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Using the Fourier expansion method in the low-frequency limit we develop an effective-medium theory for
two-dimensional(2D) periodic composites. We give a rigorous proof that, in this limit, a periodic medium
behaves like a homogeneous one and we derive compact analytical formulas for the effective dielectric
constants of a 2D photonic crystal, i.e., a periodic arrangement of infinite cylinders. These formulas are very
general, namely the Bravais lattice, the cross-sectional form of cylinders, their filling fractions, and the dielec-
tric constants are all arbitrary. So is the direction of propagation of the Bloch wave—out of plane in general,
with special attention paid to the limiting cases of propagation in the plane of periodicity and parallel to the
cylinders. In the latter case we report a behavior that is qualitatively different from that encountered in natural
crystals and in 3D photonic crystals. Namely, for propagation along the cylinder axes, the wave fronts are not
plane but rippled, with the distribution of the ripples following the pattern of the 2D Bravais lattice. We also
demonstrate that the other long-wavelength optical properties can be described by means of the index ellipsoid.
This allows us to apply the classification used in the optics of natural cry$taisstal optics”) to photonic
crystals. Namely, we characterize the photonic crystal entirely in terms of its three “principal” dielectric
constants. One of these is associated with the direction parallel to the cylinders, and is given simply by the
spatially averaged dielectric constant. For the two in-plane principal dielectric constants we derive three
representations that are equivalent in principle, however, give rise to different rates of numerical convergence,
depending on whether the dielectric constant or its reciprocal have been expanded in a Fouriérespees
tively, “ & representation” and % representation). Numerical results are given for a uniaxi@iaxial) pho-
tonic crystal with squarérectangular lattice and circular cylinders. We conclude that for dielectric cylinders
in air the » representation leads to much better convergence thas tepresentation. The opposite holds for
air cylinders in a dielectric. The accuracy is checked by applying Keller’s theorems to conjugate structures.
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[. INTRODUCTION period of the crystal; for natural crystals this condition fits
the spectral region up to the ultraviofeEor photonic crys-

Control of light propagation by means of photonic crystaltals the lattice constant is, of course, a variable quantity.
devices is mostly based on the idea of photonic band strucFherefore the long-wavelength regime’s upper limit may be
ture with a forbidden frequency band for the propagation ofanywhere between radio waves and the far infrared. In prac-
electromagnetic waves in the periodic composite. Photonitice, many photonic band gap materials exhibit a linear dis-
crystals which are used in waveguides, light emission depersion law, for both propagating modes, almost up to the
vices, antenna substrates, etc., have wide enough band gagap frequency. This rather wide regidusually wider than
and just this property gives rise to the their numerous potenthe band-gapcan be considered as the domain of “photonic
tial applications. The materials that the photonic crystals arerystal optics.” Due to the linearity of the dispersion law,
fabricated from are mostly low-loss, high quality dielectrics each mode is characterized by a unique parameter—its effec-
with large contrast of the constituent materials. On the othetive dielectric constant. It appears in the homogenized solu-
hand, these artificial periodic composites can be also ention of Maxwell's equations for the periodic medium, which
ployed in the frequency region well below the gap, where thehus can be replaced by an effective homogeneous medium.
dispersion law is close to linear. Here the possible applica- For a long time, there have been extensive efforts to con-
tions of photonic crystals as traditional optical elements likestruct effective-medium theories for inhomogeneous media.
polarizers, prisms, and lenses were given very littleThe well-known Maxwell-Garnett approximatibhas been
consideratiort:? At the same time, in this long-wavelength improved and generalized for diverse configurations, both
regime the desirable optical characteristics of artificial peri{periodic and disorderett!* This phenomenological ap-
odic structures may be custom tailored by appropriatgproach gives good results for very small filling fractiorfs (
choices of the materials and the lattice geometry. These char€1 or 1-f<1) but it fails otherwise. It also does not take
acteristics may be quite different from those of natural crysinto account the microstructure of the inhomogeneous me-
tals and give rise, for instance, to unusually large birefrin-dium. Another approach, which is sensitive to the micro-
gence. structure, concerns Maxwell’s or Laplace’s equation applied

In this paper we develop an analytic approach to the opto periodic medid?~*8 This approach allows us to calculate
tical properties of two-dimensiondRD) photonic crystals. parameters of the effective media with high accuracy, how-
We are using the term “optical” in the sense that the wave-ever, usually this requires rather hard numerical calculations.
length of the propagating wave is much larger than the latticé&kecently a useful modification of the plane-wave expansion
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method was proposed by LalantfeHis numerical method ~wavelength optical properties of 2D photonic crystals can be
permits us to calculate the parameters of the effective medescribed by the index ellipsoichamely, we derive the three
dium for intermediate filling fractions, and even at finite fre- principal dielectric constants in terms of the microstructure.
quencies. However, it is restricted to a particular geometry ofn this section we also analyze different 2D Bravais lattices
the inclusions, namely, when planes of permittivity disconti-and different shapes of inclusions and make conclusions con-
nuities are parallel to the crystallographic axes of the photocerning optical symmetries of the corresponding photonic
nic crystal. crystals. Section V is dedicated to the comparison with other
A few mathematical theorems in the theory of homogeni-works. Section VI contains results for propagation parallel to
zation permit making certain general conclusions about théhe axes of the cylinders. Here we solve the Maxwell equa-
effective medium and also checking the accuracy of the nutions for the displacement vector and derive two alternative
merical calculations. It is worthwhile to mention the representations for the principal dielectric constants. In Secs.
Hashin-Shtrikmaf? and Coriell-Jacksdt limits, Keller's VIl and VIII we consider, respectively, the special cases of
theorems for conjugate structurés® and the spectral the rectangular and square lattices with circular cylinders.
representatiof’ The accuracy of the numerical calculations is checked by
In the case of one-dimensional periodicity there are exKeller’s theorent??* The conclusions are given in Sec. IX.
plicit analytical solutions for the dielectric constants of the Finally, we relegate the proofs of a few formulas to four
effective medium. These are obtained by taking the limitappendixes.
w,k—0 of the dispersion relations for the TE and TM
modes?® The effective medium for a 1D superlattice is a Il. MAXWELL'S EQUATIONS IN THE LOW-
“negative” uniaxial crystal’® The 1D superlattice is the only FREQUENCY LIMIT

case where the dispersion relation is known in analytical ) ) ) ) )
form for all frequencies, thanks to the simplicity of the Ve consider an inhomogeneous 3D medium with dielec-

Kronig-Penney modé&’ For periodicity in a plang2D) or tric_pe_rm_ittivity e(r). Ina p_hotoni(_: crystal t_his fur_1ction is_
spatial(3D) periodicity, the plane-wave expansion method isperiodic in space and S0 is the inverse d|e|¢ctr|c function
widely used to calculate the band structure. For any finite??(")=1/e(r). The functionss(r) and 5(r) are given by the
Bloch wave-vectok the dispersion relation has an infinite FOUrier series

number of solutionso,(k), wheren is the band serial num-

ber. !:Ofk—>0 (in the reduced Brilloqin'z.orjeall nonzero g(r)zz e(G)exp(iG-r), n(r)zz 7(G)expiG-r),
solutionsw,(0)# 0 correspond to an infinite number of op- G G

tical modes which are irrelevant to the problem of homog- 1

enization. Two solutions with frequencies—0 (and k _ = A

—0) describe “acoustic” modes with two different polariza- s(G)= chvcs(r)exr( G-rdr,

tions; their finite slopes; ,/k= c/\/ee(If’]?) determine the two

effective dielectric constants for every direction of propaga- 1 ,

tion. Due to this uniqueness, the acoustic modes can be in- 7(G)= \TJV n(r)exp—iG-rydr. @
vestigated analytically by taking the limite,k—0 in the ¢

characteristic equation. This approach has been proposed tere G are the reciprocal-lattice vectors and the integration
Ref. 28 and later developed in Ref. 29 for 3D photonic crys<uns over the unit cell with volum¥, . [Note that we are not
tals. The effective medium for 3D photonic crystals may berestricted to the case of a periodic heterostructure whgre
isotropic, uniaxial or biaxiaf>>°depending on the symmetry is a piecewise continuous functidrit is a simple matter to
of the lattice and that of the unit cell of the photonic crystal. prove that

A particularly compact result for the homogenization of 2D

photonic crystals has been recently accomplished in Refs. _ o "y —

31,10,32, and 33. As we will see, for the 2D case, where the g‘, e(G=CIn(G"=G)=decr @
inclusions of the photonic crystal are infinitely long parallel i i

rods, the effective medium is always birefringent, i.e., it isWhere ‘?G,G’ is the Kr9necker delta function. It follows that
either uniaxial or biaxial; thus a specific feature of the 2D8(G,G’) f"lnd ’7(9'6 ) are. mutuallyl remp[ocal matrllces.
geometry is the impossibility of isotrop§.This can give rise  1hatis,e”*(G,G")=7,(G,G’) and " *(G,G")=&(G,G’).

to unusually large anisotropyof 2D photonic crystals in "€ wave equation for the monochromatic fieidr,t)
comparison to natural crystals. =H(r)exp(—iwt) is written as follows:

In this paper we derive the homogenized equations for
arbitrary 2D photonic crystals and give the details of calcu-
lations which have been omitted in Refs. 31-33. The paper
is organized as follows. In Sec. Il we solve Maxwell's equa-
tions for the magnetic field in the low-frequency limit and in In the periodic medium the Bloch theorem is applicable to
Sec. IIl obtain the two dielectric constants of the effectiveH(r):
medium for propagation in the plane of periodicity; these
describe the propagations of the “ordinary” and “extraordi- H(r)=expik- r)z he(G)exgiG-r). (4)
nary” waves. In Sec. IV we demonstrate that the long- G

w2
Vx[n(r)VXH(r)]=?H(r). 3)
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Using the transversality of the magnetic field, H(r)=hg(0)exp(ik-r). 9

(k+G)-h(G)=0, ) Moreover, becausfaccording to Eq(8)] h,(0)LKk, this is a
] ] ) ] ) transverseplane wave. Terms witls# 0 are corrections to

a set of linear equations for the amplitudg$3) is obtained:  this homogenized solution; the amplitudbg(G) can be
written as power series with respect to the small parameter
kV§’3. Thus our approach to the homogenization problem is

h(G) essentiallyguasistatic it is based on the asymptotic solution
of Maxwell's equations. The static approach, based on the
solution of the Laplace equation, has been developed in Ref.

