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Magnetic properties of antiferromagnetic bilayers analyzed in the spin and boson pictures
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Systems of antiferromagnetic bilayélie those occurring in higi-, cuprateYBa,Cu;0g,  (1:2:3)], are
analyzed theoretically both in sp[the random phase approximati@RPA)] and boson picture at low tem-
peratures. Similarities and differences in excitations energies, internal energy, and magnetization are analyzed
in detail, and a comparison is made to numerous existing results at K and in the low-temperature range.

RPA results for antiferromagnet transition temperature are analyzed in terms ofirsjpiane and spatial
anisotropies. It is shown that in-plane anisotropy plays a more important role than previously assumed.
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[. INTRODUCTION spin operators and than use this boson Hamiltonian as the
basis for the study.
A simple magnetic system consisting of two magnetically ~There exists numerous literature in the field, so let us
ordered planes, coupled magnetically, the so-called magnetgomment on some of this work. One early work was per-

bilayer, has been the subject of interest for the last decadformed by Matsuda and Hidlavho considered the ground
There are several reasons for this. state and elementary excitations of an antiferromagnetic

The model, although simple, is interesting by itself. Two- (AF) double layer in Bloch's approximation for spin opera-

di ional ism is already | . . .~ tors. The interactions were all isotropic in spin space, with
Imensional magnetism is already interesting since varioUg,ree different couplings: one within each layer and one be-

anisotropies influence its behavior strongfyThe coupling  tween the layers. Their basic result is that strong interlayer
between the planes introduces an element of three dimegoupling destroys the ground state AF long-range order. We
sionality. One can enhance this effect by building up a sushall later consider the result, which is of purely quantum
perlattice whose motive is this bilayer. This allows a study oforigin, below. Hid& studied the low-temperature properties
dimensional crossover effects. of this system by applying the Dyson-Maleev boson repre-
Experimental aspects of the problem are also interestingsentation. Decoupling the nonlinear terms in a mean-field
Recent studies of the phenomenon of gigantic magnetoresi§anner, he mainly confirmed the results of Matsuda and

tance(GMR) indicate that it occurs mostly in such layered Hida . —
systems although proper relation between the structure and The particular application to cuprate superconductors was

6 . . _
GMR has not yet been established. recently performed by Pratagt al.” They used simple spin

. . wave pictures and applied the GF formalism. Their results
However, the true reason for the large interest in thesgq important to us for the sake of comparison.
systems are cuprate high-temperature superconductors. It is oyr work will concern only the valueS=1/2 (which

well known that antiferromagnetically ordered planes ofseems to correspond to €uions in cuprates Using the
Cu?* ions occur, and that the magnetic system can be corgreen’s-function formalism for both spin and boson opera-
sidered as the set of magnetic layers {€a0,) or bilayers tors, we shall study the energy and sublattice magnetization
[YBa,CusOg_ « (1:2:3)]. The role of the magnetic subsystem of the system. Different temperature regimes will be dis-
in the superconductive phase is also still an issue of discugussed in detail as well as the transition temperalyre

sion. The structure of the paper is as follows: in Sec. Il we

The objectives of our study will be the properties of anti- describe the model and its relation to highsuperconduct-

ferromagnetically ordered bilayers which can be tested ex0rs. Section Il is devoted to an evaluation of the expressions

perimentally. First of all, we are interested in the energy offor all rzlevanthphysmal quantities W'th'? the f_rameworlf of
elementary excitations—spin waves—which are accessiblf'€ random-phase approximatidRPA) for spin Green's

by neutron scattering. A knowledge of the energies of spm_unctions, while the same procedure for boson approximate

wave branches allows one to evaluate the next importar{ppres(jentagon 'IIS' presented |rr11_|Sec. IV. The Ire(jsults are ?('S'
quantitity—sublattice magnetization—and study its low-Ccussed in detail in Sec. V, while some concluding remarks

