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Exchange integrals of Sr2CuO2Cl2 and Ba2Cu3O4Cl2 from LDA ¿U calculations
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The LDA1U method is used to calculate exchange integrals in strongly correlated cuprate compounds. We
distinguish two approaches. The first one compares directly the total energies of different collinear spin
arrangements with the corresponding ones of Heisenberg-like models. The second approach maps the energy of
noncollinear spin-spiral states to the mean-field solutions of the effective spin Hamiltonian. Both approaches
are applied to Sr2CuO2Cl2 which can be described with good accuracy by a two-dimensional Heisenberg
model with only nearest-neighbor exchange. It is shown that the consideration of quantum fluctuations im-
proves the resulting exchange integrals. The variation of the results withU and the difference between the two
approaches are small. Both methods have also been applied to Ba2Cu3O4Cl2 which has two coupled antifer-
romagnetic spin systems. The coupling between the two subsystems has been shown to be larger than previ-
ously estimated.
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I. INTRODUCTION

Soon after the discovery of high-Tc superconductors
~HTSC’s! it became clear that the understanding of the p
nomena is tightly related to peculiarities of the electro
structure of the parent compounds: undoped cuprates.
well established that the magnetic excitations in these c
pounds are well described by the two-dimensional~2D!
Heisenberg model. For the most studied material La2CuO4,
the exchange integral entering the model was determ
experimentally by fitting data on the spin wave veloc
found by inelastic neutron scattering1 \v5850 meV Å to
that one of quantum Monte Carlo calculations2 \v51.68Ja
(a53.79 Å) to beJ5133 meV. Alternatively,J was also
obtained from the spin correlation length3 (J5125 meV) or
by analyzing Raman scattering data (J5128 meV).4 The
calculation of exchange integrals in a ‘‘first-principle’’ wa
however, is a general and long standing problem. It app
not only for undoped cuprates but also for other transit
metal compounds. The reason for the problem consists in
insufficiency of the local density approximation~LDA !
within density functional theory~DFT!. The LDA is not able
to describe the magnetic state of such highly correlated
tems properly.5

One possible way to calculate exchange integrals in
prates uses the Emery model whose parameters can be d
mined by a constrained density functional calculation.6 In a
second step the Emery model is mapped onto the Heisen
or the extendedt-t8-t9-J model7,8 which givesJ values in
good agreement with the experimental ones. But such a
cedure involves many steps with many possible er
0163-1829/2002/65~11!/115111~7!/$20.00 65 1151
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sources. Alternative possibilities to determine exchange in
grals in a ‘‘first-principle’’ way are quantum chemical meth
ods on small clusters9 yielding antiferromagneticJ values
between 100 and 140 meV for typical 2D cuprates.

Another possibility to calculate more directly the spin e
citation spectrum from band structure methods is based
the concept of adiabatic magnetic moments.10,11 The ap-
proach consists in the mapping of constrained DFT total
ergy calculations of noncollinear magnetic structures on
mean-field solutions of the effective spin Hamiltonian. Orig
nally, the approach was constructed for itinerant system10

for which DFT calculations can be carried out with goo
accuracy within the local density approximation. Later on
was extended to rare earth metals.11 In the case of such ma
terials the hybridization of the localized 4f electrons is neg-
ligible and their behavior can be described in the atom
limit, e.g., in the Russel-Saunders scheme. But for an ap
cation to undoped cuprates the correlated electrons are
quite strongly hybridized and cannot be ignored in the ca
lation. One of the most developed ways to cure the situa
is the so-called ‘‘LDA1U ’’ approach which allows one to
include the most important on-site correlations in a Hartr
Fock-like scheme.12,13 This approach was successfully a
plied to describe various electronic properties of cupra
~see, e.g., Ref. 14!.

