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Time-dependent Ginzburg-Landau simulations of the voltage-current characteristic of type-Il
superconductors with pinning
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The dynamics of vortices in a type-Il superconductor with defects is studied by solving the time-dependent
Ginzburg-Landau equations in two and three dimensions. We show that vortex flux tubes are trapped by
volume defects up to a critical current density where they begin to jump between pinning sites along static flow
channels. We study the dependence of the critical current on the pinning distribution and find for random
distributions a maximum critical current equal to 2% of the depairing current at a pinning density 3 times larger
than the vortex line density, whereas for a regular triangular pinning array the critical current is greater than 7%
of the depairing current when the pinning density matches the vortex line density.
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[. INTRODUCTION and correlated disorder such as twin planes in Higlsuper-
conductors, we restrict the current study to volume defects
In a type-1l superconductor, dissipation is associated withwhich exclude the supercurrent.

the motion of the vortex lattick? This dissipation is reduced The paper is arranged as follows: In Sec. Il we outline the
by the presence of defects, which pin the vortex lattice up tof DGL model used to simulate vortex motion and calculate
a critical current density where depinning occurs. In manytheV—I characteristic. In Sec. Il we present the results of the
applications such as superconducting magnets, one is intefiree-dimensional simulations. In Sec. IV we study vortex
ested in optimizing the vortex pinning to achieve the maxi-motion in two dimensions and show how the breakdown of
mum critical current. However, the details of the depinningsuperconductlwty occurs via channeled vortex flow. In Sec.

transition are complex, involving the nonequilibrium dynam- Y We presentv-I curves for a two-dimensional supercon-
ics of an elastic lattice through a disordered medium. Theogu.(.:tlng slab. In Sec. VI, we study the ergndencg Of. the
retical studies based on molecular dynamics simulations su _'r|t|cal purrent on the dgnsﬂy and .dlstnbutlo'n of pinning
gest the existence of various dynamical phases of vortex'tes' Finally, we summarize the main results in Sec. VII.
motion including plastic flow, uncoupled static channels, and
coupled channef$? It is also possible to simulate vortex IIl. TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
dynamics by solving the time-dependent Ginzburg-Landau
(TDGL) equations;® where the vortex-vortex interaction is  In the Ginzburg-Landau model, a superconductor is char-
completely characterized by the Ginzburg-Landau paramete¥cterized by a complex order parameterThe local density
«. However, TDGL simulations of the voltage-current-() ~ ©f superconducting electrons is represented |j?. The
characteristic of a three-dimensional superconductor with fith€ory postulates that close to the critical temperature, the
nite x are computationally intensive, in part because thd'€€ €nergy can be expanded in a series of the form
standard explicit integration methods require very small time
steps. Although more efficient semi-implicit methods are 1 72
widely used to simulate the— o limit? and analogous prob-  F(,V A,V X A)=a||?+ = b|y|*+ =—
lems such as three-dimensional vortex dynamics in 2 2mg
superfluids'® they are not widely used for the more general 1
finite-x system. Consequently, previous studies of the effect + 2—|V><A—,u0H|2, @
of pinning on theV-I curve have been restricted to single Ko
pinning sites, and the dependence of the critical current on
the density and distribution of pinning sites has not beerwherea andb are phenomenological constants that depend
studied. on external parameters such as temperatdreenotes the

