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Thermodynamic limits of the local field corrections in a spin-polarized electron system
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In a spin-polarized electron gas, the effect of the exchange~x! and correlation~c! interactions can be

incorporated into the dynamic response functions through spin-dependent local-field correctionsGs
x,c(v,qW ).

We obtain the zero-frequency and long-wavelength limits ofGs
x,c(v,qW ) by analyzing the connection between

the macroscopic response function and the thermodynamic parameters of the system.

DOI: 10.1103/PhysRevB.65.113201 PACS number~s!: 72.25.2b, 71.10.2w
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The introduction of frequency- and wave-vecto
dependent local-field corrections is motivated by the nec
sity of obtaining a more realistic picture of the effectiv
electron-electron interaction. Generally, the local field c

rectionsGx,c(qW ,v) describe the deviation from the avera
electron density considered in the random-phase approx
tion ~RPA! induced by the short-range Coulomb interacti
through exchange~x! and correlations (c). Their knowledge
is very important in estimating system parameters that
influenced by the interaction, such as response functions
effective mass, and obtaining better and better approxi
tions has been a continuous effort in condensed-ma
theory.1

An important view of this old problem appears in th
context of spin-dependent interaction in itinerant magne
systems with a high degree of spin polarization. This desc
tion is appropriate for dilute magnetic semiconductor s
tems, where high values of the effective electron gyrom
netic factor g* facilitate a large Zeeman splitting an
consequently, a large magnetic polarization even at low
ues of an external magnetic field. The possibility of usi
these materials for spin-dependent applications hinges on
ability to distinguish between the spin states, a goal that
be achieved by understanding the difference in the elect
electron interaction among electrons of different spins.

A basic model for such a system is a spin-polarized e
tron gas~SPEG! under the effect of a static magnetic fie
that lifts the spin degeneracy and induces an equilibri
polarization. In this situation, it is expected that local-fie
corrections are functions of the spin degree of freedom as
short-range Coulomb interaction is spin dependent. In
present work, the system of interest is a SPEG of densin
versus a positive background to assure charge neutrality
larized by a dc magnetic fieldBẑ that creates a spin imba
ancez5(n↑2n↓)/n. z is considered a continuous functio
of B, and can take any value between21 and 1. Conclusions
based on the simple model outlined above—an electron
in the presence of a static, external magnetic field—can
be important for a situation in which the polarization is
results of a self-consistent magnetic field, given that
many-body interaction will be the same, independent of
nature of the magnetic field.

The inclusion of spin-dependent local-field corrections
the effective potential experienced by an electron of spinsW
in the presence of an electromagnetic field—an electric
0163-1829/2002/65~11!/113201~4!/$20.00 65 1132
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tential w(qW ,v) and a magnetic inductionbW (qW ,v)—can be
obtained by generalizing the classical work of Kukkonen a
Overhauser.2 This approach simply showcases the differe
interaction undergone by the up- and down-spins in the m
netic system on account of the Pauli exclusion principle. F
lowing Ref. 3 we write the self-consistent, one-particle,
fective interaction potential in the presence of the exter
field:

Vs52ew~qW ,v!1g* sW •bW ~qW ,v!1v~qW !

3H @12Gs
1~qW ,v!#Dn~qW ,v!

1
1

g*
sW •DmW ~qW ,v!Gs

2~qW ,v!J . ~1!

Here Dn(qW ,v) and DmW (qW ,v) are the electron density an
magnetic fluctuations.Gs

1 represents the sum of the intera
tions experienced by an electron of spins. These are com-
posed of exchange with spinss and of correlations with both

s ands̄. Gs
2 is the difference between same-spin interact

~correlations and exchange with other spinss!, and opposite-

spin interaction~correlations withs̄!. Same-spin correlations
are usually neglected on account of the Pauli principle t
diminishes the concentration of same-spin electrons arou
given spin.v(q) is the Fourier transform of the Coulom
interaction, equal to 2pe2/q in two dimensions and to
4pe2/q2 in three dimensions.

