic fields (E andH methods, respectively!.
Nevertheless, in spite of these differences of form, numer
results for the effective dielectric constants must be ident
in the limit of an infinite number of plane waves (G values!.

III. IN-PLANE EFFECTIVE DIELECTRIC CONSTANTS
OF 2D PHOTONIC CRYSTALS

In what follows we limit the treatment to 2D periodicity
i.e., to a photonic crystal with infinitely long cylindrical in
clusions. These may have any shape for their cross sec
and may form any 2D Bravais lattice. There may also
several cylinders in the unit cell.

Let the cylinders be parallel to the axisz, so thex2y
plane is the plane of periodicity. In this section we limit th
propagation to the plane of periodicity, namelykz50. Then
the vectorsG5(Gx ,Gy,0) andk5(kx ,ky,0) have only two
nonzero components. Remembering thatn̂1,2'G, we choose
the basic vectorn̂1 to be parallel to the axisz, namely n̂1

5(0,0,1), and the basic vectorn̂2 is in thex2y plane,

n̂25~2Gy /G,Gx /G,0!. ~19!

The following identities hold:

k̂•n̂15 k̂•n̂185n̂1•n̂285n̂18•n̂250, n̂1•n̂1851.

Then it follows from Eq.~16! that the equations fora1 and
a2 are decoupled:

(
G8Þ0

f 1~G,G8!a1~G8!50, ~20!

(
G8Þ0

$ f 1~G,G8!~ n̂2•n̂28!1 f 2~G,G8!~ k̂•n̂2!~ k̂•n̂28!%a2~G8!

50. ~21!

Equations~20! and ~21! describe the TM orE mode (Ei ẑ)
and the TE orH mode (Hi ẑ), respectively, as can be unde
stood from Eq.~12! and the choice of the vectorsn̂1,2. For
the case of propagation in the plane of periodicity these
modes are known to be decoupled for any frequency, not
in the long-wavelength limit.36 Equations~20! and~21! have
nonzero solutions if the corresponding determinants van

detG,G8Þ0@~«e f f
212h̄ !h~G2G8!1h~G!h~2G8!#50,

E mode, ~22!

detG,G8Þ0@~«e f f
212h̄ !G•G8h~G2G8!

1~ k̂•G!~ k̂•G8!h~G!h~2G8!#50,

H mode. ~23!

To derive Eq.~23! from Eq. ~21! we used the following
identities:
8-4
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LONG-WAVELENGTH LIMIT ~HOMOGENIZATION! FOR . . . PHYSICAL REVIEW B 65 115208
n̂2•n̂285
G•G8

G G8
, n̂2•n̂282~ k̂•n̂2!~ k̂•n̂28!5

~ k̂•G!~ k̂•G8!

G G8
.

Equations~22! and~23! determine the slopes of the acous
branches, respectively, of theE and H modes, that is—
according to Eq.~10!—the effective dielectric constants fo
these modes. These equations are polynomials of infinite
der in («e f f

212h̄). Below we show that each of them has
single physical solution.

To reduce Eq.~22! to a standard eigenvalue problem w
multiply it from the right by detG,G8Þ0@«(G2G8)# and use
the identity detAdetB5detAB. We also make use of the fac
that«(G2G8) andh(G2G8) are, according to Eq.~2!, mu-
tually reciprocal matrices and hence satisfy the identity

(
G9

h~G2G9!«~G92G8!

[ (
G9Þ0

h~G2G9!«~G9ÀG8!1h~G!«~2G8!5dGG8 ,

~24!

and its special case forG50,

(
G9Þ0

h~2G9!«~G92G8!1h̄«~2G8!5dG80 . ~25!

Then Eq. ~22! takes the form of the standard eigenval
problem,

detG,G8Þ0@h~G!«~2G8!2ldGG8#50, l512«e f fh̄.
~26!

Expanding the determinant we get

detG,G8Þ0@h~G!«~2G8!2ldGG8#

5 lim
n→`

~21!n~ln1a1ln211•••1an!. ~27!

The polynomial on the right-hand side is the characteri
polynomial of the matrix

C~G,G8!5h~G!«~2G8!, G,G8Þ0. ~28!

The coefficients of the characteristic polynomial of any m
trix C can be obtained by using the recurrence relation,37

a152Tr C~G,G8!,

a252
1

2
Tr~C21a1C!52

1

2
@Tr~C2!2~Tr C!2#, ~29!

•••

an52
1

n
Tr~Cn1a1Cn211•••1an21C!.

Here, the trace is taken over all diagonal elements exc
G5G850. Now, due to the separation of the variablesG
andG8 in the matrixC(G,G8) @Eq. ~28!#, the trace has the
property
11520
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Tr~Cn!5Tr C Tr~Cn21!. ~30!

This ensures that all the coefficientsan50 for n52,3, . . . ,
as can be proved by mathematical induction, see Appen
B. Now Eq. ~26! is rewritten in a simple form,

detG,G8Þ0@h~G!«~2G8!2ldGG8#

5 lim
n→`

~21!nln21~l1a1!50. ~31!

The infinitely degenerate rootl50 is not a solution of
Eq. ~26!. Hence Eq.~31! has the unique~nonzero! solution
l52a1. Then, using Eqs.~26!, ~29!, ~28!, and ~24!
~for G5G850), we get that

12«e f fh̄5 (
GÞ0

h„G)«~2G!

5(
G

h„G)«~2G!2«~0!h~0!512 «̄h̄.

~32!

Comparison of the first and the last expressions yields
effective dielectric constant for theE mode, namely

«E5 «̄. ~33!

This effective dielectric constant is thus independent of
direction of propagation and it is simply the weighted av
age dielectric constant. This result is in fact known to
valid not only for periodic systems, but also for any inhom
geneous dielectric with dielectric constant«(r ) that is inde-
pendent of the coordinatez ~see, e.g., Ref. 24!.

Now let us turn to the dispersion relation Eq.~23!
for the H mode. Multiplying this equation by
det$@G•G8h(G2G8)#21% we get a standard eigenvalu
problem,

detG,G8Þ0@B~G,G8!2LdGG8#50, L51/«e f f2h̄,
~34!

where

B~G,G8!52 k̂•Gh~G! (
G9Þ0

k̂"G9h~2G9!

3@G9•G8h~G92G8!#21, G,G8Þ0.

~35!

Here@•••#21 implies inversion of the matrix in the bracket
The matrixB(G,G8) is written in a form similar to the ma-
trix C(G,G8) in Eq. ~28!, namely as a product of two fac
tors, one of which depends only onG and the other only on
G8. Then it is clear that Eq.~30! also holds for the matrixB,
and that the procedure in Eqs.~27!–~31! carries over for the
case at hand. The only nonzero coefficient of its characte
tic polynomial is a152Tr B(G,G8) and thenL[1/«e f f

2h̄52a1. This results in the effective dielectric consta
for the H polarization,
8-5
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«H~ k̂!5
1

h̄1 Tr B~G,G8!
, ~36!

or

«H~ k̂!51YH h̄2 (
G,G8Þ0

k̂•Gk̂•G8h~G!h~2G8!

3@G•G8h~G2G8!#21J . ~37!

