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The square lattice structure of Cuf@yers and the strongly correlated property of electrons indicate that the
high-T. superconductivity in cuprates can be described by an intrinsig(SP coherent pairing theory in
which a SY,(2)xXUc(1) gauge symmetry is embedded. Besides the usual charge order, thi2)SU
X Uc(1) gauge symmetry is also related to three new magnetic-charge orders—the local AF magnet, the local
spin current, and the-wave charge order. These magnetic-charge orders are completely determined by the
SOy (5) coherent pairing state. The magnetic and charge fluctuations that characterize the low-energy excita-
tions in cuprates are then described by this gauge symmetry. Thus, the coexistence of antiferromagnetism and
superconductivity can be realized naturally in a unified framework.
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. INTRODUCTION as SQ(5)] superspin symmetry between the AF and dSC
phases? Furthermore, in the underdoping region, especially
The study of low-energy quantum fluctuations in stronglyaround 6~1/8, neutron-scattering experiments to
correlated systems is one of the most difficult problems inLa,_,Sr,CuQ, show clear evidence of incommensurate
theoretical physics. In copper oxides, the low-energy propermagnetic excitations disposed symmetrically abofrf).”
ties of electrons are indeed the central issue in the study ofhe discovery of incommensurate peaks brings another im-
the highT. superconducting mechanism. Up to date, therdoortant issue, i.e., the pos.smle existence of a stripe pfase.
exist no proper skills and tools to deal with low-energy quan-very recently, many experiments confirmed that commensu-

tum fluctuations of strongly correlated electrons. Howeverrate and incommensurate magnetic excitations exist in both

solving a strongly correlated problem crucially depends or‘w :IILaSsCt(ﬁeagdti\r(ni(I:(goC(i)r?perre ﬁ)élgesn:jn etlhveveu;kden:goﬁgt?c as
how to extract the relevant degrees of freedom that charac- P bing regiorsa 9

terize low-energy excitations observed in experiments Degrderin can coexist with the dSC phase in a certain doping
- ) " “~range” Such universal properties naturally lead one to ask

termining the low-energy degrees of freedom mainly relie§,nether there exists an intrinsic symmetry to underlying

on intrinsic symmetry breakings of the system. In this paperihaqe low-lying magnetic and charge degrees of freedom

| show that the low-lying magnetic properties observed ovel,or 5 large range of doped cuprates.

a large doping range (0.856<0.25) in cuprates® may Based on the square lattice structure of Gu&yers and

be controlled by a S|(2)XUc(1) gauge symmetry, here the strongly correlated property of electrons, | investigate

the subscriptsM and C representing magnet and charge, various intrinsic dynamical symmetries in cuprates. | find

respectively. that the low-energy physics of highs cuprates may be de-

In accordance with experimental observations, High- scribed by an intrinsic SEX5) coherent pairing theory in
superconductivit(SC) arises as a consequence of h@e  which a SY,(2)XUc(1) gauge symmetry is embedded. The
electron) dopings from the parent copper-oxide compoundssQ,,(5) coherent pairing state consists of the singlatave
which are antiferromagnetidF) Mott insulators? In the AF and thed-wave pairs plus tripletr pairs so that it can de-
phase, which is very close to half-filling?&0.03), the low-  scribe the coexistence of antiferromagnetism and supercon-
lying excitations are mainly the spin-density-wa(@DW)  ductivity. The magnetic and charge fluctuations that charac-
fluctuation with respect to the S{P) spin rotational terize the low-energy excitations in cuprates are then
symmetry’ In the optimal dopings (0.556<0.3), the controlled by the SiJ(2)x Uc(1) gauge symmetry which is
d-wave SC(dSO order implies that the low-lying excita- related to three new magnetic-charge orders—the local AF
tions should be dominated by phase fluctuations associatetlagnet, the local spin current, and tliewave charge
with the U;(1) charge symmetry, based on Anderson’s resoorder—plus the usual charge order.
nant valence bontRVB) theory? In this picture, the AF and This paper is organized as follows. In Sec. I, | present a
dSC phases are considered to be well separated. Between teneral theory of many-electron square lattice systems, based
AF and dSC phases, there is a pseudogap phase which mey the coherent-state theory of the dynamical grouggst
be described by an intrinsic $(2) gauge symmetry° Then in Sec. Ill, | discuss the dominated low-lying degrees