=— 2 7(G—G")(k+G)X[(k+G')xh(G")].  34(special case of a square lattice and circular cylindens

2
w I
(-2—77|k+G|2
Cc

G'#G later in Ref. 15(arbitrary 3D structure
(6) The effective dielectric constant is defined as
Here
. - [kc\?
Seff(k): lim [—] . (10)
— 1 wk—0\ @
r=9(0)= | wrar ™
cJ V¢

It turns out to be dependent not only on the average charac-

is the average inverse dielectric constant. For a binary comeristics of the inhomogeneous medium, lker 7, but also
positen=f 74+ (1—f) 5, with Nap=1lle,p, Wheree, and  on the details of microstructure, i.e., the geometry of the unit
g}, are the dielectric constants of the constituentsfasthe  cell, the dielectric constants of the constituents, and the di-
filling fraction of materiala. Our theory, however, i$iI0t  rection of propagatior&=k/k.

restricted to binary composites. From Faraday’s Law forVxH it follows that D(r)

qu_Jation (6) is an infinit(_a set of homogen_ec_)us linear _ @H(r)xﬁ. Then, by Eq.(9) the displacement vector
equations for the eigenfunctiomg(G). The nontrivial solu-  pry s also a transverse plane wave. Further, from Faraday’s

tion is obtained by requiring that the determinant of the co- o .
efficients of h(G) vanishes. This gives rise to the band Law we get thaH(r) = Se.fkaE(r)' S0 th_atE(r) IS a_lsq a
plane wave. However, while the electric field must lie in the

structure w= w,(k), wheren is the band index. Being an )
: . . .__plane perpendicular tbl (the plane formed by the vectoks
analytic function,w,(k) may be expanded in a power series o . .
andD), it is not a transverse wave. These conclusions are in

of k (for any direction ofk) aroundk=0. For the lowest accord with crystal optics.

(acousti¢ band of the spectrum»(0)=0 and the expansion . . .
; ) o Seemingly, the above analysis regarding the nature of the
starts from the linear term, i.eq(k)ok. In the static limit fieldsH(r), D(r), andE(r) holds for any direction of propa-

w—0 there can be no magnetic fielt €0). Therefore all S i )
Fourier coefficientsh,(G) must vanish ifk—0. The rates gationk. Actually, it turns out that propagation parallel to the

that they approach zero are different: the Fourier coefficientylinders k=2) is an exceptioi®> Section VI will be de-

h(G#0) vanish faster than the zero harmohigG=0). Vvoted to this interesting case.

This follows from Eq.(6) if we substituteG=0 in both sides To calculate the limit in Eq(10) one needs to derive the

and take the limik—0, dispersion relationo= w(k) which follows from the eigen-
value problem given by Eq$6) and(8). Keeping in Eq.(6)
terms of the same order with respectitove get forG+#0

h(G=0)= ! > -Gk
k a)Z/CZ_;kZ G'+0 7 1
X[G'Xh(G")]. ) hk(G)=——2[n(G)G><[k><hk(0)]+ > 7(G-GG
7nG G'#G

Since the coefficients df, (G’) are inversely proportional to

k, all nonzero harmonics must approach zero at a higher rate X[G’th(G')]]- (11)
thanh,(0) does. Namelyh, (G#0) is of the same order as

h(0)k VY3,

If the wavelength\ = 277/k is much larger than the size of Now we substituten, (0) from Eq.(8) into Eq. (11). Using
the unit cell, the inhomogeneous medium behaves like a hdggs. (5), (10), and(11), and introducing new variables,
mogeneous one. Equatiof®), (6), and(8) form the math-
ematical basis for theory of homogenization of photonic
crystals. Because, in this long-wavelength limk,(0)
>h,(G#0), the right-hand sidé&.h.s) of Eq. (4) reduces to
the plane wave, i.e., the wave equation solution in a homoafter some algebrésee Appendix Awe arrive at an infinite
geneous medium, set of linear equations,

a(G)=GXxhy(G), (12
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were obtained in Ref. 29, using the wave equations for the

GX E 7(G—-G")a(G") electric and magnetic field&(andH methods, respectively
G'#0 Nevertheless, in spite of these differences of form, numerical
results for the effective dielectric constants must be identical

il(lG)_ E n(—G’)Rx[IZXak(G’)] 0. (13 in the limit of an infinite number of plane wave& (values.
L

€eff— M G'#0

. - N IIl. IN-PLANE EFFECTIVE DIELECTRIC CONSTANTS
Itis seen that the coefﬂugnts ef(G’) in Eq. (13 are now OF 2D PHOTONIC CRYSTALS
independent of the magnitude &f Hence, Eq.(13) is the
homogenized Eq(6), i.e., the long-wavelength limik— 0 In what follows we limit the treatment to 2D periodicity,
has been accomplished. i.e., to a photonic crystal with infinitely long cylindrical in-

Equation(13) is identically satisfied if the vector in the clusions. These may have any shape for their cross section
curly brackets is parallel to the vect@, namely if and may form any 2D Bravais lattice. There may also be

several cylinders in the unit cell.

Let the cylinders be parallel to the axis so thex—y
plane is the plane of periodicity. In this section we limit the
propagation to the plane of periodicity, namédy=0. Then
the vectorsG=(G,,G,,0) andk=(k,,ky,0) have only two
nonzero components. Remembering tﬁgﬁL G, we choose
the basic vecton, to be parallel to the axig, namelyn;

> 7(G-G"al(G")

G'#0

- IO S p(-6nkx[Rxa(G)]=aG,
Eeff— 7 G'#0

(14 : "
=(0,0,1), and the basic vectoy, is in thex—y plane,
wherea is a scalar. By Eq(12), the vectora,(G) lies in the
plane perpendicular t&. In this plane it is given by the ﬁ2=(—Gy/G,Gx/G,O). (19

projectionsa;(G) anda,(G) on two orthogonal unit vectors
n,(G) andn,(G) respectively, namelga(G) =a;(G)n,(G)
+a2(G)ﬁ2(G). To get equations for the scalar quantities
a,(G) anda,(G) we take projections of Eq14) on n,(G)
and n,(G). Since G-h, {G)=0, the right-hand sides of Then it follows from Eq.(16) that the equations foa; and
these equations are zeros and thus the indefinite saalar 22 '€ decoupled:

disappears. The algebra simplifies with the use of the identity

The following identities hold:

. . . . > f1(G,G")ay(G')=0, (20)
[k-N;AG)I[k-NyAG")]—NyAG) Ny AG') ¢'%0

=—[ny AG)xK]-[n AG")xK]. (15) <. L
M Ok A €1l > {f1(G,G") (M Mg +(G,G') (K1) (K- Ny)}an(G)
Then a set of equations fa; anda, can be written in a  G'+o0
compact matrix form, -0 21)
n;-n; n;-ng

e ) ) L 1,(G.G') Equations(20) and (21) describe the TM olE mode €| 2)

and the TE oH mode H||z), respectively, as can be under-
A e s, A a o a, stood from Eq.(12) and the choice of the vectoﬁi_,z. For
x( (ny-k)(k-np)  (ng-k)(k- ”2)) ] (al(G')) B the case of propagation in the plane of periodicity these two
A A modes are known to be decoupled for any frequency, not just
(nz-k)(k-ng) - (nz-k)(k-nz) in the long-wavelength limit® Equations(20) and(21) have
(16 nonzero solutions if the corresponding determinants vanish,

N,-N; Np-Ny

> Ime,e')

G'#0

ax(G")

Heren; ;=N {G"), det,c ol (eaii— 7) n(G—G')+ 7(G) 7(—G')]=0,

f1(G,G")=n(G=G')+ (e~ n) 'n(G)n(~G'),

a” E mode, (22
and del g 4ol (o1i— 7)G- G’ 7(G—G')
f2(G.G")=—(eofi— 1) 0(G)n(~G'). (18 +(k-G)(k-G")n(G)p(—G")]=0,

Equation(16) is applicable for any periodic 3D structure.
The effective dielectric constant is determined from the con-
dition of existence of nontrivial solutions of this set of ho- To derive Eq.(23) from Eg. (21) we used the following
mogeneous equations. Two different sets of linear equationislentities:

H mode. (23

115208-4



LONG-WAVELENGTH LIMIT (HOMOGENIZATION) FOR.. .. PHYSICAL REVIEW B 65 115208

GG . . .. .. (kG)k-G Tr(C™=TrCTr(C"1). (30)
a, n,-n,—(k-ny)(k-nj)= ———

Equations(22) and(23) determine the slopes of the acoustic
branches, respectively, of the and H modes, that is—

Ny-Njy= :
22 GG This ensures that all the coefficientg=0 forn=2,3, ...,
as can be proved by mathematical induction, see Appendix