This effective dielectric constant depends on the direct
of propagation in thex2y plane and on the details of th
photonic crystal structure. For propagation in the plane
periodicity, Eqs.~33! and ~37! give a complete solution fo
the effective dielectric constants ofany 2D photonic crystal
in the low-frequency limit. In what follows we will show
how to calculate theprincipal dielectric constants, which
give the customary description for anisotropic media in cr
tal optics.3

IV. UNIAXIAL AND BIAXIAL PHOTONIC CRYSTALS

The angular dependence of«H( k̂) in Eq. ~36! can be ob-
tained explicitly for an arbitrary 2D periodic structure. In th
x2y plane we introduce a polar anglew, measured from the
x axis, taken in an arbitrary direction. Substitutingk̂
5(cosw,sinw) in Eq. ~35! and calculating the trace of th
matrix B(G,G8), we get

1

«H~w!
5~ h̄2Axx!cos2 w1~ h̄2Ayy!sin2 w2Axy sin 2w.

~38!

Here

Aik5
1

2 (
G,G8Þ0

~GiGk81GkGi8!h~G!

3h~2G8!@G•G8h~G82G!#21, i ,k5x,y.

~39!

Equation~38! describes a rotated ellipse in polar coordina
(r,w), where the radius isr(w)5A«H(w). Hence we come
to the conclusion that the values of the effective refract
indexnH(w)[A«H(w) lie on this ellipse. Such a behavior
well known in the optics of natural crystals and allows us
introduce the index ellipsoid.3 The axes of the index ellipsoid
(x0 ,y0 ,z0) are three mutually orthogonal directions alo
which the vectorsD andE are parallel to each other.

For 2D photonic crystals one of these axes (z0) is neces-
sarily parallel to thez-axis, because for theE-polarized mode
D(r )iE(r )i ẑ. Thus the other two principal axes are in th
plane of periodicity. The index ellipsoid is given by th
equation3,38

x0
2

«1
1

y0
2

«2
1

z0
2

«3
51, ~40!
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where«1 , «2, and«3 are theprincipal dielectric constants.
For every direction of propagationk̂ the index ellipsoid de-
termines two refractive indices. They are, simply, the leng
of the semiaxes of the ellipse which is obtained by cutt
the index ellipsoid by a plane through its center and tha
perpendicular tok̂, see Fig. 1. Also, the directions of thes
semiaxes coincide with the directions of the displacem
vectorsD of the corresponding modes. Ifk̂ is in the x2y
plane, then one of the semiaxes of the aforementioned ell
coincides with thez axis. Then one propagating mode
characterized byDi ẑ and, according to Eq.~40!, the vertical
semiaxis length isA«3, independent of the directionk̂. As
pointed out before, this is just theE mode, whose effective
dielectric constant has been determined by Eq.~33!. Hence
we can make the identification

«35 «̄, ~41!

thus having determined one of the principal dielectric co
stants in Eq.~40!.

The displacement vector and hence electric field of
other propagating mode is parallel to the plane of periodic
so this is, obviously, theH mode. Now, the effective dielec
tric constant depends on the anglew0 betweenk̂ and thex0
axis. By expressing the ellipsez050 of Eq. ~40! in polar
coordinites, simple geometry~see Fig. 1! yields the follow-
ing expression for the horizontal semiaxis of the index ell
soid:

1

«H~w0!
5

sin2 w0

«1
1

cos2 w0

«2
. ~42!

This equation gives«H in the form of an ellipse expressed i
its proper axes system~polar representation!. Clearly, Eq.
~38! describes the same ellipse, however, expressed with
spect to some arbitrarily chosen axesx,y. Rotating the axes
x,y by an angleu5w02w we can diagonalize the tenso

FIG. 1. The index ellipsoid~general case! and the determination
of the ordinary and extraordinary refractive indices and correspo
ing displacement vectors of auniaxial material for a given direction
of the wave vectork ~see Sec. IV!.
8-6
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Aik . The angleu is obtained from the condition that th
nondiagonal term, which is proportional to sin 2w0, vanishes:

tan2u5
2Axy

Ayy2Axx
. ~43!

This formula determines the directions of the principal cr
talline axes with respect to some~initially ! arbitrarily chosen
axes. Of course, in simple cases~such as a rectangular Bra
vais lattice! the directions of the principal axes are intuitive
obvious. Then one chooses, from the outset,x5x0 and y
5y0, so thatAxy will turn out to vanish.

Furthermore, the coefficients of the terms sin2 w0 and
cos2 w0 of the rotated ellipse~38! determine the principa
dielectric constants«1 and«2 in Eq. ~42! as

«15~ h̄2Axx sin2 u2Ayy cos2 u2Axy sin 2u!21, ~44!

«25~ h̄2Axx cos2 u2Ayy sin2 u1Axy sin2u!21. ~45!

It is the symmetry of the unit cell that determines wheth
a photonic crystal is uniaxial («15«2) or biaxial («1Þ«2).
Unlike 3D photonic crystals, 2D crystals cannot be isotro
(«15«25«3). This property is guaranteed by the Wien
bounds («1,2,«3) valid at least for in-plane isotropy, name
«15«2.39 If the crystal possesses a third- or higher-ord
rotational axisz, then any second-rank symmetric tens
such asAik ( i ,k5x,y), Eq. ~39!, is reduced to a scalar,38

Aik5Ad ik . Then Eqs.~44!, ~45!, and~39! may be simplified
as

«15«25~ h̄2A!21

5H h̄2
1

2 (
G,G8Þ0

G•G8h~G!h~2G8!

3@G•G8h~G82G!#21J 21

. ~46!

Here @•••#21 implies matrix inversion, while$•••%21

means ‘‘reciprocal.’’ This compact formula gives the princ
pal dielectric constant~associated with the plane of period
icity! of a uniaxial photonic crystal. The optical axis coi
cides with the axisz, which is to say that birefringence i
absent for a single direction of propagation—the direct
parallel to the cylinders. For propagation in this directi
~with E' ẑ) the phase velocities of the ‘‘ordinary’’ and ‘‘ex
traordinary’’ waves are the same,v/k5c/A«1, with «1 given
by Eq. ~46!. Of course, for any direction of propagation th
ordinary wave propagates with the same speed,c/A«1, by
definition. Because this velocity is always greater than
velocity c/A«3 of the extraordinary wave~with Ei ẑ) that
propagates in the plane of periodicity, we may conclude t
uniaxial 2D photonic crystals are necessarily ‘‘negative’’
just like 1D superlattices.

For artificial periodic structures the symmetry of the u
cell is determined by both the symmetry of the Bravais l
tice and the symmetry of the inclusions. Being macrosco
the latter may possess a symmetry that is lower than tha
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the lattice. For 3D periodicity this situation has been stud
in Ref. 40. Namely, spherical inclusions with anisotropic d
electric constants in an fcc lattice give rise to the splitting
the dispersion curves for two polarizations in the lo
frequency limit, thus breaking the isotropy of the photon
crystal. For 2D photonic crystals, there can be only limit
isotropy—in the (x2y) plane. The following structures
~with third- or higher-order rotational axis! exhibit such isot-
ropy: the square lattice with circular or square cylinders a
the hexagonal lattice with circular or with equilateral tria
gular cylinders. The unit cells of these structures are sho
in Fig. 2; they all correspond to uniaxial 2D photonic cry
tals. A few examples of unit cells that exhibit anisotropy
the plane of periodicity are given in Fig. 3. These unit ce
define biaxial 2D photonic crystals.