However, the optimally doped YB&wOg, 5in SC phase of freedom in cuprates. Also, | analyze various possible
displays a sharp magnetic resonance centeredrat)(in  gauge symmetries and show that the best candidate for high-
reciprocal spacewhich obviously cannot be explained by T. superconductivity is the magnetic-charge mixed,$2)
the breaking SU(2) charge gauge symmetry. Zhang X U(1) gauge symmetry embedded in the JB) coher-
proposed' that the magneticr resonance may imply the ent pairing states. In Sec. IV, a conclusion is given and per-
existence of a breaking §0) [denoted specifically hereafter spectives are discussed.
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Il. COHERENT-STATE MANY-BODY THEORY Explicitly, to determine the low-energy physics of a
AND THE ASSOCIATED GAUGE SYMMETRY many-electron system, it is very useful to start with the
many-body coherent-state thedfyUsing the generalized

The existence of an intrinsic symmetry in condensed mate 5o rate theofy?°| can define a general quasiparticle

ter systems depends not only on basic interacting propertie icture in terms of the S@) Nambu basis as follows:
of electrons, but also on crystal structures of the corresponad-

ing materials. In general, in terms of the 8-dim basis of sq8)

charge, spin, and crystal wave vecian the reduced first a|0)=0 — By|Qso(sy=0. 3

Egggu;nrﬁg)r:i?ﬁutge (I;())nslyr/]:r?rrr?ecttrl;l% ﬁfrCttLoeniigh?:t';fngaceTge qua_sipe}rticlebvacuum statee., physical ground state

conductors, the conductivity is mainly in the Cuf@yers. In |©2s0(s) Is given by

such a two-dimensional square lattice plane, the symmetr _

betweenk and —k reduceqs the genereﬁ(eb group }c/o a g |QSO(8)>_Q(77)|0>: @

smaller subgroup S@). The RVB W (1) and SW(2) whereQ(#n)eSO(8)/U(4), and it can bexpressed as

charge gauge%symmetrl@‘e‘é0 as well as the S@5) super-

spin symmetry  are all subgroups of S@). However, nei- ,

ther the RVB (1) and SY(2) gauge symmetries nor the 9(77):1;[ exp 7s(K) A&+ 74(K) Ay + mp() AT,

SO,(5) superspin symmetry can encompass the low-energy

physics of cuprates. + n,.(K)- A;k— H.c}. 5)
To be more explicit, | introduce a Nambu basis]

=(ay,a_y), where af=(cl,,c ,cl,o1.Cl o) and a_y

=(C_k1,C—k;sC—k+Q1:C—k+0)). The S@8) is then a trans-

formation group with respect to the Nambu badig. It is

In Eq. (5), the pairing wave functiong g , ~(k) are gener-
ally link-dependentomplex parameters with an additional
constraintzs g . »(K) = 7s,4,p,-( — k) due to the parity sym-

; : ) metry.
generated by the following 28 composite operators: The statel Qso(s) is nothing but the S@)/U(4) coherent
ot afAf ot pairing state which is the underlying pairing state | proposed
t . kMl %k k=i & -k : . i 022
V! Osoey V= et | (1) recently to describe higfi; superconductivity? As | have
a_Ajay —a_gbja discussed in Ref. 23555y consists of all electron pairs

concerned in the study of superconductivity. These pairs

wherek is restricted in the reduced first Brillouin zona, o . .
can be classified according to the symmetric property of the

nd its tran iti re 4<4 Hermitian matri nd; . . h
and its transpositioby are ermitian matrices, and pairing wave function under the transformation lofto k

and its Hermitian conjugatd; are 4x<4 antisymmetric ma +Q as follows: 74(k)= 74(k+Q) represents the isotopic

trices. The 28 generators in E{.) consists of 12 pair opera- swave and d,-wave (~sinksink,) singlet pairs, etc.,

tors and 16 particle-hole operators. The 12 pair operators ) . .
include the is%tropics—wavelap(or the d -wave”g) pair%e- 74(K) =~ nq(k+Q) describes the extended singlet pairs
xy

