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Weakly coupled one-dimensional Mott insulators
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We consider a model of one-dimensional Mott insulators coupled by a weak interchain tunnelingt' . We
first determine the single-particle Green’s function of a single chain by exact field-theoretical methods and then
take the tunneling into account by means of a random-phase approximation. In order to embed this approxi-
mation into a well-defined expansion with a small parameter, the Fourier transformT'(k) of the interchain
coupling is assumed to have a small support in momentum space such that every integration over transverse
wave vector yields a small factork0

2!1. WhenT'(0) exceeds a critical value, a small Fermi surface develops
in the form of electron and hole pockets. We demonstrate that Luttinger’s theorem holds both in the insulating
and in the metallic phases. We find that the quasiparticle residueZ increases very fast through the transition and
quickly reaches a value of about 0.4–0.6. The metallic state close to the transition retains many features of the
one-dimensional system in the form of strong incoherent continua.

DOI: 10.1103/PhysRevB.65.115117 PACS number~s!: 71.10.Pm, 72.80.Sk
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I. INTRODUCTION

The problem of the Mott metal-insulator transition, whic
is a consequence of electron interactions and not due to
band structure, has been the subject of great interest1 since
the pioneering works by Mott.2 In 1964, Hubbard suggeste
a solution of this problem for a particular model.3 The key
point of Hubbard’s approach was to take into account
on-site Coulomb interactionU in perturbation theory int/U.
Unfortunately, the transition from the metallic to the insula
ing phase is expected to occur when the tunneling ma
elementt is comparable to the on-site repulsionU. In this
regime expansions in eithert/U or U/t are not applicable. To
overcome this difficulty, various approaches have been s
gested. One of them considers a SU(N)-symmetric generali-
zation of the electronic model and carries out a 1N
expansion.4,5 Another approach is based on the so-called
namical mean-field theory, which considers a lattice in in
nitely many dimensionsD→` ~see Ref. 6 and reference
therein and also Refs. 7,8!.

In this paper we follow a different route. We consider
quasi-one-dimensional model of interacting electrons, wh
the tunneling along one direction is much larger than alo
all others. This model can be described in terms of wea
coupled chains. When the band is half-filled and the in
chain tunneling is switched off, Umklapp processes dyna
cally generate a spectral gapM. The same mechanism ca
generate gaps atany commensurate filling, e.g., quarte
filling, but only if the interactions are sufficiently strong. I
the half-filled case the decoupled chains develop a M
Hubbard gap for any positive value ofU.0. In what follows
we shall assume that the interchain tunneling is weak
long ranged, such that the Fourier transform of the intercha
tunneling matrix element has two strong peaks in the B
louin zone, one around zero wave vector and the other
aroundQ5(0,p,p) such that

T'~k!52T'~k1Q!. ~1!
0163-1829/2002/65~11!/115117~13!/$20.00 65 1151
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Due to the long-range character of the tunneling, the width
these peaks, denoted byk0, is small (k0!1). Hence, every
integration over the transverse momentum yields a small
rameterk0

2. The main idea of our approach is to treat t
individual chains nonperturbatively and then to employ t
random-phase approximation~RPA! to take into account the
interchain tunneling. Since the Mott metal-insulator tran
tion is associated with development of a coherent sing
particle excitation branch, the correlation function we a
interested in is the single-electron Green’s functionG. The
RPA expression forG is

G~v,q,k!5@G0
21~v,q!2T'~k!#21, ~2!

whereq is the momentum along the chain direction andG0
is the single-particle Green’s function for an individu
chain. The corrections to RPA are of higher order ink0

2,
which is the small parameter in our expansion. The smalln
of k0

2 suppresses multiparticle tunneling processes, wh
generate exchange interactions between the chains and e
tually lead to a three-dimensional phase transition. Howe
for smallk0

2 the temperature at which this transition occurs
much smaller than the characteristic energy scaleM of the
problem. Therefore, throughout the paper we shall assu
that we work at temperatures much smaller thanM ~such that
the thermal effects on the single-particle Green’s funct
can be neglected! but much larger than the transition tem
peratureTc , i.e.,Tc!T!M . We note that an analogous RP
has been used by Wen9 to study weakly coupled Luttinge
liquids ~LL !, see also Ref. 10 for a derivation based on fun
tional integrals. An improved calculation for the case
coupled LL’s has recently been carried out by Arrigoni.11 It is
based on taking into account multipoint correlation functio
of uncoupled chains in a controlled way. In a Mott insulat
multipoint correlation functions are much more difficult
determine than in a LL. We, therefore, postpone the disc
sion of corrections to RPA until future publications.
©2002 The American Physical Society17-1
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We also neglect the long-distance tails of the Coulo
interaction. This can be justified at finite temperatures if
dielectric constant at small frequencies is large.

The basic input of our approach isG0. To calculate this
function we assume that for an isolated chain the Mo
Hubbard gapM is much smaller than the bandwidthD i . In
this case one can use the continuous field-theoretical des
tion in the low-energy limit. The corresponding field theo
will be described in detail in the following section and
highly universal; all information about the underlying lattic
model is incorporated in just three dimensionless consta
Thus, our assumptions can be summarized by the inequa

D i@M't'~0!@t'~ uku.k0!,

Tc!T!M , ~3!

where the Mott-Hubbard gapM is a function of the interac-
tions. The smallness ofM does not imply that the interac
tions are weak. For example, in the one-dimensional~1D!
Hubbard model the field-theoretical description works w
even forU/t as large as 2–3~see, for example, Ref. 12!. At
such interaction strength one should expect the spin
charge velocities to be considerably different. This is a c
sequence of spin-charge separation, which is one of the m
interesting features of one-dimensional strongly correla
systems. The effects of spin-charge separation in the ins
ing regime deserve a special discussion, which will be giv
later in the paper.

The outline of this paper is as follows. In Sec. II w
introduce the model and in Sec. III we discuss the limit
decoupled chains. In Sec. IV we take the interchain coup
into account within RPA. In Sec. V we discuss the formati
of a Fermi surface. In Sec. VI we determine various phys
properties and in Sec. VII we discuss possible application
quasi-1D organic conductors.