The Eqs. ~44!, ~45!, and ~41! specify, completely and
compactly, the principal dielectric constants of an arbitra
2D photonic crystal. They are expressed in terms of the
ometry of the unit cell and the dielectric constants of t
constituent materials. If«1 , «2, and «3 are known, then,

FIG. 2. Examples of unit cells of 2D photonic crystals that e
hibit isotropy in the plane of periodicity; the corresponding pho
nic crystals are optically uniaxial. Note that photonic crystals t
have a rectangular or an oblique~general! 2D Bravias lattice cannot
be uniaxial.

FIG. 3. Examples of unit cells of 2D photonic crystals that a
anisotropic in the plane of periodicity; the corresponding photo
crystals are biaxial. In these examples, either the inclusions or
lattice is anisotropic in the plane of periodicity.
8-7
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using formulas of crystal optics,3,38 the propagation constant
can be readily calculated for any direction ofk̂.

V. COMPARISON WITH OTHER WORKS

There are two analytic studies of the problem of homo
enization where the final result for the effective dielect
constant is expressed in terms of«(G). One has been pro
posed by Dattaet al.29 for 3D photonic crystals and the
reduced by Kirchneret al.10 to the special case of 2D per
odicity. Their approach is a quasistatic one, namely, the
fective dielectric constant is obtained by taking the lim
~10!. Another approach~static!, based on the solution o
Laplace’s equation was developed by Bergman and Dun15

The method described in Secs. II and III, being qua
static, is closer to the approach of Dattaet al.29 Rewriting
Eqs.~C12!–~C16! of Kirchneret al.10 in our notation we get

«H~ k̂!5 «̄2 (
G,G8Þ0

pk•Gpk•G8«~G!«~2G8!

3@G"G8«~G82G!#21. ~47!

Herepk is a unit vector in the plane of periodicity and pe
pendicular tok. While the structure of Eq.~47! is not unlike
the structure of Eq.~37!, the two representations for the e
fective dielectric constant are different. Equation~47! was
obtained from the wave equation for the electric field, wh
Eq. ~37! follows from the wave equation~3! for the magnetic
field. Since the spectrum of Maxwell’s equations for a giv
structure is unique, these two representations must
equivalent. This means that the following identity shou
hold:

H «̄2 (
G,G8Þ0

pk•Gpk•G8«~G!«~2G8!

3@G•G8«~G82G!#21J H h̄2 (
G,G8Þ0

k̂•Gk̂

•G8h~G!h~ÀG8!@G•G8h~G82G!#21J 51. ~48!

Each factor in the curly brackets depends on the direction
the vectork, but the product is independent of it. It is cle
that this identity is related to Eq.~2!, however, an analytic
proof seems to be difficult. Instead, we opt for a numeri
demonstration. In Fig. 4 we plot the left-hand side of E
~48! as a function of the anglew( k̂,x̂) ~solid line! for a 2D
periodic crystal with rectangular lattice and circular cyli
ders. The unit cell is taken to be strongly anisotropic, w
ratio of the sides 1:5. This structure exhibits strong birefr
gence, i.e., the factors in Eq.~48! vary substantially withw
~dotted and dashed curves in Fig. 4!. Nevertheless, the prod
uct of these factors is practically independent ofw and is
very close to 1. This gives numerical evidence of the iden
~48!.

Now we will show that the result obtained by Bergm
and Dunn15 by means of an electrostatic approach can
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also written in the form of Eq.~47!.41 In this approach the
effective dielectric constant«e f f(Ê) is obtained as a function
of the direction of the dc electric field,Ê5E/E. Using Eqs.
~2.5! and ~2.26! of Ref. 15 one obtains

«b2«e f f~Ê!

«b2«a
2 f 5 (

GÞ0
Ê•Gu2GaG . ~49!

HereuG5«(G)/(«a2«b), uG505 f . The formal solution for
aG follows from Eq.~2.23!,

aG5 (
G8Þ0

~s2G!G,G8
21 Ê•G8uG8 , ~50!

wheres5«b /(«b2«a) and the nondiagonal matrix elemen
of the operatorG are given by Eq.~2.21! of Ref. 15,

GG,G85G•G8u~G2G8!, GÞG8. ~51!

The diagonal matrix elements are independent onG and
equal toGG,G5 f . Combining Eqs.~49!–~51! we get

«e f f~Ê!2 «̄5 (
GÞ0

Ê•G«~2G!aG

5 (
G,G8Þ0

Ê•G«~2G!~s2G!G,G8
21 Ê•G8«~G8!

GG8~«a2«b!
.

~52!

A direct comparison of the diagonal and nondiagonal ma
elements shows that the operator (s2G) can be written as
follows:

FIG. 4. Numerical evidence of the identity~48! for a rectangular
lattice with sides ratioa/b55 and circular cylinders with filling
fraction f 50.05 and dielectric constant«a520. The solid line
shows the left-hand side of Eq.~48!, and the dotted and dashed line
show the first and second factors in curly brackets. The numbe
plane waves used in the calculations isN51636. These curves ar
plotted as a function of the angle between the wave vectork and
one of the basis vectors of the~rectangular! unit cell.
8-8
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sdG,G82GG,G8[2
G"G8«~G2G8!

GG8~«a2«b!
. ~53!

Substitution of Eq.~53! into Eq. ~52! gives the effective di-
electric constant for a given direction of the electric field,

«e f f~Ê!5 «̄2 (
G,G8Þ0

Ê•GÊ•G8«~G!«~2G8!

3@G•G8«~G82G!#21. ~54!

In the low-frequency limit the electric fieldE of the H

mode lies in the plane of periodicity perpendicular tok̂, i.e.,
the vectorÊ5E/E coincides with the vectorpk in Eq. ~47!.
Therefore Eq.~54! gives the effective dielectric constant fo
the H-mode propagating in the directionk̂ ( k̂'Ê), provided
that Ê is replaced bypk. After this replacement Eq.~54!
becomes identical to Eq.~47!, and both equations are equiv
lent to Eq.~37!.

VI. PROPAGATION PARALLEL TO THE
CYLINDERS AXES

Along the cylinder axes the medium is translationally
variant, and therefore the Bloch vector is replaced by
ordinary wave vectork5(0,0,k). Thenk is not bounded any
more by the Brillouin zone and the dispersion law in thez
direction does not reveal a band structure. As a result, g
cannot appear in the frequency spectrum.

