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We consider a model of one-dimensional Mott insulators coupled by a weak interchain turtneliiée
first determine the single-particle Green’s function of a single chain by exact field-theoretical methods and then
take the tunneling into account by means of a random-phase approximation. In order to embed this approxi-
mation into a well-defined expansion with a small parameter, the Fourier tran3fofk) of the interchain
coupling is assumed to have a small support in momentum space such that every integration over transverse
wave vector yields a small factm§< 1. WhenT, (0) exceeds a critical value, a small Fermi surface develops
in the form of electron and hole pockets. We demonstrate that Luttinger’s theorem holds both in the insulating
and in the metallic phases. We find that the quasiparticle re&diuereases very fast through the transition and
quickly reaches a value of about 0.4—0.6. The metallic state close to the transition retains many features of the
one-dimensional system in the form of strong incoherent continua.
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I. INTRODUCTION Due to the long-range character of the tunneling, the width of
these peaks, denoted Iy, is small (xo<1). Hence, every
The problem of the Mott metal-insulator transition, which integration over the transverse momentum yields a small pa-
is a consequence of electron interactions and not due to themeterx3. The main idea of our approach is to treat the
band structure, has been the subject of great infesiste  individual chains nonperturbatively and then to employ the
the pioneering works by Moftln 1964, Hubbard suggested random-phase approximatidRPA) to take into account the
a solution of this problem for a particular modeThe key interchain tunneling. Since the Mott metal-insulator transi-
point of Hubbard’s approach was to take into account theion is associated with development of a coherent single-
on-site Coulomb interactiot in perturbation theory in/U.  particle excitation branch, the correlation function we are
Unfortunately, the transition from the metallic to the insulat-interested in is the single-electron Green'’s funct®nThe
ing phase is expected to occur when the tunneling matriRPA expression fo6 is
elementt is comparable to the on-site repulsidh In this
regime expansions in eithetU or U/t are not applicable. To
overcome this difficulty, various approaches have been sug- G(w,q,k)=[Ggl(w,q)—Tl(k)]*1, 2
gested. One of them considers a S){symmetric generali-
zation of the electronic model and carries out &\ 1/
expansiorf:® Another approach is based on the so-called dyWhereq is the momentum along the chain direction &gl
namical mean-field theory, which considers a lattice in infi-is the single-particle Green's function for an individual
nitely many dimension® —» (see Ref. 6 and references chain. The corrections to RPA are of higher orderkiﬁl
therein and also Refs. 7,8 which is the small parameter in our expansion. The smallness
In this paper we follow a different route. We consider aof K(Z) suppresses multiparticle tunneling processes, which
guasi-one-dimensional model of interacting electrons, whergenerate exchange interactions between the chains and even-
the tunneling along one direction is much larger than alongually lead to a three-dimensional phase transition. However,
all others. This model can be described in terms of weaklyor small x3 the temperature at which this transition occurs is
coupled chains. When the band is half-filled and the intermuch smaller than the characteristic energy séélef the
chain tunneling is switched off, Umklapp processes dynamiproblem. Therefore, throughout the paper we shall assume
cally generate a spectral gayh. The same mechanism can that we work at temperatures much smaller tvafsuch that
generate gaps ainy commensurate filling, e.g., quarter- the thermal effects on the single-particle Green’s function
filling, but only if the interactions are sufficiently strong. In can be neglectedout much larger than the transition tem-
the half-filled case the decoupled chains develop a MottperatureT,, i.e., T.<T<M. We note that an analogous RPA
Hubbard gap for any positive value bf>0. In what follows  has been used by Wemo study weakly coupled Luttinger
we shall assume that the interchain tunneling is weak buliquids (LL), see also Ref. 10 for a derivation based on func-
long ranged such that the Fourier transform of the interchaintional integrals. An improved calculation for the case of
tunneling matrix element has two strong peaks in the Bril-coupled LLs has recently been carried out by Arrig&hit is
louin zone, one around zero wave vector and the other onased on taking into account multipoint correlation functions
aroundQ= (0,7, 7) such that of uncoupled chains in a controlled way. In a Mott insulator
multipoint correlation functions are much more difficult to
determine than in a LL. We, therefore, postpone the discus-
T,(k)=-T,(k+Q). (1) sion of corrections to RPA until future publications.

0163-1829/2002/68.1)/11511713)/$20.00 65115117-1 ©2002 The American Physical Society



FABIAN H. L. ESSLER AND ALEXEI M. TSVELIK PHYSICAL REVIEW B 65 115117

We also neglect the long-distance tails of the Coulomb Let us first consider the case of uncoupled chainsO.
interaction. This can be justified at finite temperatures if theFor weak repulsionJ <t and low energies, a field-theory
dielectric constant at small frequencies is large. description is appropriate. Keeping only modes in the vicin-

The basic input of our approach @&,. To calculate this ity of the Fermi momentatr kg= * 7/2a,, we may decom-
function we assume that for an isolated chain the Mott-pose the lattice Fermi operators as
Hubbard gapM is much smaller than the bandwidBy . In
this case one can use the continuous field-theoretical descrip- ¢4, = vao[exp(ikex) R (x) +exp —ikex)LP(x)], (5)
tion in the low-energy limit. The corresponding field theory where a; is the lattice spacing. Inserting this prescription

will be described in detail in the following section and is . o . .
highly universal; all information about the underlying lattice into the Hamiltoniar(4) and dropping the chain inde) for

model is incorporated in just three dimensionless constant.y.qe time being, one obtains

