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Superconductor-insulator quantum phase transition in a single Josephson junction
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The superconductor-to-insulator quantum phase transition in resistively shunted Josephson junctions is in-
vestigated by means of path-integral Monte Carlo simulations. Our numerical technique allows to directly
access the regime of the Josephson-to-charging energy Eaties. of order one. Our results unambiguously
support an earlier theoretical conjecture, based on renormalization-group calculations,Tthe dhe dissi-
pative phase transition occurs at a universal value of the shunt resiRgnde4e? for all valuesE;/Ec. On
the other hand, finite-temperature effects are shown to turn this phase transition into a crossover, whose
position depends significantly d&;/Ec, as well as on the dissipation strength and temperature. The latter
effect needs to be taken into account in order to reconcile earlier theoretical predictions with recent experi-
mental results.
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. INTRODUCTION for JJ arrays and chait$-'®In these cases an interplay be-
tween short- and long-range quantum fluctuations of the su-

Mesoscopic Josephson junctions are well known to experconducting phase in the presence of dissipation yields a
hibit a variety of intriguing phenomena which are of primary nontrivial low-temperature phase diagram® A quantum
importance both from a fundamental point of view, as well asdissipative phase transition was also discussed in the case of
for various applications including quantum-state engineeringiltrathin homogeneous superconducting wies.
with electronic devices. Among these are macroscopic quan- It is worth pointing out that the above physical picture is
tum tunneling with dissipatiohCoulomb blockadé;#mac-  not restricted to superconducting systems only. For instance,
roscopic quantum coherence, and dissipative quantum phagieis well known that the problem of a quantum resistively
transitions® Recent progress in nanolithographic techniquesshunted JJ is equivalent to that of a quantum particle diffus-
allows one to routinely fabricate ultrasmall tunnel junctionsing in a periodic potential coupled to a dissipative environ-
with capacitance€ as low as 10'°-10 1® F, and to per- ment. In this case, the phase transition from diffusion to lo-
form detailed experimental studies of various features relatedalization occurs upon increasing the coupling strength to a
to the above phenomena. dissipative Caldeira-Leggett bath’ A formally identical La-

In the course of these studies it was realized—both theograngian also describes tunneling of electrons in a Luttinger
retically and experimentally—that the observed properties ofiquid, see, e.g., Ref. 9. Similar physics was discussed for
the system may crucially depend on the nature of the effecrormal-metallic conductor€. Thus, even though below we
tive electromagnetic environment coupled to a mesoscopiwill specifically address the case of a resistively shunted JJ,
junction. One of the most remarkable consequences of thigur results can also be applied in other physical situations.
dependence for Josephson junctidds’s is the quantum According to the existing theoretical pictuté,at T=0
(T=0) superconductor-to-insulator phase transiti@&iT) quantum localization of the Josephson phase should occur as
driven by dissipation. The latter is controlled, e.g., by thethe shunt resistance becomes equal to the quantum resistance
magnitude of the ohmic shunt resistariRe of the external  unit, Rg= Rq=7rﬁ/2e2:6.5 kQ, independently of the
leads. This quantum phase transition was predicted bgtrength of the Josephson coupligg. In the limit of small
Schmid and subsequently studied in Refs. 64s&e also Josephson energigas compared to the effective charging
Refs. 3 and 9 for an extensive review of this and later theoenergy of the junctionE-=e%/2C) this conclusion can be
retical activity). Thus, at low temperatures the supercurrentustified within a perturbative renormalization-group analy-
in mesoscopic JJ's can be maintained only provided thasis. Such an analysis can then be extended to the limit of
guantum fluctuations of the Josephson phase are suppresdate E;>E by means of a duality transformation between
by dissipation. If dissipation is not strong enough, quantunthe phase and the charg&Since in both limits one obtains
fluctuations wash out the Josephson effect and no supercuan E;-independent phase boundaryRy=R,, it is reason-
rent can flow across the system. Alternatively, one can interable toconjecturethat its position remains unchanged for all
pret this SIT as a destruction of the Coulomb blockade fowvalueskE;/E including the regime of experimental interest
Cooper pairs by quantum fluctuations of the charge in arE;~Ec.
external resistoRg. Experimentally this quantum dissipa-  Although this conjecture can further be supported by a
tive phase transition for single resistively shunted JJ's wasiumber of qualitative arguments, as well as by the existence
studied in Refs. 10—13. The results of these experiments awf a self-duality poinf:® the structure of the phase diagram
qualitatively consistent with the above physical picture. for moderate valueg;/E still needs to be rigorously veri-