Here, we propose several ways to use the LDA1U ap-
proach for the calculation of exchange constants and app
to some undoped cuprate compounds. We are going
present a critical check of the method and to outline its
tails whereas some results for the case of vanadates ar
ready known~see, e.g., Refs. 15,16!. Our first application
©2002 The American Physical Society11-1
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concerns Sr2CuO2Cl2 which is a good model substance f
the 2D CuO2 plane.17,18 We will distinguish two variants of
the method. The first one compares directly the energie
different ~collinear! magnetic states with the correspondi
magnetic states of an appropriate Heisenberg-type Ha
tonian. The other variant is an extension of the method o
lined in Refs. 10,11 to strongly correlated systems. It is ba
on total energy calculations of noncollinear spiral magne
structures. We will show that both variants lead to consist
results.

In addition to the parent compounds of HTSC’s, the
exist many other low-dimensional cuprates19 which are inter-
esting by themselves due to their unconventional magn
properties. As an example we will investigate he
Ba2Cu3O4Cl2 which has a Cu3O4 plane with two antiferro-
magnetic subsystems and two Ne´el temperatures~330 and 31
K, respectively!.20–24 The coupling between the two sub
systems is crucial to understand the magnetism in that c
pound. So, our method can be used to check the param
derived previously from Rayleigh-Schro¨dinger perturbation
theory25 or the cell-perturbation method.26 Especially, we
will show that the exchange within the B-subsystem h
been overestimated and the coupling between both
systems was underestimated in the previous estimates.

II. METHOD

The most direct way to determine exchange consta
compares directly the energies of different spin arrangem
in the DFT calculation with the corresponding energies i
Heisenberg-type model

H5
1

2 (
i , j

Ji j SW iSW j . ~1!

The number of necessary magnetic states is determine
the number of exchange constants in Eq.~1!. In the simplest
case of only nearest-neighbor exchange, as for Sr2CuO2Cl2
~Sec. III A!, one has to compare only the ferromagnetic a
the antiferromagnetic solution. For a rough estimate, it
sufficient to use the classical solution of Eq.~1!. However,
we will show that the inclusion of quantum spin fluctuatio
leads to improved values of exchange constants.

The second route is based on the concept of adiabatic
moments.10,11 One has to calculate spin-spiral configuratio
corresponding to small deviations around the antiferrom
netic state. We concentrate here on compou
(Sr2CuO2Cl2 , Ba2Cu3O4Cl2) for which no magnetic solu-
tion can be obtained by a simple LDA-DFT calculatio
Therefore, for both approaches mentioned above, it is cru
to outline first the LDA1U scheme.13

The main point of the LDA1U method is the construc
tion of a new energy functional which is defined by adding
Hubbard-like term to the total energy functional in local sp
density approximation~LSDA!:

ELDA1U5ELSDA1EU2EDC, ~2!

whereELSDA is the LSDA energy functional,EU takes into
account on-site Coulomb and exchange interactions in
11511
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strongly correlated subshell, andEDC is the so-called double
counting term which subtracts the averaged Coulomb
exchange interactions already included intoELSDA. In the
spirit of the density functional approach the functionalEU is
expressed in terms of the correlated part of the density
trix, and in the basis which diagonalizes this matrix it rea

EU5
1

2 (
t i j s

Utnti
snt j

2s1
1

2 (
t i j s

iÞ j

~Ut2Jt!nti
snt j

s . ~3!

Here,Ut andJt, are appropriately averaged values ofUi j
t and

Ji j
t , the screened Coulomb and exchange integrals betw

projectors onto local basis statesut,i & andut, j & of the atomt,
and nt j

s is the corresponding spin-projected density mat
nt j

s 5(1/p)*EFdEIm^t, j uGs(E)ut, j &, with Gs(E) and EF

being one-particle Green function and Fermi level, resp
tively. For the sake of simplicity we consider further on on
this, so called spherically averaged LDA1U method. It is
worth to note that this form can be adopted only if the sp
orbit coupling is neglected. If the local symmetry of sitet is
sufficiently high ~i.e., all the localized functions transform
according to inequivalent representations of the local s
group of the site! the basisut,i & can be constructed from th
basis functions of the irreducible representation of the co
sponding point group.