Thus, our assumptions can be summarized by the inequalities

H=>, U,:J dx[LZiaXLU—R;i&XRU]+gJ dx(:l-1:
D>M=~t, (0)>t, (|k|>xq), v

T.<T<M, 3 +:TF—:J.J:—:II]+2gf dx(1-1-3-3], (6)

where the Mott-Hubbard gald is a function of the interac-
tions. The smallness d¥l does not imply that the interac-
tions are weak. For example, in the one-dimensiqi#l)
Hubbard model the field-theoretical description works well
even forU/t as large as 2—8see, for example, Ref. 12At 1
such interaction strength one should expect the spin and |3=§E LIl 17=LILT,
charge velocities to be considerably different. This is a con- 7
sequence of spin-charge separation, which is one of the most 1
interesting features of one-dimensional strongly correlated B==> :RIR :, 1*=RIR!
systems. The effects of spin-charge separation in the insulat- 25 e
ing regime deserve a special discussion, which will be given
later in the paper. s 1 T it

The outline of this paper is as follows. In Sec. Il we J :E(LTLT_HLL)' =Lk,
introduce the model and in Sec. Ill we discuss the limit of
decoupled chains. In Sec. IV we take the interchain coupling 1 _
into account within RPA. In Sec. V we discuss the formation J3=§(R$RT— RIRl), Jr= R}rRL : (7)
of a Fermi surface. In Sec. VI we determine various physics
properties and in Sec. VIl we discuss possible applications tBy employing the Sugawara construction, the Hamiltonian
quasi-1D organic conductors. (6) can now be split into two parts, corresponding to the spin

and charge sectors, respectivély

wherev = 2ta, is the Fermi velocity andy=Ua,. HereJ
and | are the chiral components of ) spin and pseu-
dospin currents

Il. THE MODEL
H=H.+Hs,
We take as a starting point the following lattice model of
correlated electrons 27, — —
Hs= 3 fdx[:J~.J:+:J-J:]—Zgjde~J,
H=> HO+ > tcOfcMtHe,

| I,m,n,o ' ' 27v, - _

H.= 3 de[:l-l:+:|-|:]+29Jde~I. (8)

HO=—t> ¢, +He+UX nInl. @) Hereve=vr—Uag/2m and v.=vg+Uay/2m. Apart from
ne " the (marginally irrelevant current-current interaction in the

Herel,m label Hubbard chains anlabels the sites along a spin sector and the difference in spin and charge velocities,
the Hamiltonian(8) is identical to the one of the SB)

given chain. In the physically most interesting situation the: '~ " i )
interchain hopping matrix elemertts, are taken to be equal Th|rr|ng model. The latter can be bosonized in terms of a
tot, if  andmare nearest neighbors and zero otherwise. Foﬁme-Gorldon model and a free boson; the resulting Lagrang-
this choice of interchain hopping our calculational scheme id2n density is

uncontrolled: there is no small expansion parameter. One 1

may nevertheless, apply our scheme and hope that the cor- ﬁs:—[0§1(57¢s)2+Us(ax‘bs)z],

rections are small in some regime of temperatures. On the 16

other hand, one may choose thg,'s in such a way that a 1

i oo 5% 8 SN RO Lo 097 o 80, O
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whereB=1. If we consider additional small density-density prefactorf). The reason for this is that all information about

interactions between nearest-neighbor sites in @§.the the anisotropy of the coupling constants is contained in the
field-theory limit is again of the form{9), but now 8<1.  two-particleS matrices of holons and spinons and does not
Using the integrability of the mod€D) it is possible to de- influence the single-particle emission. The matrix element
termine dynamical correlation functions. This is the subject(12) describes the emission of one kink in the charge and one

of the following section. kink in the spin sector. The charge part of this first term
in the expansion is thus, equalp to an overall numerical
lll. UNCOUPLED CHAINS facton to
The calculation of the spectral function for half-filled o oo X
Mott insulators is based on the following principles. f doe”“exg —mr cosh0—|mv—smh0
e c

a. Locality R, andL, are local fields. This allows us to
employ the standard form-factor approdéisome important TV —iX
elements of this approach are summarized in Appendix B. =(

b. Spin-charge separatioihe Hamiltonian8) is the sum

1/4

Kia(my 2+ X% ?)

TV HiX

of two parts representing the spin and charge degrees of free- exd—m [2+x2p -2 2]
dom, respectively. By means of bosonization one can repre- o - S (14)
sentR, andL , as products of operators belonging to the two VueTtHIX

different sectors. For example, In the next step we use the fact that the single-electron

7 i i Green’s function factorizes into a charge and a spin piece.
R(ﬁ:—aexp(—dbC) ex;{ i_¢s)a (10) Let us consider intermediate states containing a single anti-
\/; 2 2 holon and any number of spinons. Factorization implies that
. . if we carry out the sum over all multispinon contributions,
whered. and s are chiral components of the bosonic fields, e st obtain the conformal resuiitl) for the spin sector.

7, are Klein factors and the plusinus sign corresponds 10 tperefore, we arrive at the following result for the two-point
o=1 (o=]). The operators on the right-hand side of Eq.,nction

(10) are nonlocal with respect to the canonical Bose fields

®. 5. Nevertheless, Eq10) implies that form factors oR,, exd — my/72+ x20 -2
also factorize into charge and spin parts, at least in the limit <LU(X,T)LZ(0,O)>2 ﬁ xd T X ., (15
when one of the sectors becomes massless. 27 \[(vsm+iX)(vT+iX)

c. “Triviality” of the spin sector In the limit gs—0 the
field theory for the spin sector becomes massless and t
correlation function of the spin exponent in E40) is sim-

ply given by

h\ghere1L5

Z,~0.9218. (16)

The leading corrections to Ed16) involve intermediate

i i 1 states containing two antiholons and one holon and are thus
ex §¢S(X'T) ex _5‘755(0) T Joer—ix 1D of order O[ exp(—3mr)]. Similarly we have
S
d. Lorentz invariance and Watson's theorelret us consider Z, exfd —my72+x% 7]
form factors of the left moving Fermi operatbr,(x). The (R,(x,7)R(0,0))= 2—0 - ‘. 17
first nonvanishing form factor is between the vacuum and a T (vst= i) (07— iX)

scattering state of one spindwith spin o) and one antiho- Equations(16) and (17) were first written down by Wieg-

lon. We denote the rapidity of the spingantiholon by 65 annfor v =0.).1” This remarkable result appears to have