B. Now Eq.(26) is rewritten in a simple form,

according to Eq(10)—the effective dielectric constants for o
these modes. These equations are polynomials of infinite or- dek.o ol 7(G)2(~G") =N dee']
der in (eo+— 7). Below we show that each of them has a = lim (—=1)"™\"" (A +a)=0. (31

n—o

single physical solution.
To reduce Eq(22) to a standard eigenvalue problem we The infinitely degenerate roat=0 is not a solution of

m”“.ip'y i.t from the right by de e/ .o[¢(G—G’)] and use Eqg. (26). Hence Eq.(31) has the uniquénonzerg solution
the identity deAdeB=detAB. We also make use of the fact | _ :

; N=—a4. Then, using Egs.(26), (29), (28), and (24)
thate(G—G') and»(G—G’) are, according to Eq2), mu- (for G=G'=0), we get that
tually reciprocal matrices and hence satisfy the identity ’

S H(G-G"e(G'-G') 1_8eff;:GZO 7(G)e(~G)

G”

= 2 n(G—G")s(G"—G')-Fn(G)s(—G')=5GG/, :EGD ﬂ(G)S(_G)_S(O)T](O):l_E
G"+#0

(24) (32

Comparison of the first and the last expressions yields the

and its special case f@=0, ) ) !
effective dielectric constant for tHe mode, namely

G%O n(—G"e(G"=G')+ ne(—G')=bgro. (25 iy 33
Then Eg.(22) takes the form of the standard eigenvalueThis effective dielectric constant is thus independent of the
problem, direction of propagation and it is simply the weighted aver-
. age dielectric constant. This result is in fact known to be
det g/ 2ol 7(G)e(—G') —Ndge ]=0, N=1—gqp7. valid not only for periodic systems, but also for any inhomo-

(26) geneous dielectric with dielectric constar(tr) that is inde-
pendent of the coordinate(see, e.g., Ref. 24
Now let us turn to the dispersion relation E¢RJ)
det g 2ol 7(G)e(—G')—Ndga/] for the H mode.ﬁ Multiplying  this equat.ion by
) def[G-G'7(G—G')] !} we get a standard eigenvalue
= I|m (_l)n()\n+ al)\n71+ e +Cl’n) (27) problem,

n—oo

Expanding the determinant we get

The polynomial on the right-hand side is the characteristic  defs g/ o[ B(G,G’) — A dge/]1=0, A=1seii— 7,

polynomial of the matrix (34
C(G,G")=7n(G)e(—-G'), G,G'+#0. (28)  where
The coefficients of the characteristic polynomial of any ma-
trix C can be obtained by using the recurrence relation, B(G,G)=—k-Gn(G) >, k-G"n(—G")
G"#0
a=—Tre(G,6", X[G"-G'n(G"-G")]"L, G,G'#0.
(35

1 2 1 2 2
azz—ETr(C +a1C)=—§[Tr(C )—(TrC)~], (29 L _ o
Here[ - - -] ! implies inversion of the matrix in the brackets.
The matrixB(G,G’) is written in a form similar to the ma-
trix C(G,G’) in Eq. (28), namely as a product of two fac-
1 tors, one of which depends only @ and the other only on
ap=—=Tr(C"+a;C" 1+ .. +a, ,C). G'. Then it is clear that E¢(30) also holds for the matri,
n and that the procedure in Eq27)—(31) carries over for the
Here, the trace is taken over all diagonal elements excepi@se at hand. The only nonzero coefficient of its characteris-
G=G’=0. Now, due to the separation of the variabfgs tic polynomial is a;=—Tr B(G,G") and thenA=1/eq¢
andG’ in the matrixC(G,G’) [Eq. (28)], the trace has the — 5»=—a;. This results in the effective dielectric constant
property for the H polarization,
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R =
Y-l (39
or
sH<I2>=1/[?— > k-Gk-G'n(G)n(-G")
G,G'+#0
><[G~G’77(G—G’)]‘1}. (37

This effective dielectric constant depends on the direction
of propagation in thex—y plane and on the details of the
photonic crystal structure. For propagation in the plane of
periodicity, Eqs.(33) and (37) give a complete solution for
the effective dielectric constants afiy 2D photonic crystal
in the low-frequency limit. In what follows we will show FIG. 1. The index ellipsoidgeneral caseand the determination
how to calculate theprincipal dielectric constantswhich of the ordinary and extraordinary refractive indices and correspond-

give the customary description for anisotropic media in crysing displacement vectors ofumiaxial material for a given direction
tal optics‘?’ of the wave vectok (see Sec. IV.

IV. UNIAXIAL AND BIAXIAL PHOTONIC CRYSTALS wheree, €5, andey are theprincipal dielectric constants

R For every direction of propagation the index ellipsoid de-
The angular dependence of (k) in Eg. (36) can be ob- termines two refractive indices. They are, simply, the lengths
tained explicitly for an arbitrary 2D periodic structure. In the of the semiaxes of the ellipse which is obtained by cutting
x—y plane we introduce a polar angte measured from the the index ellipsoid by a plane through its center and that is

x axis, taken in an arbitrary direction. Substitutidg  perpendicular tdk, see Fig. 1. Also, the directions of these
=(cose,sing) in Eg. (35 and calculating the trace of the semiaxes coincide with the directions of the displacement

matrix B(G,G’), we get vectorsD of the corresponding modes. kf is in the x—y
plane, then one of the semiaxes of the aforementioned ellipse
——=(n—A)Cc0S o+ (n—A,,)sir? ¢— A, sin 2¢. coincides with thez axis. Then one propagating mode is
en(®) v / characterized by||z and, according to Eq40), the vertical

(38 semiaxis length is/e3, independent of the directiok. As
Here pointed out before, this is just tHe mode, whose effective
dielectric constant has been determined by @B8). Hence

1 / / we can make the identification
Ak=5 2 (GG +GG/)7(G)

2 G,G'#0 —

e3=¢, (41
Xn(=G)[G-G'n(G'-G)]™ %, ik=xy. . . - . .
thus having determined one of the principal dielectric con-
(39 stants in Eq(40).
Equation(38) describes a rotated ellipse in polar coordinates 1he displacement vector and hence electric field of the
(p,¢), where the radius ip(¢) = en(¢). Hence we come other_pr_opagafung mode is parallel to the plane o_f per_|0d|C|ty,
to the conclusion that the values of the effective refractive>© this is, obviously, thél mode. Now, the effective dielec-
indexny(¢)=en(¢) lie on this ellipse. Such a behavior is tric constant depends on the angig betweenk and thex,
well known in the optics of natural crystals and allows us to@Xis. By expressing the ellipsgy=0 of Eg. (40) in polar
introduce the index ellipsoitiThe axes of the index ellipsoid coordinites, simple geometiisee Fig. 1 yields the follow-
(XOIyoazO) are three mutua”y Orthogona| directions a|0ng Ing eXpreSSion for the horizontal semiaxis of the index elllp-
which the vectordD andE are parallel to each other. soid:
For 2D photonic crystals one of these axeg) (is neces-
sarily parallel to the-axis, because for the-polarized mode

D(r)|E(r)||z. Thus the other two principal axes are in the en(eo) €1 €2
plane of periodicity. The index ellipsoid is given by the 15 equation gives,, in the form of an ellipse expressed in

1 sifgg . cog ¢ 2

equatiori~® . _
its proper axes systertpolar representation Clearly, Eq.
2 2 2 (38) describes the same ellipse, however, expressed with re-
0, &+ D (40) spect to some arbitrarily chosen axey. Rotating the axes
€1 & &3 X,y by an angled=¢,— ¢ we can diagonalize the tensor
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Aix. The angle# is obtained from the condition that the
nondiagonal term, which is proportional to sip vanishes: ‘ ‘ ‘
tan2¢ 2Axy (43)
an2= ———.
Ayy_Axx

This formula determines the directions of the principal crys-

talline axes with respect to soniaitially) arbitrarily chosen

axes. Of course, in simple cas@sich as a rectangular Bra-

vais lattice the directions of the principal axes are intuitively

obvious. Then one chooses, from the outsetx, andy FIG. 2. Examples of unit cells of 2D photonic crystals that ex-

=Yo, SO thatA,, will turn out to vanish. hibit isotropy in the plane of periodicity; the corresponding photo-
Furthermore, the coefficients of the terms 23@6 and nic crystals are optically uniaxial. Note that photonic crystals that

co< @o Of the rotated ellips€38) determine the principal have a rectangular or an obligigeneral 2D Bravias lattice cannot

dielectric constants; ande, in Eq. (42) as be uniaxial.

e1= (7~ AxSI? §—Ayycos 6—A,ysin20) "1, (44)  the lattice. For 3D periodicity this situation has been studied
o in Ref. 40. Namely, spherical inclusions with anisotropic di-
£2= (17— AxCOS 0—A,Sir? 0+A, sin26) 1. (45  electric constants in an fcc lattice give rise to the splitting of
the dispersion curves for two polarizations in the low-
It is the symmetry of the unit cell that determines whetherfrequency limit, thus breaking the isotropy of the photonic
a photonic crystal is uniaxialsq=e¢,) or biaxial (s;#¢,).  crystal. For 2D photonic crystals, there can be only limited
Unlike 3D photonic crystals, 2D crystals cannot be isotropicisotropy—in the &—y) plane. The following structures
(e1=e2=e3). This property is guaranteed by the Wiener (with third- or higher-order rotational ajiexhibit such isot-
bounds €, ,<e3) valid at least for in-plane isotropy, namely ropy: the square lattice with circular or square cylinders and
e1=¢,.% If the crystal possesses a third- or higher-orderthe hexagonal lattice with circular or with equilateral trian-
rotational axisz, then any second-rank symmetric tensorgular cylinders. The unit cells of these structures are shown
such asA; (i,k=x,y), Eq. (39), is reduced to a scal@d, in Fig. 2; they all correspond to uniaxial 2D photonic crys-
Ai=ASd . Then Eqs(44), (45), and(39) may be simplified tals. A few examples of unit cells that exhibit anisotropy in

as the plane of periodicity are given in Fig. 3. These unit cells
_ define biaxial 2D photonic crystals.
g1=e,=(np—A)"1 The Egs.(44), (45), and (41) specify, completely and
1 compactly, the principal dielectric constants of an arbitrary
— ;_ - 2 G-G'79(G)np(—G') 2D photonic cryspal. They are expresseq in terms of the ge-
2 G.G' %0 ometry of the unit cell and the dielectric constants of the
. constituent materials. 1&,, &,, and 5 are known, then,
X[G-G'n(G'—G)] "t . (46)
Here [---]7! implies matrix inversion, while{---}71 . () )

means “reciprocal.” This compact formula gives the princi-
pal dielectric constantassociated with the plane of period-
icity) of a uniaxial photonic crystal. The optical axis coin-

cides with the axig, which is to say that birefringence is

absent for a single direction of propagation—the direction

parallel to the cylinders. For propagation in this direction

(with F_Li) the phase velocities of the “ordinary” and “ex-
traordinary” waves are the same/k=c/ /e, with £, given . .

by Eq. (46). Of course, for any direction of propagation the
ordinary wave propagates with the same spedqz,, by
definition. Because this velocity is always greater than the

velocity c/\/e5 of the extraordinary wavéwith E|z) that
propagates in the plane of periodicity, we may conclude that
uniaxial 2D photonic crystals are necessarily “negative”™—
just like 1D superlattices.