The following expression for the double counting ter
was used in our calculations:13

EDC5
1

2 (
t

H UtNt~Nt21!2
1

2
Jt@Nt↑~Nt↑21!

1Nt↓~Nt↓21!#J , ~4!

whereNt↑ and Nt↓5( inti
↓ are the number of majority and

minority spin electrons in the correlated subshell of atomt,
respectively, andNt5Nt↑1Nt↓. Differentiating Eq.~2! over
orbital occupancies gives the expression for the orbital
pendent one-electron potential

Vs
LDA1U5Vs

LSDA1(
i t

~Ut2Jt!S 1

2
2nti

s D ut,i &^t,i u. ~5!

It is more convenient to rewrite this standard expressi
introducing the valueUeff

t 5Ut2Jt, and charge and spin o
each orbitalnti5nti

↑ 1nti
↓ and sti5(nti

↑ 2nti
↓ )/2 and also to

separate spin independent~V! and spin dependent~B! parts
of the effective one electron potential:

V5(
t

FVt
LSDA1(

i
Ueff

t S 1

2
2

nti

2 D ut,i &^t,i uG5(
t

Vt ,

B5(
t

S Bt
LSDA1(

i
Ueff

t sti ut,i &^t,i u D 5(
t

Bt . ~6!

Here we expressed the potential as a sum over atomic
tributions.

Since the spin-dependent part of the effective poten
enters the generalized Kohn-Sham equations similar t
1-2
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magnetic field, the noncollinear magnetic structure can
described as a corresponding rotation of this magnetic fi
on each site, which leads to the following expression for
effective potential:

Vss8
LDA1U

5(
t

VtI ss81(
t

BteW tsW ss8 . ~7!

Here I ss8 andsW ss8 are the unity and Pauli matrices respe
tively, and eW t denotes the local spin direction defined v
anglesu t and w t of atom t. Explicitly, the spin-dependen
part of the Hamiltonian is expressed as

Bss8
eff

5(
t

BtS cosu t sinu t exp~ iw t!

sinu t exp~2 iw t! 2cosu t
D . ~8!

To derive the exchange constants directly from the ene
differences between different spin-arrangements it is usu
sufficient to calculate only a very restricted number of c
linear spin arrangements. In the case of spin spirals, they
parametrized by the following arrangements of local spin

w t5w t0
1QW RW ; u t5u t0

, ~9!

wheret0 denotes the sites in the crystal unit cell.
It can be easily seen, that in this case the matrix elem

of the Hamiltonian in the basis of Bloch functionsCn
kxs

have the form

Hkns,k8n8s85S hk↑nn8dkk8 bkk8,nn8dk,k81q

bkk8,nn8dk,k82q hk↓nn8dkk8
D . ~10!

That means that only statesk,↑ and k1q,↓ are coupled,
which allows to carry out the calculations with only doublin
of the matrix, i.e., the generalized Bloch theorem introduc
in Ref. 27 for the plain LSDA calculations is still applicabl

Having calculated a set of spin spirals for different valu
of QW , w t, and u t the energy of different noncollinear spi
arragements can be mapped on the corresponding mean
solutions of Eq.~1!. Then the energy can be parametrized
a function ofeW t in the form

E~eW t!5
1

2 (
tt8

Jtt8stst8e
W

teW t8 , ~11!

wherest stands for the expectation value of the local sp
moment. More details about the determination of excha
integrals from spin-spiral states will be discussed using
example of Sr2CuO2Cl2.