II. THE MODEL

We take as a starting point the following lattice model
correlated electrons

H5(
l

H ( l )1 (
l ,m,n,s

t lmcn,s
( l )†cn,s

(m)1H.c.,

H ( l )52t(
n,s

cn,s
( l )†cn11,s

( l ) 1H.c.1U(
n

nj ,↑
( l ) nj ,↓

( l ) . ~4!

Here l ,m label Hubbard chains andn labels the sites along
given chain. In the physically most interesting situation t
interchain hopping matrix elementst lm are taken to be equa
to t' if l andm are nearest neighbors and zero otherwise.
this choice of interchain hopping our calculational schem
uncontrolled: there is no small expansion parameter. O
may nevertheless, apply our scheme and hope that the
rections are small in some regime of temperatures. On
other hand, one may choose thetnm’s in such a way that a
small expansion parameter is introduced, as explained ab
and in more detail in Appendix A.
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Let us first consider the case of uncoupled chainst'50.
For weak repulsionU,t and low energies, a field-theor
description is appropriate. Keeping only modes in the vic
ity of the Fermi momenta6kF56p/2a0, we may decom-
pose the lattice Fermi operators as

cn,s
( l ) 5Aa0@exp~ ikFx!Rs

( l )~x!1exp~2 ikFx!Ls
( l )~x!#, ~5!

where a0 is the lattice spacing. Inserting this prescriptio
into the Hamiltonian~4! and dropping the chain index~l! for
the time being, one obtains

H5(
s

vFE dx@Ls
† i ]xLs2Rs

† i ]xRs#1
g

3E dx@ :I•I :

1: Ī• Ī :2:J•J:2: J̄• J̄:#12gE dx@ I• Ī2J• J̄#, ~6!

wherevF52ta0 is the Fermi velocity andg5Ua0. HereJ
and I are the chiral components of SU~2! spin and pseu-
dospin currents

I 35
1

2 (
s

:Ls
†Ls :, I 15L↑

†L↓
† ,

Ī 35
1

2 (
s

:Rs
†Rs :, Ī 15R↑

†R↓
† ,

J35
1

2
~L↑

†L↑2L↓
†L↓!, J15L↑

†L↓ ,

J̄35
1

2
~R↑

†R↑2R↓
†R↓!, J̄15R↑

†R↓ . ~7!

By employing the Sugawara construction, the Hamilton
~6! can now be split into two parts, corresponding to the s
and charge sectors, respectively13

H5Hc1Hs ,

Hs5
2pvs

3 E dx@ :J•J:1: J̄• J̄:#22gE dxJ• J̄,

Hc5
2pvc

3 E dx@ :I•I :1: Ī• Ī :#12gE dxI• Ī . ~8!

Here vs5vF2Ua0/2p and vc5vF1Ua0/2p. Apart from
the ~marginally! irrelevant current-current interaction in th
spin sector and the difference in spin and charge velocit
the Hamiltonian~8! is identical to the one of the SU~2!
Thirring model. The latter can be bosonized in terms o
Sine-Gordon model and a free boson; the resulting Lagra
ian density is

Ls5
1

16p
@vs

21~]tFs!
21vs~]xFs!

2#,

Lc5
1

16p
@vc

21~]tFc!
21vc~]xFs!

2#1l cos~bFc!, ~9!
7-2
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WEAKLY COUPLED ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B65 115117
whereb51. If we consider additional small density-densi
interactions between nearest-neighbor sites in Eq.~4! the
field-theory limit is again of the form~9!, but now b,1.
Using the integrability of the model~9! it is possible to de-
termine dynamical correlation functions. This is the subj
of the following section.

III. UNCOUPLED CHAINS

The calculation of the spectral function for half-fille
Mott insulators is based on the following principles.

a. Locality. Ra andLa are local fields. This allows us to
employ the standard form-factor approach.14 Some important
elements of this approach are summarized in Appendix B

b. Spin-charge separation. The Hamiltonian~8! is the sum
of two parts representing the spin and charge degrees of
dom, respectively. By means of bosonization one can re
sentRa andLa as products of operators belonging to the tw
different sectors. For example,

Rs
†5

hs

A2p
expS i

2
fcD expS 6

i

2
fsD , ~10!

wherefc andfs are chiral components of the bosonic field
hs are Klein factors and the plus~minus! sign corresponds to
s5↑ (s5↓). The operators on the right-hand side of E
~10! are nonlocal with respect to the canonical Bose fie
Fc,s . Nevertheless, Eq.~10! implies that form factors ofRs

also factorize into charge and spin parts, at least in the l
when one of the sectors becomes massless.

c. ‘‘Triviality’’ of the spin sector. In the limit gs→0 the
field theory for the spin sector becomes massless and
correlation function of the spin exponent in Eq.~10! is sim-
ply given by

K expF i

2
fs~x,t!GexpF2

i

2
fs~0!G L 5

1

Avst2 ix
. ~11!

d. Lorentz invariance and Watson’s theorem. Let us consider
form factors of the left moving Fermi operatorLs(x). The
first nonvanishing form factor is between the vacuum an
scattering state of one spinon~with spin s) and one antiho-
lon. We denote the rapidity of the spinon~antiholon! by us
(uc) ~our notations are summarized in Appendix B!. Lorentz
invariance and Watson’s theorem impose the following fo
for the first nonvanishing form factor for the fermio
operator

^0uLs~0!uuc ,us& h̄s5exp@~uc1us!/4# f ~uc2us!. ~12!

The functionf (u) is periodic with period 2ip and does not
contain poles. Furthermore, the usual asymptotic boun16

yields

lim
ua→`

^0uLuuc ,us&expS 2
ua

4 D<const, ~13!

wherea5c,s. This leaves us with the only possibilityf (u)
5const. As we see, this matrix element does not depend
the anisotropy of the interaction~apart from the constan
11511
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prefactorf ). The reason for this is that all information abo
the anisotropy of the coupling constants is contained in
two-particleS matrices of holons and spinons and does
influence the single-particle emission. The matrix elem
~12! describes the emission of one kink in the charge and
kink in the spin sector. The charge part of this first te
in the expansion is thus, equal~up to an overall numerica
factor! to

E
2`

`

dueu/2expF2mt coshu2 im
x

vc
sinhuG

5S tvc2 ix

tvc1 ix D 1/4

K1/2~mAt21x2vc
22!