(6c) (our notations are summarized in Appendix Borentz  poen subsequently forgotten and rediscovered only much
invariance and Watson’s theorem impose the following formg;q, by Voit, who conjectured the same form the Green’s
for the first nonvanishing form factor for the fermion ¢ nction!® The correct form was again reproduced by
operator Starykh et al,*® although on the basis of arguments that
_ _ cannot be accepted as rigorous. An earlier attempt to calcu-
(OILo(0)] Oc . Os)hs=exXiL (O + O5) /4] (0= bs). (12) late the single-particle Green’s function using the form-factor
The functionf(#6) is periodic with period 27 and does not approach’ led to an incorrect result yielding i, modified
contain poles. Furthermore, the usual asymptotic bfund Bessel function instead d€,,, in Eq. (15). Finally, Parola
yields and Sorelld determined the spectral function by mapping
the problem of a single hole in a Mott insulator onto an
effective spin chain with skew boundary conditions. Their
results are somewhat implicit so that it is difficult to compare
them to Eq.(17).
wherea=c,s. This leaves us with the only possibilify 6) To conclude this section we would like to remark that the
=const. As we see, this matrix element does not depend oabove results can be generalized to the case of theNpU(
the anisotropy of the interactiofapart from the constant Thirring model

0,
lim (O|L|#6, Hs>ex;{ — Z) <const, (13

0,
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Zo(N) 1 B. Retarded dynamical Green’s function
(Lo(x,7)L3(0,0))=

Given the expressiofiL7) for the Green'’s function in po-

27 (pgr+ix)™ o . : .
sition space we can calculate the dynamical Green'’s function

vor—ix| (A=W by Fourier transformation and subsequent analytic continua-
: tion to real frequencies. A straightforward calculation gives
UcTHIX - , :
the following result for the retarded Green’s function
XKy amy(My 72+ Xx%0 %), (18)
2 wtv
Here we have used that the kinks in the SW(Thirring GR(w,ke+q)=—2Z5\/ a

model have sping(1—[1/N]).?2 A similar formula with x 1+a m?+vi0? - w?

— —Xx holds for the right-moving fermions.

X| (m+m?+ vng— w?)?
A. Short-distance behavior:
Renormalization-group calculations 1—a -1z
. . . . - . ——(w+ch)z} , (23
Strictly speaking, single-kink emissions in the charge sec- 1+«

tor allows one to consider only frequencies less tham 3
which is the threshold for the emission of two antiholons an
one holon. However, since the numerical valu&gfis quite

dvherea=vs/v.. At @=1 this simplifies to

close to 1 Eqgs(16) and (17) are likely to provide a very G (ke +q)=— Zo m 1
good description of the Green’s function in the entire fre- RRLED TR 0—vq| m?+0v%0%— w? '
guency interval. Indeed, considering the short-distance (24)
(high-energy behavior (/7% + xzvgz< 1) in Egs.(17) and

(16) we recover thel stand_arq expressions for the Green's C. Spectral function

functions of the Luttinger liquidmodulo the prefactoZ,, o )

which, as we have said, is almost A better description of The spectral function is defined as

the short-distance behavior is obtained by carrying out a 1

renormalization-grougRG) analysis. The RG equations for Are(@,ke+Qq)=— ;ImG%RF);(w,kFﬂLq). (25)

the coupling constarg and wave-function renormalizatiéh

in the casa,=vs=v are In the limitv . =v,=v we obtain from Eq(24) the following

g A2 simple result
go=9+ —In—+0(g?), (19
2m y? Zom  O(|o|—Vm?+0v2q?)
Arr(o kgt Q)= | _ | > > > -
A2 Tlo—vd]l o —m—vq
Z=1- . 59°In— +0(g%), (20) (26)

4 H An explicit expression for the general casgt v is easily
whereA is a UV cutoff andu a subtraction point. The RG obtained from Eq(23). We note that the result isxactfor
improved result for the two-point function is thus energiesw<3m as the intermediate states involving more

" than one antiholon will start contributing only at this energy.
Z(r However, from previous experierfceas well as on the basi
+ _ , previous experi s well as on asis
<R”(X’T)R‘T(O'O)>_27r(v T—iXx)’ @D of the arguments given above, we expect E2B) to be an
excellent approximation up to very high energies.
where For generab ., v the spectral function is nonvanishing in
3 a region with boundaryn= e(p) defined by the equation
Z(r)=1-15-9(r),
16m e(p)=minfvg|p—a|+vig®+m?]. (27)
q
77 2.2, 22 _ 2 . : I
g(r)=- In(rm)’ re=x+ov°r"<m - (22)  The solution of this equation is
Comparing this to Eq(17) for short distances, we find very ) Jm?+ uczpZE €o(p) if p<Q 9
. . : e(p)=
good agreement. In the anisotropic case, where the short p vsp+m\/mzel(p) if p=Q,

distance behavior of the Green'’s function is controlled by the
Luttinger liquid exponent, the agreement becomes worsyhere
For “large” anisotropy it may become necessary to take in-
termediate states with, e.g., two solitons and one antisoliton

Ma
into account in order to get a good description of the Green'’s Q== (29
function over a large range of energies. VU™ Us
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The spectral function generally has several kinds of singu- af
larities. First, there are singularities just above the threshold
For small momentag|<Q there is a square-root singularity
above the thresholéh= €(q)

Zy €0(q)tvcq

A(w,kF+Q)2;W[%Q‘FGO(Q)]_”Z
0
12 1 2 A
o] M= 30 @ 2
X[afo(Q) Uq] m ( ) m

There is also a square-root singularity above the thresholc
for “large” momenta|q|>Q, where

Zo 1 1
mve—vs Va]—Q Vo—ey(a)

This square-root singularity is a general feature of the half- ol
filled Mott insulator and apparently holds for any ratio of the -4 -2
gap to the bandwidth. Calculations done for a model where
this ratio is infinité* give the same singularity.

