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Time-dependent Ginzburg-Landau simulations of the voltage-current characteristic of type-II
superconductors with pinning

T. Winiecki and C. S. Adams
Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom

~Received 9 October 2001; published 28 February 2002!

The dynamics of vortices in a type-II superconductor with defects is studied by solving the time-dependent
Ginzburg-Landau equations in two and three dimensions. We show that vortex flux tubes are trapped by
volume defects up to a critical current density where they begin to jump between pinning sites along static flow
channels. We study the dependence of the critical current on the pinning distribution and find for random
distributions a maximum critical current equal to 2% of the depairing current at a pinning density 3 times larger
than the vortex line density, whereas for a regular triangular pinning array the critical current is greater than 7%
of the depairing current when the pinning density matches the vortex line density.
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I. INTRODUCTION

In a type-II superconductor, dissipation is associated w
the motion of the vortex lattice.1,2 This dissipation is reduced
by the presence of defects, which pin the vortex lattice up
a critical current density where depinning occurs. In ma
applications such as superconducting magnets, one is i
ested in optimizing the vortex pinning to achieve the ma
mum critical current. However, the details of the depinni
transition are complex, involving the nonequilibrium dynam
ics of an elastic lattice through a disordered medium. Th
retical studies based on molecular dynamics simulations
gest the existence of various dynamical phases of vo
motion including plastic flow, uncoupled static channels, a
coupled channels.3,4 It is also possible to simulate vorte
dynamics by solving the time-dependent Ginzburg-Land
~TDGL! equations,5–9 where the vortex-vortex interaction i
completely characterized by the Ginzburg-Landau param
k. However, TDGL simulations of the voltage-current (V-I )
characteristic of a three-dimensional superconductor with
nite k are computationally intensive, in part because
standard explicit integration methods require very small ti
steps. Although more efficient semi-implicit methods a
widely used to simulate thek→` limit 9 and analogous prob
lems such as three-dimensional vortex dynamics
superfluids,10 they are not widely used for the more gene
finite-k system. Consequently, previous studies of the ef
of pinning on theV-I curve have been restricted to sing
pinning sites,7 and the dependence of the critical current
the density and distribution of pinning sites has not be
studied.

In this paper we employ a semi-implicit method to sol
the TDGL equations in two and three dimensions for a
k.11 For intermediate values ofk, our semi-implicit scheme
is two orders of magnitude faster than explicit methods.
employ three-dimensional simulations to gain qualitative
sight into the depinning transition and two-dimension
simulations to make quantitative measurements of theV-I
curve and the dependence of the critical current on the d
sity and distribution of pinning sites. Although pinning ma
arise due to magnetic defects, dislocations, grain bounda
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and correlated disorder such as twin planes in high-Tc super-
conductors, we restrict the current study to volume defe
which exclude the supercurrent.

The paper is arranged as follows: In Sec. II we outline
TDGL model used to simulate vortex motion and calcula
theV-I characteristic. In Sec. III we present the results of
three-dimensional simulations. In Sec. IV we study vort
motion in two dimensions and show how the breakdown
superconductivity occurs via channeled vortex flow. In S
V we presentV-I curves for a two-dimensional superco
ducting slab. In Sec. VI, we study the dependence of
critical current on the density and distribution of pinnin
sites. Finally, we summarize the main results in Sec. VII.

II. TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS

In the Ginzburg-Landau model, a superconductor is ch
acterized by a complex order parameterc. The local density
of superconducting electrons is represented byucu2. The
theory postulates that close to the critical temperature,
free energy can be expanded in a series of the form

F~c,¹c,A,¹3A!5aucu21
1

2
bucu41

\2

2ms
US ¹2 i

es

\
ADcU2

1
1

2m0
u¹3A2m0Hu2, ~1!

wherea and b are phenomenological constants that depe
on external parameters such as temperature,A denotes the
vector potential,H an external magnetic field, andes andms
are the effective charge and the effective mass of the Coo
pairs. Below the transition temperatureTc , a becomes nega
tive, whereasb.0 for all T.

The time-dependent Ginzburg-Landau equations are
tained from the free energy functional by assuming that
order parameter relaxes towards an energy minimum wi
rate proportional to the gradient of the free energy. Includ
an electric potentialF to retain the gauge invariance of th
equations, one obtains12
©2002 The American Physical Society17-1
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\2

2msD
S ] t1 i

es

\
F Dc5

\2

2ms
S ¹2 i

es

\
AD 2

c1uauc2bucu2c,

~2!