For artificial periodic structures the symmetry of the unit  FiG. 3. Examples of unit cells of 2D photonic crystals that are
cell is determined by both the symmetry of the Bravais lat-anisotropic in the plane of periodicity; the corresponding photonic
tice and the symmetry of the inclusions. Being macroscopicerystals are biaxial. In these examples, either the inclusions or the
the latter may possess a symmetry that is lower than that déttice is anisotropic in the plane of periodicity.

(nonprimitive cell)
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using formulas of crystal optics>® the propagation constants 13 ' - - - ' '
can be readily calculated for any direction lof
1.2 frosaseses,, -
e N
V. COMPARISON WITH OTHER WORKS ! oo “oonans,
*oe,
There are two analytic studies of the problem of homog- Sonsenses
enization where the final result for the effective dielectric 10} =
constant is expressed in terms &fG). One has been pro- L
posed by Datteet al?® for 3D photonic crystals and then Y L i
reduced by Kirchneet al® to the special case of 2D peri- ~ |eccecee==""""
odicity. Their approach is a quasistatic one, namely, the ef- 08 ; : . . . .
fective dielectric constant is obtained by taking the limit 00 02 05 08 1.0 12 15
(10). Another approachstatig, based on the solution of angle(radians)

Laplace’s equation Wa}s de\_/eloped by Bergman a!’ld IjElnn.. FIG. 4. Numerical evidence of the identi¥8) for a rectangular
T.he.method described in Secs. Il and |2|<!;’ bemg.quaSI_Iattice with sides ratica/b=5 and circular cylinders with filling
static, is closer to the approach of Da#ttal =" Rewriting

fraction f=0.05 and dielectric constani,=20. The solid line
H 10 ; : a
Egs.(C12~(C16) of Kirchneret al. " in our notation we get shows the left-hand side of EG8), and the dotted and dashed lines

show the first and second factors in curly brackets. The number of

en(K)=e— 2 pP-Gp-G'e(G)e(—G') plane waves used in the calculationsNis- 1636. These curves are
G.G'#0 plotted as a function of the angle between the wave vectand
1 one of the basis vectors of tligectangular unit cell.
X[G-G'e(G'—=G)] . (47

Herep, is a unit vector in the plane of periodicity and per- also written in the form of Eq(47).*" In this approach the
pendicular tok. While the structure of Eq47) is not unlike  effective dielectric constant.(E) is obtained as a function
the structure of Eq(37), the two representations for the ef- of the direction of the dc electric field=E/E. Using Egs.
fective dielectric constant are different. Equati®tV) was (2.5 and(2.26 of Ref. 15 one obtains

obtained from the wave equation for the electric field, while

Eq. (37) follows from the wave equatiof8) for the magnetic

field. Since the spectrum of Maxwell’s equations for a given ep—eerf(E) =3 E.Go (49
structure is unique, these two representations must be ep— €, & -cdc- )
equivalent. This means that the following identity should

hold:

Here0s=¢(G)/(e,—€y), 0g=o=f. The formal solution for
ac follows from Eq.(2.23),

e— 2 P-Gpe-G's(G)e(—G')

G,G'#0 .
B ag= 2 (s—D)gE-G'og, (50
><[G~G’s(G’—G)]‘1H77— > k-Gk G #0
G,G'#0
wheres=¢,/(ep—¢&,) and the nondiagonal matrix elements
, , , , _ of the operatoll” are given by Eq(2.21) of Ref. 15,
.G 7(G)9(—G)[G-G' (G’ ~G)] 1]=1. 49 P given by Eq(z.20

) o Ige=G-G'0(G-G'), G#G'. (51
Each factor in the curly brackets depends on the direction of ‘

the vectork, but the product is independent of it. It is clear . . :
D o .~ The diagonal matrix elements are independentGrand
that this identity is related to Ed2), however, an analytic equal tol' g o= f. Combining Eqs(49)—(51) we get

proof seems to be difficult. Instead, we opt for a numerical
demonstration. In Fig. 4 we plot the left-hand side of Eq.
(48) as a function of the angle(k,x) (solid line) for a 2D S E.Ge(—G)a

periodic crystal with rectangular lattice and circular cylin- cerf(E)—e ezo & Jac

ders. The unit cell is taken to be strongly anisotropic, with . -

ratio of the sides 1:5. This structure exhibits strong birefrin- 5 E-Ge(=G)(s— I s E-G'&(G)

gence, i.e., the factors in E48) vary substantially withp - Y.

(dotted and dashed curves in Fig. Blevertheless, the prod- 6.6 70 CG'(2a~2n)

uct of these factors is practically independentgofand is (52
very close to 1. This gives numerical evidence of the identity

(48). A direct comparison of the diagonal and nondiagonal matrix

Now we will show that the result obtained by Bergman elements shows that the operatsr—(I") can be written as
and Dund® by means of an electrostatic approach can bdollows:
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G-G'e(G-G') w? )
P rE— (53 —Zdz(G)=Z 7(G—G")[Gd,(G')—kG-d, (G")].
GG'(ea—¢&p) c G’

(56)

S(sG,G' _FG,G’E -

Substitution of Eq(53) into Eq. (52) gives the effective di-

electric constant for a given direction of the electric field, In the low-frequency limitw—0 this longitudinal compo-
nent approaches zero since, for=0 andk=0, Eq.(56) has
only a trivial solutiond,(G)=0. Unlike this, the transversal

geff(é):;_GGE . E-GE-G'&(G)e(~G') component, (G) satisfies the equation
G/ #
X[G-G'e(G'—G)] 1, (54) z

w ’ 2 2 ’
—d.(6)=2 (G—G")[(K*+G*d,(G")
In the low-frequency limit the electric fiel& of the H ¢ G
mode lies in the plane of periodicity perpendiculalﬁtd.e., —GG-d, (G')—Gkd,(G')]. (57)

the vectorE=E/E coincides with the vectap, in Eq. (47). o ) ) o
Therefore Eq(54) gives the effective dielectric constant for It has a nontrivial solutiond;™’(G) in the static limit.

the H-mode propagating in the directidn(k L E), provided ~ Namely, in this limit Eq.(57) takes the form

that E is replaced byp,. After this replacement Eq(54)
becomes identical to E¢47), and both equations are equiva- > 9(G-G)[GdP(G)-GG-d(G")]
lent to Eq.(37). G’

_ ’ 0 I\ —
VI. PROPAGATION PARALLEL TO THE =—2 7(G—G)GX[Gxd?(G")]=0. (59
CYLINDERS AXES G

Along the cylinder axes the medium is translationally in- 1S €quation is satisfied if

variant, and therefore the Bloch vector is replaced by the

ordinary wave vectok=(0,0k). Thenk is not bounded any _endOary —

more by the Brillouin zone and the dispersion law in the g nG-GHAN(G)=GAG), G#0, (59

direction does not reveal a band structure. As a result, gaps

cannot appear in the frequency spectrum. where B(G) is an arbitrary function. Note that the Fourier
In a uniaxial crystal both eigenmodes propagating alongomponents of the displacemend(G) and the electric

the optical axis(the z axis have equal phase velocities &(G) fields are related as

c/\e1, wherez, is given by Eq(46). If the crystal is biaxial,

the eigenmodes propagate with different velocities/e ;

andc/\e,, wheres,; ande, are given by Eqs(44) and(45).