As follows from the description above, a crucial para
eter appearing in the formalism is the value ofUeff . This
value can in principle be obtained from constrained LD
calculations. There were several attempts to estimateUeff
~see Refs. 6,28,29! with some uncertainty in the results sinc
it is not a priori clear which constrains have to be impl
mented. Due to the difficulties mentioned above we will co
sider a large region of possibleUeff values and we find it
very satisfactory that the resulting exchange integrals dep
only moderately onUeff .
11511
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Another important point is the choice of the correlat
subsystem, which is defined through the set of project
ut,i &. In the case of cuprates we assume that only thed
copper electrons are strongly correlated. The results are
sensible to the exact choice of the radial part of the projec
thus we took as a projector the radial solution of the Sch¨-
dinger equation in the copper sphere, corresponding to
Wigner-Seitz boundary conditions. All the calculations do
in this work have been perfomed using the LMTO method
the atomic sphere approximation~ASA! and with the com-
bined correction term30 taken into account.

In order to decrease the overlap between atomic sph
additional empty spheres~ES! were used in the calculations
For Sr2CuO2Cl2 one set of ES at the~0,0.5,0.25! position
was added. The resulting atomic sphere radii were 3.6
2.377, 2.027, 3.142, and 1.833 a.u. for Sr, Cu, O, Cl, and
empty sphere, respectively. In the case of Ba2Cu3O4Cl2 three
sets of ES with the coordinatesE1 ~0,0,0.146!, E2
~0.297,0,0.104!, and E3 ~0.198,0.198,0.195! were inserted
with the sphere radii 2.131, 1.709, and 1.609 a.u., resp
tively. For the atomic spheres the following radii~in a.u.!
were usedSBa53.878, SCuA

5SCuB
52.333, SO51.986, and

SCl53.108.
In order to estimate possible errors in the exchange c

pling constants calculated with the LDA1U method arising
as a result of the use of the Hartree-Fock approximation
the EU term of Eq. ~2! we considered ferromagnetic~FM!
and antiferromagnetic~AFM! solutions of a one-band Hub
bard model for a square lattice with nearest-neighbor h
ping in the Hartree-Fock~HF! approximation at half filling.
For any nonzero value ofU the self-consistent AFM solution
is insulating whereas the FM solution is metallic forU
smaller than the bandwidth of 8t. As a result, the difference
of the total energies of the self-consistent FM and AFM s
lutions EHF increases as a function ofU for U,8t. For U
equal to the bandwidthEHF reaches its maximum and, the
decreases approaching the well known second order exp
sion 4t2/U for U@8t, i.e., in the strongly correlated limit
The comparison ofEHF to the differenceEED between the
energies of the highest spin state and of the ground stat
the Hubbard Hamiltonian for a 334 cluster calculated using
the exact diagonalization technique31 shows that already for
U58t the difference betweenEHF/t50.466 and EED/t
50.486 is less than 5%. The difference should decrease
the further increase ofU since both energies tend to the sam
4t2/U value in the largeU limit.

Using the same model one can check the validity of
so-called force theorem~FT! by calculating the difference o
the band energies of the FM and AFM configurations us
as an input value in both cases the self-consistent AFM m
netization. ForU58t this approach gives the difference o
the band energiesEFT/t50.489 which is within 5% ofEHF,
thus showing that the force theorem can be safely use
this case.

These model considerations show that LDA1U calcula-
tions, in which the interaction of correlated electrons is d
scribed by the Hubbard-like termEU in the Hartree-Fock
approximation, should reproduce rather accurately the va
tion of the energy upon the change of a magnetic structure
1-3
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A. N. YARESKO, A. Y. PERLOV, R. HAYN, AND H. ROSNER PHYSICAL REVIEW B65 115111
least in the cases whenU is sufficiently large as compared t
characteristic hopping integrals. The latter condition is u
ally fulfilled for cuprates and, consequently, the effective e
change coupling constants obtained by mapping the ca
lated energy variation onto an effective Heisenberg mo
should provide a quite reasonable description of magn
interactions in the compounds under study.