Similar experimental studies have been also performefied. Moreover, the results of recent experiménts could
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be interpreted asontradictingthe above conjecture. In these and/or temperatures well below the superconducting gap.
works, the samples with sufficiently largé;/Ec=7+8 Hence, in what follows this contribution will be ignored for
were found to be superconducting even for shunt resistanceake sake of simplicity.
Rgs substantially higher thaR,. This observation could sug- MC simulations with this effective action have been car-
gest that the true phase boundary should depend not only afed out by standard discretization of the quantum paths into
the amount of dissipation in the system, but also on the ratid\ imaginary-time slice$® In order to maintain the accuracy
E;/Ec. A similar conclusion could be reached from the re-of the calculation, as the temperature is lowered, the Trotter
sults reported in Refs. 10 and 15. numberN has been increased proportionally to the imaginary
All these developments motivated us to perform an additime 3. In our simulations we have takéh=4BE./#. This
tional theoretical investigation of the dissipative phase tran€hoice was proven to be sufficient in order to reach the nec-
sition in a single resistively shunted superconducting juncessary convergence of the calculated quantities: Repeating
tion, at moderate values of the Josephson coupling energye calculations for some data points with largédid not
E;~E¢. Since in this range there exists no small parametechange our results. We have employed Metropolis sampling
in the problem, it can hardly be rigorously investigated byto carry out Pl MC simulations at temperatures down to
analytical methods. Therefore, in this paper we analyze th&sT=E/125. A simulation run consists of successive MC
problem numerically by means of path-integt®l) Monte  steps, and all path coordinates are updated in each step. For
Carlo (MC) simulations. This method allows us to quantita- each set of parameters (E;/Ec,T), we generated § 10°
tively study the effect of quantum fluctuations of the Joseph-quantum paths for the calculation of ensemble-averaged val-
son phase, depending on the dissipation parameter ues. More details on this kind of MC simulation can be
=R,/Rs and the ratioE;/Ec in the interesting parameter found elsewheré?
range. In order to quantify the quantum delocalization of the
Our main conclusions can be summarized as follofiys: phase we consider the mean-square fluctuations of the quan-
Our detailed MC analysis unambiguously supports an earlietum paths
conjecture that in the zero-temperature limit the o
superconductor-to-insulator phase transition always occurs at ((6)2y=((p(7)— ¢)?), (3
the dimensionless dissipation strengtk-1, independently _
of the ratioE,/Ec, (ii) at nonzero temperatures this phasewhere=8"1[§¢(7)d is the mean value of the phase for
transition is substituted by erossover whose position de- a given path. The quantit{) was calculated by means of PI
pends on the rati&,;/Ec, as well as on temperatufieand  MC simulations with the aid of Eq¢l) and(2).
dissipation strengthy, and (iii) at T—0 this crossover line In Fig. (@ we present(5¢)?) as a function ofa for
approaches the phase-transition line=1. These observa- E;/Ec=2. Different symbols correspond to different tem-
tions allow to fully reconcile the existing theoretical picture peratures; from top to bottorkgT/E-=0.02,0.05, and 0.11.
of the dissipative phase transition in a single resistivelyOne observes that the phase delocalization increases as the