temperature behavior as well as in the vicinity of the phas@'® Presented in Sec. V1.
transition. We can also evaluate the magnetic contribution to
the internal energy of the system, and estimate the tempera-
ture behavior of the magnetic contribution to the specific In order to be able to compare our results with the studies
heatC, . related to copper-oxide basedT. superconductors, like
There are two basic approaches occurring in the literaturgl:2:3) structures, we shall consider a superlattice consisting
One can work directly with spin operators and apply eitherof bilayers. The elements of bilayers are antiferromagneti-
the mean-field approximation, or use a Green’s funcleR)  cally ordered planes coupled antiferromagnetically. The un-
decoupled in self-consistent manner. An alternative procederlying lattice is split into two magnetic sublatticaandb
dure is to use some approximate boson representation fim such a way that each spin of one sublattice is surrounded

II. MODEL HAMILTONIAN
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z (N, is the number of paramagnetic ions

Ho= 2 [eaS, (@5, ;(a)+pS, {(0)S, A(b)]
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FIG. 1. Antiferromagnetic structure of YB&u;Og, , following
Refs. 7 and 8. Two Cu2 planes amg andm, planes of the cell,

with an in-plane interactiod and a square lattice parametefThe myprat B=(ab) myp myp
intracell interaction isJ,, and the intercell interaction i8’. c, v '
=d;+d,i i i irection. S (pBS -
d; +d, is the period of the superlattice along theirection X[)\bsmzp(ﬁ)smzp(ﬁ)+)\,sm ,1,)(,3)5,“2 1,7(:3)]
by six neighboring spins belonging to the other sublattice. 1 a .
This model can be applied to the system of spins of so-called 5 . 2 S, p~(a)Srn p~(a)
Cu2 ions in a(1:2:3 structure, as shown in Fig.1? my.p.a#p=(ab) 2

The position of each spin is defined in the following man- & & & &
ner: S, ;(a); i=1 and 2;a=a, b, wherem,; andm, are XIS ;(B)Sy (BTN S 4 15(B)Se 1 15(B)]:
the indices of the planes within the céfbr a superlattice (4)

andﬁ is two-dimensional vector defining the position within .
the plane. The basic assumption is that the atoms in thwherez,p=3e= (uH/J).
neighboring planes are positioned exactly “one above the
other” looking along thez(c) axis, which allows such simple 1. SPIN FORMALISM
notations.

Interactions are assumed to be the nearest- nelghbo
Heisenberg interactions, with a spin anisotropy within the

e zez - . ; .
plane (additional S°S* interactiongJ) and a spatial anisot tem. The structure of the Hamiltonian implies a system of

ropy due to different couplings between the planés,{’) . .
and within the planesJ). The magnetic field is along the tour coupled equations of motion for the operators

axis. S;l’;a(a), S0y, (D), s;ﬂ;a(a), and§, - (b), and another
We shall restrict ourselves to the particular c&e S,  appears for the set of the four adjoint operators. We shall

=1/2, since it allows a simple calculation of the system en-quote only one equation, while the rest of the system can be

ergy. It is better for this purpose to express the Hamiltoniarconstructed by analogy. For example,

in terms of raising and lowering operatorS*(S/=3

Let us start by writing the equations of motion for the
operatorsS*. They will serve two purposesa) to evaluate
spin GF's, andb) to derive the average energy of the sys-

—S7S'), so it can be written as ds;, -(a)
ifh—— = a)+ =
HI3=Ho+H,+Hy, L) gt = aSn(a 2 STAC
N, 1 ’ 1 )\’
Ho=—?8—§No,u’H, e=4g+N\,+\/, +§)\bs S(b)+ — > Sm ,1p(b)
J J! _ ot . o . ot .
Ab:jb, 7\'27 (2 gpzb Smlp(a)smlpb(b)smlpb(b)
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— oSy, @8, (D)8, ~(b) Chis =([8 ; () ,é:nj 5B,
rat o ot N
—A Smlg(a)smz—1,5(b)sm2—1,3(b)- ©) y(K) = 2(coska+cosk,a),
If we generalize the procedure proposed by TyablRov ked rCikds |~ ~ MH -
for a simple Heisenberg system, we arrive at the basic result Yz=Np€ 7N Te T Sa/bZSiT- &€=oe.
dS" - (@) There exists another set of four equations, following from
EZH n EH +E s S & (o) the adjoint equations of motion.
J °1 2274 m 5 a=ab| MiPa dt Equations(7) have a determinant
dS_ - (@) pH\Z ) wH\? -~
o Mile e AE)=||E——| —&%| +20?||E— —| —&2
dt m; »Pa(a) ’ (6) J J
It is important to emphasize that this is a completely exact X[ Y2(K) +| v,/ 21+ o[ 2 (K) | v, 212, (8)