In a uniaxial crystal both eigenmodes propagating alo
the optical axis~the z axis! have equal phase velocitie
c/A«1, where«1 is given by Eq.~46!. If the crystal is biaxial,
the eigenmodes propagate with different velocities,c/A«1

andc/A«2, where«1 and«2 are given by Eqs.~44! and~45!.
In this section we will study the structure of the electroma
netic field for the modes propagating along the axisz. The
procedure of homogenization at low frequencies also
some specific features, which we will describe by taking
limits v,k→0 of the characteristic equation for the displac
ment fieldD. It turns out that this leads to a representati
for the principal dielectric constantse1,2 that is formally dif-
ferent from Eqs.~44! and~45!. The formulas obtained by th
H and theD methods have different rates of convergen
This will allow us to device a numerical method that leads
improved accuracy of the results.

It can be readily proved that the eigenequation for
Fourier components of the displacement fielddk(G) has the
following form:

v2

c2
dk~G!5(

G8
h~G2G8!@ uk1Gu2dk~G8!

2~k1G!~k1G!•dk~G8!#. ~55!

For the casek5kẑ ~i.e., k'G and uk1Gu25k21G2) the
vector dk(G) has a longitudinal componentdz(G) which
yields the equation
11520
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v2

c2
dz~G!5(

G8
h~G2G8!@G2dz~G8!2kG•d'~G8!#.

~56!

In the low-frequency limitv→0 this longitudinal compo-
nent approaches zero since, forv50 andk50, Eq.~56! has
only a trivial solutiondz(G)50. Unlike this, the transversa
componentd'(G) satisfies the equation

v2

c2
d'~G!5(

G8
h~GÀG8!@~k21G2!d'~G8!

2GG•d'~G8!2Gkdz~G8!#. ~57!

It has a nontrivial solutiond'
(0)(G) in the static limit.

Namely, in this limit Eq.~57! takes the form

(
G8

h~G2G8!@G2d'
(0)~G8!2GG•d'

(0)~G8!#

[2(
G8

h~G2G8!G3@G3d'
(0)~G8!#50. ~58!

This equation is satisfied if

(
G8

h~G2G8!d'
(0)~G8!5Gb~G!, GÞ0, ~59!

whereb(G) is an arbitrary function. Note that the Fourie
components of the displacementdk(G) and the electric
ek(G) fields are related as

ek(G)5(
G8

h(G2G8)dk~G8!,

dk~G!5(
G8

«~G2G8!ek~G8!. ~60!

The first of these equations implies that the left-hand side
Eq. ~59! is equal toe'

(0)(G). Then, by the same equation
G3e'

(0)(G)50. In view of this relation, Eq.~59! is equiva-
lent to the electrostatic condition“3E50. The existence of
a nontrivial solution of Eq.~57! means that the expansion o
the longitudinal componentdz(G) in the low-frequency limit
starts from higher orders ofk than the expansion of the trans
versal componentd'(G). In other words, Eq.~55! in the
low-frequency limit has a solution in the form of a pu
transversal wave (Dz50) that is the necessary condition fo
homogenization. This is also obvious from applying the
dex ellipsoid to the problem at hand.

When the wave propagates along the cylinders, the
plane inhomogeneities are not averaged out over m
wavelengths, as occurs for oblique or in-plane propagat
Because of this ‘‘lack of averaging,’’ the solution of the wav
equation in the low-frequency limit is not a pure plane wa
but it exhibits a periodic dependence on the in-plane coo
natesx andy,
8-9
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D~r !→k→0 exp~ ikz!(
G8

d'
(0)~G8!exp~ iGx8x1 iGy8y!.

~61!

It is important to note that, unlike the general case of~off-
axis! propagation35 @see Eq.~8! and below# here the nonzero
harmonicsd'

(0)(GÞ0) arenot much smaller than theG50
harmonic. As a matter of fact, we will prove@see Eq.~66!#
that these harmonics are of the same order ink. This explains
why Eq.~61! does not simplify in the long-wavelength limi
with the consequence that the wave fronts arenot plane.
Evidently, the cases of oblique and, especially, in-pla
propagation are favorable for homogenization because
wavelength 2p/k covers an infinite number of unit cells
This, however, is not the case for on-axis propagation.

It is interesting to consider the behavior of theH and E
fields as well, forki ẑ. As we have seen in Sec. II@see Eq.
~10!! below#, it follows from Maxwell’s equations tha
D(r )5A«e f fH(r )3 k̂ and H(r )5A«e f fk̂3E(r ). We just
found that, for propagation along the cylinders, theD wave
is not plane; then the linearity of Maxwell’s equations im
plies thatD(r ) and H(r ) are not plane either. Indeed, th
wave fronts of all the fields are rippled in thex2y plane, the
structure of the ripples being periodic—with the periodic
of the 2D lattice. The mathematical reason for the planes
constant phase having this periodicity is that the amplitu
of all thepartial plane waves withkẑ1G are all of the same
order in k. From the formulas above we see thatH(r ), as
well as D(r ), is a transverse wave. The polarization of t
E(r ) field can behopefullydeduced from the index ellipsoid
Fig. 1. ~Properly, it should be determined from the soluti
of the eigenvalue problem for the electric field which we d
not undertake.! For on-axis propagation, the displaceme
vectorsD(r ) of the two modes are parallel to thex0 andy0
axes of the index ellipsoid. We recall from crystal optics3,38

@also see just before Eq.~40!# that wheneverD is parallel to
one of the principal axes thenEiD. The conclusion then is
that the electric field is also a transverse wave.

Needless to say, the optical~long-wavelength! modes that
propagate in natural crystals are plane waves—forany
propagation direction. This is also true for 3D photon
crystals.29 As we have just found out, the eigenmodes o
2D photonic crystal that propagate parallel to the cylind
are not plane waves, but have periodically rippled wa
fronts. In this aspect, then, 2D photonic crystals differ qua
tatively from their three-dimensional counterparts and fr
natural crystals. We are aware of only one other situat
where the equiphase surfaces are periodic, namely prop
tion in a 1D photonic crystal~superlattice! in a direction that
is parallel to the interfaces.

In the 1D case it turns out that the forms of the homo
enized fields are different for the ordinary~TE! and extraor-
dinary ~TM! waves. In the ordinary wave the electric fie
Ek(r ) is parallel to the interfaces and therefore it is acon-
tinuousfunction of the coordinates at any frequency. In t
low-frequency limit this field is expanded overkd (d is the
period!, and the zero-order term gives the homogeniz
plane-wave solution.~This is true, of course, for any direc
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tion of propagation.! At the same time the spatial distributio
of the displacement fieldDk(r ) @which is parallel toEk(r )]
is not homogeneous along the superlattice axis. This fi
exhibits a periodic dependence in the axial direction~i.e., it
is not a plane wave! and it is concentrated in the high-«
regions.42 Unlike this, the electric field of the extraordinar
wave@with Hk(r ) parallel to the interfaces# has a componen
perpendicular to the interfaces,En(r ). This component satis
fies the equationDn(r )5«(r )En(r )5const. Then for any
frequency and direction of propagation the spatial dep
dence ofEn(r ) follows the periodicity of the lattice. For any
direction except propagation along the layers this compon
turns out to be small~when k→0) as compared with the
component parallel to the interfaces. Therefore the elec
field is almost a plane wave in the low-frequency limit. How
ever, for propagation parallel to the layers these two com
nents are of the same order of magnitude. In this case
electric field ~and, because of the linearity of Maxwell’
equations, also the magnetic and the displacement field! is
not a plane wave. Hence the method of the index ellipsoid
not applicable~as we have also seen for 2D photonic cry
tals!.