In this section we will study the structure of the electromag-

netic field for the modes propagating along the axighe

procedure of homogenization at low frequencies also has dk(G)zE e(G—G")e(G). (60)

some specific features, which we will describe by taking the G’

limits w,k— 0 of the characteristic equation for the displace-

ment fieldD. It turns out that this leads to a representation

for the principal dielectric constants , that is formally dif-

eK(G)=§ 7(G—G')dy(G"),

The first of these equations implies that the left-hand side of
Eqg. (59 is equal toe(f)(G). Then, by the same equation,

O)(G)= i i i i iva-
ferent from Eqs(44) and(45). The formulas obtained by the Gx€"(G)=0. In view of this relation, Eq(59) is equiva

H and theD methods have different rates of convergence lent to the electrostatic conditiovi X E=0. The existence of
This will allow us to device a numerical method that leads to@ NOntrivial solution of Eq(57) means that the expansion of
improved accuracy of the results. the longitudinal component,(G) in the low-frequency limit

It can be readily proved that the eigenequation for thestarts from higher orders éfthan the expansion of the trans-

Fourier components of the displacement figldG) has the ~Versal componend, (G). In other words, Eq(S9) in the
following form: low-frequency limit has a solution in the form of a pure

transversal wavel§,= 0) that is the necessary condition for

9 homogenization. This is also obvious from applying the in-
w . .
—de(G)ZE n(G—G")[|k+G|2d(G") dex ellipsoid to the problem at hand. . .
c G’ When the wave propagates along the cylinders, the in-

plane inhomogeneities are not averaged out over many
—(k+G)(k+G)-d(G")]. (55  wavelengths, as occurs for oblique or in-plane propagation.
Because of this “lack of averaging,” the solution of the wave
For the case&k=kz (i.e., kLG and |k+G|?=k?+G?) the  equation in the low-frequency limit is not a pure plane wave
vector d(G) has a longitudinal componert,(G) which  but it exhibits a periodic dependence on the in-plane coordi-
yields the equation natesx andy,
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tion of propagation.At the same time the spatial distribution
D(r)—_oexplikz) Y, d{®(G")exp(iGx+iG,y). of the displacement fiel®,(r) [which is parallel toE,(r)]
G’ 61) is not homogeneous along the superlattice axis. This field
exhibits a periodic dependence in the axial directioe., it
is not a plane waveand it is concentrated in the high-
regions?? Unlike this, the electric field of the extraordinary
wave[with Hy(r) parallel to the interfacgsas a component
perpendicular to the interfaces,(r). This component satis-
fies the equatiorD,(r)=¢(r)E,(r)=const. Then for any
TP . . frequency and direction of propagation the spatial depen-
mt]% Eﬁé(ignicézz Gr:r?(t:es w:;g\l;f{r:g t\t]vZ\I/(;n?r(\)Arﬁ: e;gg;lggzlt, d_encg ofE,(r) follows the_periodicity of the Iattic_e. For any
edlrectlon except propagation along the layers this component

Evidently, the cases of oblique and, especially, in-plan X
propagation are favorable for homogenization because thtéflrnS out to be smallwhen k—0) as compared with the

wavelength Zr/k covers an infinite humber of unit cells. component parallel to the interfaces. Therefore .the electric
This, however, is not the case for on-axis propagation. field is almost a plgne wave in the low-frequency limit. How-
It is interesting to consider the behavior of theand E ever, for propagation parallel to the Iay_ers these two compo-
) - . nents are of the same order of magnitude. In this case the
fields as well, fork|z. As we have Seen n Sec. [Isee EQ.  glectric field (and, because of the linearity of Maxwell's
(10)) below], it follows from Maxwells equations that g ations, also the magnetic and the displacement ¥ields
D(r)=eerH(r)xk and H(r)=\eerkXE(r). We just nota plane wave. Hence the method of the index ellipsoid is
found that, for propagation along the cylinders, Davave  not applicable(as we have also seen for 2D photonic crys-
is not plane; then the linearity of Maxwell's equations im- tals).
plies thatD(r) and H(r) are not plane either. Indeed, the  The effective dielectric constant E(.0) is obtained from
wave fronts of all the fields are rippled in tlke-y plane, the  the condition that the set of coupled homogeneous equations
structure of the ripples being periodic—with the periodicity (56) and (57) has a nontrivial solution. In order to decouple
of the 2D lattice. The mathematical reason for the planes ofhese equations we use the transversality of the displacement
constant phase having this periodicity is that the amplitudesield,
of all the partial plane waves wittkz+ G are all of the same
order ink. From the formulas above we see th#¢r), as (k+G)-dy(G)=kd,+G-d, (G)=0. (62)
well asD(r), is a transverse wave. The polarization of the — _ .
E(r) field can benopefullydeduced from the index ellipsoid, 'ﬁgrt])?/v“:]lijéw%(oc#t;inseo.r?lﬁG()Gl)nto Ea.(57), we get an equa-
Fig. 1. (Properly, it should be determined from the solution LAEh
of the eigenvalue problem for the electric field which we did o2
not undertake. For on-axis propagation, the displacement el _ o 2, 2 /
vectorsD(r) of the two modes are parallel to tlxg andy, 2 d.(G) g’ GG +CHA(E)
axes of the index ellipsoid. We recall from crystal optits
[also see just before E¢40)] that wheneveD is parallel to -GG-d, (G')+GG'-d (G")]. (83
one of the principal axes the|D. The conclusion then is ) . . .
that the electric field is also a transverse wave. Since this equation is even with respect to substitution
Needless to say, the optiodbng-wavelengthmodes that K— —K, the functiond, (G) may be expanded in even pow-
propagate in natural crystals are plane waves—doy 'S of k. The zero-order term for the Fourier components
propagation direction. This is also true for 3D photonic""('g‘ G#0 may be obtained from Eq(58). The term
crystals?® As we have just found out, the eigenmodes of adi (G=0) which enters into Eq(61) is calculated directly
2D photonic crystal that propagate parallel to the cylinderdrom Eqg.(57). For G=0 this equation takes the form
are not plane waves, but have periodically rippled wave
fronts. In this aspect, then, 2D photonic crystals differ quali- w? ’ , , )
tatively from their three-dimensional counterparts and from ?dﬂo):k g 7(=GNd.(G) =k’ (0). (64
natural crystals. We are aware of only one other situation,
where the equiphase surfaces are periodic, namely propaga@he last equality relies on the first of the identitiég0).
tion in a 1D photonic crystalsuperlatticgin a direction that  Taking the limitw,k—0 and using Eq(10) we obtain the

is parallel to the interfaces. relation between static components of the electric and dis-
In the 1D case it turns out that the forms of the homog-placement field,

enized fields are different for the ordinafyE) and extraor-

dinary (TM) waves. In the ordinary wave the electric field d(9(0)=g.1€°(0), (65)

Ey(r) is parallel to the interfaces and therefore it i€@n-

tinuousfunction of the coordinates at any frequency. In thewhich, in fact, is the electrostatic definition ef;; since it
low-frequency limit this field is expanded ovkd (d is the  relates the mean values of the electric and the displacement
period, and the zero-order term gives the homogenizedields. While this definition involves only th€=0 compo-
plane-wave solution(This is true, of course, for any direc- nents(the mean valugsthe componenﬂi(lo)(O) is expressed

It is important to note that, unlike the general casgaif-
axi9) propagatior” [see Eq(8) and below] here the nonzero
harmonicsd(®)(G#0) arenot much smaller than th&=0
harmonic. As a matter of fact, we will projeee Eq.(66)]
that these harmonics are of the same ordéq iFhis explains
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through all the other component§®(G+0) by susbstitu-
tion of Eq. (60) into the right-hand side of Eq65),

1

- > n(—=GHdG").
Eeff— M G'#0

d®0)= (66)

In Eq. (59) we separate the term with’ =0 and substituting
d(®)(0) from Eq.(66) we obtain an infinite set of linear equa-
tions ford(9(G),

>
G'#0
=GpB(G). (67)
The componend(lo)(G) corresponds to the static limit. Ac-
cording to Eq.(62) G-d(®)(G)=0. This condition gives the
polarization of the displacement fietf”)(G) along the unit
vector n,(G) [see EQ.(19)]. Taking the projection of Eq.

nG-G')+ 7G)n(—G')|dO(G")

71 —
Eeft— M

(67) on ny(G) we get an infinite set of homogeneous equa

tions for the scalars(”(G),
> co9G,G)[(eafi— mMn(G—G')
G’'#0
+7(G)n(—G"H)1dP(G")=0. (68)
that n,(G)-n,(G')=G-G'/GG’

Here we used

= cosG,G').
Equation(68) has nontrivial solutions if

dets o 20{G-G'[(safi— 1) N(G—G')+ 7(G) n(—G")1}
=0. (69

The set of linear equation®5) for d,.(G) has two solu-

PHYSICAL REVIEW B 65 115208

bi(G)= > G{n(—G")[G-G'n(G'-G)] 4,
G'+#0

i=X,y.
(72)

For the matrixD(G,G’), the coefficientsx, of the charac-
teristic polynomial[see EQq.(27)] can be obtained via the
recursive relation(29), with the matrix C replaced by the
matrix D. Since EQq.(30) is not valid for the matrixD, the
coefficienta, does not vanish. Instead, it can be shown after
simple, but rather long algebra that the next coefficient,
vanishes,

1
ag=— §[Tr(D3) + a;Tr(D?)+ a,TrD]

1TD3 3TDTD2+1TD3—0
— 3| TH(D?)—5Trb Tr(D)+ 5 (TrD)*| =0,

(73)

for any matrix represented in the for(dl). All subsequent

coefficientsa, with n=4,5, . . . also vanish due to the gen-
eralized version of the property3),

an=— %[Tr(D”H aiTr(D"™ 1)+ a,Tr(D)""?]=0,
(74)

that follows from Eq.(73) by mathematical induction. Now
the characteristic equatiof84), with the matrix B(G,G")
replaced byD(G,G’), is reduced to a simple quadratic equa-
tion,

dets gr -0 D(G,G") — A dger]
=1lim (—1)"A""2(A%+ a; A+ ap)=0. (75

n—oe

tions, corresponding to two orthogonal polarizations of theTwo roots of this equation) ; ,, give the two principal di-
propagating mode. In the low-frequency limit this set haselectric constants

been reduced to E68). The latter thus must also have two

solutions. To obtain these, we follow the same method as

was used to solve Eq$23). First we multiply Eq.(69) by
def[G-G'7(G—G’)]" 1} and get a standard eigenvalue
problem in the form of Eq(34), where the matriB(G,G’)

is replaced by

-7(G) 2, G-G"5n(—G")
G"#0

X[G”'G,ﬂ(Gﬁ_G/)]_l,

D(G,G")

G,G'#0.
(70)

Even though the matrio (G,G’) looks quite similar to the
matrix B(G,G") given by Eq.(35), the formercannotbe
written as a product of two factors, one of which depend
only onG and the other only o®’. Nevertheless, due to the
factor G- G” each element of the matri®(G,G’) can be
represented as a sum of such products,
D(G,G")==n(G)[G,by(G") +Gyby(G")], (71

where

1 -1

(n+ A1)

1 1
~TrD+-2Tr(D)?—(TrD)?