result with no approximation involved, and it will allow us to \ypile the determinand,(E) of the adjoint system satisfies
determine the energy of the systefi(), once we know the

correlation functions. A(E)=A(—E). 9

For this purpose we shall evaluate the Tyablikov's ) _—
Green’s functiond? using the equation of motiofs) and  WWe aré going to study only the case when the external field is

applying the RPA. The basic idea of the approximation is tgabsent. In this ca§e, there appear only two, double degenerate
neglect the correlation of the longitudinal spin component£EN€rgy branches:

& with the transversal onéS™ at different lattice sites, so >

hat Eyz=oVe?—[y(K)+] ] 12 (10
o L o A long, but straightforward, calculation, which exploits the

((S'S][B))=(SH(S/IB))=0((5][B)), symmetry of the system, shows that for our purposes we

need to know the Fourier transforrfihe so-called spectral

. . . . |
(SHY=0c (due to the translational invariance densitied ﬁji’;;j(k,E)] of only three different correlation func-

We arrive at two sets of four equation for the GF in thetions:

(k,E) representation. The complete notation used will be ~
Gl (KE)=<8, ()8, [(B)>ke (wv=+.-, ap |ai;(E,E>=g{ 1+ — )5[E—E1<IZ>]
=a,b; i,j=1,2). 1(K)
We shall quote only one set of four equations in this ap- P )
proximation: +|1- — | S[E+E1(K)]
Ea(k)

(E—%2)Gy 5, (K.E)~ 0y(K)Gp 5 (K,E) +0

1+ 9))5[E—E2(IZ)]

-V (L _ i v E(k
+YGyp (KE)= 5—Cqj -
R . o - = 5[E+Ez(|2)]]n(E),
ay(K)Ga g, (KE)+ (E+ep) Gy g (KE)+07,Gg 5 (K E) E2(k)
- a=ab, =12, (1)
+025Cb1ﬁ11 s R e R
Iaiﬁi(k!E):laiﬁi(klE)
0+07} Gy s (K.E)+(E—2a)Gg 5 (KE) o2 [ y(K)+| 74 )
i :_7[W{6[E_El(k)]
~oy(K)Gy s (KE)=5-CoJs . 1 ]
- Y=y -
e - R — Q[ E+Ey ()]} +————=—{ S E~Ex(K)]
(ryzGalﬁj(k,E)+0+(ry(k)Ga25j(k,E) Ea(k)
. i, _ "
+(E+ep)Gp (K E)=5—-Cp s, (7 5[E+E2(k)]}}n(E),
where a#*B=a,b, i=1,2, (12
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Lo (k E)=[1,5(KE)]*

2y, [ v(K)+] v, .
_oy{y() LZyPE——,

2lvil | Eq(k)

. y(K) v N
SE+EL(K)]} W‘W[E Ex(K)]
—5[E+E2<|Z>]}]n<E),
a#pB=ab, i#j=12 (13

wheren(E)=1/(€¥'?— 1) and §=kgT/J. Knowing this, we
are able to evaluate the energy of the sysfesnaveraging
Eq. (6)] and magnetization:

<J>—H +2 AE (K, a)+2 E(k,6), (14)
AEq(K,6)= — o(0)[—EF(K)—~E3(K)
+2e—E1(K)—E»(K)], (15)
E(K,6) =20 ( ){[EF(K) +E1(K) In[E4(K)]
+[ES(K) +Ea(K) In[Ex(K) 1}, (16)
1 1
o(0)=500=0O GG A7
€ 1
T (JsZ—[y K+ 12
. 1
: Jsz—[m?)—lvzl]z) W
FO)=5 2 HE) n[Ey(K)]+ EjIZ) n[Ez(E)]},
(19

where EB(K)=\e2—[y(K) = |,|]? are the energies in
Bloch’s approximation antN=N,/2 is the number of mag-
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2
=2 | e (K)a(K)+epb; (K)bi(K)

i=1
D
2 ARy (R + el

+5{7[au(k)b; (—K)+by (K)ay(~k)]+H.c).
(21)

Here a denotes spins-uy denotes spins-down, and indices
1 and 2 indicate the corresponding planes. This is a qua-
dratic Hamiltonian, which can be diagonalized at least in two
ways: one can use a typical Bogolyubov-Tyablikov “uv”
transformation or calculate boson Green’s functions. Both
methods obviously lead to the same results, which are com-
pletely equivalent to the ones obtained using spin GF’s. In
fact, the excitation energiﬁ,2 and the energy of the system
(H)B are obtained from Eqg10) and(14) by direct substi-
tution 0—S=1.

(H)® B B/
3 =Ho+ X AES(K)+ X EB(k,0), (22)
k k
AEg(K)=—[e—EF(k)~E3(K)], (23
EB(k, 0)=2ES(K)n[EZ(K) ]+ 2E5(K)n[ES(K)]. (249)

However, the expression for magnetization is not that simple,
since here one does not apply any self-consistent approxima-
tion (this is the result in lower-order approximatjorThe
sublattice magnetization in this case is evaluated as

oB=S—(a"3)=0B— AcB(T), (25)

B_q_ % LJFL) (26)

ToT AN ¢ BBk EB(k))’

o, n[EF(K)]  n[E3(K)]
AN 2o 2w ) &

V. DISCUSSION OF THE RESULTS

Let us start our discussion with the comparison of the

netic elementary cells. These expressions will be the basis @ésults of the spirithe RPA and boson approximations for

our further calculations.

IV. BOSON TREATMENT

An alternative approach is to introduce Bose operator
There has been plenty of work in this field, but in our opin-
ion, one should review the work completely Introducmg

following boson Hamiltonian:

T=H0+Z He, (20)
k

the ground stateT=0 K). We compareo,(0), which is
given by Eq.(18) for a spin formalism and Eq26) for a
boson formalism. The results are summarized in Fig. 2 in
terms of\, (intracell coupling. Probably unrealistically high

Svalues of\, are included just for the sake of comparison

with the results of Refs. 4 and 5.
First of all, we must stress that the numerical values of the

(2D)] and superlatticg3D) differ only at third significant
figure, so they cannot be distinguished at the plot. For this
reason, the plot shows only two curves—one for the spin
RPA treatment and the other for bosons.
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~100 meV and\,=5x102 we obtain values ofé
o ! ~430 K close to experimental valugg,~415 K."** For
m/\ the three-dimensional case, one can also look at the isotropic
““ system ¢=1), while keeping the parametexg and\’ fi-
nite. The values oby are then highly underestimated. The
results are summarized in Table I.

This implies that, contrary to common statements, it is not
three dimensionality which is essential for the antiferromag-

. : : netic ordering in this system, but in-plane spin anisotropy

T (»#0). This is in agreement with the opinion shared by
some authors'!? that two-dimensional spin fluctuations
also play an essential role in the superconductive phase. This
is also supported by the fact that the AF phase transition, in

Let us concentrate on the behavior for small values,f ~ (1:2:3 for x=0, at a temperature of 4¥% Kiis of second
which is similar in both cases and represented in insets. Tharder, with a critical exponent for the staggered magnetiza-
increase of\,, leads to an increase of the antiferromagnetiction 8=0.25+0.03, which is characteristic of a 2D AF
ordering, until it reaches a saturation value fgr=1. Then system’
the magnetization begins to decrease, and this is where we It might seem strange that the small finite value of in-
encounter two essentially different types of behavior. plane spin anisotropyrf) influences the value dffy so dras-