For |g|>Q there is a second square-root singularity for
w— €o(q) from below

(31)

Alw,ke+q)=

35 o

FIG. 1. Density plot of the spectral functigkyg(w,ke+q) as a
function of w/m andvg/m for vg=v.=v.

Zo €o(0) v _
A(w,kFJFQ)Z;OOZE—(q)C[UCQﬂL eo(q)] 12 cent of Cherenkov radiation produced by a heavy particle
0

moving through a medium with a speed greater than the

speed of light in this medium. We note that this effect, as
X[veq—aey(q)] M2 . (320  Wwell as the smallness of the spectral weight in the regjon
Veo(d) —w <0, is consistent with numerical studies of the Hubbard

. g 26
For g=Q these two singularities collapse onto a single onemOdeI at half-filling.

and we have

Zo[1+a 1/4 D. Tunneling density of states
_ - —5/4 -1/ _ —3/4 . -
Alw ke +Q)= T (1_a) 27e(Q) Mw—e(Q)] From the Matsubara Green'’s function at coinciding space
(33)  points in model(8) we extract the single-particle density of
states

In Fig. 1 we show the spectral function for=vs=v as a
function of w andqg. As Q=< in this case the threshold is

simply given byw=Jm?+v2g?. The square-root singulari- 27
ties above the threshold are visible as regions of high spec- (@)= —-2ImG® (w,x=0)= 0 6(|w|—m). (34
tral weight. Figure 2 shows a constant energy scarm at VogUe
=3m.
When we allow the spin and charge velocities to be dif- 1

ferent an interesting effect occurs as can be seen from the
density plot ofAgg(w,q) in Fig. 3. For momenta<Q the
threshold occurs at the gap for a single soliton moving with

momentumq and the spectral function looks very much =
similar to it as it did in the case=1. However, at momenta }
q>Q the threshold gets shifted to=vq+my1—a? and a E05¢
lot of spectral weight is concentrated between this threshold 2'3'/

and the linew=\/m?+ vczqz, where a second singularity oc-

curs(see above This is shown in the constant energy scan

Fig. 4. For large momentas .q>m the double singularity at

w=v. 40 is similar to what occurs in a Luttinger liquid. 0
The states located in the “wedge’;(q) <w<ey(q) cor-

respond to a situation where the single antiholon carries only

a small part of the total momentum and the remainder is FIG. 2. Constant energys(=3m) scan of the spectral function

made up by excitingmany) spinons. This effect is reminis- for a=1.

-4 -2 0 2 4
vg/m
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gf i " i i IV. COHERENT SINGLE-PARTICLE MODE GENERATED
BY THE INTERCHAIN TUNNELING

Taking the interchain tunneling into account in the RPA
leads to an expression for the single-electron function of the
form (2). The interchain tunneling gives rise to a branch of
coherent excitations below the threshold of the 1D spectral

function A(w,q) in the region Wherél'i(lZ)<0. Therefore,
even aninfinitesimalinterchain coupling leads to the coher-
ent particle motion in the transverse direction and there is no
confinement in the sense of Andersdn.

sle

A vs=v,
Let us first discuss the casg=v.=v. For very small

interchain tunnelingT, (k)|<m the pole of Eq(2) appears

at a finite frequency very close tg,(p)=\p?+m?. In the
vicinity of the pole we have

-7.5 -5  -2.5 0 2.5 5 7.5 >
(9.k)

g Glaa k)~ 22K (36)
ye4q w,q, ~ S
m a w—¢€(q,k)

FIG. 3. Density plot of the spectral functidkyg(w,ke+q) as a R )
function of w/m andv.q/m for a=0.4. whereZ(q,k) varies strongly at smatj and where folvq|

<|m?1Z,T, (K|,
The density of stateB4) is constantfor energies higher than

the single-particle gapn. Formula (34) is exact for|w| > 2

; . R ZoT, (Khm
<3m and expected to be an excellent approximation up to €(q,K) = €o(q) — ) (37)
very high(compared to the gam) energies. V2¢€o(q)[€0(d) —vq]

Along the chain direction, the dispersion of the coherent
o . mode is asymmetric aroung=0 and has a minimum at
IFromh'[he t|me-|ndepde_nd%nt _Grefens _functlon we can cal—qu[zon(g)]z/m_ For larger values of, (K) this picture
culate the momentum distribution function remains qualitatively unchanged although the dispersion law
) becomes more complicated. In the vicinity of the minimum

E. Momentum distribution function

vcq

1 z
n,(ke+q)= 57 ?Oarctaréﬁ . (35 the dispersion is approximately given by

The momentum distribution function in the half-filled Hub- €(q,k)~Jws+v2(q—0qo)?, (39)
bard model has recently been studied numerically using Den-

sity Matrix Renormalizatior) GrouOMRG) 'in Ref. 27. For where wo, g depend only orT, (K). At large positiverq
small values otJ the numerical results are in agreement with s, . \ve have

Eq. (35).
5 , , , e(q,K)~vq+ZoT, (K), (39
Al and at large negativeq< —maxm,Z,T, (K)|),
_ - 12
T .l | - ZoT, (k)
+ 3 ~ 2 2 |=0'L
5 €(q,k) \/m +(vq) “2uq (40
ﬂsT ol ] The dispersion of the coherent mode depends on the
< transverse momentum only throu@h(l?). In Fig. 5 we plot
1l ]
_ E(0)= (AR z,7, (= (@1

-4 -2 2 4 as a function of for several values o%. In Fig. 6 we plot

the residue of the coherent mode for variougersusguv/m.

FIG. 4. Constant energyw(=2m) scan of the spectral function We see thaZ(q,lZ) is very small within the noninteracting
for «=0.4. Fermi surface.