The effective dielectric constant Eq.~10! is obtained from
the condition that the set of coupled homogeneous equat
~56! and ~57! has a nontrivial solution. In order to decoup
these equations we use the transversality of the displacem
field,

~k1G!•dk(G)5kdz1G•d'~G!50. ~62!

Substitutingkdz52G•d'(G) into Eq.~57!, we get an equa-
tion which contains onlyd'(G),

v2

c2
d'~G!5(

G8
h~G2G8!@~k21G2!d'~G8!

2GG•d'~G8!1GG8•d'~G8!#. ~63!

Since this equation is even with respect to substitut
k→2k, the functiond'(G) may be expanded in even pow
ers of k. The zero-order term for the Fourier componen
with GÞ0 may be obtained from Eq.~58!. The term
d'

(0)(G50) which enters into Eq.~61! is calculated directly
from Eq. ~57!. For G50 this equation takes the form

v2

c2
d'~0!5k2(

G8
h~2G8!d'~G8!5k2e'~0!. ~64!

The last equality relies on the first of the identities~60!.
Taking the limit v,k→0 and using Eq.~10! we obtain the
relation between static components of the electric and
placement field,

d'
(0)~0!5«e f fe'

(0)~0!, ~65!

which, in fact, is the electrostatic definition ofee f f since it
relates the mean values of the electric and the displacem
fields. While this definition involves only theG50 compo-
nents~the mean values!, the componentd'

(0)(0) is expressed
8-10
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through all the other componentsd'
(0)(GÞ0) by susbstitu-

tion of Eq. ~60! into the right-hand side of Eq.~65!,

d'
(0)~0!5

1

«e f f
212h̄

(
G8Þ0

h~2G8!d'
(0)~G8!. ~66!

In Eq. ~59! we separate the term withG850 and substituting
d'

(0)(0) from Eq.~66! we obtain an infinite set of linear equa
tions for d'

(0)(G),

(
G8Þ0

Fh~G2G8!1
1

«e f f
212h̄

h~G!h~2G8!Gd'
(0)~G8!

5Gb~G!. ~67!

The componentd'
(0)(G) corresponds to the static limit. Ac

cording to Eq.~62! G•d'
(0)(G)50. This condition gives the

polarization of the displacement fieldd'
(0)(G) along the unit

vector n2(G) @see Eq.~19!#. Taking the projection of Eq
~67! on n2(G) we get an infinite set of homogeneous equ
tions for the scalarsd'

(0)(G),

(
G8Þ0

cos~G,G8!@~«e f f
212h̄ !h~G2G8!

1h~G!h~2G8!#d'
(0)~G8!50. ~68!

Here we used that n2(G)•n2(G8)5G•G8/GG8
5 cos(G,G8).

Equation~68! has nontrivial solutions if

detG,G8Þ0$G•G8@~«e f f
212h̄ !h~G2G8!1h~G!h~2G8!#%

50. ~69!

The set of linear equations~55! for dk(G) has two solu-
tions, corresponding to two orthogonal polarizations of
propagating mode. In the low-frequency limit this set h
been reduced to Eq.~68!. The latter thus must also have tw
solutions. To obtain these, we follow the same method
was used to solve Eqs.~23!. First we multiply Eq.~69! by
det$@G•G8h(G2G8)#21% and get a standard eigenvalu
problem in the form of Eq.~34!, where the matrixB(G,G8)
is replaced by

D~G,G8!52h~G! (
G9Þ0

G•G9h~2G9!

3@G9•G8h~G92G8!#21, G,G8Þ0.

~70!

Even though the matrixD(G,G8) looks quite similar to the
matrix B(G,G8) given by Eq.~35!, the formercannot be
written as a product of two factors, one of which depen
only onG and the other only onG8. Nevertheless, due to th
factor G•G9 each element of the matrixD(G,G8) can be
represented as a sum of such products,

D~G,G8!52h~G!@Gxbx~G8!1Gyby~G8!#, ~71!

where
11520
-
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s

s

bi~G!5 (
G8Þ0

Gi8h~2G8!@G•G8h~G82G!#21, i 5x,y.

~72!

For the matrixD(G,G8), the coefficientsan of the charac-
teristic polynomial@see Eq.~27!# can be obtained via the
recursive relation~29!, with the matrix C replaced by the
matrix D. Since Eq.~30! is not valid for the matrixD, the
coefficienta2 does not vanish. Instead, it can be shown af
simple, but rather long algebra that the next coefficient,a3,
vanishes,

a352
1

3
@Tr~D3!1a1Tr~D2!1a2TrD#

52
1

3 FTr~D3!2
3

2
Tr D Tr~D2!1

1

2
~Tr D !3G50,

~73!

for any matrix represented in the form~71!. All subsequent
coefficientsan with n54,5, . . . also vanish due to the gen
eralized version of the property~73!,

an52
1

n
@Tr~Dn!1a1Tr~Dn21!1a2Tr~D !n22#50,

~74!

that follows from Eq.~73! by mathematical induction. Now
the characteristic equation~34!, with the matrix B(G,G8)
replaced byD(G,G8), is reduced to a simple quadratic equ
tion,

detG,G8Þ0@D~G,G8!2LdGG8#

5 lim
n→`

~21!nLn22~L21a1L1a2!50. ~75!

Two roots of this equation,L1,2, give the two principal di-
electric constants

«1,25
1

~ h̄1L1,2!
5H h̄1

1

2
TrD6

1

2
A2Tr~D !22~Tr D !2J 21

.

~76!

There is no correspondence between the order of the ind
1,2 and the6 signs in Eq.~76!.

In Sec. III we derived the formulas~44! and~45! for «1,2
considering in-plane propagation. Equation~76! is based on
the analysis of the wave equation for the case of propaga
parallel to the cylinders. These two approaches must give
same results for the principal dielectric constants, that is,
right-hand sides of Eqs.~44! and~45!, and Eq.~76!, must be
identically equal. In the next section we will prove this an
lytically for the case of a rectangular lattice. The proof for
arbitrary ~oblique! lattice is too long and cumbersome; it
much easier to verify the equivalence numerically.

Each of the representations for the principal dielect
constants possesses definite advantages. If the symmet
the crystal is rather high and the axes of the index ellips
are aligned with crystallographic axes, it is easier to calcu
«1,2 using the Eqs.~44! and ~45!. On the other hand, in the
8-11
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asymmetric case Eq.~76! is preferable if one is intereste
only in the values of«1,2 but not in the orientation of the
principal axes with respect to the crystallographic axes.

One more representation for the principal dielectric co
stants can be obtained if we replace the left-hand side of
~59! by e'

(0)(G) @see the first Eq.~60!#. The calculations us-
ing theE method are presented in Appendix C. Here we g
the final solution for«1,2,

«1,25 «̄1
1

2
TrF6

1

2
A2Tr~F !22~Tr F !2, ~77!

where the matrixF(G,G8) is

F~G,G8!52«~G! (
G9Þ0

G•G9«~2G9!

3@G9•G8«~G92G8!#21, G,G8Þ0.