In this paper we employ a semi-implicit method to solvevector potentialH an external magnetic field, ard andmg
the TDGL equations in two and three dimensions for anyare the effective charge and the effective mass of the Cooper
«.! For intermediate values of, our semi-implicit scheme pairs. Below the transition temperatufe, a becomes nega-
is two orders of magnitude faster than explicit methods. Weive, whereas>0 for all T.
employ three-dimensional simulations to gain qualitative in- The time-dependent Ginzburg-Landau equations are ob-
sight into the depinning transition and two-dimensionaltained from the free energy functional by assuming that the
simulations to make quantitative measurements of\tHe order parameter relaxes towards an energy minimum with a
curve and the dependence of the critical current on the demrate proportional to the gradient of the free energy. Including
sity and distribution of pinning sites. Although pinning may an electric potentiadb to retain the gauge invariance of the
arise due to magnetic defects, dislocations, grain boundariesquations, one obtaitfs
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2 The dynamics of the superconductor depends only on the
y+|aly—blyl?y, dimensionless parametetsando. In Ref. 11, we suggest a
) fast and reliable numerical method to find an approximate
solution to Eqs.(9) and (10) for intermediate values ok.
1 Here we report results for the case o3 and 5 witho
— VX(VXA—puH) =], (3)  =1. The equations are discretized using a grid ok51
#o X 51 points with a grid spacinig=0.4. The gauge invariance
whereD is a phenomenological diffusion constant. Equationof the discretized equations is preserved by introducing link
(3) is the Maxwell equation for the magnetic field, where thevariables following the method of Refs. 14 and 15. The dis-
displacement curreng,E has been neglectéd.The total cretized equations are solved using a semi-implicit Crank-
currentj is given by the sum of the supercurrent, Nicholson method with a time steft=0.5. A current flow
alongx is induced by imposing a magnetic field difference
. heg €5 AB, between the upperyE10) and lower y=-—10)
lszm(‘/’*v‘/’_ YVgr)— HSW’FA' (4 boundaries. The supercurrent across the boundary is set to
zero. We impose periodic boundary conditionsxat +10
andzz=tlo. The average current density is given py
s _ =k“AB,/d, whered is the width of the superconductor. A
In=(=VO=3aA), © pinning array is produced by adding a potential term to Eq.
whereo is the conductivity. We scale the length in multiples (1) consisting of a random distribution of cubic potential
of the coherence lengtl§=7#/\/2m|al; time in 7=£2/D; the  steps with side lengta=1.2 and height/,=5.0. In agree-
order parameter iny,=/[a|/b; the vector potential im\,  ment with other studie¥, we find that the pinning strength
=\/§KHC§ where Hc=,uo|a|2/b: the electric potential in increases witha for a<¢ and saturates foa>§. A more
®,=(&/7)Ay; and conductivity in units of the normal con- sophisticated pinning model would be needed to account for
ductivity oo=1/k2D u,. The so-called Ginzburg-Landau pa- the large pinning forces observed for small defééts.
rameter is given byk?=2m?b/e*%2u,. The characteristic

e i | = i Voioa
m ‘9t+|% __3 —I%

2

and the normal current given by Ohm’s law,

length scale for variations of the magnetic fieldNs=«¢, 1. VORTEX LATTICE MOTION IN THREE DIMENSIONS
and VX A measures the magnetic field in units ¢2«H, _ _ _ _
=H,,. The Meissner-state critical field is given b, ~ Figure 1 shows a sequence of images illustrating the mo-
=1/\2x and the depairing current denditpy jD:2/3\/§ tion of the. vortex lattice through the pinning array. inly a
=0.385. In scaled units Eqé2) and(3) become small section (% 7x 20 coherence lengths with 12 pinning
siteg of the complete simulation (2020X 20 coherence
(01D h=(V—iA) 2+ h— | %, (6)  lengths with 40 pinning sitgds shown. In frame 1, six flux
tubes are visible. By comparing frames 1, 2, and 3, one sees
K2V XVXA=(VS—A)|¢|>+ o (= VD —3,A)+ x>V XH, that the central flux tubes are moving whereas the two pairs

(7) on either side are pinned. However, between frames 4 and 5

whereS denotes the phase ¢f The last term in Eq(7) can the flux.tub_es on t.he Ieft.and right jump fo the next pinning
be understood as an external currgnt with Vje, =0 and site. This differential motion between neighboring planes in
ex

can be used to model external fields or magnetic impuritie§he vortex Iattlcel p_Iays an important role in the yo!tage—
in the material. current characteristi¢see below. After frame 6, a similar

The measurable quantiti& B, {2, andj are invariant but not identical sequence recurs. For the simulations pre-
under the transformation ’ ’ sented in Fig. 1, the bending of the vortex lines is increased
by the choice of a larger value of and strong pinning.

A—A+VA, However, no entangling of vortex lines is observed. For
_ smaller k, the vortex lines become more rigid, and the be-
y— e, havior of the three-dimensional system and a two-
dimensional cross section are qualitatively very similar.
d-D—A, (8)
where A is an arbitrary scalar field. We choose the zero V- VORTEX LATTICE MOTION IN TWO DIMENSIONS
potential gaugeA(r,t)=[ dtd(r,t), in other words,d(r) We use two-dimensional simulations to study the effect of