III. RESULTS AND DISCUSSION

A. Exchange constants of Sr2CuO2Cl2

At first we use the difference in total energy between
ferromagneticEF and antiferromagnetic spin arrangeme
EA to calculate the exchange integrals of Sr2CuO2Cl2. That
energy has to be compared with the corresponding one in
spin-1/2 2D Heisenberg model~1! with only nearest neigh-
bor exchangeJi j 5J. Neglecting quantum fluctuations, th
energy differenceDE5(EF2EA)/N per copper ion (N:
number of copper sites! gives the exchange constantDE
5J. The corresponding numbers are summarized in Tab
and they indicate a rather small variation ofJ by changing
Ueff in the large region between 2 and 6 eV. That only ma
the present approach reliable. The maximum numbeJ
5165 meV occurs atUeff54 eV and the values decreas
for small and largeUeff . The decrease for smallUeff can be
explained, since forUeff52 or 3 eV only the antiferromag
netic solution, but not the ferromagnetic one, is insulati
For very largeUeff we would expect a decrease ofJ accord-
ing to t2/Ueff , but such largeUeff values seem to be
unrealistic.32

We may note that the exchange constants obtained
the classical solution of Eq.~1! are systematically larger tha
expected. The discrepancy may be reduced by conside
quantum fluctuations. The classical ferromagnetic state
also an eigenstate of the full Hamiltonian~1! such that the
ferromagnetic energy is not changed by quantum fluct
tions. But the classical, antiferromagnetic Ne´el state with an
energy of2J/2 is not the lowest eigenstate of Eq.~1!. The
ground state energy of the 2D Heisenberg model is given
22J/3 within a good accuracy~using ^SW iSW j&521/3 for the
nearest-neighbor spin correlations!.33 That defines a newJQF

by

TABLE I. Exchange constants, magnetic momentsmAF , mFM

(m5nCu
↑ 2nCu

↓ ) and spin wave velocity\v for Sr2CuO2Cl2. Ex-
change constantsJ and JQF calculated from the energy differenc
between the ferromagnetic~FM! and antiferromagnetic~AFM!
states are compared toJ1 obtained from the spin-spiral approach

Ueff ~eV! FM-AFM Spin-spiral approach
J JQF J1 J2 mAF mFM \v

~meV! ~meV! ~meV! ~meV! (mB) (mB) ~meV Å!

2 129 110
3 164 140
4 165 141 185 25 0.64 0.74 735
5 157 134 148 16 0.68 0.80 588
6 129 110 122 12 0.72 0.82 485
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JQF, ~12!

which is also listed in Table I. We see that the quantu
fluctuations give rise to a considerable improvement of
derived exchange constants which are now between 110
140 meV.

In our second approach, we calculate the total energy
the spin-spiral shown in Fig. 1 for arbitrary values ofw in a
self-consistent way. This energy~shown in Fig. 2! has to be
fitted by an expression of the form~11! with the correspond-
ing expectation values5st5^ŝ& of the local spin operator
The naive expressions5mAF/2 using only the copper mag
netic momentmAF5nCu

↑ 2nCu
↓ in the antiferromagnetic stat

underestimates the spin moment since part of the fluctua
moment sits on oxygen. That becomes evident formFM
which should be equal to unity for an insulating solution.~In
the spin-spiral approach we restricted ourselves toU54,5,6
for which both magnetic solutions are insulating.! Since the

FIG. 1. Spin-spiral state in Sr2CuO2Cl2.

FIG. 2. EnergyE(Q) as function of the wave vectorQ5uQW u for
the spin-spiral state in Sr2CuO2Cl2 for Ueff55 eV. The energy
calculated using the force theorem~FT! and the total energy ob
tained from the self-consistent calculations~TE! are shown together
with the corresponding fit to the TE curve.
1-4
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oxygen part of the fluctuating moment is hard to determi
we decided to use simply the classical values51/2 in Eq.
~11! which then reads for the spin spiral of Fig. 1

E~w!5
1

2
@J1 cosw1J2 cos~2w!#. ~13!