shunted JJ with the experimental rescift$? temperature is lowered. At=1 one also observes a change
of the slope in the data points. This change becomes more
IIl. QUANTUM DISSIPATIVE PHASE TRANSITION and more pronounced as the temperature is lowered, indicat-

ing the expected tendency to a vertical lineaatl andT
We proceed within the standard path-integral formulation— 0. Unfortunately the noise in the calculated values in-
of the problem outlined in Ref. 3. The grand partition func- creases a3 is reduced, especially far<1, where one ex-
tion of the system “Jdshunt” can be expressed as a pathpects an insulating regimep(delocalizeg. For a>1, how-
integral over the Josephson phage ever, the quantum paths obtained in the MC simulations are
merely confined to a single potential well, and the phase

_ _ localized (superconducting regime A similar picture is

z f Do exp(— S 41/1), @ found for all other values dE ;/E at which our simulations
. ) . have been performed. The results obtained Ey/Ec

whereSis the effective action =0.75 are presented in Fig(H) for comparison. In agree-

ment with intuitive expectations, one finds that the phase

So]= fﬁ ﬁ_z(d_qb)Z_E cose(7) fluctuations increase with decreasing rafig/E. However,
o |[16Ec\dr J the phase-transition point=1 remains insensitive to this
ratio in all cases.
< drt ﬁfﬁd fﬁd () —o(7)]? ) In Fig. 2 we show the average mean-square displacement
T 8p2)o N Sif[m(7— ')/ 3] 2 ((6¢)?) versusa for several values of the ratiB;/E¢ at a
low temperature as compared to the charging endagy
and B=#/kgT. The first and second terms 8 ¢] account, =0.0Z.. Values ofE;/Ec increase from top to bottom:

respectively, for the charging and Josephson contribution$).2, 0.5, 1, and 2. As expected, for a given dissipation
The third—nonlocal in time—term describes dissipation pro-strengtha, the phase becomes “more localized” as the ratio
duced by an ohmic resistor. An additional dissipative contri-E;/E increases, since the effective potential barrier for the
bution to the action, due to tunneling quasiparticles, is usuphase increases as well. Figure 2 also demonstrates that
ally negligibly small in the interesting limit of energies stronger suppression of the phase fluctuati@®)?) is al-
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FIG. 2. Mean-square displaceméip$)?) as a function of the
8 | b 4 dissipation strengtlx for kgT=0.02.. Results are given for sev-
. ( ) E;= 0.75 E¢ eral values of the rati&;/E. . From top to bottomE;/Ec = 0.2,
TN . 0.5, 1, and 2. Error bars, if not shown, are of the order of the
p §\§ symbol size.
A - h .
« \,
e s & \§ i ization phase transition at=1 is clearly observable in Fig.
w \z\ \\§ 3(a), since essentially no diffusion of the phase takes place at
v o4} RN - a=1 and sufficiently larges. Something similar occurs for
| 5\\5\ - other ratiosE;/Ec, as shown in Fig. &) for E;/E¢
3 TEepe. N =0.75. The main difference with the previous case is that the
5 | \‘Lw%__u_:_‘_:\ai‘ low-temperature regimé(8¢)2)=B” is reached at loweT
““‘ﬁ (Ec=30kgT).
1 Il L 'l L L 'l L 'l

In order to find the parametey, for eacha we numeri-
cally evaluated the logarithmic derivativien{(¢)%/dIn 8
=v. The valuesy obtained in this way are shown in Fig. 4 as

FIG. 1. Mean-square displacemé(i)?) as a function of the @ function ofa for E;/Ec=2. These results clearly indicate
dissipation strengtix for (a) E;=2Ec and(b) E;=0.75¢ atthree ~ a linear dependence of on « of the form y=1—a. Thus,
different temperatures: SquarekgT=0.11E.; circles, kgT ~ from our numerical analysis we can conclude that at suffi-
=0.05E; diamondskgT=0.0E. ciently low temperatures and<1 the phase diffusion is

. o ) described by the formula
ways obtained when the dissipation strengtincreases for

a given value of;/E¢. Again in all cases we observe that ((8¢)?)ocple, 4
the change of the slope in the data points(ig$)?) occurs
exactly ata=1, indicating the existence of the phase transi-
tion at this point.