}
exp@2mAt21x2vc

22#

Avct1 ix
. ~14!

In the next step we use the fact that the single-elect
Green’s function factorizes into a charge and a spin pie
Let us consider intermediate states containing a single a
holon and any number of spinons. Factorization implies t
if we carry out the sum over all multispinon contribution
we must obtain the conformal result~11! for the spin sector.
Therefore, we arrive at the following result for the two-poi
function

^Ls~x,t!Ls
†~0,0!&.

Z0

2p

exp@2mAt21x2vc
22#

A~vst1 ix !~vct1 ix !
, ~15!

where15

Z0'0.9218. ~16!

The leading corrections to Eq.~16! involve intermediate
states containing two antiholons and one holon and are
of orderO@exp(23mr)#. Similarly we have

^Rs~x,t!Rs
†~0,0!&.

Z0

2p

exp@2mAt21x2vc
22#

A~vst2 ix !~vct2 ix !
. ~17!

Equations~16! and ~17! were first written down by Wieg-
mann~for vc5vs).

17 This remarkable result appears to ha
been subsequently forgotten and rediscovered only m
later by Voit, who conjectured the same form the Gree
function.18 The correct form was again reproduced
Starykh et al.,19 although on the basis of arguments th
cannot be accepted as rigorous. An earlier attempt to ca
late the single-particle Green’s function using the form-fac
approach20 led to an incorrect result yielding aK1 modified
Bessel function instead ofK1/2 in Eq. ~15!. Finally, Parola
and Sorella21 determined the spectral function by mappin
the problem of a single hole in a Mott insulator onto
effective spin chain with skew boundary conditions. Th
results are somewhat implicit so that it is difficult to compa
them to Eq.~17!.

To conclude this section we would like to remark that t
above results can be generalized to the case of the SUN)
Thirring model
7-3
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FABIAN H. L. ESSLER AND ALEXEI M. TSVELIK PHYSICAL REVIEW B 65 115117
^Ls~x,t!Ls
†~0,0!&5

Z0~N!

2p

1

~vst1 ix !1/N

3S vct2 ix

vct1 ix D [(1/2)2(1/2N)]

3K12(1/N)~mAt21x2vc
22!. ~18!

Here we have used that the kinks in the SU(N) Thirring
model have spin1

2 (12@1/N#).22 A similar formula with x
→2x holds for the right-moving fermions.

A. Short-distance behavior:
Renormalization-group calculations

Strictly speaking, single-kink emissions in the charge s
tor allows one to consider only frequencies less than 3m,
which is the threshold for the emission of two antiholons a
one holon. However, since the numerical value ofZ0 is quite
close to 1 Eqs.~16! and ~17! are likely to provide a very
good description of the Green’s function in the entire f
quency interval. Indeed, considering the short-dista
~high-energy! behavior (mAt21x2vc

22!1) in Eqs.~17! and
~16! we recover the standard expressions for the Gre
functions of the Luttinger liquid~modulo the prefactorZ0,
which, as we have said, is almost 1!. A better description of
the short-distance behavior is obtained by carrying ou
renormalization-group~RG! analysis. The RG equations fo
the coupling constantg and wave-function renormalizationZ
in the casevc5vs5v are

g05g1
g2

2p
ln

L2

m2
1O~g3!, ~19!

Z512
3

32p2
g2ln

L2

m2
1O~g3!, ~20!

whereL is a UV cutoff andm a subtraction point. The RG
improved result for the two-point function is thus

^Rs~x,t!Rs
†~0,0!&5

Z~r !

2p~vt2 ix !
, ~21!

where

Z~r !.12
3

16p
g~r !,

g~r !.2
p

ln~rm!
, r 25x21v2t2!m22. ~22!

Comparing this to Eq.~17! for short distances, we find ver
good agreement. In the anisotropic case, where the sh
distance behavior of the Green’s function is controlled by
Luttinger liquid exponent, the agreement becomes wo
For ‘‘large’’ anisotropy it may become necessary to take
termediate states with, e.g., two solitons and one antisol
into account in order to get a good description of the Gree
function over a large range of energies.
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B. Retarded dynamical Green’s function

Given the expression~17! for the Green’s function in po-
sition space we can calculate the dynamical Green’s func
by Fourier transformation and subsequent analytic contin
tion to real frequencies. A straightforward calculation giv
the following result for the retarded Green’s function

GRR
(R)~v,kF1q!52Z0A 2

11a

v1vcq

Am21vc
2q22v2

3F ~m1Am21vc
2q22v2!2

2
12a

11a
~v1vcq!2G21/2

, ~23!

wherea5vs /vc . At a51 this simplifies to

GRR
(R)~v,kF1q!52

Z0

v2vq F m

Am21v2q22v2
21G .

~24!

C. Spectral function

The spectral function is defined as

ARR~v,kF1q!52
1

p
Im GRR

(R)~v,kF1q!. ~25!

In the limit vc5vs5v we obtain from Eq.~24! the following
simple result

ARR~v,kF1q!5
Z0m

puv2vqu
Q~ uvu2Am21v2q2!

Av22m22v2q2
.

~26!

An explicit expression for the general casevsÞvc is easily
obtained from Eq.~23!. We note that the result isexact for
energiesv<3m as the intermediate states involving mo
than one antiholon will start contributing only at this energ
However, from previous experience23 as well as on the basi
of the arguments given above, we expect Eq.~23! to be an
excellent approximation up to very high energies.

For generalvc ,vs the spectral function is nonvanishing i
a region with boundaryv5e(p) defined by the equation

e~p!5min
q

@vsup2qu1Avc
2q21m2#. ~27!