Usings51/2 corresponds to the neglect of quantum fluct
tions in the previous approach. From Eq.~13! we find the
exchange terms to first (J1) and second neighbors (J2) listed
in Table I. We see that the exchange to second neigh
J2525 meV ~or 12 meV! for U54 eV ~or 6 eV! is rather
small and can be neglected. It was also checked that
spirals corresponding to small deviations from the antifer
magnetic state@varying both anglesu andw in Eq. ~8! as it
was also proposed originally in Ref. 10# lead to nearly the
same exchange terms as Eq.~13! which interpolates betwee
the antiferromagnetic and the ferromagnetic spin arran
ment. The reason is that Sr2CuO2Cl2 behaves similar to a
local moment system in contrast to the ferromagnetic me
considered in Ref. 10.

Next, we can calculate the adiabatic magnon dispers
curve according to Ref. 11. The form of the spin wave d
persion has only very few deviations from that one kno
for the spin-1/2 2D Heisenberg model33 and for smallq is
linear with the velocity, given by\v52asJ15aJ1 and
listed in Table I. First of all, we note a reasonable agreem
with the experimentally found spin wave velocity\v
5850 meV Å for La2CuO4. It can be expected that the in
clusion of quantum fluctuations leads to reduced excha
terms also in the spin-spiral approach. The neglect of qu
tum fluctuations is also visible in the expression for the s
wave velocity\v52asJ1 that is different from the Monte
Carlo result for the 2D Heisenberg model (\v51.68aJ).

An alternative, cheaper way with less numerical efforts
based on the force theorem~FT!. It means that the self
consistent potential is calculated only once for the antifer
magnetic case (w5p) and for differentw only the band
energies are changed.34 The corresponding energies togeth

FIG. 3. Spin arrangement in Ba2Cu3O4Cl2 to determine ex-
change parameters.
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with a fit to Eq.~11! for Ueff55 eV are also shown in Fig. 2
leading only to small changes (J15132 meV,J2516 meV)
in comparison to a full calculation.

B. Exchange constants of Ba2Cu3O4Cl2

That compound has a Cu3O4 plane which can be under
stood as the standard CuO2 plane (CuA) where each second
square is occupied by an additional CuB in a chess-board-like
pattern. We determined the exchange constants within
‘‘standard’’ CuA subsystem (JAA), within the CuB subsystem
(JBB) and the coupling between both (JAB). For that one
needs at least four different energies

EANF52JAA1JBB/2,

EFAF5JAA2JAB1JBB/2,

EFFF5JAA1JAB1JBB/2,

EFNA5JAA2JBB/2, ~14!

whereEFNA means ferromagnetic spin arrangement in theA
subsystem, no coupling betweenA andB and antiferromag-
neticB system. The notation for all the other combinations
obvious. All energies are given for a cell of 2 CuA and 1
CuB . Using Eq. ~14! one obtains the exchange constan
summarized in Table II. The corresponding magnetic m
mentsm t

m5nt
↑2nt

↓ for t5CuA or CuB and for the different
spin statesm are given in Table III for completeness. On
may note that we findJAA in reasonable agreement with th
above derived values for the standard CuO2 plane. TheB
subsystem has an antiferromagnetic coupling which is, h
ever, surprisingly small if we compare with previously d
rived parameters using the Rayleigh-Schro¨dinger ~RS! per-
turbation theory.25 The agreement with the cell-perturbatio

TABLE II. Exchange constants of Ba2Cu3O4Cl2 derived using
the energy difference of different spin arrangements according
Eq. ~14!. The values from Rayleigh-Schro¨dinger~RS! ~Ref. 25! and
cell-perturbation theory~CPT! ~Ref. 26! are also given.