. including the extendeg-wave[ ~ y(k) = cosk,+cosk, ], the
noted by Ag, the extendedswave ord,2_2-wave pair é—wave ?N d(k) - cosk —cosk[y] yagnc)j e X(s+id;<Y\]Nave
A4,%° the quasisping pair A, ,'® and the three tripletr oSk A > il K= (K

irsA_,* plus their Hermitian conjugates. These pair 0 _(~coskyticosk,) pairs, etq, while 7,(k)= 7,(k + Q) cor-
pairs A, pius Jug ' P + P responds to the pseudospin pairs, and finaly,(k)
eratorsT caq ?eT represe_nted _h;/ikza_kAiak and A = — .(k+Q) describe the tripletr pairs.
:(lAikZ) X:_aléA;“—_k'o yW'}hZ _':S'd’p'“' and A Meanwhile, apart from a phase factff,sog) is directly
=2(Y L1y Y iy Yy, YT y"y); here, the y matrix i gpiained by acting S®) on the trivial vacuum0),2 while
given in the standard Dirac representation in field theory: iha associated phase factor contains the freedom )

gauge transformations that describe quantum fluctuations of
50= .y , 2) all the pairing wave functionsy; 4, »(K). Explicitly, let
0 -l -0 0 g(a) be a general S@) unitary transformation andx

=:{a;,i=1,...,28 are the corresponding transformation
parameters. The group theory tells*ushat g(a) can be
uniquely decomposed aga) = (7)h(b), whereh(b) is a
U(4) unitary transformatiorfgenerated by the 16 particle-

and y°=iy%y*yYy%. The 16 particle-hole operators are
the spinS, the chargeQ, the SDW S,, and the charge
density wave (CDW) Cq plus their d-wave partners,

namely, thed-wave spin and charge operators denoted b%ole operators in the S8 groug that keeps the trivial

A and Y, the spin curentJs, and the charge cur vacuum|0) invariant up to a phase factor, a2l ») is an
rer_1t Je. rgs_pectwely. Tr;ese 16 c:p?rators can beelement of the coset space @BU(4) defined explicitly by
written explicity by B = aybjay—a_bja’,, where b, Eq. (5). Then

=3(12,7°,7/21,9°¥12,9°,1 v*7°, vy°12,y°9°¥I2)  with | o '

=Q,Y,J5,S5.Cq.Jc,A,S. Physically, the 28 generators of 9(a)|0)=Q(5)h(b)|0)=Q(7)|0)e®. (6)
SQ(8) correspond to 28 order parameters that encompass all

possible low-energy degrees of freedom of a square lattic®bviously, any further S@) unitary transformation can be
interacting Hamiltonian. However, because of the furthereduced to a () transformation in the coset space B8O
constraint of some intrinsic symmetries, not all these 28 orU(4) which is in one-to-one correspondence to the coherent

der parameters can independently coexist. pairing stategQsqg) (Ref. 13:
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g(a/)Q(,7)|0>:Q(,]/)|0>ei¢’_ (7) Zs 4,0, (K). Meantime, the above discussion shows that the

coherent-state theory provides a gauge theory realization of
This indicates that the subgroug4)in the dynamical group  many-body quantum systems.

SQ8) is a gauge group embedded in the coherent pairing

state|{so(ey. Once the coherent pairing staf@so(sy IS |11 DOMINATED LOW-LYING DEGREES OF FREEDOM

s:pecn‘led, the gauge freedom is f!xed. The nonzero expecta-  AND THE SUy(2)XUc(1) GAUGE SYMMETRY

tion values of the (4) generators njﬂso(g)> correspond to _ _ _ _

a spontaneous gauge symmetry breaking of the associated Since highT; superconductors are obtained by doping the

gauge degrees of freedom. Thus, thig)Ugauge symmetry parent copper oxides which are AF insulators, to demonstrate

can describe indeed all the low-energy excitations inducediow can this picture be realized P§2so(8)) and what must

by the quantum fluctuations of the pairing wave functionsthe necessary low-lying degrees of freedom be involved, |

7s,d,p,m(K) - should first check the AF order parameter and the hopping
On the other hand, from Eq#4) and (5), one can easily dynamics contained ifi2so(sy. Without loss generality, |

show that the quasiparticle operator8l(s,) are deter- definez,(k)=z,(k)a whereay is the normalized Nl spin

mined by the corresponding $8 Bogoliubov transforma- order, |e|=1. Then the AF order is given by the matrix

tion with respect tdQsog),* element ofSq in [Qsosy:
B ay W(k)  —Z(k)\ [ a _1 1o 4
- 1 )= Mar={(Qso@l5 > ChaapCisopl Lsos)
(ﬁik) A ot )Q () (z*<k> WA(K) )(a*_k)' N2 %
2