€127
(76)

There is no correspondence between the order of the indices
1,2 and the* signs in Eq.(76).

In Sec. Il we derived the formula@4) and(45) for ¢, ,
considering in-plane propagation. Equati@i®) is based on
the analysis of the wave equation for the case of propagation
parallel to the cylinders. These two approaches must give the
same results for the principal dielectric constants, that is, the
right-hand sides of Eq$44) and(45), and Eq.(76), must be
identically equal. In the next section we will prove this ana-
lytically for the case of a rectangular lattice. The proof for an

Sarbitrary(oblique lattice is too long and cumbersome; it is

much easier to verify the equivalence numerically.

Each of the representations for the principal dielectric
constants possesses definite advantages. If the symmetry of
the crystal is rather high and the axes of the index ellipsoid
are aligned with crystallographic axes, it is easier to calculate
€1, using the Egs(44) and (45). On the other hand, in the

115208-11



A. A. KROKHIN, P. HALEVI, AND J. ARRIAGA PHYSICAL REVIEW B 65 115208

asymmetric case Ed76) is preferable if one is interested lattice. Then a direct comparison of E@44), (45), and(76)
only in the values ofe; , but not in the orientation of the shows that the different representations are identical if the
principal axes with respect to the crystallographic axes.  following relation holds:

One more representation for the principal dielectric con-
stants can be obtained if we replace the left-hand side of Eq. 1 ~ >
(59 by é(G) [see the first Eq(60)]. The calculations us- T Auuyy= T 5 (Aot Ayy) = V2TH(D%)~(TrD)*.
ing theE method are presented in Appendix C. Here we give (80
the final solution fore 5,

The last equality leads to

-1 1 2 2 2 2 2
81'2=s+§TrFt—\/2Tr(F) —(TrF)?, (77 A+ AS, = Tr(D?), (82)
where the matrix (G,G’) is as can be proved by the direct substitution of the matrix

D(G,G’) into Eg.(81). The corresponding calculations are
given in Appendix D. The proof for the general 2D Bravais

F(G,G')=—¢(G) X G-G"&(-G") lattice follows a similar procedure, but the calculations are
G"#0 much more cumbersome.
X[G"-G'e(G"-G')]", G,G'#0. The formulag76) and(77) were obtained via thB andE
(78 methods, respectively. Their equivalenggs well as the

equivalency of Eqs(36) and (47)] is based on the fact that
Note that the matrisE(G,G’) has the same structure as the the solution of Maxwell's equations is unique and either of
matrix D(G,G’) with 5(G) replaced bys(G). The repre- the vector functionsH(r), E(r), or D(r), gives complete
sentation(78) must be equivalent to Eq76) [and to Egs. information about the spatial distribution of electromagnetic
(44) and (45)] for an infinite number of plane wavess( field. While this general statement is beyond doubt, a direct
terms in the summations. However, in the numerical calcu-proof would be desirable. The equivalency of formul@e)
lations the matrices have to be cut to a finite size, of courseand (77) requires that

and that gives rise to convergence errors. In the next section

- i - — 1 1 — 1
we discuss the problem of convergence and give some prac 7+ =TrD+ =2 TrD2— (TrD)2 { e + = TrF
tical recipes on how to increase the accuracy of the numeri- 2 2 2
cal results without increasing the number of plane waves 1
involved in the calculations. if 2TrE2—(Tr F)Z} =1. (82)

VII. 2D PHOTONIC CRYSTAL WITH RECTANGULAR

LATTICE Unfortunately, we are unable to provide an analytic justifica-

tion for this identity—even in the simple case of a square

A photonic crystal with a rectangular lattice is biaxial, i.e., lattice of circular cylinders. For this uniaxial crystal the ar-
the three principal dielectric constants are all different. Thisguments of the square roots in E§2) must vanish, so that
is true irrespective of the cross-sectional form of the cylin-Eq. (82) reduces to
ders. Thus this structure represents the general situation in
crystal optics. At the same time, for this structure the calcu-
lations ofe, , are simplified, essentially because the axes of
the index ellipsoid are aligned with the crystallographic axes
[the angled=0 in Eq.(43)] and the unit cell possesses an In Fig. 5 we give numerical evidence that the three rep-
inversion center, so that(—G)=¢(G). The latter holds resentations o, , discussed do converge to about the same
only if the inclusions have an axis of symmetry of the secondvalue when the number of plane wavdg G values is suf-
order. For the rectangular lattice, the in-plane principal di-ficiently large. In part§a) and(b) we consider two mutually
electric constants Eqg44) and (45) can be written com- conjugate photonic crystals. In Fig(a we plot & 5(1/N)

_ 1 — 1
n+§TrD)(s+§TrF)=1. (83

pactly as for a photonic crystal of circular Si cylinders: (=12.25)
placed in air ¢,=1). The anisotropy of the lattice is speci-
- ;_ 2 G,,G! 7(G) fied by the ratio of the sides of the rectangle; in our case this
L2 cezo ratio is 2:1. In Fig. %b) the same dependence is shown for

air holes €,=1) in Si host £,=12.25). For both cases the
filling fraction is f=0.25. The curves in Fig. 5 clearly dem-
onstrate that when W/—0 the effective dielectric constants
given by Egs.(76) and (77) converge to about the same
Here [---]17! implies matrix inversion, while{---}"*  value, namely,~1.77 ands,~1.42 for Si cylinders in air,
means “reciprocal.” First we demonstrate that thg, as and £,~8.64 ande,~6.92 for air holes in Si. It is also
given by Egs.(44), (45), and (76) are identical. It follows worthwhile to note that numerical data for the effective di-
from the definitions of the matricdd(G,G’), Ay andA,,  electric constants given by Eqet4) and (45) coincide ex-
[see Eqgs(39 and (70)] that TrD=—(A+A,,) for any  actlywith the ones given by Eq76) (squares in Fig. b thus

-1
Xp(=G")[G-G'n(G'-G)] ' . (79
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air cylinders embedded in the material hpste Fig. B)]

the situation is just the opposite. We note that, for 3D pho-
tonic crystals with a simple-cubic lattice tlrerepresentation
(E method also exhibits better convergence with the number
of the plane waves ift,>¢,.*® This conclusion remains
valid not only in the long-wavelength limit but at finite fre-
quencies as weff* Note that, for anyN, thee representation

Effective dielectric constants

16 | [based on Eq(77)] gives excessively large results for the
] principal dielectric constants, while the representation
15k J [based on Eq944), (45) or (76)] gives too small results.
. oo—6—0 * . * If the dielectric contrast between the constituents of the
e = photonic crystal increases, then the difference between the
0.000 0.002 0.004 0.006 0.008 results obtained for finitd by the e-representation and by
IN the » representation becomes much greater. Since the com-

9.0 T T T putational effort grows very fast with the numbir(it can

& b hardly be larger than 8000one obtains erroneous results if

m 1 an improper method is used in the numerical simulations. In

particular, from the discussion above it is obvious thatdhe
8.0 n . representation cannot be used to calculate the effective di-
1 electric constants of a periodic array of perfectly conducting

cylinders,e,—. In this limiting cases =~ and numerical
results withany finite numbeof plane waves are incorrect.

& ] On the other hand, the representation works perfectly well
] for arrays withe,>1, leading to excellent agreement with
) results obtained from a direct solution of Poisson’s
M A S S equation”® The analysis of the case of perfectly conducting
0.000 0.002 0.004 0.006 0.008 cylinders will be published elsewhef.

/N For finite N the effective dielectric constants can be ex-
panded in powers of N,

Effective dielectric constants

FIG. 5. Numerical evidence of the equivalence of the formulas
(76) and(77) for a pair of conjugate photonic crystals with rectan-
gular lattices.(a) Si cylinders in air andb) air cylinders in a Si
host. Squares and circles show the data obtained from(&gsand
(77), respectively(the lines are guides to the eye¥he number of
G values(plane waveginvolved in the calculations ranges from The parameters in this expansion are obtained numerically
128 to 5314. Note that the principal dielectric constantande, by fitting the curves in Fig. 5 to parabolas. They are given in
computed by the two methods converge to roughly the same valueRable |. These parameters are quantitative characteristics of
in the limit of a very large numbe of plane waves. Nevertheless, the accuracy of the two different methods of calculations for
the method based on E(¥6) [(77)] converges much more rapidly N>10°. The smaller the absolute values of the coefficients
for the material(air) cylinders. a;, andb , are for a given representation, the higher is its

accuracy for a fixed value dfl. Since these coefficients in
demonstrating that the identit@1) is valid even for finitedN.  the table differ by at least an order of magnitude, it is seen
Note that both approaches are based omvihmepresentation. that then (&) representation is the right one to choose for

At the same time one can see that the rates of convergenceaterial (air) cylinders—as concluded before. This recom-
are considerably different. For material cylinders the datanendation can be reasonably extended to band-structure cal-
obtained from Eq.(76) [squares in Fig. )] give much culations for photonic crystals at finite frequenciésince
higher accuracy than the data obtained from @) [circles  the eigenvalue equatioff) for the magnetic field involves
in Fig. 5@)] (for equal values oN). On the other hand, for the Fourier coefficientsy(G) of the reciprocal dielectric

. Q12 bi
81’2(N):81’2+ — 4+,

Nt (84)