In a linear approximation, the density fluctuations in ea
spin population are proportional to the corresponding eff
tive potential,Dns5PssVs , where the proportionality co-
efficients are appropriately defined polarization functio
given below. The total density fluctuation isDn5Dn↑
1Dn↓ . A set of three equations, one for each direction,
needed to describe the magnetization. The longitudinal c
ponent, parallel to theẑ axis, is generated byDmz5
2g* (Dn↑2Dn↓). The transverse-induced magnetizati
arises from spin-flip processes determined byb65bx
6 iby , the components of the ac magnetic field coupled
s75sx7sy , and respectively the Pauli lowering and rai
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 113201
ing spin operators. To cover all possible cases, we define
generalized polarization functions

Pss8~qW ,v!5
1

Ld (
k

nkW2qW /2,s2nkW1qW /2,s8

\v2~ekW1qW /2,s82ekW2qW /2,s!
. ~2!

ek,s5(\2k2/2m* )1sgn(s)g* B is the single-electron en
ergy in the static magnetic field, andnk,s is the single-
electron occupation function, the usual Fermi distribution
sociated with energyek,s . V5Ld, with d52 and 3, is the
‘‘volume’’ of the system. Here, sgn(s) is equal to11 for up
spin electrons and to21 for down spins.

The knowledge ofGs(qW ,v), and especially its depen
dence onz, is very important in estimating the three differe
electron-electron interactions present in the system: up
up-down, and down-down. As in the unpolarized case,
exact v and qW dependences are very elusive, but attem
have been made to calculate the asymptotic values of
local factors at short wavelengths (q→`) and large frequen-
cies (v→`) in both two4 and three dimensions.5

The object of this paper is to analyze the asymptotic v
ues ofGs(qW ,v) at the opposite end of the spectrum, at ze
frequency and long wavelengths. In this limit, the respo
functions represent the response of the system to a static
which varies slowly in space, and can be connected with
thermodynamic parameters of the system, that are sec
order derivatives of the total free energy in respect to
particle density and magnetization. It is important to no
that this case corresponds tov being set to zero before let
ting q vanish. For an unpolarized electron system, the lim
ing procedure outlined above generates a connection
tween the static, long-wavelength, charge susceptibility
the compressibility known as ‘‘the compressibility su
rule.’’6 Our work will provide a generalization of this sum
rule to include the case of off-diagonal magnetoelectric
fects. From the appropriate sum rules we will derive t
corresponding expressions of the local factors. We comp
these results with the recent work of Ref. 4.

On account of the equilibrium magnetization, in the pre
ence of an electromagnetic perturbation, a SPEG exh
coupled particle and longitudinal spin-density fluctuatio
triggered byw andbz :

Dn5xee~2ew!1xembz , ~3!

Dmz5xme~2ew!1xmmbz . ~4!

The spin-flip fluctuations induced byb65bx6 iby give rise
to

Dm65x6b6. ~5!

In Eqs.~3!, ~4!, and~5!, the v andqW dependence of all the
quantities involved is understood. All six response functio
x can be derived by making use of Eq.~1! self-consistenly.
Here we will quote only the main results that follow th
detailed calculation presented in Refs. 3 and 5:
11320
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xee5
1

D
@P↑↑1P↓↓12P↑↑P↓↓v~qW !~GL,↑

2 1GL,↓
2 !#, ~6!

xem5
g*

D
@P↑↑2P↓↓12v~qW !P↑↑P↓↓~GL,↓

2 2GL,↑
2 !#,

~7!

xme52
g*

D
@P↑↑2P↓↓12v~qW !P↑↑P↓↓~G↓

12G↑
1!#,

~8!

xmm52
~g* !2

D
@P↑↑1P↓↓22v~qW !P↑↑P↓↓~22G↓

1

2G↑
1!#, ~9!

where

2D5@122v~qW !P↑↑~12G↑
1!#@112v~qW !P↓↓GL,↓

2 #

1@122v~qW !P↓↓~12G↓
1!#@112v~qW !P↑↑GL,↓

2 #.

~10!

The corresponding transverse susceptibilities are:

x152
2~g* !2P↓↑

112v~qW !P↓↑GT,↑
2

, ~11!

x252
2~g* !2P↑↓

112v~qW !P↑↓GT,↓
2

. ~12!