0
v.g/m
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10 T T T 5
/
/
/
/
——— x=02 /
x=1.0 // ; 4
e x=2.0 / /
e |\ x=3.2 y /
T 9 i
~% Yy 3
LIJ / / II
/ ’
/ /I w
/ // m
// /,’/
VA 2
..—/ Il
Sy
0 | M
-10 -5 0 5 10
vag/m 1
FIG. 5. Dispersion of the coherent mode along the chain direc-
tion for several values ahx=—Z,T, (k) anda=1.
(U

B.v#Fv,

The case of different velocities can be dealt with in a
completely analogous way. In Fig. 7 we show the spectral ) . .
function as a function of energy and momentum transfer F'CG- 7. Density plot of the spectral functioker(w,q.k) as a

. . . . . function of w and momentum transfer along the chain directipn
along the chain direction for weak tunnelingZyT, (k) for a=0.4 and—Z,T, (K)=m
=m. The coherent mode is clearly visible below the thresh- ' 0L '
old of the one-dimensional spectral function.

In Fig. 8 we show a constant energy scan of the spectral Ast, increases more and more of the spectral weight gets
function. If we compare Fig. 8 to the corresponding plot oftransferred to the coherent mode. For example, for
the spectral function of uncoupled chains in Fig. 4, we notice— 7 T (k)= 3.2m approximately 95% of the spectral weight
that now there are twé-function peaks corresponding to the ¢ energyw=2m is located in the coherent mode @s.
coherent mode, and that the singularities of the incohereqqowever' it is important to note that the coherent modes
scattering continuum have been smopthed (_)ut. It turns oW§ominate only a small portion of the Brillouin zofiae part
tI_1at most_ (=75%) of the spec_tral welgh‘pr fixed T, (k) where T, (k) is largd. If we consider the total spectral
(ie., we integrate only oveq) is located in the coherent weight, i.e., integrate over the transverse momentums

0, I I I i -
mode at gz, "’?bom 23% sits In th_e Incoherent spinon well, we find that the contribution of the coherent mode is
antiholon continuum and only 2% is due to the coherent

branch aty;. The sharp difference between the weights in thegenerally small.
coherent modes is consistent with the picture presented in

Fig. 6. 0.5 . .
1.0 : . . : . Z(q,,x) Z(q,,X)
04 r .
0.8 x=0.2 =
e X=1.0 S
_____ %220 i; 0.3 | .
N 06 ——— x=32 é
<
LS (o}
(=3 L 4
N 0.4 % 0.2
<C
0.2 01 r R
%0 o s 0 : T
vg/m -2 0 2 4
vg/m
FIG. 6. Residue of the coherent mode as a function of the mo- R
mentum along the chain direction for several valuesnof= FIG. 8. Agrr(w,q,k) as a function of the momentum along the
~Z,T,(K) anda=1. chain direction foro=2m, a=0.4, and—Z,T, (K)=m.
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V. FERMI SURFACE AND LUTTINGER'S THEOREM —K2=0 andhole pocketsaroundq=—qo andk’= =, K2

According to Luttinger’s theorem the total number of par- = = 7. The volume of the electron pocket is the same as the
ticles in the system is proportional to the volume of momen-sum of the volumes of the hole pockets. When the pockets
tum space included in the surface defined by the singularitiegre very small their shape can be determined by expanding
of InG(w=0p). These singularities may be due to either EQ. (43) around the point@,qg), using that
poles orzerosof the single-particle Green'’s function. As was 2 5
recently emphasized by DzyaloshinsKiithe latter possibil- T (K)=T, (O[1—kTy7].
ity must occur in Moft insulators thus remov,ing an apparéniyere k, denotes the deviation in the transverse direction
violation of Luttinger’s theorem. The Green’s functi¢23) from 0 and vy is proportional to the lattice spacing in the

exhibits precisely this property: fab=0 it vanishes afg transverse directions, . We obtain
=0, which corresponds to the Fermi surface of the noninter-

acting system. Since the position of the zeros is unchanged in b )

RPA, our results are in agreement with Luttinger’s theorem. 2T2(0) yzkf+§(q—q0)2=TL(O)2—(tT'”)2, (47)
Whent, exceeds a critical value, electronlike and hole-

like pockets of Fermi surface appear. The Fermi surface isvhere

determined by the equation
vZ (Xo+1)(daxg—3a+1)

-1 _ —
Go (0,a)=TL(Kk). (42) 22 Xo(Xo—1)
The volumes of electron and hole pockets are equal since
T,(K)=—T,(Q+k) where Q=(m,7,0). So Luttinger's We also can estimate the anisotropy of the Fermi surface
theorem continues to hold. from Eq. (47). The anisotropy of the masses is given by
Using the fact that ab =0 the Green’s function is always )
real, we get from Eq(23) m._ ve (Xt1)(4axo—3a+l) 48)
m  4y°m? x3(1+ ax '
, (WEg?+m?)(m+avig®+m?) L ol 1+ axo) _
[ZoT . (K)]"= Jo2q2+ mi—m ’ where we have further approximatéd (0)~t™". Using
¢ that v.=2ta;, where a; is the lattice spacing along the
sgr(T, (K))=—sgn(q). (43) chains, we find that
The critical value ofT | (k) necessary to produce the solution m, af t2
I y-m
in12
Zot™ _ 9a+1x (449) Where A varies between 1.06 fars—uv. and 0.38 forvs
m 2 v —0. Thus the magnitude of the mass ratio is determined by

the competition of two factors one of which is larggng)
and the other is smallg/y). As a result, the Fermi surface
may not be very anisotropic.

where X, is determined by the momentuiy, where the
Fermi surface first appears

— 3a—1+V1+ 10a+9a2 An obvious question is whether or not the RPA can be
Xo=V1+viqg/m = v . (45  trusted to describe correctly the formation of a Fermi surface.