~78!

Note that the matrixF(G,G8) has the same structure as t
matrix D(G,G8) with h(G) replaced by«(G). The repre-
sentation~78! must be equivalent to Eq.~76! @and to Eqs.
~44! and ~45!# for an infinite number of plane waves (G
terms! in the summations. However, in the numerical calc
lations the matrices have to be cut to a finite size, of cou
and that gives rise to convergence errors. In the next sec
we discuss the problem of convergence and give some p
tical recipes on how to increase the accuracy of the num
cal results without increasing the number of plane wa
involved in the calculations.

VII. 2D PHOTONIC CRYSTAL WITH RECTANGULAR
LATTICE

A photonic crystal with a rectangular lattice is biaxial, i.e
the three principal dielectric constants are all different. T
is true irrespective of the cross-sectional form of the cyl
ders. Thus this structure represents the general situatio
crystal optics. At the same time, for this structure the cal
lations of«1,2 are simplified, essentially because the axes
the index ellipsoid are aligned with the crystallographic ax
@the angleu50 in Eq. ~43!# and the unit cell possesses a
inversion center, so that«(2G)5«(G). The latter holds
only if the inclusions have an axis of symmetry of the seco
order. For the rectangular lattice, the in-plane principal
electric constants Eqs.~44! and ~45! can be written com-
pactly as

«1,25H h̄2 (
G,G8Þ0

Gy,xGy,x8 h~G!

3h~2G8!@G•G8h~G82G!#21J 21

. ~79!

Here @•••#21 implies matrix inversion, while$•••%21

means ‘‘reciprocal.’’ First we demonstrate that the«1,2 as
given by Eqs.~44!, ~45!, and ~76! are identical. It follows
from the definitions of the matricesD(G,G8), Axx andAyy
@see Eqs.~39! and ~70!# that TrD52(Axx1Ayy) for any
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lattice. Then a direct comparison of Eqs.~44!, ~45!, and~76!
shows that the different representations are identical if
following relation holds:

2Axx,yy52
1

2
~Axx1Ayy!6A2 Tr~D2!2~Tr D !2.

~80!

The last equality leads to

Axx
2 1Ayy

2 5 Tr~D2!, ~81!

as can be proved by the direct substitution of the ma
D(G,G8) into Eq. ~81!. The corresponding calculations a
given in Appendix D. The proof for the general 2D Brava
lattice follows a similar procedure, but the calculations a
much more cumbersome.

The formulas~76! and~77! were obtained via theD andE
methods, respectively. Their equivalency@as well as the
equivalency of Eqs.~36! and ~47!# is based on the fact tha
the solution of Maxwell’s equations is unique and either
the vector functions,H(r ), E(r ), or D(r ), gives complete
information about the spatial distribution of electromagne
field. While this general statement is beyond doubt, a dir
proof would be desirable. The equivalency of formulas~76!
and ~77! requires that

H h̄1
1

2
Tr D6

1

2
A2 TrD22~Tr D !2J H «̄1

1

2
Tr F

6
1

2
A2 TrF22~Tr F !2J 51. ~82!

Unfortunately, we are unable to provide an analytic justific
tion for this identity—even in the simple case of a squa
lattice of circular cylinders. For this uniaxial crystal the a
guments of the square roots in Eq.~82! must vanish, so tha
Eq. ~82! reduces to

S h̄1
1

2
TrD D S «̄1

1

2
Tr F D51. ~83!

In Fig. 5 we give numerical evidence that the three re
resentations of«1,2 discussed do converge to about the sa
value when the number of plane wavesN (G values! is suf-
ficiently large. In parts~a! and~b! we consider two mutually
conjugate photonic crystals. In Fig. 5~a! we plot «1,2(1/N)
for a photonic crystal of circular Si cylinders («a512.25)
placed in air («b51). The anisotropy of the lattice is spec
fied by the ratio of the sides of the rectangle; in our case
ratio is 2:1. In Fig. 5~b! the same dependence is shown f
air holes («a51) in Si host («b512.25). For both cases th
filling fraction is f 50.25. The curves in Fig. 5 clearly dem
onstrate that when 1/N→0 the effective dielectric constant
given by Eqs.~76! and ~77! converge to about the sam
value, namely«1'1.77 and«2'1.42 for Si cylinders in air,
and «1'8.64 and«2'6.92 for air holes in Si. It is also
worthwhile to note that numerical data for the effective d
electric constants given by Eqs.~44! and ~45! coincideex-
actly with the ones given by Eq.~76! ~squares in Fig. 5!, thus
8-12
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demonstrating that the identity~81! is valid even for finiteN.
Note that both approaches are based on theh representation.

At the same time one can see that the rates of converg
are considerably different. For material cylinders the d
obtained from Eq.~76! @squares in Fig. 5~a!# give much
higher accuracy than the data obtained from Eq.~77! @circles
in Fig. 5~a!# ~for equal values ofN). On the other hand, fo

FIG. 5. Numerical evidence of the equivalence of the formu
~76! and ~77! for a pair of conjugate photonic crystals with recta
gular lattices.~a! Si cylinders in air and~b! air cylinders in a Si
host. Squares and circles show the data obtained from Eqs.~76! and
~77!, respectively~the lines are guides to the eyes!. The number of
G values~plane waves! involved in the calculations ranges from
128 to 5314. Note that the principal dielectric constants«1 and«2

computed by the two methods converge to roughly the same va
in the limit of a very large numberN of plane waves. Nevertheles
the method based on Eq.~76! @~77!# converges much more rapidl
for the material~air! cylinders.
11520
ce
a

air cylinders embedded in the material host@see Fig. 5~b!#
the situation is just the opposite. We note that, for 3D ph
tonic crystals with a simple-cubic lattice the« representation
(E method! also exhibits better convergence with the numb
of the plane waves if«b.«a .43 This conclusion remains
valid not only in the long-wavelength limit but at finite fre
quencies as well.44 Note that, for anyN, the« representation
@based on Eq.~77!# gives excessively large results for th
principal dielectric constants, while theh representation
@based on Eqs.~44!, ~45! or ~76!# gives too small results.

If the dielectric contrast between the constituents of
photonic crystal increases, then the difference between
results obtained for finiteN by the e-representation and by
the h representation becomes much greater. Since the c
putational effort grows very fast with the numberN ~it can
hardly be larger than 8000!, one obtains erroneous results
an improper method is used in the numerical simulations
particular, from the discussion above it is obvious that the«
representation cannot be used to calculate the effective
electric constants of a periodic array of perfectly conduct
cylinders,«a→`. In this limiting case«̄5` and numerical
results withany finite numberof plane waves are incorrec
On the other hand, theh representation works perfectly we
for arrays with«a@1, leading to excellent agreement wit
results obtained from a direct solution of Poisson
equation.45 The analysis of the case of perfectly conducti
cylinders will be published elsewhere.46

For finite N the effective dielectric constants can be e
panded in powers of 1/N,

«1,2~N!5«1,2
` 1

a1,2

N
1

b1,2

N2
. ~84!