The solution of this equation is

e~p!5HAm21vc
2p2[e0~p! if p<Q

vsp1mA12a2[e1~p! if p>Q,
~28!

where

Q5
ma

Avc
22vs

2
. ~29!
7-4
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WEAKLY COUPLED ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B65 115117
The spectral function generally has several kinds of sin
larities. First, there are singularities just above the thresh
For small momentauqu!Q there is a square-root singularit
above the thresholdv5e(q)

A~v,kF1q!.
Z0

p

e0~q!1vcq

A2e0~q!
@vcq1e0~q!#21/2

3@ae0~q!2vcq#21/2
1

Av2e0~q!
. ~30!

There is also a square-root singularity above the thresh
for ‘‘large’’ momenta uqu@Q, where

A~v,kF1q!.
Z0

pAvc2vs

1

Auqu2Q

1

Av2e1~q!
. ~31!

This square-root singularity is a general feature of the h
filled Mott insulator and apparently holds for any ratio of t
gap to the bandwidth. Calculations done for a model wh
this ratio is infinite24 give the same singularity.

For uqu@Q there is a second square-root singularity
v→e0(q) from below

A~v,kF1q!.
Z0

p

e0~q!1vcq

A2e0~q!
@vcq1e0~q!#21/2

3@vcq2ae0~q!#21/2
1

Ae0~q!2v
. ~32!

For q5Q these two singularities collapse onto a single o
and we have

A~v,kF1Q!.
Z0

p S 11a

12a D 1/4

225/4e~Q!21/4@v2e~Q!#23/4.

~33!

In Fig. 1 we show the spectral function forvc5vs5v as a
function of v and q. As Q5` in this case the threshold i
simply given byv5Am21v2q2. The square-root singulari
ties above the threshold are visible as regions of high sp
tral weight. Figure 2 shows a constant energy scan av
53m.

When we allow the spin and charge velocities to be d
ferent an interesting effect occurs as can be seen from
density plot ofARR(v,q) in Fig. 3. For momentaq,Q the
threshold occurs at the gap for a single soliton moving w
momentumq and the spectral function looks very muc
similar to it as it did in the casea51. However, at momenta
q.Q the threshold gets shifted tov5vsq1mA12a2 and a
lot of spectral weight is concentrated between this thresh
and the linev5Am21vc

2q2, where a second singularity oc
curs ~see above!. This is shown in the constant energy sc
Fig. 4. For large momentavs,cq@m the double singularity a
v.vc,sq is similar to what occurs in a Luttinger liquid.25

The states located in the ‘‘wedge’’e1(q),v,e0(q) cor-
respond to a situation where the single antiholon carries o
a small part of the total momentum and the remainde
made up by exciting~many! spinons. This effect is reminis
11511
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cent of Cherenkov radiation produced by a heavy part
moving through a medium with a speed greater than
speed of light in this medium. We note that this effect,
well as the smallness of the spectral weight in the regioq
,0, is consistent with numerical studies of the Hubba
model at half-filling.26

D. Tunneling density of states

From the Matsubara Green’s function at coinciding spa
points in model~8! we extract the single-particle density o
states

r~v!522ImG(R)~v,x50!5
2Z0

Avsvc

u~ uvu2m!. ~34!

FIG. 1. Density plot of the spectral functionARR(v,kF1q) as a
function of v/m andvq/m for vs5vc5v.

FIG. 2. Constant energy (v53m) scan of the spectral function
for a51.
7-5
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The density of states~34! is constantfor energies higher than
the single-particle gapm. Formula ~34! is exact for uvu
<3m and expected to be an excellent approximation up
very high ~compared to the gapm) energies.

E. Momentum distribution function

From the time-independent Green’s function we can c
culate the momentum distribution function

ns~kF1q!5
1

2
2

Z0

p
arctanS vcq

m D . ~35!

The momentum distribution function in the half-filled Hub
bard model has recently been studied numerically using D
sity Matrix Renormalization Group~DMRG! in Ref. 27. For
small values ofU the numerical results are in agreement w
Eq. ~35!.

FIG. 3. Density plot of the spectral functionARR(v,kF1q) as a
function of v/m andvcq/m for a50.4.

FIG. 4. Constant energy (v52m) scan of the spectral function
for a50.4.
11511
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IV. COHERENT SINGLE-PARTICLE MODE GENERATED
BY THE INTERCHAIN TUNNELING

Taking the interchain tunneling into account in the RP
leads to an expression for the single-electron function of
form ~2!. The interchain tunneling gives rise to a branch
coherent excitations below the threshold of the 1D spec
function A(v,q) in the region whereT'(kW ),0. Therefore,
even aninfinitesimalinterchain coupling leads to the cohe
ent particle motion in the transverse direction and there is
confinement in the sense of Anderson.28

A. vsÄvc

Let us first discuss the casevs5vc5v. For very small
interchain tunnelinguT'(kW )u!m the pole of Eq.~2! appears
at a finite frequency very close toe0(p)5Ap21m2. In the
vicinity of the pole we have

G~v,q,kW !'
Z~q,kW !

v2e~q,kW !
, ~36!

whereZ(q,kW ) varies strongly at smallq and where foruvqu
!um2/Z0T'(kW )u,

e~q,kW !5e0~q!2S Z0T'~kW !m

A2e0~q!@e0~q!2vq#
D 2

. ~37!

Along the chain direction, the dispersion of the cohere
mode is asymmetric aroundq50 and has a minimum a

vq.@Z0T'(kW )#2/m. For larger values ofT'(kW ) this picture
remains qualitatively unchanged although the dispersion
becomes more complicated. In the vicinity of the minimu
the dispersion is approximately given by

e~q,kW !'Av0
21v2~q2q0!2, ~38!

wherev0 , q0 depend only onT'(kW ). At large positivevq
@m, we have

e~q,kW !'vq1Z0T'~kW !, ~39!

and at large negativevq!2max(m,uZ0T'(kW)u),

e~q,kW !'Am21~vq!22FZ0T'~kW !

2vq
G2

. ~40!