_ 4 * *
It is also not difficult to find that the Bogoliubov transforma- "N [2KZ(K)+zg(0za(k) e, (12)

tion matrix is given by

Z

where N is the total number of lattice sites. Hoppings are

. _ t _
sinV7 T (K) (k) described byH,_ =2, &yt (K)Cy,Cre» Wheree, (k)=
Z(k)zn(k)M, — 2t(cosk,+cosk,)—4t'cosk,cosk,. For the leading hop-
v (k) m(k) ping Hamiltonian, its expectation value 5o (s) is
W(K) = l4—Z(k)Z'(k), C) ,
) (H)=(Qsoe)| X e1(k)ck,CuolQsoe) =42 " e1(k)
with ko k
0 k) k) 7k X[zs(k)zg (k) +z¢ (K)zg(K)]. (13
1 2 3
_ Equation (12) simply tells us that the AF state mixes the
(k)= m(k) 0 7a(k) - s(k) extended singlet paird 4 and the triplet pairs\ ., , while
—m2(k)  —ma(k) O 76(K) Eq. (13) shows that the hopping requires the simultaneously
—m3(k)  —ms(k)  —me(k) O presence of the singlet pairs afy and Ay, when all elec-

(10) trons are paired in the low-energy state of E{). As a
) - result, a realization of the AF to dSC phase transition via the
and the elements im(k) are related to the pairing wave state|()gqq) involves at least the singlet pairs afy, and
functions 7 4 5 »(k) of Eq. (5) by 7, o(k)=ns(k) = ng(k), Ay, plus the triplet pairs\ .

724K) = 77(K) £ 7p(K),  m2(K)=7,(K), and zs(k)= In order to dynamically determine the necessary low-
— 77, (k). Similarly, we can write the Bogoliubov transfor- lying degrees of freedom in the high., one must start with
mation matrixZ(k) as the basic interactions of electrons in cuprates. It has been
commonly believed that the Hubbard model serves as a para-
0 zy(k)  zp(k)  z3(k) digm for strongly correlated electrons on a lattice:
—z,(k) 0 z,(K) z5(K) =Ht,lt)/+u2irf1mr?il. In the space of S@), the leading
Z(k)= , (11 contribution of theU term is
W7 a0~z 0z |
2
—z3k) —z5(k) —zg(k) O Hy\ n° 1
(0 a0 Tl <m>:W+zcé+lAs|2+lAp|2—MiF, (14

wherez; (k) = z4(k) £24(K), 24 (k) =27(k) £z,(k), z5(K)

=z (k), andzs(k) = — 2z, (k). This is another expression of wheren is the total number of electron€, the CDW order
the pairing wave functions, and they are in one-to-one corParameter,

respondence tgs 4 ~(K) of Eq. (5) by Eq.(9). Thus, either 1

the pairing wave functionsys g »(K) or zg 4, »(k) can Co=—(Q ol e Q

equivalently determine the low-energy properties of the Q N< SO(B)'% aCh Qo] so(e)
many-electron square lattice systems. In practice, as one will 4

see in the next section, it is more convenient to express =_ > [25(K)Z5 (K) + 2% (K)Zp(K) ], (15)
physical observables in terms of the pairing wave functions N %

104513-3



WEI-MIN ZHANG PHYSICAL REVIEW B 65104513

and A and A, are the order parameters of the isotropicd-wave pairs and they pairs in terms of the CDVC,, the
swave pairing(or the d,,-wave paij and the quasispimp  charge currend., the d-wave type chargé, and the usual
pairing, respectively. Equatiofi4) shows that for a positive chargeQ. Note that i”|QsoC(5)>, the CDW ordelCy must be

U the Hulc_)t_)ard interaction_ SUpPresses the formation of thedccompanied by the charge current ordérbecause of the