The parameters in this expansion are obtained numeric
by fitting the curves in Fig. 5 to parabolas. They are given
Table I. These parameters are quantitative characteristic
the accuracy of the two different methods of calculations
N.103. The smaller the absolute values of the coefficie
a1,2 andb1,2 are for a given representation, the higher is
accuracy for a fixed value ofN. Since these coefficients in
the table differ by at least an order of magnitude, it is se
that theh («) representation is the right one to choose
material ~air! cylinders—as concluded before. This recom
mendation can be reasonably extended to band-structure
culations for photonic crystals at finite frequencies.44 Since
the eigenvalue equation~6! for the magnetic field involves
the Fourier coefficientsh(G) of the reciprocal dielectric

s

es
TABLE I. Parameters of parabolic fitting for the curves in Fig. 5, see Eq.~84!.

«1
` a1 b1 «2

` a2 b2

Si cylinders in air («a512.25,«b51)
« representation 1.789 93 86 233 000 1.423 46 22 28,100
h representation 1.772 24 23 190 1.418 11 20.9 50

Air cylinders in Si host («a51, «b512.25)
« representation 8.640 54 3 212 6.917 18 6 217
h representation 8.604 17 2130 38 500 6.836 48 2300 82 000
8-13
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constant, this equation should be used if the inclusions of
photonic crystal are optically more dense than the host
terial. In the opposite case one should use the eigenv
equation for the displacement vector, or the eigenvalue eq
tion for the electric field, written in the« representation.

The values of«1,2
` in Table I were obtained by extrapola

tion to N→`. The accuracy of these values can be estima
from Keller’s theorem.22 This theorem states that the princ
pal dielectric constants for two conjugate composites t
form a rectangular lattice satisfy the relation

r 5
«1~«a ,«b!«2~«b ,«a!

«a«b
[

«2~«a ,«b!«1~«b ,«a!

«a«b
[1.

~85!

Using the values of«1,2
` in Table I we get two values@ac-

cording to the two equalities in Eq.~85!# for the precision
factors, namelyr 51.011 andr 51.004, obtained from the
«-representation data. The same factors, calculated from
h-representation data, yield,r 50.989 andr 50.996. One
can see that both methods give about the same relative
for r. This means that the extrapolation toN5` washes out
the difference between the accuracies of the two meth
Much higher accuracy is obtained if we use different rep
sentations for«1 and«2 in Eq. ~85! , namely theh represen-
tation for Si cylinders and the« representation for air cylin-
ders. Substituting the corresponding data from Table I in
~85! we get thatr 51.000 73 andr 51.000 26. Thus by using
‘‘the best’’ representations for the effective dielectric co
stants much higher accuracy is obtained.

VIII. 2D PHOTONIC CRYSTAL WITH SQUARE LATTICE

This, of course, is a particular case of the previous sec
for the rectangular lattice, but, since it is one of the m
common 2D photonic crystal structures, it deserves spe
attention. If the inclusions are circular cylinders of radiusR

the photonic crystal is uniaxial, so that«H( k̂)5«15«2 in
Eq. ~36! with «1 given by Eq.~46!. We calculated the effec
tive dielectric constant«5«15«2 for the same values of th
parameters as before. In Fig. 6 we plot the depende
«(1/N) obtained from theh and « representations for two
conjugate structures. The two representations demonstr
convergence to roughly the same value. As for the rectan
lar lattice, theh(«) representation converges faster for t
structure with material~air! cylinders in the air~material!
host. The square lattice possesses additional symmetr
course, as compared with the rectangular lattice. In orde
see the manifestation of the additional symmetry we rep
sent the data of the fitting to parabolas in the following for

Si cylinders:

«51.54738S 11
23.3

N
2

7,755

N2 D « representation,~86!

«51.53901S 12
2.27

N
1

845

N2 D h representation. ~87!
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Air cylinders:

«57.95966S 11
2.26

N
2

879

N2 D « representation, ~88!

«57.9165S 12
23.1

N
1

7,870

N2 D h representation. ~89!

These fitting formulas are valid forN.103. Note that the
linear corrections in Eqs.~86! and ~89! have opposite signs
and almost equal absolute values. The same is true for
~87! and~88!. The quadratic terms, essentially, also compe
sate each other. This leads to cancellations if Eqs.~87!–~88!
are substituted into the precision factor Eq.~85!. That is,r is
calculated using the best representation for« for each struc-
ture. We get that

r >1.000 002
39

N2
1O~N23!. ~90!

Since the linear term is absent in this formula, the abso
numerical error forr is much smaller than that for the effec
tive dielectric constant, even if calculated using the fast
converging representation. Therefore for a square lattice

FIG. 6. The same as in Fig. 5 but for the square lattice. T
photonic crystal is uniaxial therefore«15«2. The number ofG
values~plane waves! involved in the calculations ranges from 24
5648. As in Fig. 5, for material~air! cylinders Eq.~76! @~77!# leads
to much better convergence for the principal dielectric constant«1.
8-14
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accuracy of the precision factor is much higher than tha
the effective dielectric constant. At the same time, for a re
angular lattice the above mentioned cancellation does
occur, and Eq.~85! gives true information about the accura
of numerical calculations.

IX. CONCLUSIONS

We have developed a comprehensive theory, in the lo
wavelength limit, of photonic crystals with 2D periodicit
The homogenized composite has been characterized in
language of ‘‘crystal optics,’’ namely, the three principal d
electric constants, have been expressed in terms of the
crostructure of the unit cell. Unlike most works in homo
enization theory, our compact analytic formulas for t
principal dielectric constants are very general: no limiti
assumptions whatsoever have been made about the Br
lattice, the cross-sectional form of the cylinders, the filli
fraction of the constituents, the dielectric contrast, or the
rection of propagation. A modest numerical effort~involving,
essentially, only a matrix inversion! leads to high-precision
results for the aforementioned dielectric constants. For
electric cylinders in air the representation of choice sho
be based on the Fourier expansion of the reciprocal diele
constanth(r )51/«(r ). On the other hand, for air cylinder
in a dielectric background the Fourier expansion of the
electric constant«(r ) itself leads to much better conve
gence. It is worth noting that the acoustic band is frequen
linear ~to a reasonable approximation! up to frequencies ap
proaching the lower edge of the photonic band gap. Thus
utility of our results may go beyond the nominal requireme
that the Bloch wavelength is much greater than the perio

Our treatment of the optical constants—the principal
electric constants« i and the effective dielectric constan
«e f f( k̂)—has been formulated fully within the conceptu
framework of crystal optics. The same is true for the fields
electric, magnetic, and displacement—with one notable
ception, namely propagation parallel to the cylinders. Ob
ously, this direction stands out in the characterization of a
photonic crystal, and has no counterpart for natural crys
or for 3D photonic crystals. We found that the wavefronts
a wave that propagates along the cylinders are not plane
periodically rippled, with the periodicity following the pat
tern of the 2D Bravais lattice. This is true irrespective
whether the photonic crystal is uniaxial or biaxial.