The dispersion of the coherent mode depends on
transverse momentum only throughT'(kW ). In Fig. 5 we plot

Ex~q![e~q,kW !u2Z0T'(kW )5mx , ~41!

as a function ofq for several values ofx. In Fig. 6 we plot
the residue of the coherent mode for variousx versusqv/m.

We see thatZ(q,kW ) is very small within the noninteracting
Fermi surface.
7-6
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B. vsÅvc

The case of different velocities can be dealt with in
completely analogous way. In Fig. 7 we show the spec
function as a function of energy and momentum trans
along the chain direction for weak tunneling2Z0T'(kW )
5m. The coherent mode is clearly visible below the thre
old of the one-dimensional spectral function.

In Fig. 8 we show a constant energy scan of the spec
function. If we compare Fig. 8 to the corresponding plot
the spectral function of uncoupled chains in Fig. 4, we not
that now there are twod-function peaks corresponding to th
coherent mode, and that the singularities of the incohe
scattering continuum have been smoothed out. It turns
that most (.75%) of the spectral weightfor fixed T'(k)
~i.e., we integrate only overq) is located in the coheren
mode at q2, about 23% sits in the incoherent spino
antiholon continuum and only 2% is due to the coher
branch atq1. The sharp difference between the weights in
coherent modes is consistent with the picture presente
Fig. 6.

FIG. 5. Dispersion of the coherent mode along the chain dir

tion for several values ofmx52Z0T'(kW ) anda51.

FIG. 6. Residue of the coherent mode as a function of the
mentum along the chain direction for several values ofmx5

2Z0T'(kW ) anda51.
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As t' increases more and more of the spectral weight g
transferred to the coherent mode. For example,

2Z0T'(kW )53.2m approximately 95% of the spectral weigh
at energyv52m is located in the coherent mode atq2.
However, it is important to note that the coherent mod
dominate only a small portion of the Brillouin zone@the part
where T'(k) is large#. If we consider the total spectra
weight, i.e., integrate over the transverse momentumk as
well, we find that the contribution of the coherent mode
generally small.

-

-

FIG. 7. Density plot of the spectral functionARR(v,q,kW ) as a
function of v and momentum transfer along the chain directionq

for a50.4 and2Z0T'(kW )5m.

FIG. 8. ARR(v,q,kW ) as a function of the momentum along th

chain direction forv52m, a50.4, and2Z0T'(kW )5m.
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V. FERMI SURFACE AND LUTTINGER’S THEOREM

According to Luttinger’s theorem the total number of pa
ticles in the system is proportional to the volume of mome
tum space included in the surface defined by the singular
of ln G(v50,p). These singularities may be due to eith
poles orzerosof the single-particle Green’s function. As wa
recently emphasized by Dzyaloshinskii,29 the latter possibil-
ity must occur in Mott insulators thus removing an appar
violation of Luttinger’s theorem. The Green’s function~23!
exhibits precisely this property: forv50 it vanishes atq
50, which corresponds to the Fermi surface of the nonin
acting system. Since the position of the zeros is unchange
RPA, our results are in agreement with Luttinger’s theore

When t' exceeds a critical value, electronlike and ho
like pockets of Fermi surface appear. The Fermi surfac
determined by the equation

G0
21~0,q!5T'~k!. ~42!

The volumes of electron and hole pockets are equal s
T'(k)52T'(Q1k) where Q5(p,p,0). So Luttinger’s
theorem continues to hold.

Using the fact that atv50 the Green’s function is alway
real, we get from Eq.~23!

@Z0T'~k!#25
~vc

2q21m2!~m1aAvc
2q21m2!

Avc
2q21m22m

,

sgn„T'~k!…52sgn~q!. ~43!

The critical value ofT'(k) necessary to produce the solutio
is

FZ0t'
min

m G2

531
9a11

2
x0 , ~44!

where x0 is determined by the momentumq0 where the
Fermi surface first appears

x05A11vc
2q0

2/m25
3a211A1110a19a2

4a
. ~45!

The critical value ofZ0t'
min varies from 2m at smallvs to

;3.3m for vs5vc .
The residue at the Fermi surface is given by

Z5
2Z0

~11a!

~x21!

x F ~xa11!

~x11! G1/2

, ~46!

wherex[A11vc
2q2/m2. Near the critical value ofT'(k) the

residue is numerically small but never goes to zero. For
ample, in the limitvs→0 whenx52 we get

Z~vs→0!'0.58Z0 ,

and atvs5vc whenx'1.62 we have

Z~vs5vc!'0.38Z0 .

For a cubic lattice with nearest-neighbor hopping the Fe
surface forms anelectron pocketaround q̃5q0.0 and k0

y
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5k0
z50 andhole pocketsaroundq̃52q0 and k0

y56p, k0
z

56p. The volume of the electron pocket is the same as
sum of the volumes of the hole pockets. When the pock
are very small their shape can be determined by expan
Eq. ~43! around the point (0,q0), using that

T'~k!'T'~0!@12k'
2 g2#.

Here k' denotes the deviation in the transverse direct
from 0 and g is proportional to the lattice spacing in th
transverse directionsa' . We obtain

2T'
2 ~0!g2k'

2 1
b

2
~q2q0!25T'~0!22~ t'

min!2, ~47!

where

b5
vc

2

Z0
2

~x011!~4ax023a11!

x0~x021!
.

We also can estimate the anisotropy of the Fermi surf
from Eq. ~47!. The anisotropy of the masses is given by

m'

mi
5

vc
2

4g2m2

~x011!~4ax023a11!

x0
3~11ax0!

, ~48!

where we have further approximatedT'(0)'t'
min . Using

that vc.2tai , where ai is the lattice spacing along th
chains, we find that

m'

mi
.A

ai
2

g2

t2

m2
, ~49!

where A varies between 1.06 forvs→vc and 0.38 forvs
→0. Thus the magnitude of the mass ratio is determined
the competition of two factors one of which is large (t/m)
and the other is small (ai /g). As a result, the Fermi surfac
may not be very anisotropic.