1

m0
¹3~¹3A2m0H!5 j, ~3!

whereD is a phenomenological diffusion constant. Equati
~3! is the Maxwell equation for the magnetic field, where t
displacement currente0Ė has been neglected.13 The total
currentj is given by the sum of the supercurrent,

js5
\es

2msi
~c* ¹c2c¹c* !2

es
2

ms
ucu2A, ~4!

and the normal current given by Ohm’s law,

jn5s~2¹F2] tA!, ~5!

wheres is the conductivity. We scale the length in multiple
of the coherence length,j5\/A2muau; time in t5j2/D; the
order parameter inc05Auau/b; the vector potential inA0

5A2kHcj where Hc5m0uau2/b; the electric potential in
F05(j/t)A0; and conductivity in units of the normal con
ductivity s051/k2Dm0. The so-called Ginzburg-Landau pa
rameter is given byk252m2b/e2\2m0. The characteristic
length scale for variations of the magnetic field isl5kj,
and ¹3A measures the magnetic field in units ofA2kHc
5Hc2. The Meissner-state critical field is given byHc

51/A2k and the depairing current density1 by j D52/3A3
50.385. In scaled units Eqs.~2! and ~3! become

~] t1 iF!c5~¹2 iA!2c1c2ucu2c, ~6!

k2¹3¹3A5~¹S2A!ucu21s~2¹F2] tA!1k2¹3H,
~7!

whereSdenotes the phase ofc. The last term in Eq.~7! can
be understood as an external currentjext with ¹ jext50 and
can be used to model external fields or magnetic impuri
in the material.

The measurable quantitiesE, B, ucu2, and j are invariant
under the transformation

A→A1¹L,

c→ceiL,

F→F2L̇, ~8!

where L is an arbitrary scalar field. We choose the ze
potential gaugeL(r,t)5* dtF(r,t), in other words,F(r)
[0 at all times.14 For this choice, Eqs.~6! and ~7! become

] tc5~¹2 iA!2c1c2ucu2c, ~9!

s] tA5~¹S2A!ucu22k2¹3~¹3A2H!. ~10!

Note that although the scalar potential no longer appe
explicity in the equations, a potential and a normal curr
still arise through the time dependence of the vector po
tial, as apparent from Eq.~5!.
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The dynamics of the superconductor depends only on
dimensionless parametersk ands. In Ref. 11, we suggest a
fast and reliable numerical method to find an approxim
solution to Eqs.~9! and ~10! for intermediate values ofk.
Here we report results for the case ofk53 and 5 withs
51. The equations are discretized using a grid of 51351
351 points with a grid spacingh50.4. The gauge invarianc
of the discretized equations is preserved by introducing l
variables following the method of Refs. 14 and 15. The d
cretized equations are solved using a semi-implicit Cra
Nicholson method with a time stepdt50.5. A current flow
along x is induced by imposing a magnetic field differen
DBz between the upper (y510) and lower (y5210)
boundaries. The supercurrent across the boundary is s
zero. We impose periodic boundary conditions atx5610
and z5610. The average current density is given byj
5k2DBz /d, whered is the width of the superconductor. A
pinning array is produced by adding a potential term to E
~1! consisting of a random distribution of cubic potenti
steps with side lengtha51.2 and heightV055.0. In agree-
ment with other studies,16 we find that the pinning strength
increases witha for a,j and saturates fora.j. A more
sophisticated pinning model would be needed to account
the large pinning forces observed for small defects.17

III. VORTEX LATTICE MOTION IN THREE DIMENSIONS

Figure 1 shows a sequence of images illustrating the m
tion of the vortex lattice through the pinning array. Only
small section (937320 coherence lengths with 12 pinnin
sites! of the complete simulation (20320320 coherence
lengths with 40 pinning sites! is shown. In frame 1, six flux
tubes are visible. By comparing frames 1, 2, and 3, one s
that the central flux tubes are moving whereas the two p
on either side are pinned. However, between frames 4 an
the flux tubes on the left and right jump to the next pinni
site. This differential motion between neighboring planes
the vortex lattice plays an important role in the voltag
current characteristic~see below!. After frame 6, a similar
but not identical sequence recurs. For the simulations p
sented in Fig. 1, the bending of the vortex lines is increa
by the choice of a larger value ofk and strong pinning.
However, no entangling of vortex lines is observed. F
smallerk, the vortex lines become more rigid, and the b
havior of the three-dimensional system and a tw
dimensional cross section are qualitatively very similar.