E-V\t/a}ve palrflng ‘?‘”d/:hF?NPal')“”gdaShjlve” as tug EDIYV Iorder constraint of the SK(2) gauge group. Meantime, the charge
ut favors torming €€l orderMia In Which all €lec- ., rent orderJ, is physically manifested by the staggered

trons are paired as the singlet pakrg, mixed with the triplet flux x. or the d-density-wave(DDW) order yq. Explicitly

pairs A [see Eq(12)]. In contrast, for a negative, the these charge-oriented order parameters given in the state
Hubbard interaction favors forming tteewave andz pairs 9 h h P: h 9 )
but suppresses the AF order. This manifests exactly thi2squ(s)) are the same as that in the stftbso(sy:

particle-hole symmetry with respect to the positive and nega-
tive U at half-filling where the hopping Hamiltonian has no
contribution. g Pping Xs= N(QSO(BJ% 7(k)ClUCK+QU|QSO(8)>
When cuprates are doped, the hopping Hamiltonian plays
an important role. Equatiofil3) has shown that a nonvan- 4i , . .
ishing of the leading hopping in a pairing state requires the =N ; Y(K)[zZp(k)zg (k) —z5 (K)zg(K)],  (18)
presence of the isotropgwave (or d,,-wave) singlet pairs
even though such pairs are suppressed byltherm. The 1
next leading hopping contribution  (Hy/) - (0 dixe! ¢ 0
=43 [y (K)Zi|z(K)|?] (i=s,d,p,7) does not favor form- Xd N< So(s)'% (K)o B+ ool so(a)
ing any specific pairing. Hence, the low-energy pairing state 4i
of the Hubbard model that gives the best kinetic energy _ v * LY ok
should be the statf)gn(g) consisting only of the singlet N 2k“ d(Lza(k)z, (k) =23 ()Z(k)], - (19)
pairsAg andA 4, plus the tripletsr pairsA , but no % pairs
Api, 1.8, mp(k)=0 in Eq.(5). respectively, and the CDW order parametgrhas been cal-
Zhang's SQ(5) superspin theoly is built with the sin-  culated in Eq.(15). Hence, the coherent pairing state
glet pairAq plus the triplet paird\ ; only. The corresponding |Qsoc(5)> covers the SY(2) RVB gauge theoy*® and the

coherent pairing state can be generally expressed as recently proposed DDW ordé&t.The staggered fluy and
the DDW orderyq are just two different representations of
1Qsoe)=11" explna(k)Al+ n.(k)- AT, —H.c}|0) the charge current/,. Recently, the DDW state was pro-
k

posed to be the observed weak magnetic order in the dSC
state*?* However, the DDW and staggered flux phase must

I1" exp{#n.(k)-Al,—H.c}|AF) coexist with the CDW[see Eq.(19)] if the swave and
K d-wave singlet pairs coexist. But the CDW has not been
=< or observed in the dSC state. Albﬁsoc(;,)) has no active spin
) degrees of freedom so that it cannot describe the observed
[T exp{af.(k)- AL, —H.c}d v AF magnetic peaks in doped cuprafeFherefore, most
K likely there is no DDW state in cuprates based on the present
=[S0,(5)), (16) theory.

From the above analysis, one can see that the low-lying
degrees of freedom in cuprates are dominated by the singlet
pairs of Ay and Ay, plus the triplet pair\ ,, and the asso-
0(i,iated particle-hole orders contained in thétlUgauge sym-
metry. The low-energy ground state determined from the
Ii—_lubbard model and the experiments is favorable to let
7p(K)=0 in Eq. (5). To highlight the low-lying degrees of
freedom, | can further rewrite E¢4) [with 7,(k)=0] as

which gives a realization of the picture of how theopera-
tor continuously rotates the AF state intadavave SC and
vice versa. However, Eq13) shows that the Sg5) theory
cannot directly describe the hopping dynamics because
the lack of the isotropis-wave (or dy,-wave type pairing.
This is why the doping has to be addressed through a chem
cal potential in Zhang's S&5) theory. The importance of
the singlet paira\ i was also naively ignored in my previous
consideratiorf?
On the other hand, if the triplet pairs are not included, _ )

the statel Qo gy is deduced to a SEI5)/SU:(2)X Uc(1) [Ls0(e) 7,0 exp{; k) S‘} [sque) (20
coherent pairing state:

where [Qsq (5)) IS @ SQu(5)/SUy(2)XUc(1) coherent

Qs (5)>:H’ exp[ns(k)A;rkJr nd(k)Agk pairing state with the Nal spin orderaey being rotated to
% k along the easy axis:

+ 7p(K) AL, —H.c}0). 17 , ) )
Here the SQ(5) group is different from the S5) group |QSOM(5)>:1;[ exp{ 7s(K) A g+ 74(K) A gy
in Zhang's theory. The subgroup 8(2)xUc(1) (generated
by {Cq.J:.Y,Q}) is a gauge symmetry embedded in + ﬂi(k)Asz— H.c}|0). (22)

|Qsoc(5)> that describes quantum fluctuations of theand

104513-4



SUy(2)XUc(1) GAUGE SYMMETRY IN HIGH-T,. . . . PHYSICAL REVIEW B 65104513

This corresponds to picking up a specific group state fromions of the Nel orderay . But the local spin current(k)
|Qso(sy that spontaneously breaks the spin rotational symean be manifested in terms of dadensity-spin wave. Be-
metry. The subgroup Si{2) X Uc(1) which is generated by cause of the magnetic properties of the local AF magnet
{S%,J2,Y,Q} is the gauge symmetry embeddedﬂhsoM(S)) Mae(k) and the local spin currenfy(k), | argue that the
that describes the quantum fluctuations of shandd-wave ~ OPserved AF magnetic excitatichand the short-range or
pairs and ther pairs. fluctuating AF ordet in both the pseudogap phase and the

AU dSC phase should be the quantum fluctuation effects of
The decomposition in Eq(20) separates the quantum .
fluctuations of the spin rotational freedom from other low- /N\/'claélF(sl:))inafri]glgz(k), rather than the CDW dynamics of the
o S I -
energy degrees of freedom. This is very similar to the de Besides, there are also other two possible orders in the

scription of a rotor’s intrinsic motion in terms of a rotating
coordinates instead of the usual laboratory coordinatesS.UM(Z)XUC(l) gauge symmetry, é-wave charge ordey

) S - and the usual charge ord€) of SC states. Thel-wave
Hence|(2s5q,s)) is called as an intrinsic pairing state of Eq. charge ordef) is a new order parameter that has not been

(20). Now, the dynamics of the N spin orderay is de- discussed in the literature

scribed by#, which characterizes a continuous manifold of '

degenerate ground states f2gog) With regard to the _ T

SUg(2) spin rotational symmetry. Under the decomposition yd_<930(8)|% d(k)CoChol 2s0(@)
(20), the conventional SDW arising from spin fluctuations is

determined by varying the orientation @f. It can be shown Ao

that the SDW does not explicitly depend on dopings and N ; d(k)[zs(k)zg (k) +z5 (K)zg(K)].  (29)
hoppings because both the hoppirege Eq.(13)] and the i .

doping | find that this order parameter can lower the superexchange

interaction energy of the-J model?®
1 The above analysis shows that the stgbsqg (s)) is
5:1_<QSO(S)|N% el (k) Co(K)| Qso(s) magnetic-charge codominated. It can simultaneously de-
scribe the coexistence of intrinsic AF orders and dSC order
. with real hopping processes. The associatedy &)
:1_4§ |z(K)|*  (i=s,d,p,m) (22 % U.(1) gauge symmetry can dynamically determine the
qguantum fluctuations of the and d-wave singlet pairs and
are independent ol [and 6(k)]. | can thereby conclude 7 triplet pairs in terms of the local AF magn@ti,r(k), the
that the observed magnetic excitations that linearly depengbcal spin current7,(k), and thed-wave charge ordey plus
on dopingsd cannot originate from the spin fluctuation of the usual charge orddd. As a result, a S|J(2)xUc(1)
SDW. . low-energy gauge theory can be established based on the
In fact, it is not the Nel spin vectorey but the local 5Q,(5) coherent pairing state when a practice Hamiltonian
(short-range staggered AF orderingassociated with the of strongly correlated electrons, such as thé model, is
generatorSy, in the SY,(2)xUc(1) gauge group considered, similar to the construction of the nonlinear
model for the Heisenberg antiferromagnets via the(30
Mar(K)=(Qso(8) Sarl Lsoey = 2a(K) 23 (K) + 25 (K)Z-(K)  spin coherent stafé.The dynamics of the pairing amplitudes
(23 z¢(k), z4(k), andz.(k) as a function of the doping and the
that sensitively depends on dopings. Experimentally, ndémperatureT can then be determined, and a quantitative
long-range AF orderM ae= (2/N)S i Mar(K) e [see Eq. comparison to gxperlments can be carried out. Further work
(12)] is directly observed in doped cuprates because it &N this subjectis in progress.
smeared out by the quantum fluctuation of theeNerder
. But the local AF orderingM e(K) itself still exists in
doped cuprates once the tripketpairs mix with thed-wave In conclusion, using coherent-state many-body theory, |
singlet pairs in|QSOM(5)). In other words, the local AF or- have shown that the low-energy degrees of freedom in cu-

dering Mar(k) of Eq. (23) represents a local AF magnet. prates that compasses SDW, CDW, staggered flux order,