Further information can be obtained by investigating the
dependence of(5¢4)?) on temperature. As expected, in our
simulations we observe that for all values®Bf/E: and «,
the quantum delocalization @f increases as the temperature
is lowered. In Fig. 8) we have plotted the temperature de-
pendence of (8¢)?) for E;/Ec=2. Different symbols rep-
resent severad values, which increase from tor&0) to A=16(
bottom (@=1.2). At low T (Ec=10kgT), for all values of«
one finds that(8¢)?) follows a power-law dependence on is the bandwidth without dissipation. F&;~ E this equa-
temperature, as shown by the dashed lines in Fig. 3n  tion does not apply anymore, but the qualitative trend re-
particular, in the dissipationless limit=0, it is reasonable mains the same: For a given value Bf the prefactor in-
to expect the quantum paths to be in a diffusive regime, sereases monotonously with decreasifyg cf. Figs. 3a) and
that ((8¢)?)«= B. This is indeed confirmed by our calcula- 3(b).
tions. In the presence of dissipation the phase diffusion slows To conclude this part of our analysis we emphasize again
down, as indicated by a decrease in the slope of the dashddat—even though we present here our numerical results for
lines in Fig. 3a). From this plot we find (8¢4)%)<B?, with  the energy ratio€;/Ec=2 and 0.75—similar behavior is
an exponenty smaller than unity foww>0. Again, the local- observed for other values of the Josephson coupling energy.

This dependence turns out to apply for all valueg/'Ec
used in our simulations. From a linear fit to our data points in
Fig. 4 we find the transition point at=1.02+0.04.

The prefactor in Eq(4) depends on botk; andEc. In
the limit E;>E(, one can demonstrate with the aid of the
instanton techniquiethat this prefactor is proportional to
A'e where

EJ 1/4

E exp(— \/8EJ/EC) (5)
C

EJ EC) 1/2
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// ] experiment. This argument imposes serious limitations on
/" a7 the observation of a SIT for sufficiently large valuesEf
Ml even atT—0. In Ref. 12 this argument was extended taking
- 3 v ol > oA T into account the accuracy of the voltage measurements. The
poto A t t th y of the voltag ts. Th
< vy " »::r:,,n ] authord? argued that for their experiment 7}, should be
v ! " ;;#—f 1 compgired With_the quantiu@yvmi_n rather'ghgn with the typical
v.8 LR S experimental time, wher¥,, is the minimum voltage de-
N 1 tectable in the experiment. They also noticed that further
; “ limitations can occur due to temperature effects.
'F 1 E To explore the latter possibility we first notice that accord-
4 1 ing to our result(4), at any nonzero temperature quantum
| L |

fluctuations do not spread the phageto infinity even for
E /KT a<1. The phase simply does not have “enough time” to
ct e diffuse, and((8¢)?) remains finite though increases with the
FIG. 3. Temperature dependence(¢6$)2) for (a) E;=2Ec inverse temperaturg. Thus, at nonzer®d and not very small
and(b) E;=0.7% at different values ofr. From top to bottom E; one might expect to observe a nonvanishing supercurrent
=0,0.2, 0.4, 0.6, 0.8, 1, and 1.2. Dashed lines indicate the loweven at small dissipation. This conclusion might appear para-
temperature trend of the data points. doxical. One can argue that, if quantum fluctuations of the
phase yield suppression of superconductivity already at
In particular, we have performed detailed MC simulations=0 (and «<1), at nonzero temperatures this suppression
also forE;/Ec=0.25 and 3, and found essentially the samecan only increase further, because of an additional effect of
behavior as the one discussed above. In all cases, from otltermal fluctuations.
numerical data we obtained unambiguous indications of the In order to understand why this conclusion might not
quantum localization phase transitionaat 1. quite be correct, it is instructive to analyze the behavior of
the (quasijcharge variabfécanonically conjugate to the Jo-
sephson phas¢. As discussed above, at=0 anda<1 the
. EFFECT OF TEMPERATURE quasicharge is localized, i.e., Cooper pairs cannot tunnel