It is important that our formulas for the principal diele
tric constants have direct analogies in other areas of trans
properties of inhomogeneous media. Thus all the« ’s may be
replaced by the correspondingm ’s, s ’s, or K ’s, and one gets
useful formulas for the effective static magnetic permea
ity, the conductivity, or the thermal conductivity, respe
tively. This statement rests on the assumption that the c
stituent materials of the composite are isotropic. The anal
is explained by the fact that, in the quasistatic limit, Ma
well’s equations reduce to the electrostatic formulas¹•D
50, ¹3E50 along with the constitutive relationD5«E;
the basic equations of magnetostatics, electric transport,
heat transport have the very same structure.

A similar approach could lead to the homogenization
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photonic crystals with magnetic properties, and of phono
~or acoustic! crystals. In the latter case the general theory
expected to be considerably more complicated on accoun
the existence of longitudinal, as well as transverse wav
and the coupling of these via the inhomogeneity. We exp
that our results will also have implications for the homoge
zation of random composites.
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APPENDIX A: PROOF OF EQ. „13…

We multiply Eq.~11! by h̄G2. Now the left-hand side can
be rewritten in the form

h̄G2hk~G!52h~0!G3@G3hk~G!#, ~A1!

where we took into account the transversality of the m
netic field, Eq.~5!. It is easy to see that the term which
excluded from the summation overG8 on the right-hand side
of Eq. ~11! is just minus the right-hand side of Eq.~A1!.
Including this term in the summation we get

h~G!G3@k3hk~0!#1 (
G8Þ0

h~G2G8!G3@G83hk~G8!#

50. ~A2!

Next we substitutehk(0) from Eq.~11! into Eq. ~A2!. Since
in both equations the Fourier coefficienthk(G8) enters in the
combinationG83hk(G8), it is convenient to consider this
product as a new variable, as defined in Eq.~12!. After this
substitution Eq.~13! is obtained.

APPENDIX B: PROOF OF EQ. „30…

The identity~30! is valid for any matrix with matrix ele-
ments represented in the multiplicative form Eq.~28!. For
such a matrix

Tr~Cn!5 (
G1 ,G2 , . . . ,GnÞ0

h~G1!«~2G2!h~G2!

3«~2G3!•••h~Gn!«~2G1!

5 (
G1Þ0

h~G1!«~2G1! (
G2Þ0

h~G2!«~2G2!•••

3 (
GnÞ0

h~Gn!«~2Gn!5~Tr C!n. ~B1!

For n52 the identity~30! reads Tr(C2)5(Tr C)2. The latter
is true by virtue of Eq.~B1!. Then is clear that the coefficien
a2 in Eq. ~29! is zero. Now, assuming that Eq.~30! is true, it
is straightforward to demonstrate that it is also satisfied fon
replaced by (n11), namely
8-15
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Tr~Cn11!5~Tr C!n115~Tr C!nTr C5Tr~Cn!Tr C.
~B2!

Due to this property of the matrixC the coefficients
a3 ,a4 , . . . also vanish.

APPENDIX C: PROOF OF EQS. „77… AND „78…

Substituting the first linear relation~60! between the Fou-
rier components of the electric and displacement fields in
left-hand side of Eq.~59! we get that

e'
(0)~G!5Gb~G!,GÞ0. ~C1!

We substitute this formula into the transversality conditi
~62!, written in terms of the electric field with the help of E
~60!:

G•d'
(0)~G!5(

G8
«~G2G8!G•e'

(0)~G8!

5 (
G8Þ0

«~GÀG8!G•e'
(0)~G8!1«~G!G•e'

(0)~0!

50. ~C2!

Then, with the help of Eq.~C1! we obtain that

G•d'
(0)~G!5 (

G8Þ0

«~G2G8!G•G8b~G8!1«~G!G•e'
(0)~0!

50. ~C3!

To get a closed set of linear equations forb(G) we need to
eliminate e'

(0)(0) from Eq. ~C3!. First we expresse'
(0)(0)

through all e'
(0)(G) (GÞ0), using the second of Eq.~60!

taken atG50 and Eq.~65!,

e'
(0)~0!5~«e f f2 «̄ !21 (

G8Þ0

«~2G8!e'
(0)~G8!. ~C4!

Now, using Eq.~C1! and substituting Eq.~C4! into Eq. ~C3!
we get a set of linear homogeneous equations for the
scalar variablesB(G)5Gb(G),
11520
e

w

(
G8Þ0

cos~G,G8!@~«e f f2 «̄ !«~G2G8!

1«~G!«~2G8!#B~G8!50. ~C5!

This set of equations is analogous to Eq.~68!. Therefore the
derivation of Eq.~77! follows the same method as the de
vation of Eq. ~76!, with the obvious replacementsh(G)
→«(G) and («e f f

212h̄)→(«e f f2 «̄). This then replaces
D(G,G8), Eq. ~70!, by F(G,G8), Eq. ~78!. In the quadratic
equation corresponding to Eq.~75!, now L5«1,22 «̄, while
a1 and a2 are still given by Eq.~29!, however, with
C(G,G8) replaced byF(G,G8). This results in Eq.~77!.

APPENDIX D: PROOF OF EQ. „80…

Using the definition of matrixD(G,G8), Eq. ~70!, we
obtain for its square

D2~G,G8!5 (
G1 ,G2 ,G3Þ0

~G"G1!~G2•G3!h~G!h~2G1!

3h~G2!h~2G3!@G1•G2h~G12G2!#21

3@G3•G8h~G32G8!#21,G,G8Þ0. ~D1!

The trace of the matrixD2 is given by

Tr~D2!5 (
G1 , . . . ,G4Þ0

~G1xG2xG3xG4x1G1yG2yG3yG4y

1G1xG2xG3yG4y1G1yG2yG3xG4x!

3h~G1!h~2G2!h~G3!h~2G4!

3@G2•G3h~G22G3!#21@G4•G1h~G42G1!#21.

~D2!

The first two terms in Eq.~D2! contain products of eithe
only x or only y components of the reciprocal vectors. The
two terms, respectively, are equal toAxx

2 and Ayy
2 @see Eq.

~39!#. The remaining two terms contain products ofx andy
components and they can be presented in the following fo
ple, upon

.
ckets.

ompletes
Tr~D2!5Axx
2 1Ayy

2 1H (
G1 ,G4Þ0

G1xG4yh~G1!h~2G4!@G4•G1h~G42G1!#21J H (
G2 ,G3Þ0

G2xG3yh~2G2!h~G3!

3@G2•G3h~G22G3!#21J 1H (
G1 ,G4Þ0

G1yG4xh~G1!h~2G4!@G4•G1h~G42G1!#21J
3H (

G2 ,G3Þ0
G2yG3xh~2G2!h~G3!@G2•G3h~G22G3!#21J . ~D3!

Each term in curly brackets is identically zero. To see this one needs to change the indices of summation. For exam
changingG1x→2G1x ,G4x→2G4x the Fourier coefficientsh(G42G1), h(G1), and h(2G4) in the first curly brackets
remain unchanged due to the central symmetry of the unit cell. It is clear that the scalar productG4•G1 is unchanged as well
At the same time the factorG1x changes its sign, thus leading to the change of the sign of the whole expression in bra
But since the change of dummy indices cannot change the value of the expression, it must be identically zero. This c
the proof of the identity Eq.~81! for a rectangular lattice.
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