An obvious question is whether or not the RPA can
trusted to describe correctly the formation of a Fermi surfa
One problem of the RPA is that it automatically reproduce
purely one-dimensional result at the particular wave numb
p where the transverse hopping vanishesT'(p)50. On a 2D
square lattice with nearest-neighbor hopping this would b
the pointspy56p/2. In the case of coupled Luttinger liq
uids the improved treatment of Ref. 11 indicates that in
vicinity of these points RPA is unreliable. In the case
coupled Mott insulators, the electron and hole pockets
find for sufficiently larget' are located at positions far awa
from the points whereT'(k) vanishes.

Recently a dynamical mean-field theory approach
been developed, which replaces the quasi-1D system b
single effective chain, from which electrons can hop to
self-consistent bath.30,31 The resulting model has to be an
lyzed by numerical methods and for coupled Hubbard cha
it is found that for sufficiently large transverse hopping a
plitudes an open Fermi surface~close to the one of the non
interacting model! is formed. This is in contrast to the elec
tron and hole pockets we find in the RPA.
7-8
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WEAKLY COUPLED ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B65 115117
VI. TRANSVERSE CONDUCTIVITY AND DENSITY
OF STATES

Using the results for uncoupled chains as well as the R
expression for the Green’s function of weakly coupled cha
we can determine various other physical quantities.

A. The transverse conductivity

Let us consider a situation where the transverse hopp
is only between nearest-neighbor chains. The transverse
rent operator is then given by

j'~x,l !5 iet'@Rs
( l )~x!Rs

( l 11)†~x!2H.c.1R→L#, ~50!

wherel is a chain index andx denotes the position along th
chain direction. Using this expression we can analytica
determine the leading contribution int' to the transverse
conductivity by using the result for the Green’s function
uncoupled chains. We find

s'~v!5
2Z0

2e2t'
2

p~vc2vs!

1

v
arctan

4mdAv224m2

v21d~v228m2!
, ~51!

whered5(vc2vs)/(vc1vs).
In the limit vs→vc5v this simplifies to

s'~v!5
2Z0

2e2t'
2

pv
1

v
~2m/v!2A~v/2m!221. ~52!

We see that the transverse conductivity vanishes at
thresholdv52m and increases above it in a characteris
square-root fashion. This is reminiscent of the behav
found for the longitudinal conductivity in Ref. 23.

B. Density of states

Within the RPA we can determine the density of sta
~DOS! by integrating the RPA spectral function over all m
menta. This needs to be done numerically. For simplicity
only consider the casevc5vs5v. For a 2D system32 with
T'(ky)5t'cos(ky) we obtain the results shown in Fig. 9. A
t' is increased, the Mott gap in the DOS is filled in a
eventually a peak forms around zero energy.

The analogous analysis for a quasi-3D system w
T'(ky ,kz)5t'@cos(ky)1cos(kz)# yields a qualitatively differ-
ent result. Ast' is increased the Mott gap is again filled i
but now the DOS aroundv50 remains basically flat and n
peak develops in the regime where RPA applies, i.e.,t' /m
5O(1). In order to understand this result it is instructive
consider the case

T'~k!5t'(
j 51

D

coskj , D@1. ~53!

In this limit T'(k) can be considered to be a random varia
with probability distribution

P~ t !5
1

ApDt'
2

expS 2
t2

Dt'
2 D . ~54!
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As we are interested in the formation of a Fermi surface
have to considerT'(k)5O(m), which implies thatt'D/m
5O(1). This leads to the restriction that for largeD

t'}
m

D
, ~55!

so that the probability distribution~54! becomes extremely
narrow and only regions ink space withT'(k)'0 contribute
to the DOS. However, in these regions there are no state
v'0 and there will, therefore, be no peak in the DOS at l
energies.

VII. BECHGAARD SALTS AS A POSSIBLE APPLICATION

Our theory may be relevant to the Bechgaard salts an
particular to (TMTTF)2PF6 and (TMTSF)2PF6 ~see Refs.
33,34 for a review!. However, for our theory to be relevan
certain conditions must be met and this requires a discuss
The materials in question are quasi-one-dimensional
have a three-fourth-filled band. The ratio of the hopping
tegrals in the three principal crystallographic directions
ta :tb :tc'1:0.1:0.005. Therefore, at sufficiently high tem
peratures one may neglect the hopping in thec direction.
Then one is left with a two-dimensional system, where ea
chain has only two nearest neighbors (N52). The interchain
hopping is not long ranged, which puts into question t
reliability of RPA. We urge the reader to keep this caveat
mind during the following discussion.

The principal problem one encounters in dealing with t
Bechgaard salts is the problem identifying the correct lo
energy effective theory. Let us neglect the interchain hopp
for the time being and consider uncoupled 1D chains. In
Bechgaard salts there are two separate mechanisms that
the potential to open a spectral gap. First there are ‘‘doub
Umklapp processes due to the commensurate band fi
3/4.35,36 These processes involve the scattering of four el
trons atkF and four holes at2kF and are generated in th
low-energy effective theory by integrating out high-ener
modes. These processes will generate a gap only for st

FIG. 9. Density of states for a 2D square lattice for frequenc
smaller than the Mott gap. The curves are fort'52 ~solid!, t'
53 ~dotted!, andt'54 ~dashed!.
7-9
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interactions (Kc,0.25). Second, there is a small dimeriz
tion, which halves the Brillouin zone and gives rise
‘‘single’’ Umklapp processes.37,38 These open a gap alread
for weak interactionsKc,1 but their coupling constant i
proportional to the dimerization and thus small. At low e
ergies the system is thus described by two independ
Gaussian models—one for the charge and the other for
spin sector. The charge-sector Gaussian model is pertu
by two operators: the 4kF harmonics~with kF being equal to
3p/2a) of the dimerization

D̂5dt(
n

~21!ncn11,s
1 cn,s , ~56!

wheredt is a staggered component of the hopping integ
and the 8kF component of the electron-density opera
~double-Umklapp processes!. Since these operators have d
ferent symmetry under parity transformation~one is defined
on links and the other on sites!, in the continuous limit they
are given by sin and cos, respectively, such that the rel
Hamiltonian density is

V5g1sin~A8pKcFc!1g2cos~2A8pKcFc!. ~57!