Now let us see how the above physical picture is modifiecd®¢ross the junction due to the Coulomb blockade and, hence,
at nonzerdT. Since any experiment is performed at a finite ("€ junction behaves as an insulator. At nonzérthis be-
temperature, it is important to find out if the SIT can beNavior persists as long as the temperature remains much
observed under such conditions. smaller than the effective Coulomb gap for Cooper pairs. At

To begin with, we recall the arguménaccording to Ea<Ec this Coulomb gap is large<Ec), while in the op-
which superconductivity in Josephson junctions can be obPOsite limitE;>Ec it turns out to be exponentially small:
served even fow<<1, provided that the phase diffusion is
slow enough, in the sense that the characteristic delocaliza-
tion time 7y for the phasep exceeds the time of experi-
ment. This situation can easily be achieved in the limit of
very largeE ;> Ec . In that case the timeg is exponentially  Here w,= J8E;Ec/# is the plasma frequency anil was
large, and no delocalization effects can be detected in a redefined in Eq.(5). If the temperature becomes higher than

A al(1-a)

hwp

(6)

Ar=A(
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the gap(6), ksgT=A,, the Coulomb blockade for Cooper 7 T T
pairs(and, hence, the insulating behayi® destroyed. This
implies that the quasichard@ gets strongly delocalized due 6F o .
to thermal effects. Because of the uncertainty relation .
5F a -
5Qsp=e, W) s "Z:;ssgun

A 0% 48 .
delocalization ofQ in turn restricts fluctuations of the ca- o 4ree a § $3 8 § § g g
nonically conjugate variable—the Josephson phaseand ? N N RS |
as a result of that the superconducting behavior can be par- = A
tially restored. The same scenario can be reformulated in the MR E=2E |
phase space. One just needs to compare the typical inverse . ! ¢
time during which the phase diffuses at a distarnc@r with 1L kgT=Ec/20 i
temperature. In the limiE;>E this inverse timefi/ 7y
~A,, and we arrive exactly at the same conditikgT 0 \ \
~A, for the crossover line between “insulating” and “su- 0 5 10 15
perconducting” phases. Within logarithmic accuracy this n

crossover line agrees with the one found in Ref. 12. ~
Although the above consideration appears to be sufficient FIG. 5. Dependence of the “Matsubara resistand@(w,)

at high Josephson energieg,&Ec), no quantitative con-  *|@nl(¢#),, on n=w,pl2m, for E;/Ec=2 andkgT=Ec/20.

clusion can yet be drawn for moderate couplifigs-E . In Different symbols correspond to different values of the dissipation

order to study this parameter range one can apply a simpfirength. From top to bottom = 0.6, 0.7, 0.8, 0.9, and 1.

variational ansat? which leads to the self-consistency equa-

tions ing regime. In the first case, for sufficiently low frequencies

the function(9) should inevitably decrease with,, , while in
the second case this function should increase and saturate at
a finite value 2r/« in the limit w,—0. Thus, by studying
the behavior of the functiof9) it is possible to determine
numerically from the PI MC simulations the position of the
crossover line at different temperatures.