One problem of the RPA is that it automatically reproduces a
The critical value ofZot™™ varies from 2n at smallvg to purely one-dimensional result at the particular wave numbers

~3.3m for ve=v,. p where the transverse hopping vanisfiggp)=0. On a 2D
The residue at the Fermi surface is given by square lattice with nearest-neighbor hopping this would be at
the pointsp,= =+ /2. In the case of coupled Luttinger lig-
2Zy (x—1)[(xa+1)]*2 uids the improved treatment of Ref. 11 indicates that in the
Z= +a) x| x+D) | (46)  vicinity of these points RPA is unreliable. In the case of

coupled Mott insulators, the electron and hole pockets we
wherex= \/1+vczq2/m2. Near the critical value of | (k) the  find for sufficiently larget, are located at positions far away
residue is numerically small but never goes to zero. For exfrom the points wherd , (k) vanishes.

ample, in the limitvc—0 whenx=2 we get Recently a dynamical mean-field theory approach has
been developed, which replaces the quasi-1D system by a
Z(vs—0)~0.5&,, single effective chain, from which electrons can hop to a

self-consistent batff**! The resulting model has to be ana-
lyzed by numerical methods and for coupled Hubbard chains
Z(vs=v,)~0.3%,. it is found that for sufficiently large transverse hopping am-
) ) ) ) ) plitudes an open Fermi surfa¢elose to the one of the non-
For a cubic lattice with nearest-neighbor hopping the Ferminteracting modelis formed. This is in contrast to the elec-
surface forms arelectron pockefaroundq=0q,>0 andk} tron and hole pockets we find in the RPA.

and atvs=v. whenx~1.62 we have
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VI. TRANSVERSE CONDUCTIVITY AND DENSITY 20 ' . :
OF STATES

Using the results for uncoupled chains as well as the RPA
expression for the Green'’s function of weakly coupled chains
we can determine various other physical quantities.

2

2nv” p(w)

A. The transverse conductivity

Let us consider a situation where the transverse hopping
is only between nearest-neighbor chains. The transverse cur-
rent operator is then given by

i (x,h=iet,[RD)RIFDI(x)~H.c+R—L], (50

0 0.2 04 0.6 0.8 1

wherel is a chain index ana denotes the position along the o/m

chain direction. Using this expression we can analytically
determine the leading contribution in to the transverse FIG. 9. Density of states for a 2D square lattice for frequencies
conductivity by using the result for the Green'’s function of smaller than the Mott gap. The curves are for=2 (solid), t,

uncoupled chains. We find =3 (dotted, andt, =4 (dasheil
2756’7 1 t Amé\w?—4m? - As we are interested in the formation of a Fermi surface we
o (w)= P ey ek a'&)2+5(w2—8m2) . (51 have to consideT, (k)=0(m), which implies thatt, D/m

=0(1). This leads to the restriction that for large

whereé=(v.—vg)/(vetvg).

In the limit vs—v.=v this simplifies to m

tL & Bv (55)
27%e%? 1 L
—(2mlw)?J(w/2m)®>—1. (52)  so that the probability distributio(64) becomes extremely
o narrow and only regions ik space withT , (k)~0 contribute

We see that the transverse conductivity vanishes at tht® the DOS. However, in these regions there are no states at
thresholdw=2m and increases above it in a characteristic®~0 and there will, therefore, be no peak in the DOS at low

square-root fashion. This is reminiscent of the behavio€nergies.
found for the longitudinal conductivity in Ref. 23.

o (w)=

VIl. BECHGAARD SALTS AS A POSSIBLE APPLICATION

B. Density of states Our theory may be relevant to the Bechgaard salts and in

Within the RPA we can determine the density of stategparticular to (TMTTF}PF; and (TMTSF}PF; (see Refs.
(DOS) by integrating the RPA spectral function over all mo- 33,34 for a review. However, for our theory to be relevant,
menta. This needs to be done numerically. For simplicity wecertain conditions must be met and this requires a discussion.
only consider the case.=v =v. For a 2D systerf with  The materials in question are quasi-one-dimensional and
T, (ky)=t, cosk) we obtain the results shown in Fig. 9. As have a three-fourth-filled band. The ratio of the hopping in-
t, is increased, the Mott gap in the DOS is filled in andtegrals in the three principal crystallographic directions is
eventually a peak forms around zero energy. ta:tp:te=1:0.1:0.005. Therefore, at sufficiently high tem-

The analogous analysis for a quasi-3D system withperatures one may neglect the hopping in thdirection.
T, (ky,k,) =t [cosk)+cosk,)] yields a qualitatively differ-  Then one is left with a two-dimensional system, where each
ent result. A, is increased the Mott gap is again filled in, chain has only two nearest neighboré< 2). The interchain
but now the DOS aroun@=0 remains basically flat and no hopping is not long ranged, which puts into question the
peak develops in the regime where RPA applies, i.e/m reliability of RPA. We urge the reader to keep this caveat in
=0(1). In order to understand this result it is instructive to mind during the following discussion.

consider the case The principal problem one encounters in dealing with the
Bechgaard salts is the problem identifying the correct low-

D energy effective theory. Let us neglect the interchain hopping

TL(k)=tLle coskj, D>1. (53)  for the time being and consider uncoupled 1D chains. In the

Bechgaard salts there are two separate mechanisms that have
In this limit T, (k) can be considered to be a random variablethe potential to open a spectral gap. First there are “double”
with probability distribution Umklapp processes due to the commensurate band filling
3/4335These processes involve the scattering of four elec-
trons atkg and four holes at-kg and are generated in the
(54) low-energy effective theory by integrating out high-energy
modes. These processes will generate a gap only for strong