TABLE |. Parameters of parabolic fitting for the curves in Fig. 5, see(B4).

e1 a by &5 a b,

Si cylinders in air €,=12.25,¢,=1)

& representation 1.789 93 86 —33 000 1.423 46 22 —8,100

7 representation 1.772 24 -3 190 1.418 11 -0.9 50
Air cylinders in Si host £,=1, £,=12.25)

& representation 8.640 54 3 -12 6.917 18 6 —-17

7 representation 8.604 17 —130 38500 6.836 48 —300 82 000
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constant, this equation should be used if the inclusions of the  1.70 T T T
photonic crystal are optically more dense than the host ma- @ |
terial. In the opposite case one should use the eigenvalueg
equation for the displacement vector, or the eigenvalue equa-§ 1.65
tion for the electric field, written in the representation. =

The values ok, in Table | were obtained by extrapola- ;3’ 160
tion to N—oo. The accuracy of these values can be estimated=
from Keller's theorent? This theorem states that the princi- E
pal dielectric constants for two conjugate composites that§ 1.55
form a rectangular lattice satisfy the relation -

. 21(za.eo)ea(ep,2a) _ 2a(ea,0)21(8h,80) _ "0.000 0002 0.004 0.006 0.008

€afp €a€p I/N
(85)
8.10 r T r

Using the values of7, in Table | we get two valuefac- z 800 (®)
cording to the two equalities in Eq85)] for the precision g
factors, namelyr=1.011 andr=1.004, obtained from the § 7.90
e-representation data. The same factors, calculated from theg 780
y-representation data, yield,=0.989 andr=0.996. One % '
can see that both methods give about the same relative erro 7.70
for r. This means that the extrapolationNo=o washes out 2
the difference between the accuracies of the two methods.§ 7.60
Much higher accuracy is obtained if we use different repre- = - 54
sentations foe, ande, in Eq. (85) , namely thezn represen-
tation for Si cylinders and the representation for air cylin- T e o oor ooe owos
ders. Substituting the corresponding data from Table | in Eq. UN

(85) we get that =1.000 73 and = 1.000 26. Thus by using
“the best” representations for the effective dielectric con- FIG. 6. The same as in Fig. 5 but for the square lattice. The
stants much higher accuracy is obtained. photonic crystal is uniaxial therefore;=g,. The number ofG
values(plane wavekinvolved in the calculations ranges from 24 to
5648. As in Fig. 5, for materidlair) cylinders Eq.(76) [(77)] leads
to much better convergence for the principal dielectric constant
This, of course, is a particular case of the previous section

for the rectangular lattice, but, since it is one of the mostAir cylinders:
common 2D photonic crystal structures, it deserves special
attention. If the inclusions are circular cylinders of radRis
the photonic crystal is uniaxial, so tha,(k)=e,=¢, in
Eq. (36) with £, given by Eq.(46). We calculated the effec-
tive dielectric constant =¢,= ¢, for the same values of the

s=7.916{

VIII. 2D PHOTONIC CRYSTAL WITH SQUARE LATTICE

2.26 879

e= 7.9596{ 1+ ~N F) e representation, (88)

23.1 7,870

parameters as before. In Fig. 6 we plot the dependence 1— ——+ ),7 representation. (89)

e(1/N) obtained from they and e representations for two

conjugate structures. The two representations demonstrate - :
convergence to roughly the same value. As for the rectang '[%ese fitting formulas are valid fdi>10°. Note that the

lar lattice, then(e) representation converges faster for the inear corrections in EqY86) and (89) have opposite signs
structure with materialair) cylinders in the air(materia) and almost equal absolutg values. The same Is true for Egs.
host. The square lattice possesses additional symmetry, 8?7) and(88). The qgadrahc terms, esse_ntlally, also compen-
course, as compared with the rectangular lattice. In order tgate each other.. This leads .to. cancellations if E&@i—(sﬁ)

see the manifestation of the additional symmetry we repre‘r-jlre substituted into the precision factor E86). That is,r is

sent the data of the fitting to parabolas in the following form.C"“ICUIat(':'d using the best representationefdor each struc-
ture. We get that

N N?2

Si cylinders:

23.3 7,755

39
rEl.OOOOG——2+O(N*3). (90)
e=154738 1+ — — & representation,(86) N

N N2
Since the linear term is absent in this formula, the absolute
numerical error for is much smaller than that for the effec-
2.27 845 ] . : : : .
£=1.53901 1— ——+ — | 5 representation. (87) tive dielectric constant, even if calculated using the fastest
N 2 converging representation. Therefore for a square lattice the
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accuracy of the precision factor is much higher than that ophotonic crystals with magnetic properties, and of phononic
the effective dielectric constant. At the same time, for a rect{or acousti¢ crystals. In the latter case the general theory is
angular lattice the above mentioned cancellation does naxpected to be considerably more complicated on account of
occur, and Eq(85) gives true information about the accuracy the existence of longitudinal, as well as transverse waves,

of numerical calculations. and the coupling of these via the inhomogeneity. We expect
that our results will also have implications for the homogeni-
IX. CONCLUSIONS zation of random composites.
We have developed a comprehensive theory, in the long- ACKNOWLEDGMENTS

wavelength limit, of photonic crystals with 2D periodicity.

The homogenized composite has been characterized in the We wish to thank David Bergman for useful correspon-
language of “crystal optics,” namely, the three principal di- dence related to the second part of Sec. V. We also acknowl-
electric constants, have been expressed in terms of the mgdge the CONACyYT Grant Nos. 32191-E and 33808-E.
crostructure of the unit cell. Unlike most works in homog-

enization theory, our compact analytic formulas for the APPENDIX A: PROOF OF EQ. (13)

principal dielectric constants are very general: no limiting .

assumptions whatsoever have been made about the BravaisWe multiply Eq.(11) by »G?. Now the left-hand side can
lattice, the cross-sectional form of the cylinders, the fillingbe rewritten in the form

fraction of the constituents, the dielectric contrast, or the di-

rection of propagation. A modest numerical eff(involving, 7G2h (G)=— 7(0)GX[GXh,(G)], (A1)
essentially, only a matrix inversipreads to high-precision

results for the aforementioned dielectric constants. For diwhere we took into account the transversality of the mag-
electric cylinders in air the representation of choice shouldhetic field, Eq.(5). It is easy to see that the term which is
be based on the Fourier expansion of the reciprocal dielectriexcluded from the summation ovér' on the right-hand side
constantz(r)=1/(r). On the other hand, for air cylinders of Eq. (11) is just minus the right-hand side of EGAL).

in a dielectric background the Fourier expansion of the di-Including this term in the summation we get

electric constantz(r) itself leads to much better conver-
gence. It is worth noting that the acoustic band is frequently
linear (to a reasonable approximatjonp to frequencies ap-
proaching the lower edge of the photonic band gap. Thus the
utility of our results may go beyond the nominal requirement =0. (A2)

that the Bloch wavelength is much greater than the period. . . .
Our treatment of the optical constants—the principal di-V€Xt we substituté,(0) from Eq.(11) into Eq.(A2). Since

electric constantss; and the effective dielectric constant I" POth equations the Fourier coefficien(G'’) enters in the
K)—has been formulated fully within th ncent IcomblnatlonG’xhk(G’), it is convenient to consider this

eerf(k)—has been formulated fully wi € conceptual 4 ct as a new variable, as defined in B). After this

framework of crystal optics. The same is true for the fields— - - :
i g 4 . substitution Eq(13) is obtained.

electric, magnetic, and displacement—with one notable ex-

ception, namely propagation parallel to the cylinders. Obvi-

ously, this direction stands out in the characterization of a 2D APPENDIX B: PROOF OF EQ. (30)

photonic crystal,_and has no counterpart for natural crystals 114 identity(30) is valid for any matrix with matrix ele-

or for 3D photonic crystals. We found_ that the wavefronts of j,ants represented in the multiplicative form Eg8). For

a wave that propagates along the cylinders are not plane, buf,-1, 5 matrix

periodically rippled, with the periodicity following the pat-

tern of the 2D Bravais lattice. This is true irrespective of

nG)GX[kxh(0)]+ 2 7(G—G)GX[G'Xh(G")]
G'#0

whether the photonic crystal is uniaxial or biaxial. Tr(C") = 2 7(Gy)e(—Gy) n(Gy)
It is important that our formulas for the principal dielec- G1,G2, .- Gn#0
tric constants have direct analogies in other areas of transport Xe(—Gs)- - 9(Gy)e(—Gy)

properties of inhomogeneous media. Thus alldlemay be

replaced by the correspondings, o’s, or K’s, and one gets _

useful formulas for the effective static magnetic permeabil- _G%O ”(Gl)g(_Gl)G;O 7(G2)e(=Gy)- -+

ity, the conductivity, or the thermal conductivity, respec-

tively. This statement rests on the assumption that the con- _ N

stituent materials of the composite are isotropic. The analogy XG%() 7(Gn)e(=Gn)=(TrC)" (B1)
is explained by the fact that, in the quasistatic limit, Max-

well’s equations reduce to the electrostatic formutasD Forn=2 the identity(30) reads TrC?)=(Tr C)2. The latter

=0, VXE=0 along with the constitutive relatioD=¢E; is true by virtue of Eq(B1). Then is clear that the coefficient
the basic equations of magnetostatics, electric transport, ang, in Eq. (29) is zero. Now, assuming that ERO) is true, it
heat transport have the very same structure. is straightforward to demonstrate that it is also satisfiedhfor

A similar approach could lead to the homogenization ofreplaced by K+ 1), namely
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n+1y_ n+1_ n — n —
Tr(C""4)=(TrC) (TrC)"TrC=Tr(C )TrC.(BZ) E 004G,G')[(£or—2)(G—G')
G'#0

+e(G)e(—G")]|B(G’)=0. (CH
This set of equations is analogous to E8g). Therefore the
derivation of Eq.(77) follows the same method as the deri-
vation of Eg.(76), with the obvious replacementg(G)
5°¢(G) and (off—7)—(eerr—¢). This then replaces
D(G,G"), Eq.(70), by F(G,G"), Eq.(78). In the %Jadratic
equation corresponding to E(Z5), now A =g, ,— ¢, while
a; and a, are still given by Eq.(29), however, with
C(G,G’) replaced byF(G,G’). This results in Eq(77).