It can be seen that within the boson treatment, the longtically. In fact, we can explain this effect starting from the 2D
range ordefLRO) at T=0 always vanishes for strong intra- case, where this is rather transparent. Looking back at ex-
cell coupling.(This agrees, in a certain degree with the re-pression(28) we see that integral€,, strongly depend on
sults of Refs. 4 and 5, where the LRO vanishes forthe in-plane anisotropy. Wheg=1, this term exactly can-
comparatively lower values ok,.) On the other hand, cels the contribution ofy(k) for k—0. Thus, it is the part
within the spin treatment, the LRO never vanishes, but aswith 7 that preserves the convergence of the integgiatilar
ymptotically tends to zero for very high values ©f. This  to the integral appearing in the proof of Mermin-Wagner
implies that, according to the boson treatment, quantum fluctheoreni’'9. The same reasoning can be applied to the 3D
tuations for\,=10 can destroy the in-plane LRO, while, case. Here the convergence is preservedgferl, yet the
according to the spin treatment, this practically never occursnfluence of still remains.

The formal reason for such a disagreement lies in the fact At this point, we wish to demonstrate a problem that oc-
that the boson expression represents only the first term in theurred frequently in the literature, concerning an important
expansion of the spin result. Matsuda and Hitieed to pro-  technical detail. In a two-dimensional case, the integration
pose an explanation based on the creation of singlet stateser the first Brillouin zoneg(IBZ) is usually taken in the
consisting of spins belonging to neighboring planes, relatingimits (+ =/a) for k, and ky, both for ferromagnet and an-
this to the spin-fluctuation mechanism of pair formation intiferromagnet with simple quadratic lattice. However, the
high-T,, superconductort:*? Our results, which do not sup- correct boundaries are dictated by the shape of the IBZ. For
port singlet formation, do not exclude this mechanism in thean antiferromagnet, each quadrant of the IBZ is a triangle in
superconducting phase, since they are valid only for the ARD momentum space, i.e., the boundariek,itk,=0 range
phase of hight. cuprated x<0.41 for (1:2:3)]. As we have  are[O<k,=/a,0<k,=<(7/a)—k,]. So, not only is the AF
mentioned, the curves for two and three dimensions practitBZ twice smaller, but one also must take into account the
cally coincide, implying that the in-plane quantum fluctua-variable boundaries. A typical example of this mistreatment
tions are dominant. is the work by Singhet al® However, we must comment

In the other limiting case, we shall concentrate on theupon this work in more detail. At first sight, the authors
phase transition, where we shall discuss only the results akached an extremely good agreement between theory and
the RPA treatment, since the boson approximation is noéxperimental results, in particular for the transition tempera-
valid in this temperature range, as shown by Irkkiral™  ture [for the systen(1:2:3]. We previously showed that no
The expression fo#y within the RPA can be obtained from such agreement could be achieved in the absence of spin

0505075 1 L L5 175 2
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FIG. 2. Ground-state relative magnetizati¢h: boson treatment
and(2) spin RPA treatment.

Eg. (17) in the limit c—0: anisotropy(for g=1; see Table)l The agreement is in fact
the consequence of the underestimated volume of unit cell
; c 2¢ s 1 appearing in expression®) and (6) in Ref. 19,v,=a’c
:—' = — = . - — 2 . . . . . . _
NTC,+C, VTN < £2—[y(K) = | 7|12 instead ofv,=4a“c. This is combined with incorrect inte

gration boundaries, so the proper value of the intelgmdl is
about twice as large, and the transition temperature following
We shall first analyze this expression numerically for a set ofrom their estimates is in fact twice as small.