IV. VORTEX LATTICE MOTION IN TWO DIMENSIONS

We use two-dimensional simulations to study the effect
pinning on the voltage-current characteristic orV-I curve of
a superconductor withk53, where three-dimensional effec
are suppressed. In addition, we reduce the size and stre
of the pinning sites toa50.8 andV052.0, respectively. In
Fig. 2 we present contour plots illustrating the vortex latti
in two dimensions. Figure 2~a! shows the instantaneous vo
tex distribution for a perfect superconductor~no pinning!.
The vortex density is proportional to the magnetic fie
which decreases linearly from the bottom to the top. T
7-2
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vortices move upwards with a speedv5E/B, whereB is the
local magnetic field and the electric fieldE is constant
throughout the sample.

Adding defects transforms the triangular lattice into
irregular vortex glass, Fig. 2~b!. For low driving fields, the
vortex glass is frozen. As the current is increased, individ
vortices begin to jump between pinning sites. The motion
indicated in Fig. 2 by showing the local electric field,E5
2] tA, using a gray scale~darker indicating higher field!. As
in the three-dimensional simulations, Fig. 1, the motion
gins along channels. The existence of static channels
firms the results of molecular dynamics simulations.3,4 In the
Ginzburg-Landau model channels can merge or divide at
termediate drive currents, as shown in Fig. 2~c!. At larger
currents, all the vortices are moving but the channels are
evident, Fig. 2~d!.

V. V-I CURVES

The onset of vortex motion coincides with the onset
dissipation or breakdown of superconductivity. In Fig. 3 w
plot theV-I curve for a two-dimensional thin film for differ

FIG. 1. A sequence of three-dimensional images showing
motion of ak55 vortex lattice through a random pinning arra
Only a subregion~dimensions 937320 coherence lengths! of the
total simulation is shown. Twelve pinning sites indicated by bla
cubes~not to scale! are visible. The axes are shown inset in frame
The current flows alongx, the external magnetic field is alongz, and
the vortices move in the2y direction. The external magnetic fiel
and current areBext50.4 and j 5531023, respectively. The gray
flux tubes correspond to surfaces of constant supercurrent de
ucu250.05. The time interval between successive frames is 100
10451
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ent defect densities. The voltage is measured by decrea
the current at a very slow rate of21.231027, and theV-I
curves are obtained from a 200-point moving average.
our sample size is relatively small, surface effects tends
dominate. The critical current due to the Bean-Livingst
barrier for vortices entering and leaving the calculati
region5 is the same order of magnitude as the pinning effe
In order to study pinning only we remove the surface effe
by adding a boundary layer of width 9j on either side of a
calculation regoin with width 30j. Within the boundary
layer, a linear ramp potential reduces the supercurrent d
sity gradually to zero. The current density and the voltage
measured within the calculation region (uyu<15) only.

The shape of theV-I curve is dependent on the details
the vortex dynamics. The characteristic ‘‘curved foot’’ can
explained by the combination of an increase in the numbe

e

.

ity,

FIG. 2. Contour plots of the supercurrent density for a section
a superconductor with dimensions 60320 coherence lengths, an
k53, subject to an external magnetic field in thez direction,Bext

50.4. The current flows in thex direction and the vortices move in
the y direction.~a! For a currentj 50.06 and no pinning, the vorti-
ces form a triangular lattice with lattice spacing proportional to
local magnetic field.~b! The addition of pinning~density 0.056
j22) creates a vortex glass, which at low currentsj 50.004 is
pinned.~c! At intermediate currentsj 50.005, vortex motion begins
along channels, indicated by the gray scale image of the local e
tric field, superimposed on a time-averaged contour plot of the
percurrent density.~d! At larger currentsj 50.011, all the vortices
are moving and the electric field is nonzero everywhere; howe
the channels, where vortex motion mainly occurs, are still visib
7-3
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T. WINIECKI AND C. S. ADAMS PHYSICAL REVIEW B 65 104517
vortex flow channels and increased flow along each ac
channel, as illustrated in Figs. 2~c! and 2~d!. The V-I curve
becomes linear when all the vortices start to move. The r
between theV-I curves and the normal resistance~the dotted
line in Fig. 3! gives the dimensionless resistivity, which me
sures the fraction of current carried by normal electrons.