In Fig. 5 we present our MC results for the function
Inl{#¢)., at E;=2Ec, ksT=Ec/20, and different values

D=E,exp —($?)/2),

($?)y= kBTEn: [C(wy/26)%+ a|w,|l27+D]7Y,  (8)

wherew,=2mn/B are the Matsubara frequencies. A&0
these equations have a nonzero solutionddwhich corre-
sponds to superconductivitpnly at«>1, whereas at non- of o, One observes that for sufficiently smalthis function
zero temperature one can get a positive solufon0 also  increases with decreasingfor o= 0.6 (upper curvg satu-
for «<1. By resolving these self-consistency equations afates for «#=0.7, and decreases monotonously fex0.8

different T, one can qualitatively describe the above cross{three lower curves Thus, by studying the smati-behavior
over for moderate values &j;.

This crossover can be studied quantitatively by PI MC — 7T

simulations, using the effective action given above in ).
Superconducting

With this purpose we have evaluated numerically the corre-
lation function(¢(7)¢(0)) for different values ofg;/E, ®
dissipation strengthe, and temperaturel. After Fourier

transformation, this correlation function is directly related to

the “Matsubara resistanceR(w,,) = |wn|<¢¢>wn/4e2, which

yields the system resistance after analytic continuation to
real frequencies. This numerical analytic continuation is a
separate complicated problem, which will not be discussed
here. Fortunately, however, this procedure is not needed in
order to establish the position of the crossover line.

Let us express the above correlation function in the form

keT = E. /20
LN

~

NN
\E\\i\i‘i\
RN

N
N A
\F

r

E,/E,

keT =Eg /5

|wn|

©)

|wn|<¢¢>wnzc(

w,/2e)%+ af wn|/27+EJ '

whereE; is the effective(renormalizedl Josephson coupling

0.4 0.6 0.8 1

o

0.2

energy. It is easy to see that in the low-frequency limit the FIG. 6. Crossover lines between the insulating and supercon-

behavior of the correlation functio(®) is totally different,

depending on whethdf; remains nonzerésuperconductiv-
ity) or is fully suppressed by quantum fluctuatiaiirssulat-

ducting regimes at two different temperatures] = E/5 (squares
and kg T=E/20 (circles. Symbols are data points obtained from
PI MC simulations. Dashed lines are guides to the eye.
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of this function for differente values andce;/E ratios, we  junctions occurs at the value of the shunt resistaRge
arrive at the crossover line for the temperatkigd =E-/20. =R, irrespective of the rati&;/Ec. For <1, quantum
Other temperatures are treated analogously. diffusion of the Josephson phageyields a simple scaling

The resulting crossover lines are presented in Fig. 6 fodependencé(d¢)2)=T* 1. Finite-temperature effects turn
two temperatureskgT=E/5 andE-/20. In full agreement the phase transition into@ossoveywhose position depends
with the above qualitative considerations, one observes thain the ratioE;/E, as well as on the dissipation strength
the position of the superconductor-insulator crossover line i&and on temperature. Our results are fully consistent with re-
shifted towards larger valueB,;/E. as the temperature is cent experimental finding$:*3
lowered. The same trend is observed for all other tempera-
tures used in our simulations. Combining these results with
those discussed in the previous section, one arrives at the
conclusion that the crossover line should approach the phase- It is a pleasure to thank P.J. Hakonen and M.A. Paalanen
transition linea=1 in the limit T—0. We would also like to  for providing us with the results of their workprior to its
point out that the position of the crossover line obtainedpublication and for stimulating discussions. This work is part
within our MC analysis is fully consistent with that found of the CFN(Center for Functional Nanostructujesipported
experimentally in Refs. 12 and 13. It appears, therefore, thaty the DFG(German Science FoundatiorC.P.H. acknowl-
deviations from the theoretical prediction for the phaseedges partial support from CICYTSpain under Contract
boundarya=1 observed in these experiments can be attribNo. BFM2000-1318. A.D.Z. acknowledges partial support
uted to finite-temperature effects. from ULTI-IIl of the EU (Contract No. HPRI-1999-CT-

In summary, the results of our MC simulations unambigu-00050 and the hospitality of the Low Temperature Labora-
ously demonstrate that the quantuiii=0) superconductor- tory of the Helsinki University of Technology, where a part
insulator phase transition in resistively shunted Josephsoaf this work has been performed.