parameters relevant for high: cuprateq(1:2:3] frequently We now turn our attention to the intermediate region of
stated in the literatur€®14*>1°t turns out that the essential low, but finite temperatures, and compare the boson and spin
parameter is the in-plane anisotrogy=1+ 7. As long as expressions for the energy and magnetization. General ex-
n#0, for both two- and three-dimensional cases, for pressions are summarized in E¢B4) and(17) for spins and
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TABLE |. Transition temperature dependence on system parameters.

n
104 0
\b N J (meV) Tn (K) \b N J (meV) Ty (K)
1072 1078 80 313.004 102 1077 80 210.964
1072 10°° 80 313.383 102 10°° 80 253.143
5x10°2 10°° 80 343.595 5102 10°° 80 272.705 3D
10°? 107 100 391.255 102 1077 100 263.70
1072 10°° 100 391.728 102 10°° 100 316.428
5x10 2 10°° 100 429.494 %102 10°° 100 340.88
1072 106 120 469.506 102 1077 120 316.446
102 10°° 120 470.074 102 10°° 120 379.714
5% 102 10°° 120 515.392 510 2 10°° 120 409.057
1072 0 80 312.961
5% 1072 0 80 343.096
102 0 100 391.20 2D
5x10°2 0 100 428.87
1072 0 120 469.442
5x 10?2 0 120 514.644

in Egs.(22) and(25) for bosons. Here we also comment on which differs from expression (7) in Ref. 6 only lgs 1.

some of the results that occurred in the literature. Due to the spin anisotropy, both branches possess a gap in
We have already demonstrated the essential role of maghe long-wavelength limit:

netic anisotropy. However, before going into any details, let

us comment upon different manifestations of anisotropy. Our A2,=4(gF 1)[2(g= 1)+ \p]. (30)

approach includes two types of anisotropy: one is the anisot-

ropy in spin spacésimply put, spin anisotropyand here it | the lowest temperature range, i.es:8<A,, the expres-

appears as the in-plane anisotropyxeiz type. On the other  sjon for the magnetization is

hand there also appears a so-called “spatial anisotrépy”

since interlayer and intralayer exchange integrals differ. The

distinction between the two types of anisotropy is essential: A gB(9)=—

spatial anisotropy does not influence the existence of the

acoustic brancHthe Goldstone mode is lign,oE(k)=0],

and the energy gap in this branch appears only as a cons

quence of the spin anisotropy. However, Pragapl® intro-

duced spatial anisotropy by adding a term depending on th

dispersion along the axis, which can be strictly introduced

only for an infinitely extended superlattice in thelirection. . . -
7. . S . ; in the next temperature range, the behavior is formally simi-
It is important to stress that with this kind of interaction they i . e
lar to the one that we produagln #; yet the difference is in

obtained a gap for the acoustic branch in the single bilayer, -
which is definitely an incorrect result. the origin of the gap. In the next temperature radge< 6

Let us first discuss the single bilayex'(=0k,=0). The <A the magnetization has the form
spin-wave dispersion law in the boson case becomes

4g+)\b Asl
_J 5 _a—Agl6 —A,10
7T(4+)\b)6lln(1 e )+0O(e ).

(31)

Bne should note that Pratap al.® in the lowest range, ob-
tained(due to an erroneous integration odej a quadratic
Femperature dependence, characteristic of a three-
dimensional antiferromagnéas will be shown latgr while

4g+)\b 0
B _ o —A, /6
AcB(0) —w(4+xb)0'”Al+O(e 219, (32

.1 =
B =_ 2_ 2
Eyak) 2\/(4g+)\b) [y(K)= NI 29 while for A,< #< 6y we obtain,
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5 49+ Ny 0 49+ Ny 0 where{(3) is Rieman’s function. Finally let us write down
Ac®(0)= TAThy 6 W + TA—ny) 0 |nA—2- (33  an expression fo€,=d(H)/dT,
We shall now analyze the energy of the system derl _ 48sL(3) 02+N0(e‘2\W") (35)
only. This particular case is characterized by the fact that one O w4+ Np) '
of the branchesk?) is now gaplesgGoldstone mode One  here the second term decays exponentially at low tempera-
has tures, and this can be neglected.These results obviously dif-
fer from the corresponding ones Eq80) and (31) in Ref.
(H)=N 1634(3) BN 32J\p 3 2\ 6]. We now proceed to the 3D case, i.e., to a superlattice
(4+N\p) m(4—\y) 0 ) extended infinitely in the direction. The excitation energies