In the zero-frequency, long-wavelength limit the loca
field behavior can be related to the static response funct
of the system, as discussed in Refs. 7 and 8. By following
same argument, we obtain immediately that, for the up-s
the transverse local-field factor is:

GT,↑
2 52

~g* !2

v~q! S 1

x1
2

1

x0
1D , ~13!

while, for the down-spin, GT,↓
2 (z)5GT,↑

2 (2z). x̃0
25

22(g* )2P↓↑ is the transverse magnetic susceptibility in t
RPA.

In the longitudinal case, care needs to be exercised s
the charge and magnetic response are coupled, i.e. both
electric potential and theẑ component of the ac magneti
field simultaneously induce density and spin variations.
us first consider the situation in which only the electric p
tential is applied. Equation~4! indicates that the density fluc
tuation expected as a result of the scalar field is accompa
by a change in the magnetization of the system,Dmz . This is
easy to understand when one considers the effect of the
turbation on the local electron energies and implicitly on t
electron occupation number. Since in equilibrium the syst
is described by a spin imbalance, the induced changes
different for up- and down-spins, resulting in a nonzero ma
netization.

In the thermodynamic limit the aim is to connect the r
sponse functions with second-order derivatives of the f
energy of the system. However, these derivatives are ca
lated when only one parameter of the system varies, w
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 113201
the others are kept constant. In the problem at hand,
correct way to relate the scalar field with the density fluct
tion in the thermodynamic limit is by keeping the magne
zation constant. This is possible when, in Eq.~4! Dmz50,
with the implication that in a SPEG, a magnetic fieldbz5
2(xme/xmm)(2ew) is induced by the scalar potential. O
course, this value needs to be introduced into Eq.~3!, leading
to:

Dn5S xee2
xemxme

xmm
D ~2ew!. ~14!

The density fluctuation@Eq. ~14!#, gives rise to an additiona
pressure distributionDP, such that the corresponding pre
sure force¹P balances the average external force per u
volume, 2n¹(2ew). At zero frequency, the long
wavelength limit of Eq.~14! is then connected to the macro
scopic compressibility of the electron system,K. Based on
this argument we write

lim
q→0

S xee2
xemxme

xmm
D52nS ]P

]n D 21

, ~15!

with (]P/]n)215nK. We stress here that in all the quan
ties above,v is first set to zero, and thenq is allowed to
approach zero. By introducing appropriate expressions
the susceptibilities from Eqs.~6!–~9!, and performing the
required elementary algebra, we obtain that

G↑
11G↓

152
2

nv~q! F S ]P

]n D2S ]P

]n D
0
G . ~16!

(]P/]n)0
215nK0 is obtained from Eq.~14! in the RPA,

when allG’s are set equal to zero. The pressure of a SPE
simply P52(]E/]V), whereE is the total energy of the
system.

The electric potential can also be related to the indu
magnetization, when the density fluctuation is kept const
From Eq.~3!, the density fluctuation is zero under the app
cation of an electric potential, when a longitudinal magne
field bz52(xem/xee)(2ew) is induced. By considering Eq
~4!, we obtain the induced magnetization generated byw in
the absence of any charge fluctuations:

Dmz5S xme2
xeexmm

xem
D ~2ew!. ~17!

The longitudinal magnetization, which arises only from d
ferent density fluctuations for opposite spins, modifies
pressure distribution in the system. Since the resulting p
sure force has to balance the external force averaged per
volume, 2n¹(2ew), the static, long-wavelength limit o
Eq. ~17! is

lim
q→0

S xme2
xeexmm

xem
D52nS ]P

]mz
D 21

. ~18!

Again, by using Eqs.~6!–~9! we obtain,
11320
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G↑
22G↓

25
2g*

v~q! F S ]P

]mz
D2S ]P

]mz
D

0
G . ~19!

Similar arguments can be made when only the longitudi
component of the magnetic field is applied,bz . To obtain the
thermodynamic limit of the magnetic susceptibility, we r
quire that no density fluctuations are allowed. This impli
from Eq. ~3!, that an electric potential is induced, (2ew)5
2(xem/xee)bz that produces an additional magnetic fluctu
tion as in Eq.~4!. The static limit of the total magnetizatio
is the magnetic susceptibility of the system,x5(]mz /]bz):

lim
q→0

S xmm2
xemxme

xee
D5S ]mz

]bz
D . ~20!