ACKNOWLEDGMENTS

1A.0. Caldeira and A.J. Leggett, Phys. Rev. Ldf, 211 (1981); 15y, Takahide, R. Yagi, A. Kanda, Y. Ootuka, and S. Kobayashi,
Ann. Phys.(N.Y.) 149 374(1983. Phys. Rev. Lett85, 1974(2000.

2D.V. Averin and K.K. Likharev, inMesoscopic Phenomena in *®D.B. Haviland, K. Andersson, and Pgfen, J. Low Temp. Phys.
Solids edited by B. L. Altshuler, P.A. Lee, and R.A. Webb 118 733(2000.
(Elsevier, Amsterdam, 1991p. 173. 17s.v. Panyukov and A.D. Zaikin, J. Low Temp. Phyz5, 361

3G. Schm and A.D. Zaikin, Phys. Re98 238(1990. (1989.

4Single Charge Tunnelingvol. 294 of NATO Advanced Studies 18p Bobbert, R. Fazio, G. Schpand A.D. Zaikin, Phys. Rev. B5,
Institute, Series B: Physicedited by H. Grabert and M.H. De- 2294(1992.

voret (Plenum, New York, 1992 For a recent review, see R. Fazio and H. van der Zant, Phys. Rep.
SA. Schmid, Phys. Rev. Letbl, 1506(1983. 355, 235(200)).
6S.A. Bulgadaev, Pis’'ma Zzh. K8p. Teor. Fiz.39, 264 (1984  2CA.D. Zaikin, D.S. Golubev, A. van Otterlo, and G.T. Zimanyji,

[JETP Lett.39, 315(1984)]. Phys. Rev. Lett.78, 1552 (1997; Usp. Fiz. Nauk.168 244
"F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. L®4.263 (1998 [Phys. Usp42, 226 (1998].

(1985. 2IA. Bezryadin, C.N. Lau, and M. Tinkham, Natufeondon) 404,
8M.P.A. Fisher and W. Zwerger, Phys. Rev.38, 6190(1985. 971 (2000.
%U. Weiss, Quantum Dissipative Systeni#/orld Scientific, Sin-  22S.V. Panyukov and A.D. Zaikin, Phys. Rev. L&, 3168(1991);

gapore, 1999 D.S. Golubev and A.D. Zaikin, cond-mat/0104310npub-
10R, Yagi, S. Kobayashi, and Y. Ootuka, J. Phys. Soc. 86n3722 lished.

(1997. 23Quantum Monte Carlo Methods in Condensed Matter Physics
1y, Shimazu, T. Yamagata, S. lkehata, and S. Kobayashi, J. Phys. edited by M. SuzukiWorld Scientific, Singapore, 1993

Soc. Jpn65, 1906(1996; 66, 1409(1997). 24C.P. Herrero, G. Schm and A.D. Zaikin, Phys. Rev. B9, 5728
123.s. PenttilaU. Parts, P.J. Hakonen, M.A. Paalanen, and E.B. (1999.

Sonin, Phys. Rev. LetB2, 1004(1999. ®The lowest temperatureT(-80 mK) achieved in the experi-
13, S. PenttilaP. J. Hakonen, E. B. Sonin, and M. A. Paalanen, J. ments(Ref. 12 was considerably higher thaV,,,/ks. Hence,

Low Temp. Phys125 89 (2001). it appears that in these experiments temperature effects impose
1A J. Rimberg, T.R. Ho, C. Kurdak, J. Clarke, K.L. Kampman, and  more serious limitations as compared to those related to the

A.C. Gossard, Phys. Rev. Left8, 2632(1997. accuracy of the voltage measurements.

104516-6