- : 4 ; ;
=0 at all times.* For this choice, Eqs(6) and (7) become  pinning on the voltage-current characteristio\bt curve of
U iA2 2 a superconductor witk= 3, where three-dimensional effects
= (V=i S+ g= Yy, ©) are suppressed. In addition, we reduce the size and strength
_ _ 2_ 20X (VXA—H). of the pinning sites t@=0.8 ano_IVo=2.Q, respectively. In_
0 A=(VS—A)[¢]°— k*V X (VXA—H) (10 Fig. 2 we present contour plots illustrating the vortex lattice
Note that although the scalar potential no longer appear® two dimensions. Figure(a) shows the instantaneous vor-
explicity in the equations, a potential and a normal currentex distribution for a perfect superconduct@o pinning.
still arise through the time dependence of the vector potenthe vortex density is proportional to the magnetic field
tial, as apparent from Ed5). which decreases linearly from the bottom to the top. The
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FIG. 1. A sequence of three-dimensional images showing the
motion of ak=5 vortex lattice through a random pinning array.
Only a subregior(dimensions X 720 coherence lengthsf the
total simulation is shown. Twelve pinning sites indicated by black  F|G_ 2. Contour plots of the supercurrent density for a section of
cubes(not to scalgare visible. The axes are shown inset in frame 6. 5 syperconductor with dimensions Q0 coherence lengths, and
The current flows along, the external magnetic field is alomgand k=3, subject to an external magnetic field in thelirection, By
the vortices move in the-y direction. The external magnetic field —0 4. The current flows in the direction and the vortices move in
and current aré,,=0.4 andj=5x10"°, respectively. The gray they direction.(a) For a current =0.06 and no pinning, the vorti-
flux tubes correspond to surfaces of constant supercurrent densityes form a triangular lattice with lattice spacing proportional to the
|41?=0.05. The time interval between successive frames is 100. |ocal magnetic field.(b) The addition of pinning(density 0.056

£72) creates a vortex glass, which at low currefits0.004 is
vortices move upwards with a speee E/B, whereB is the ~ pinned.(c) At intermediate currents=0.005, vortex motion begins
local magnetic field and the electric fielf is constant al_on_g channels_, indicated by the gray scale image of the local elec-
throughout the sample. tric field, superlmposed on a tlme-aver.aged contour plot of.the Su-

Adding defects transforms the triangular lattice into anPS'CUent densitkd) At larger currentg =0.011, all the vortices
irregular vortex glass, Fig.(B). For low driving fields, the 2 MoVing and the electric field is nonzero everywhere; however,
vortex glass is frozen. As the current is increased, individua}he channels, where vortex motion mainly occurs, are still visible.

vortices begin to jump between pinning sites. The motion issnt defect densities. The voltage is measured by decreasing
indicated in Fig. 2 by showing the local electric fieE= the current at a very slow rate 6f1.2x10 7, and theV-I
— A, using a gray scal@darker indicating higher fie}dAs  curves are obtained from a 200-point moving average. As
in the three-dimensional simulations, Fig. 1, the motion begyr sample size is relatively small, surface effects tends to
gins along channels. The existence of static channels coRfominate. The critical current due to the Bean-Livingston
firms the results of molecular dynamics simulatidfi$n the  parrier for vortices entering and leaving the calculation
Ginzburg-Landau model channels can merge or divide at inregior? is the same order of magnitude as the pinning effect.
termediate drive currents, as shown in Figc)2At larger  |n order to study pinning only we remove the surface effects
currents, all the vortices are moving but the channels are stiu,y adding a boundary layer of widthé%n either side of a
evident, Fig. 2d). calculation regoin with width 38 Within the boundary
layer, a linear ramp potential reduces the supercurrent den-
sity gradually to zero. The current density and the voltage are
measured within the calculation regiojy|< 15) only.

The onset of vortex motion coincides with the onset of The shape of th&/-I curve is dependent on the details of
dissipation or breakdown of superconductivity. In Fig. 3 wethe vortex dynamics. The characteristic “curved foot” can be
plot theV-I curve for a two-dimensional thin film for differ- explained by the combination of an increase in the number of
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V. V-l CURVES
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FIG. 3. TheV-I curves for a two-dimensional section of super- density (in units of ¢~2) for both random distributions() and
conductor with pinning densitigérom the righy 0.14¢2, 0.2& 2, regular triangular arrays®). The data points are determined from
0.3%72, and 0.5 2 (at these relatively high densities, the critical an average of six random distributions. The error at®wn for
current decreases with increasing pinning demsi[jne thin black the high density distribution on)yindicate the standard deviation.
line corresponds to the-I curve without pinning, and the dotted An example illustrating the effect of the distribution on tkel
line shows the normal resistano&:j_ Note that at |arge currents curves is shown inset. The bold curve is a fit using the function
the slope of th&/-I curves is similar to the normal resistance curve. AX exp(—BX), whereA andB are fit parameters. The critical current