P(t)=

1 t2
exp ———~ .
J7Dt? Dt?
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interactions K.<0.25). Second, there is a small dimeriza- Indeed, in (TMTTF}PR;, ARPES measures a gap
tion, which halves the Brillouin zone and gives rise to~100 meV and thermal-conductivity measurements give
“single” Umklapp processed’*® These open a gap already the activation gafE,.=44 meV** which is roughly one-
for weak interaction&K.<1 but their coupling constant is half.
proportional to the dimerization and thus small. At low en- (i) The third possible scenario is thét is small, but the
ergies the system is thus described by two independertimerization is not negligible. In this case one has to deal
Gaussian models—one for the charge and the other for thaith a two-frequency sine-Gordon mod@lTo get a qualita-
spin sector. The charge-sector Gaussian model is perturbede idea of what happens in this situation it is essential to
by two operators: thekE harmonicgwith kg being equal to  estimate the bare values of the coupling constaats We
3m/2a) of the dimerization know how to do this only at weak coupling, where perturba-
tion theory for a quarter filled, extended Hubbard model with
. (nexd nearest-neighbor density-density couplikg (V,),
D= &; (—=1)"Cs14Cnos (56)  gives the following estimaté

where 6t is a staggered component of the hopping integral,g,« @[(U —2V,)2(U—4V;+V,) +4Va(U—2V;+2V,)].
and the & component of the electron-density operator t2
(double-Umklapp processesSince these operators have dif- (59

ferent symmetry under parity transformaticne is defined Note that we need to consider an extended Hubbard model

on Im_ks and th_e other on sifesn th_e continuous limit they because withou¥, , it is not possible to obtain a sufficiently

are given by sin z_;md_ cos, respectively, such that the relategna” value ofK for the g, term to become relevafi.

Hamiltonian density is If both terms are relevant and the sign @f is positive
then theg, term leads to the confinement of the solitons in

V=g;Sin(V87K D) +g,c082V87K D). (57)  the g,-sine-Gordon model. This is a difficult case to handle

as the two-frequency SGM is not integrable.

The behavior of the system and applicability of our theory |f on the other handg, is negative as is possible in the

depend crucially on the value ;. We can consider the perturbative resul59) for sufficiently strongV, then theg,

following possibilities. term does not lead to a qualitative change of the physics of

(i) The interactions are weak aid,~1°"**A moderate  theg,=0 model. In this case the effects of dimerization will
interaction strength is suggested by the renormalization ofiot be essential.
the uniform magnetic susceptibility with respect to the value | et us assume for the time being that~1 and see how
extracted from band-structure calculatign/xo~2-3*"In oy theory would compare with experiment. (TMTPF,
this case, they, term in Eq.(57) is irrelevant and the first js a Mott insulator; the Fermi energy is estimated as 115
term (due to dimerization gives a sine-Gordon model meV, the hopping integral in thedirection is of the order of
(SGM) that is equivalent to the charge sector of the Thirring14 meV, the optical gap ,p=2m is approximately 900 K.
model we have discussed. All our calculations are valid inHere the transverse tunne"ng is not |arge enough to over-
this case. come the Mott gap. In trying to get a detailed comparison

If we adopt this scenario we have problems with angle-with our calculations one has to take into account that the
resolved photoemissiofARPES data that do not show any ratio m/ez~1/3 is not very small here, which reduces the
traces of quasiparticléS:** We will return to the question chances of obtaining a quantitative agreement with any field-
about ARPES data later. theoretical approach_

(if) There is a school of thought that advocates the small (TMTSF),PF; is metallic; the Fermi energy is estimated
value K.~0.22 when both operators are relevéit? Ac- a5 220 meV, the hopping integral in thelirection is roughly
cording to this school, the dimerization coupling is small and2g meV, the optical gap op=2m is of the order of 250 K.
the g, term dominates. This would agree qualitatively with This gives T, (0)/m~4 so that the criterion for having a
the ARPES data. small Fermi surfac&,T, (0)/m>3.3 is satisfied here. Opti-

If this point of view is correct, the calculations presentedcal measurements for this material show a metallic Drude
in this paper are not applicable because, as it follows fronheak with a tiny amount of spectral weigt@%), separated
Ref. 15, for such values df. the minimal form factor cor- by a gap from a very strong continuum. The metallic char-
responds to the emission of not one, but two solitons. Weycter of these compounds is due to the transverse
have discussed this scenario elsewlérdere we cite just hopping***’ For frequencies not too close to the gap the
one conclusion of Ref. 43: K is small and the dimeriza- opserved form of the optical conductivity in the direction
tion term is negligible, the value of the gap measured byajong the chains is well described by the sine-Gordon
ARPES should be equal to the optical gap observed in thehode|?® This fact, together with the observed smallness of
frequency dependence of the on-chain conductivity, or twicghe Drude weight, indicates that (TMTSIPR, may be a
the value of the activation gap in the temperature dependene@ndidate for application of the present theory.

of the dc conductivity An additional argument in favor of small pockets of Fermi
liquid is that not all physical properties of (TMTSHBFR
A prpes= 2E ac= A gpr=2M. (580  demonstrate the same degree of anisotropy. For example, the
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measured anisotropy of the plasma frequency for the Drud&iamarchi, P. Wiegmann, and V. Yakovenko. We also thank
peaks is only of a factor of &£ On the other hand, for the S. Kivelson and D. Orgad for useful correspondence. This
ratio of hopping integrals predicted by the band theory onevork was supported by the EPSRC under Grants Nos. AF/
should expect it to be of order ofr(, /mj)*/?~10. This fact, 100201 and GR/N19359FHLE) and by the DOE under

in combination with the smallness of the Drude weight, in-Contract number DE-AC02-98 CH 10886.

dicates that the Fermi surface is small and not very aniso-
tropic. On the other hand, many of the properties of these
materials (especially the magnetic oneare typically one

dimensionalsee Ref. 34 for a reviewThus the overall pic- In this appendix we discuss some relevant aspects of the
ture is in reasonable agreement with the scenario we presempA in the interchain coupling. This is most easily done in
The analysis of the Drude peak given in Ref. 42 indicatesyosition space. We denote the right-moving and left-moving
that the best fit can be obtained if one assumes frequencyermion operators by black and white dots. 1D correlation
dependent effective mass and the scattering rates in tignctions are denoted by encircling a number of dots, the