Thermodynamically,bz5@]F/](Ldmz)#, since it is the con-
jugate variable of the volumic magnetization.

The density fluctuation associated with the longitudin
component of the magnetic field, obtained when the m
netic fluctuation is forced to be zero, is connected in
thermodynamic limit with (]bz /]n):

lim
q→0

S xem2
xeexmm

xme
D5S ]bz

]n D 21

. ~21!

Upon considering Eqs.~6!–~9! in Eqs. ~20! and ~21!, the
following relations for the local field corrections,Gs

2 , are
obtained:

G↑
21G↓

252
~g* !2

v~q! F S ]bz

]mz
D2S ]bz

]mz
D

0
G , ~22!

G↑
12G↓

15
2g*

v~q! F S ]bz

]n D2S ]bz

]n D
0
G . ~23!

One can immediately write down the thermodynamic limit
the local-field corrections from Eqs.~16! and ~23! and Eqs.
~22! and ~19!, respectively. The results are

Gs
1~q→0,0!52

1

v~q! H 1

n F S ]P

]n D2S ]P

]n D
0
G

2sgn~s!g* F S ]bz

]n D2S ]bz

]n D
0
G J . ~24!

Gs
2~q→0,0!52

g*

v~q! H g* F S ]bz

]mz
D2S ]bz

]mz
D

0
G

2sgn~s!
1

n F S ]P

]mz
D2S ]P

]mz
D

0
G J . ~25!

These results can be particularized for two or three dim
sions by calculating the appropriate thermodynamic coe
cients. In all cases, the dependence onz is implicit in the
thermodynamic coefficients, while that onq is the same as in
the case of an unpolarized gas of the same dimensional
1-3
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The thermodynamic limit of the local fields in a SPE
was recently analyzed in Ref. 4, with different results.
obtain the response functions of the system, the authors
ployed an equation-of-motion technique originally develop
by Caccamoet al.9 A careful examination of the latter refer
ence leads one to believe that, in deriving the equations
isfied by the charge and spin fluctuations, the fini
frequency, short-wavelength limit of the polarizatio
functions,Pss(qW ,v)5nsq2/m* v2, was used, and the fina
results were given in this approximation. The above limit
the polarization function results from a power expansion, a
is valid only whenv@qvF (vF is the Fermi velocity!. Ob-
viously, in this form one cannot take the limitv→0 for the
static case. Using the same equations as a starting poi
deriving the asymptotic expressions of the local-field corr
tions in the zero-frequency, long-wavelength limit is inapp
priate. This, we think, is the origin of the discrepancy b
tween the present results and those obtained in Ref. 4.

The general expressions for the local-field correctio
@Eqs.~24! and~25!#, can be used to obtain analytical resu
in both two and three dimensions. To determine the therm
dynamic parameters involved, we need only consider the
tal interaction energy of the system, since the kinetic-ene
derivatives will simply cancel the RPA estimate of the sa
quantities. Including the exchange and correlation contri
tions alone, we write

E5V(
s

ns@2akFs1wcs~kFs ,kFs̄!#, ~26!

where

kFs52ApFGS d

2
11DnsG1/d
S

11320
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is the Fermi wave vector for spin populations, andwcs is
the spin-dependent correlation energy per particle consid
function of both kFs and kFs̄ . a is a constant equal to
3e2/4p three dimensions, and to 4e2/3p in two dimensions.
By taking the appropriate derivatives of Eq.~26!, we arrive
at

Gs
1~q→0,0!5

a~d11!

2v~q!nd2 (
s8

kFs8F11
n

2ns8

3sgn~s8!sgn~s!G ~12s!, ~27!

Gs
2~q→0,0!5

a~d11!

2v~q!nd2 (
s8

8kFs8sgn~s8!sgn~s!

3F11
n

2ns8

sgn~s8!sgn~s!G ~12s8!.

~28!

Here s and s8 stand for contributions from the correlatio
energy, that involve first and second-order derivatives
wcs(kFs ,kFs̄) in with respect tokFs andkFs̄ . For an unpo-
larized electron systemwcs(kFs) is obtained numerically,
but we are not aware of similar calculations being done fo
SPEG.
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