(34)  are given by

E?,z(ﬁ>=%J<4g+xbﬂ')z—{y(E)rmb+x')2—szx'u—coskzco)]l’z}z, (36

wherec,=d; +d, is the lattice constant in thedirection. It  not be analyzed in detail. In the isotropic regingg<1), in
is important to note that for a superlattice formed of bilayersthe lowest temperature range, the expressionAfafT) is
the intralayer §,) and interlayer ') interaction terms enter equal to

into all expressions in an absolutely symmetrical manner.

Further analysis will be based on the isotropic cage 1), 1 [Ng+N
whereE? is the Goldstone mode whilE5 possesses a gap. Aa(0)=3 ———0?+0(e”r(0%2/%) - (40)
In the lowest temperature range, < min[\p,\"], expres- ehph
sion (27) gives which differs from Eq.(37) only by a factor of 2. This dif-
ference follows from the different procedure of evaluating
1 [ Ap+\' - the magnetization, since the spin magnetization is deter-
ACf'3(¢9):g ——0°+0(e %2"%),  A,=2 N\, ). mined in a self-consistent way. In the range Fhig,\']
eAph 37 < #< 0y, there occurs a crossover, leading to
The quadratic temperature dependence of magnetization is a o.(0) 4(Np+N\") Y2
typical AF 3D behavior. Also note that, and\’ enter the o (0)= p 01nj 60,(0) WY (42)

expression completely symmetrically. For mig,\']<6
< @\ there arises a crossover from three- to two-dimensionarlhis differs from the boson expressipEq. (38)], not only

behavior: by a numerical facto(2), but also by the presence af(0)
which is again the consequence of self-consistent approxima-
; 1 4ng+ A\ tion.
Ao=(0)~ Eﬁm 0 o | (39 The expressions for the energy of the system will be es-
EMNp

sentially different due to the presence of a temperature-

The above example indicates that although there exists ependent magnetization in the expressions for the energy
formal symmetry between couplings, when their order of gs.(15) and(16)]. Eveq the correction of the grqund—ga_me
magnitude differs substantially there obviously appears aﬁnergyA E, does not vanish fof 0, but changes in a simi-

asymmetry which governs the behavior. For example ir{ar manner as it does for the magnetization. In fact, it is this
(1:2:3 structures Wherab>)\’()\’~10’2)\;,) we have " correction that dictates the low-temperature behavior of the

energy, it is a quadratic function of the temperature, so that

C,~ 6. This behavior is essentially different from the behav-
(39  ior of the energy of a boson systerH)~ 6*,C,~ 6%, and

is a consequence of the fact that a more correct treatment of

spin statisticqin terms of RPA decouplingreflects the fer-

so the weaker interlayer coupling determines the 2D be- mionic nature of spin $=3) operators acting at the same
havior. site.

Let us now turn our attention to the results of a RPA
treatment. In the presence of in-plane anisotrogy:(),
both excitation energy branches possess a gap, so that the
basic temperature dependence of the magnetization at low The aim of this study was to review the similarities and
temperatures is exponentiakexp(— A4,/ 0). This case will  differences in the results obtained by treating a magnetic AF

1
AUB(G)%EGIn 20

(8)\/)1/2

VI. CONCLUSION
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bilayer in boson and RPA-spin approximations, and at thenmust stress once more that the TyabliKov RPA) approxi-
same time indicate to various misinterpretations occurring irmation for the Heisenberg model, although very simple, con-
some particular applications. One of the basic achievementferms to the Mermin-Wagner theorem in all relevant limiting
of our study is the application to a spin system occurring incases.

(1:2:3 structures, where we have shown that, in the antifer-

romagnetic phasex0.4), the in-plane anisotropy and two- ACKNOWLEDGMENTS
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