Ueff ~eV! JAA ~meV! JAB ~meV! JBB ~meV!

4 186 225 8
5 152 218 8
6 120 218 4
RS 100 26 12
CPT 170 2~4..5! 5

TABLE III. Magnetic moments m t
m5nt

↑2nt
↓ (mB) for

Ba2Cu3O4Cl2, wherem denotes the magnetic states andt5CuA or
CuB .

Ueff ~eV! mCuB

ANA mCuA

ANA mCuB

FAF mCuA

FAF mCuB

FFF mCuA

FFF

4 0.75 0.71 0.76 0.82 0.73 0.81
5 0.76 0.73 0.77 0.83 0.74 0.82
6 0.77 0.75 0.78 0.85 0.76 0.83
1-5
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method~CPT! ~Ref. 26! is better. The coupling between th
A and B subsystem is ferromagnetic according to t
Goodenough-Kanamori-Anderson rules35 as it occurs via a
90° Cu-O-Cu bond. But the amount ofJAB of roughly
220 meV is again quite different from previous estimate
In the present situation of two coupled antiferromagne
subsystems it is more difficult to calculate the effect of qua
tum fluctuations than for the simple 2D Heisenberg mo
and we did not try a quantitative estimate. By analogy
can expect that the numbers given in Table II may be sligh
overestimated by 15 to 20 %.

To check the results we investigated also a noncollin
spin arrangement depicted in Fig. 3. As this compound p
sesses a more complicated crystal structure we did not
form QW dependent calculations and limit ourself only to ca
culations withQW 50 and varying angleb ~Fig. 4!. In the
chosen spin arrangement it is not possible to determ
longer-ranged exchange terms. We may obtainJAA andJAB
by fitting the curve

E~b!5JAAcos~2b!1JABcosb1JAA
(2)cos~4b!, ~15!

yielding the numbers of Table IV. The parameterJAA
(2) , which

was introduced to improve the fit, corresponds to deviatio
from the pure Heisenberg model, i.e., to biquadratic

FIG. 4. EnergyE(b) as function of the spin-distortion angleb
for Ueff56 eV together with the corresponding fit i
Ba2Cu3O4Cl2. The notation is such as in Fig. 2.
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change. We see, however, that this parameter is small
decreases for largeUeff . Furthermore, the fit~15! has been
performed for a classical values51/2 neglecting quantum
fluctuations to be consistent with the alternative estim
above@see Eq.~14!#.

IV. SUMMARY

The two methods proposed in the present work to extr
exchange constants from a LDA1U calculation give results
in reasonable agreement with each other and with other
proaches. The methods were tested for strongly correla
cuprates which are a good testing ground due to the g
knowledge on those materials. The usage of the LDA1U
method to extract exchange constants seems to be espe
promising to obtain the order of magnitude, the sign and
ratio among different exchange terms for new materials. P
sible candidates for further studies are especially cupra
with a spin-Peierls transition,36 cuprate chain compounds o
some low-dimensional vanadates. At present the method
only applied to spin-1/2 compounds but its extension to s
tems with higher spin seems to be straightforward.

In the case of Ba2Cu3O4Cl2 we confirmed previously per-
formed estimates with respect to the signs and the order
magnitude. The absolute numbers were corrected whic
not so surprising taking into account the limited accuracy
Rayleigh-Schro¨dinger perturbation theory. That compoun
has two antiferromagnetic subsystems which are decou
in a classical description. It makes a calculation of the s
wave spectrum more involved which may be a task for f
ther studies.
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TABLE IV. Exchange constants of Ba2Cu3O4Cl2 from a fit to
the spin arrangement of Fig. 3. The values calculated using
force theorem are given in brackets.

Ueff ~eV! JAA ~meV! JAB ~meV! JAA
(2) ~meV!

4 169 ~141! 219 ~217! 21 ~20!

6 116 ~99! 217 ~215! 11 ~8!
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