density for a regular triangular array is a maximum when the pin-
vortex flow channels and increased flow along each activ&ing density is equal to vortex line densifydicated by the dotted
channel, as illustrated in Figs(@ and 2d). The V-l curve  line).
becomes linear when all the vortices start to move. The ratio
between the/-1 curves and the normal resistar{tee dotted €xperimental ~ results on  silver doped  high-
line in Fig. 3 gives the dimensionless resistivity, which mea- superconductor¥’

sures the fraction of current carried by normal electrons. For certain random distributions one finds persistence
static channels which can dramatically reduce the critical
VI. CRITICAL CURRENT current. This is illustrated in Fig. 4nsed, where the curve

with lower dissipation at large currents has a significantly

As the current is decreased the voltage becomes zero; i.dawer critical current.
all the vortices become pinned, at some finite current which One approach to increase the critical current is to fabri-
we define as the critical current densjty. In the absence of cate a regular pinning array-%! In Fig. 4 we show that a
finite-temperature-induced fluctuations or vortex creep, theegular triangular array increases the critical currents by
value of j. is well defined. However the critical current is more than a factor of 2; however, the optimum pinning den-
sensitive to the exact distribution of pinning sites; thereforegity is sharply peaked around the vortex line density. Conse-
we average over six random distributions with the same denguently, the enhancement is only obtained within a narrow
sity. Figure 4 shows a plot of the average valug ofgainst  range of the external magnetic field. This agrees with experi-
pinning density. The maximum critical current density is mental studies where a sharp enhancement peak is obtained
about 2% of the depairing currefs . For comparison, the at matching magnetic field valuésThere are two additional
optimum critical current density of Nb-Ti alloy is 3% of  critical current peaks, one at one-third the vortex line density
ip: however, three-dimensional simulations and a differenwhere every third vortex is trappélustrated in Fig. $ and
value of the conductivity parameter are needed to make a one at half the vortex line density, which is weaker because
direct quantitative comparison. The maximum valuejof the matching only occurs on alternate planes. For small pin-
occurs at pinning density about 3 times larger than the vortexing sites @=0.8 compared to the vortex cores size pffge
line density(indicated by the dotted line in Fig.)4 maximum critical current is about 5% of the depairing cur-

The dependence of the critical current on the defect denrent jp. Fora=2 we obtainj.=0.074, which suggests
sity fits reasonably well to a function of the fordixexp  that other pinning mechanisms may be needed to obtain
(—Bx). The linear increase at low pinning density follows j¢~]p -
from the linear dependence of the critical current on the pin-
ning force. The exponential decrease at large pinning densi-
ties is due to the competing effect of supercurrent depletion
by defects. The shape of the curve and the relatively high In summary, we have studied vortex dynamics in two- and
optimum pinning density also agree qualitatively with three-dimensional superconductors by solving the time-

VIl. SUMMARY
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OO ®OD ®OO®OJ simulations. The characteristic curved foot in ¥e curve
OO0 ®DO D O O @OX®) arises due to the combination of the formation of more chan-
SO B®OCO@®ODO®OO®O nels and faster vortex flow along each channel. We use the
OO0 800 ®O O O O simulations to make a quantitative prediction of the critical
DR G0 ®00 O O @ g current in two dimensions for the particular case where the
30 20 10 o 10 20 30 dimensionless Ginzburg-Landau and conductivity parameters
X are k=3 ando =1, respectively. For a random pinning ar-

ray, we find a maximum critical current equal to 2% of the
FIG. 5. Contour plots of the supercurrent density for a section Ofdepairing current occurring at a pinning density of about 3
a superconductor with dimensions %20 coherence lengths and tjmes the vortex line density. For a regular pinning array we
«x=3, subject to an external magnetic fidy=0.4 in thezdirec-  finq 5 critical current greater than 7% of the depairing current
tion. For a currentj=0.06, the vortex lattice remains pinned by the at the vortex matching magnetic field. However, these results
defect array. suggest that additional pinning mechanisms such as magnetic
defects are required to explain the large critical observed in
dependent Ginzburg-Landau equations. We introduce pinsome experiments. Further work is needed to include mag-
ning sites by adding localized potential terms which depletanetic defects into the TDGL model.
the supercurrent and study the effect of pinning on the
voltage-current characteristic of the superconductor. We ACKNOWLEDGMENTS
show that the breakdown of superconductivity is associated
with the appearance of channeled vortex flow, providing an We thank S. J. Bending for comments. Financial support
independent check of the results of molecular dynamicsvas provided by the EPSRC.
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