Due to this property of the matrixXC the coefficients
ag,ay, ... also vanish.

APPENDIX C: PROOF OF EQS. (77) AND (78)

Substituting the first linear relatiof®0) between the Fou-
rier components of the electric and displacement fields in th
left-hand side of Eq(59) we get that

e(G)=GB(G),G#0. (C1)

We substitute this formula into the transversality condition
(62), written in terms of the electric field with the help of Eq.
(60): APPENDIX D: PROOF OF EQ. (80)

Using the definition of matrixD(G,G’), Eg. (70), we

G-d?(G)=2 £(G-G")G-V(G") obtain for its square
GI

2 1y — . ) _

= > &(G=G"G -G +£(G)G-€?(0) DA(G,G') 61’622’63#0 (G-G1)(G2-G3) n(G) n(—Gy)
G'#0

=o.¢ 2 X 7(G2) n(—G3)[G1-G,7(G1—Gy)] ™t

X[Gs G’ 9(G3—G")] L,G,G'#0. (D1

Then, with the help of Eq(C1) we obtain that
The trace of the matri®? is given by

G-d(G)= > £(G—G')G-G'B(G")+5(G)G-&(0)

G'#0 T(D?)= D)

=0. (C3

To get a closed set of linear equations B(G) we need to

eliminate & (0) from Eq. (C3). First we expres={”(0)

through allel”(G) (G+#0), using the second of Eq60)
taken atG=0 and Eq.(65),

o (G1xG2xG3xGux+ G1yGpy Gy Gay

+ G1xGoxG3yGay+ G1yG2yG3,Gay)

X 1(G1) n(—G2) 7(G3) n(—Gy)

X[Gy-G37(Gp—G3)] G4 G17(Gs—Gy)]™*
(D2)

e(0)=(seri—e) 1 D e(—G)ENG’). (C4  The first two terms in Eq(D2) contain products of either

G'#0
Now, using Eq.(C1) and substituting Eq.C4) into Eq.(C3)

only x or only y components of the reciprocal vectors. These
two terms, respectively, are equal &, and AZ, [see Eq.

we get a set of linear homogeneous equations for the new9)]. The remaining two terms contain productsxoandy

scalar variable8(G)=Gg(G),

Tr(D?) =A%+ A7+

components and they can be presented in the following form:

2 OGle4y77(Gl)77(_G4)[G4'Gl77(64_61)]1” 2 OszGByﬂ(_Gz)ﬁ(Ga)

G,,Gy# G,,G3#
X[Gy-Gan(Gy,—Gg)] L+ . ;qﬁo GlyG4x77(G1)7](_G4)[G4'G177(G4_G1)]_1]
1.G4
x{ X GzyG3x7l(_Gz)7](63)[@2‘6377(62_63)]_1}- (D3)
G,.G3#0

Each term in curly brackets is identically zero. To see this one needs to change the indices of summation. For example, upon
changingG,— — G14,Gax— — G4y the Fourier coefficientsy(G,—G;), 7(G4), and »(—G,) in the first curly brackets

remain unchanged due to the central symmetry of the unit cell. It is clear that the scalar @3gd@¢tis unchanged as well.

At the same time the factd®,, changes its sign, thus leading to the change of the sign of the whole expression in brackets.
But since the change of dummy indices cannot change the value of the expression, it must be identically zero. This completes
the proof of the identity Eq(81) for a rectangular lattice.

115208-16



LONG-WAVELENGTH LIMIT (HOMOGENIZATION) FOR . ..

1S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lét,
1771(1996.

2H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura,
T. Sato, and S. Kawakami, Phys. Rev5B, R10 096(1998.

3M. Born and E. Wolf,Principles of OpticgPergamon Press, Ox-
ford, 1975.

4J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London, S&03,
385 (1904).

SW. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. A,
2248(1980.

6K. Busch and C. M. Soukoulis, Phys. Rev. Léth, 3442(1995.

K. Busch and C. M. Soukoulis, Phys. Rev.58, 893(1996.

8D. Felbacq and G. BouchitteWaves Random Medid, 245
(1997.

9F. J. Garciavidal, J. M. Pitarke, and J. B. Pendry,
78, 4289(1997).

10A. Kirchner, K. Busch, and C. M. Soukoulis, Phys. Rev5R
277 (1998.

11G. Guida, D. Maystre, G. Tayeb, and P. Vincent, J. Opt. Soc. Am
B 15, 2308(1998.

12\w. 1. Perrins, D. R. McKenzie, and R. C. McPhedran, Proc. R.
Soc. London, Ser. 869, 207 (1979.

8G. W. Milton, R. C. McPhedran, and D. R. McKenzie, Appl.
Phys.25, 23 (1981).

L. C. Shen, C. Lui, J. Korringa, and K. J. Dunn, J. Appl. Pt&/&.
7071(1990.

15p. J. Bergman and K. J. Dunn, Phys. Rev4g 13 262(1992.

8N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, Phys. Rev.
Lett. 75, 1507 (1995.

YN. A. Nicorovici and R. C. McPhedran, Phys. Rev5E, 1945
(1996.

18R, C. McPhedran, N. A. Nicorovici, and L. C. Botten, J. Electro-
magn. Waves Applll, 981(1997).

9p, Lalanne, Appl. Opt35, 5369 (1996; Phys. Rev. B58, 9801
(1998.

207 Hashin and S. Shtrickman, J. Appl. Phg8, 3125(1962.

21s. R. Coriell and J. L. Jackson, J. Appl. Phgs, 4733(1968.

223, B. Keller, J. Math. Phys5, 548(1964.

233. Nevard and J. B. Keller, J. Math. Phys.2761(1985.

24R. Fuchs, Phys. Rev. B1, 1732(1975; D. J. Bergmanibid. 14,
4304(1976; R. Fuchs and F. Clarabid. 39, 3875(1989.

2535 M. Rytov, Zh. Eksp. Teor. Fi29, 605 (1995 [JETP2, 466
(1956 ]; P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. A7,
423 (1977; R. C. McPhedran, L. C. Botten, M. S. Craig, M.
Neviere, and D. Maystre, Opt. Acig, 289 (1982.

26p. Yeh, Optical Waves in Layered MediéWiley, New York,
1988.

Phys. Rev. Lett.

PHYSICAL REVIEW B 65 115208

2’R. de Kronig and W. G. Penney, Proc. R. Soc. London, Ser. A
130 499 (193).

28R. Tao, Z. Chen, and P. Sheng, Phys. Re¥i1B2417(1990.

293, Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev.
B 48, 14 936(1993.

30K. Ohtaka, T. Ueta, and Y. Tanabe, J. Phys. Soc. 86n3068
(1996.

SIA. A. Krokhin, J. Arriaga, and P. Halevi, Physica 241, 52
(1997).

32p_Halevi, A. A. Krokhin, and J. Arriaga, Phys. Rev. Lé&®, 719
(1999.

33p, Halevi, A. A. Krokhin, and J. Arriaga, Appl. Phys. Lef5,
2725(1999.

34G. W. Milton, R. C. McPhedran, and D. R. McKenzie, Appl.
Phys.25, 23 (1981.

35Equation(9) fails for propagation parallel to the cylinders . In this

case the double cross product in E8) is reduced toG'k

-h(G"). This vector lies in the plane of periodicity and depends

only on the field component parallel to the cylinders. Thus Eqg.

(8) is a relation between the in-plane componenhgfG=0)

and the paralle(z) components with alG’s. Then we can only

conclude that the parallel components approach zero at higher
rates than the in-plane componemi(G=0). This, however,
does not mean that the in-plane componentgfG+0) are
much smaller than the in-plane componenhgfG=0). There-
fore, fork|/z, Eq. (4) does not reduce to E¢9). In Sec. VI we
consider the case of propagation parallel to the cylinders and
show that all in-plane components @f(G) approach zero with

the same rate. This conclusion is also true for the in-plane com-

ponents ofh, (G).

36M. Plihal and A. A. Maradudin, Phys. Rev. 84, 8565(1991).

3’D. V. Beklemishev, Dopolnitelnye Glavy Lineinoii Algebry
(Nauka, Moscow, 1983 p. 328(in Russian.

38, D. Landau, E. M. Lifshitz, and L. P. Pitaevskilectrodynam-
ics of Continuous Media2nd ed.(Pergamon, Oxford, 1984

390. Wiener, Abh. Sachs. Akad. Wiss. Leipzig Math.-Naturwiss. KI.
32, 509(1912.

401, H. H. Zabel and D. Stroud, Phys. Rev.4B, 5004 (1993.

“IWe are thankful to D. Bergman who called our attention to this
fact.

423. D. Joannopoulos, R. D. Meade, and J. N. WRotonic Crys-
tals: Molding the Flow of Light(Princeton University Press,
New Jersey, 1995

43H.-S. Saler and J. Haus, J. Opt. Soc. Am.1B, 296 (1993.

447.Yuan and J. Haus, Opt. Expre3s19 (1998.

45p. Halevi, A. A. Krokhin, and J. Arriaga, Phys. Rev. L&, 3211
(2002).

46A. A. Krokhin, P. Halevi, and J. Arriagéunpublishedl

115208-17