The behavior of the system and applicability of our theo
depend crucially on the value ofKc . We can consider the
following possibilities.

~i! The interactions are weak andKc'1.37,39A moderate
interaction strength is suggested by the renormalization
the uniform magnetic susceptibility with respect to the va
extracted from band-structure calculationxs /x0'2 –3.34 In
this case, theg2 term in Eq.~57! is irrelevant and the firs
term ~due to dimerization! gives a sine-Gordon mode
~SGM! that is equivalent to the charge sector of the Thirri
model we have discussed. All our calculations are valid
this case.

If we adopt this scenario we have problems with ang
resolved photoemission~ARPES! data that do not show an
traces of quasiparticles.40,41 We will return to the question
about ARPES data later.

~ii ! There is a school of thought that advocates the sm
value Kc'0.22 when both operators are relevant.35,42 Ac-
cording to this school, the dimerization coupling is small a
the g2 term dominates. This would agree qualitatively wi
the ARPES data.

If this point of view is correct, the calculations present
in this paper are not applicable because, as it follows fr
Ref. 15, for such values ofKc the minimal form factor cor-
responds to the emission of not one, but two solitons.
have discussed this scenario elsewhere.43 Here we cite just
one conclusion of Ref. 43: ifKc is small and the dimeriza
tion term is negligible, the value of the gap measured
ARPES should be equal to the optical gap observed in
frequency dependence of the on-chain conductivity, or tw
the value of the activation gap in the temperature depende
of the dc conductivity

DARPES52Eact5Dopt52m. ~58!
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Indeed, in (TMTTF)2PF6 ARPES measures a gapD
'100 meV and thermal-conductivity measurements g
the activation gapEact544 meV,44 which is roughly one-
half.

~iii ! The third possible scenario is thatKc is small, but the
dimerization is not negligible. In this case one has to d
with a two-frequency sine-Gordon model.45 To get a qualita-
tive idea of what happens in this situation it is essential
estimate the bare values of the coupling constantsg1,2. We
know how to do this only at weak coupling, where perturb
tion theory for a quarter filled, extended Hubbard model w
~next! nearest-neighbor density-density couplingV1 (V2),
gives the following estimate36

g2}
a0

t2
@~U22V2!2~U24V11V2!14V2

2~U22V112V2!#.

~59!

Note that we need to consider an extended Hubbard m
because withoutV1,2 it is not possible to obtain a sufficientl
small value ofKc for the g2 term to become relevant.46

If both terms are relevant and the sign ofg2 is positive
then theg1 term leads to the confinement of the solitons
the g2-sine-Gordon model. This is a difficult case to hand
as the two-frequency SGM is not integrable.

If, on the other hand,g2 is negative, as is possible in the
perturbative result~59! for sufficiently strongV1, then theg1
term does not lead to a qualitative change of the physic
theg150 model. In this case the effects of dimerization w
not be essential.

Let us assume for the time being thatKc'1 and see how
our theory would compare with experiment. (TMTTF)2PF6
is a Mott insulator; the Fermi energy is estimated as 1
meV, the hopping integral in theb direction is of the order of
14 meV, the optical gapDopt52m is approximately 900 K.
Here the transverse tunneling is not large enough to o
come the Mott gap. In trying to get a detailed comparis
with our calculations one has to take into account that
ratio m/eF'1/3 is not very small here, which reduces th
chances of obtaining a quantitative agreement with any fie
theoretical approach.

(TMTSF)2PF6 is metallic; the Fermi energy is estimate
as 220 meV, the hopping integral in theb direction is roughly
20 meV, the optical gapDopt52m is of the order of 250 K.
This givesT'(0)/m'4 so that the criterion for having a
small Fermi surfaceZ0T'(0)/m.3.3 is satisfied here. Opti
cal measurements for this material show a metallic Dru
peak with a tiny amount of spectral weight~3%!, separated
by a gap from a very strong continuum. The metallic ch
acter of these compounds is due to the transve
hopping.44,47 For frequencies not too close to the gap t
observed form of the optical conductivity in the directio
along the chains is well described by the sine-Gord
model.23 This fact, together with the observed smallness
the Drude weight, indicates that (TMTSF)2PF6 may be a
candidate for application of the present theory.

An additional argument in favor of small pockets of Ferm
liquid is that not all physical properties of (TMTSF)2PF6
demonstrate the same degree of anisotropy. For example
7-10
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WEAKLY COUPLED ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B65 115117
measured anisotropy of the plasma frequency for the Dr
peaks is only of a factor of 2.48 On the other hand, for the
ratio of hopping integrals predicted by the band theory o
should expect it to be of order of (m' /mi)

1/2'10. This fact,
in combination with the smallness of the Drude weight,
dicates that the Fermi surface is small and not very an
tropic. On the other hand, many of the properties of th
materials~especially the magnetic ones! are typically one
dimensional~see Ref. 34 for a review!. Thus the overall pic-
ture is in reasonable agreement with the scenario we pre

The analysis of the Drude peak given in Ref. 42 indica
that the best fit can be obtained if one assumes freque
dependent effective mass and the scattering rates in
Drude formula

s~v!5
vp

2

4p

1

G1~v!2 ivFm* ~v!

mband
G ,

m* ~v!

mband
511

l0

11a2v2
,

G1~v!5G01
l0av2

11a2v2
. ~60!

Here G0 and l0 are the zero-frequency scattering rate a
mass-enhancement factor, respectively.42 This fit is rather
suggestive because the frequency dependance is quad
such as in Fermi-liquid theory. This feature supports
point of view that the Drude peak comes from small pock
of Fermi liquid.

There are other quasi-one-dimensional systems for wh
ARPES measurements have been performed: the blue br
K0.3MoO3, which is metallic,49 and the Mott insulator
Sr2CuO3. The latter material, however, is not a good testi
ground for our theory since the ratio of the Mott-Hubba
gap to the bandwidth is too large. The largeness of the
precludes a detailed comparison with the results obtaine
this paper. On the qualitative side the measurements dem
strate the appearance of two distinct dispersing maxima
the spectral function,50 which is interpreted as a sign of spin
charge separation.