APPENDIX A: ELEMENTS OF RPA

Drude formula corresponding fermion operators are then all located on the
5 same chain. In Fig. 10 we show the corresponding diagrams
o(w)= @p 1 for the 1D two-point functions of right movers and left mov-
4w M ()]’ ers as well as the diagram for th@-point function of right
I'j(w)-iw m movers. Finally, we denote the interchain hopping matrix
band . L .
element;;(x—y) between sitex/a, on chaini and sitey/a,
" on chainj #i by a dashed line. We note that the hopping is
=1+ ' local in time.
Mpand 1+ o’ w? The first few diagrams in the expansién the interchain
hopping of the two-point function of right-moving electrons
Ao w? for initial and final point located on the same chain is shown
I(w)=To+ 1o atu? (60 in Fig. 11. The contribution of a given diagram is obtained
o w

by summing over the positions of all “internal” circles, that
Here ', and )\, are the zero-frequency scattering rate andS, connected by a hopping line.
mass-enhancement factor, respectiVélifhis fit is rather The RPA expression for the Fourier transform of the
suggestive because the frequency dependance is quadraf#)gle-particle Green’s function is obtained by summing all
such as in Fermi-liquid theory. This feature supports thediagrams that can be split into two parts by cutting any one
point of view that the Drude peak comes from small pocketdl0pping line, i.e., all diagrams of the type shown in Fig. 12.
of Fermi liquid. All diagrams neglected in RPA contain loops. This en-

There are other quasi-one-dimensional systems for whicAbles us to embed RPA into a systematic perturbative expan-
ARPES measurements have been performed: the blue brong#®n in a small parametet, as follows. Let us consider an
Ko4aM0Os, which is metallic®® and the Mott insulator interchain hopping', (k) (for simplicity we take it indepen-
Sr,CuQ;. The latter material, however, is not a good testingdent of the wave numbayr along the chain directigrof the
ground for our theory since the ratio of the Mott-Hubbard form shown in Fig. 13 i.e., particle-hole symmetric but long
gap to the bandwidth is too large. The largeness of the gafgnged such that its Fourier transform is strongly peaked
precludes a detailed comparison with the results obtained iground the origin and the point @®,7). This means that in
this paper. On the qualitative side the measurements demoRosition space the hopping isng ranged i.e., the hopping
strate the appearance of two distinct dispersing maxima ig@mplitudes are of the same order within a range proportional
the spectral function’ which is interpreted as a sign of spin- t0 Kal-
charge separation. Every loop gives a contribution

ARPES is not the only way to ascertain the existence of
guasiparticles. de Haas-van Alphen and Schubnikov-de Haas 1
effects are perfect tools when one deals with closed Fermi v E [T, (k)]?= KS (A1)
surfaces. Obviously, the measurements should be made K
above the ordering temperature that may impose serious

difficulties. @_® G (x-y) G, (x-y)
ix iy ix iy
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FIG. 11. Diagrams for initial and final points on the same chain  FIG. 13. Schematic dependenceTaf(k) on the transverse mo-
up to second order in the interchain hopping. mentaq, .

. . _ ZE(01)Z%(0,) =S 201~ 0,)Z2( 02) 2 0),
and is thus suppressed. In this way one obtains a formal ‘1€
expansion in powers of3, the leading kJ) order of which

is given by the RPA. z! (6128 ( .92)=zz,(92)zz,(el)sji'j§( 0,— 0,),
2 1 ’
: - B - €€ ¢
N /IAI\IT_:?EEé\IRD:éLBE FORM-FACTOR APPROACH Ze( 91)22 (02) _ Zer( 02)8 2 }( 0,— Hl)Z 1( 01)
QUANTUM-FIELD THEORIES 2 2 €2:€)

The spectrum of low-lying excitations of the half-filled +(277)5215( 61— 65). (B2)
Hubbard model consists of scattering states of gapped, spin- 2
less charge* e excitations calledholonsandantiholonsand  Here S"?() are the(factorizable two-particle scattering
gapless, charge-neutral excitations carrying spih the so- o v o
called spinons™ We introduce label$,h,s,s to distinguish ~ Matrices and;=s,s,h,h.
between these four types of elementary excitations. Their USing the ZF generators a Fock space of states can be
dispersions and exact scattering matrices are known on tHgonstructed as follows. The vacuum is defined by
lattice’ as well as in the field-theory limfé As usual for 2 (9)]0)=0 B3
particles with relativistic dispersion it is useful to introduce éi e

rapidity variablesd. s to parametrize energy and momentum yyjiparticle states are then obtained by acting with strings
of creation operatorZZ(a) on the vacuum

E,(6.)=mcoshd., P,(0;.)=msinhd;, a=h,h,
i ‘ ‘ ’ 6000 =21 (0)...21(60)]0). (B4

m m . . . . : Lo
E(69)= Eei o, P(69)= i§ei %, y—ss. In terms of this basis the resolution of the identity is given by

B1 - = d6,...do

DDl I R e ]
Here we have set spin and charge velocities to 1. Let us now ' : (B5)
turn to the construction of a basis of scattering states of homserting Eq.(B5) between operators in a two-point function
lons, antiholons, and spinons. A convenient formalism to thiSye obtain the following specral representation

end is obtained in terms of the Zamolodchikov-Faddgd)

algebra. The ZF algebra can be considered to be the exten- * de, ...de,

sion of the algebra of creation and annihilation operators fo(O(x,t)OT(O,O)): E Z —

free fermion or bosons to the case or interacting particles n=0 ¢ (2m)"n!

with factorizable scattering. The ZF algebra is based on the n

knowledge of the exact spectrum and scattering matrix. For xexp{iE P.(6)x—E. (6t
the SGM, the ZF operatorgnd their Hermitian conjugates =1 !

satisfy the following algebra:

@ _©--@ ® - @ _® where

FIG. 12. Diagrams extering the RPA expression for the single-fo( 01...00)c. E<O|(’)(O,O)| O, ... 01>E e
particle Green’s function. The sum is over all diagrams of the type e ot
shown. are the form factors.

X |<0|O(010)| en ot 01)6 |21 (BG)

n...El

(B7)
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