Furthermore, accompanied with the local AF magnet, ther®DW, and associated magnetic excitations and various pair-

must also exist a local spin currepk(k) by the Sy,(2)  ing (including thes- andd-wave singlet andr triplet pair9

X Uc(1) gauge symmetrjthe matrix element of another orders can be determined by the Bf3U(4) coherent pairing

generatord?, in SUy(2)x Uc(1)], stqt§|Qso(89 [i.e., Egs.(4) and (5] in terms of the four
pairing wave functiongg g , (k). The S@8) coherent pair-

Js(k)E(QSO(s)UﬂQSO(s)):i[Zs(k)ZfT(k)—Zg(k)Zw(k)], ir:gt state contains three different &) subgroup pairing

(24)  states

IV. CONCLUSIONS AND PERSPECTIVES

which  hides in the spin current order ﬁs |Qsoz(5)>,
=(2IN)=, J(k) ay . Similar to the AF ordeM 5, a long-

range spin current ordef; cannot be observed in doped
cuprates because it is also smeared out by quantum fluctua- |QSQV|(5)>'

Qo) — |Qso.s)
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The first two states, given by Eq$16) and (17), cover

Zhang's SQ(5) theory and SY(2) RVB gauge theory, re-
spectively, and the last one, the intrinsic @) coherent
pairing state defined by E@21) is a new discovery.
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gauge theory, the SA2) gauge symmetry describes the

CDW and the staggered flux phase as well as the recently

proposed DDW order but it has no AF magnetic feature.
Only in the SQ,(5) coherent pairing state, the ()

The above three SB) coherent pairing states are gener- x U-(1) gauge symmetry can simultaneously and dynami-
ated by different pair operators, and they describe differentally address quantum fluctuations of the AF amplitude, hop-
physical properties of strongly correlated electrons. In dopegings as well as thé-wave pairing. This SW(2)X Uc(1)
cuprates, only the SQ(5) symmetry is capable of describ- gauge symmetry is determined by three new orderings: the
ing the low-lying magnetic excitations incorporating with the |ocal AF magnetM g(k), the local spin current’y(k), and
hopping dynamics. Specifically, all the three pairing stateshe d-wave charge ordel. These orderings have not been
contains thed-wave superconducting order. However, theyrealized in the previous study of high-theories. Because of
carry different gauge degrees of freedom associated with difthe magnetic properties and charge properties of these three
ferent quantum fluctuations: new orders, most likely it is this S2)XUc(1) gauge
symmetry that controls various magnetic excitations in the

( ﬂ dCS state as well as in the pseudogap phase. Hence, the
SUs(2) X Uc(1) intrinsic SQu(5) coherent pairing stati)sq, (s5)) with the
SQ(8) SQ:(5) SUu(2)XUc(1) gauge symmetry is a good candidate to de-
U4) ) SUc(2)XUg(1)’ scribe the observed low-energy degrees of freedom in cu-
prates. Certainly, experimentally examining the existence of
SQu(d) ' the local AF magneiM r(k), the local spin currengy(k),
L SUw(2) XUc(1) and thed-wave charge orderinyy is crucial to demonstrat-

In Zhang's SQ(5) theory, the gauge symmetry is repre- ing the practical value of the present theory.

sented by the spin rotational $(2) group plus the charge
Uc(1) group. It separately describes the SDW quantum fluc-
tuation and the (1) charge fluctuation. However, these
quantum fluctuations are not essential to the magnetic exci- | would like to thank T. K. Lee and J. X. Li for usual
tations. Also the doping can only be added artificially discussions. This work was supported by NSC Grant Nos.
through a chemical potential in this theory. In §2) RVB  NSC89-2112-M006-029 and NSC90-2112-M006-033.
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