ARPES is not the only way to ascertain the existence
quasiparticles. de Haas-van Alphen and Schubnikov-de H
effects are perfect tools when one deals with closed Fe
surfaces. Obviously, the measurements should be m
above the ordering temperature that may impose ser
difficulties.
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APPENDIX A: ELEMENTS OF RPA

In this appendix we discuss some relevant aspects of
RPA in the interchain coupling. This is most easily done
position space. We denote the right-moving and left-mov
fermion operators by black and white dots. 1D correlati
functions are denoted by encircling a number of dots,
corresponding fermion operators are then all located on
same chain. In Fig. 10 we show the corresponding diagra
for the 1D two-point functions of right movers and left mo
ers as well as the diagram for the 2n-point function of right
movers. Finally, we denote the interchain hopping mat
elementt i j (x2y) between sitesx/a0 on chaini and sitey/a0
on chainj Þ i by a dashed line. We note that the hopping
local in time.

The first few diagrams in the expansion~in the interchain
hopping! of the two-point function of right-moving electron
for initial and final point located on the same chain is sho
in Fig. 11. The contribution of a given diagram is obtain
by summing over the positions of all ‘‘internal’’ circles, tha
is, connected by a hopping line.

The RPA expression for the Fourier transform of t
single-particle Green’s function is obtained by summing
diagrams that can be split into two parts by cutting any o
hopping line, i.e., all diagrams of the type shown in Fig. 1

All diagrams neglected in RPA contain loops. This e
ables us to embed RPA into a systematic perturbative exp
sion in a small parameterk0 as follows. Let us consider an
interchain hoppingT'(k) ~for simplicity we take it indepen-
dent of the wave numberq along the chain direction! of the
form shown in Fig. 13 i.e., particle-hole symmetric but lon
ranged such that its Fourier transform is strongly pea
around the origin and the point (0,p,p). This means that in
position space the hopping islong ranged, i.e., the hopping
amplitudes are of the same order within a range proportio
to k0

21.
Every loop gives a contribution

1

V (
k

@T'~k!#2}k0
2 ~A1!

FIG. 10. Elements of the diagram technique in position spa
Only one kind of many-particle ‘‘vertex’’ is shown.
7-11
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and is thus suppressed. In this way one obtains a for
expansion in powers ofk0

2, the leading (k0
0) order of which

is given by the RPA.

APPENDIX B: FORM-FACTOR APPROACH
IN INTEGRABLE QUANTUM-FIELD THEORIES

The spectrum of low-lying excitations of the half-fille
Hubbard model consists of scattering states of gapped, s
less charge6e excitations calledholonsandantiholonsand
gapless, charge-neutral excitations carrying spin6 1

2 , the so-
called spinons.51 We introduce labelsh,h̄,s,s̄ to distinguish
between these four types of elementary excitations. T
dispersions and exact scattering matrices are known on
lattice51 as well as in the field-theory limit.52 As usual for
particles with relativistic dispersion it is useful to introdu
rapidity variablesuc,s to parametrize energy and momentu

Ea~uc!5m coshuc , Pa~uc!5m sinhuc , a5h,h̄,

Eg~us!5
m

2
e6us, Pg~us!56

m

2
e6us, g5s,s̄.

~B1!

Here we have set spin and charge velocities to 1. Let us
turn to the construction of a basis of scattering states of
lons, antiholons, and spinons. A convenient formalism to t
end is obtained in terms of the Zamolodchikov-Faddeev~ZF!
algebra. The ZF algebra can be considered to be the ex
sion of the algebra of creation and annihilation operators
free fermion or bosons to the case or interacting partic
with factorizable scattering. The ZF algebra is based on
knowledge of the exact spectrum and scattering matrix.
the SGM, the ZF operators~and their Hermitian conjugates!
satisfy the following algebra:

FIG. 11. Diagrams for initial and final points on the same ch
up to second order in the interchain hopping.

FIG. 12. Diagrams extering the RPA expression for the sing
particle Green’s function. The sum is over all diagrams of the ty
shown.
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al

in-
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he

w
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n-
r
s
e

or

Ze1~u1!Ze2~u2!5S
e

18 ,e
28

e1 ,e2~u12u2!Ze28~u2!Ze18~u1!,

Ze1

† ~u1!Ze2

† ~u2!5Ze
28

†
~u2!Ze

18
†

~u1!Se1 ,e2

e18 ,e28~u12u2!,

Ze1~u1!Ze2

† ~u2!5Ze
28

†
~u2!S

e2 ,e
18

e28 ,e1~u22u1!Ze18~u1!

1~2p!de2

e1d~u12u2!. ~B2!

Here S
e

18 ,e
28

e1 ,e2(u) are the~factorizable! two-particle scattering

matrices and« j5s,s̄,h,h̄.
Using the ZF generators a Fock space of states can

constructed as follows. The vacuum is defined by

Z« i
~u!u0&50. ~B3!

Multiparticle states are then obtained by acting with strin
of creation operatorsZe

†(u) on the vacuum

uun . . . u1&en . . . e1
5Zen

† ~un! . . . Ze1

† ~u1!u0&. ~B4!

In terms of this basis the resolution of the identity is given

(
n50

`

(
e i

E
2`

` du1 . . . dun

~2p!nn!
uun . . . u1&en . . . e1

e1 . . . en^u1 . . . unu.
~B5!

Inserting Eq.~B5! between operators in a two-point functio
we obtain the following spectral representation

^O~x,t !O†~0,0!&5 (
n50

`

(
e i

E du1 . . . dun

~2p!nn!

3expF i (
j 51

n

Pe j
~u j !x2Ee j

~u j !tG
3u^0uO~0,0!uun . . . u1&en . . . e1

u2, ~B6!

where

f O~u1 . . . un!e1 . . . en
[^0uO~0,0!uun . . . u1&en . . . e1

~B7!

are the form factors.

-
e

FIG. 13. Schematic dependence ofT'(k) on the transverse mo
mentaq' .
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