VI. CRITICAL CURRENT

As the current is decreased the voltage becomes zero;
all the vortices become pinned, at some finite current wh
we define as the critical current densityj c . In the absence o
finite-temperature-induced fluctuations or vortex creep,
value of j c is well defined. However the critical current
sensitive to the exact distribution of pinning sites; therefo
we average over six random distributions with the same d
sity. Figure 4 shows a plot of the average value ofj c against
pinning density. The maximum critical current density
about 2% of the depairing currentj D . For comparison, the
optimum critical current density of Nb-Ti alloy is;3% of
j D ; however, three-dimensional simulations and a differ
value of the conductivity parameters are needed to make
direct quantitative comparison. The maximum value ofj c
occurs at pinning density about 3 times larger than the vo
line density~indicated by the dotted line in Fig. 4!.

The dependence of the critical current on the defect d
sity fits reasonably well to a function of the formAx exp
(2Bx). The linear increase at low pinning density follow
from the linear dependence of the critical current on the p
ning force. The exponential decrease at large pinning de
ties is due to the competing effect of supercurrent deple
by defects. The shape of the curve and the relatively h
optimum pinning density also agree qualitatively wi

FIG. 3. TheV-I curves for a two-dimensional section of supe
conductor with pinning densities~from the right! 0.14j22, 0.28j22,
0.39j22, and 0.56j22 ~at these relatively high densities, the critic
current decreases with increasing pinning density!. The thin black
line corresponds to theV-I curve without pinning, and the dotte
line shows the normal resistancesE5 j . Note that at large current
the slope of theV-I curves is similar to the normal resistance curv
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experimental results on silver doped high-Tc
superconductors.18

For certain random distributions one finds persisten
static channels which can dramatically reduce the criti
current. This is illustrated in Fig. 4~inset!, where the curve
with lower dissipation at large currents has a significan
lower critical current.

One approach to increase the critical current is to fab
cate a regular pinning array.19–21 In Fig. 4 we show that a
regular triangular array increases the critical currents
more than a factor of 2; however, the optimum pinning de
sity is sharply peaked around the vortex line density. Con
quently, the enhancement is only obtained within a narr
range of the external magnetic field. This agrees with exp
mental studies where a sharp enhancement peak is obta
at matching magnetic field values.21 There are two additiona
critical current peaks, one at one-third the vortex line dens
where every third vortex is trapped~illustrated in Fig. 5! and
one at half the vortex line density, which is weaker beca
the matching only occurs on alternate planes. For small p
ning sites (a50.8 compared to the vortex cores size of 2! the
maximum critical current is about 5% of the depairing cu
rent j D . For a52 we obtainj c50.074j D , which suggests
that other pinning mechanisms may be needed to ob
j c; j D .

VII. SUMMARY

In summary, we have studied vortex dynamics in two- a
three-dimensional superconductors by solving the tim

.

FIG. 4. The critical current density as a function of the defe
density ~in units of j22) for both random distributions (,) and
regular triangular arrays (d). The data points are determined fro
an average of six random distributions. The error bars~shown for
the high density distribution only! indicate the standard deviation
An example illustrating the effect of the distribution on theV-I
curves is shown inset. The bold curve is a fit using the funct
Ax exp(2Bx), whereA andB are fit parameters. The critical curren
density for a regular triangular array is a maximum when the p
ning density is equal to vortex line density~indicated by the dotted
line!.
7-4
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TIME-DEPENDENT GINZBURG-LANDAU SIMULATIONS . . . PHYSICAL REVIEW B 65 104517
dependent Ginzburg-Landau equations. We introduce
ning sites by adding localized potential terms which depl
the supercurrent and study the effect of pinning on
voltage-current characteristic of the superconductor.
show that the breakdown of superconductivity is associa
with the appearance of channeled vortex flow, providing
independent check of the results of molecular dynam

FIG. 5. Contour plots of the supercurrent density for a section
a superconductor with dimensions 60320 coherence lengths an
k53, subject to an external magnetic fieldBext50.4 in thez direc-
tion. For a current,j 50.06, the vortex lattice remains pinned by th
defect array.
C
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simulations. The characteristic curved foot in theV-I curve
arises due to the combination of the formation of more ch
nels and faster vortex flow along each channel. We use
simulations to make a quantitative prediction of the critic
current in two dimensions for the particular case where
dimensionless Ginzburg-Landau and conductivity parame
are k53 ands51, respectively. For a random pinning a
ray, we find a maximum critical current equal to 2% of th
depairing current occurring at a pinning density of abou
times the vortex line density. For a regular pinning array
find a critical current greater than 7% of the depairing curr
at the vortex matching magnetic field. However, these res
suggest that additional pinning mechanisms such as mag
defects are required to explain the large critical observed
some experiments. Further work is needed to include m
netic defects into the TDGL model.
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