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Magnetic properties of antiferromagnetic bilayers analyzed in the spin and boson pictures
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Systems of antiferromagnetic bilayers@like those occurring in high-Tc cuprates„YBa2Cu3O61x ~1:2:3!…#, are
analyzed theoretically both in spin@the random phase approximation~RPA!# and boson picture at low tem-
peratures. Similarities and differences in excitations energies, internal energy, and magnetization are analyzed
in detail, and a comparison is made to numerous existing results atT50 K and in the low-temperature range.
RPA results for antiferromagnet transition temperature are analyzed in terms of spin~in-plane! and spatial
anisotropies. It is shown that in-plane anisotropy plays a more important role than previously assumed.
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I. INTRODUCTION

A simple magnetic system consisting of two magnetica
ordered planes, coupled magnetically, the so-called magn
bilayer, has been the subject of interest for the last dec
There are several reasons for this.

The model, although simple, is interesting by itself. Tw
dimensional magnetism is already interesting since vari
anisotropies influence its behavior strongly.1,2 The coupling
between the planes introduces an element of three dim
sionality. One can enhance this effect by building up a
perlattice whose motive is this bilayer. This allows a study
dimensional crossover effects.

Experimental aspects of the problem are also interest
Recent studies of the phenomenon of gigantic magnetore
tance~GMR! indicate that it occurs mostly in such layere
systems,3 although proper relation between the structure a
GMR has not yet been established.

However, the true reason for the large interest in th
systems are cuprate high-temperature superconductors.
well known that antiferromagnetically ordered planes
Cu21 ions occur, and that the magnetic system can be c
sidered as the set of magnetic layers (La2CuO4) or bilayers
@YBa2Cu3O61x ~1:2:3!#. The role of the magnetic subsyste
in the superconductive phase is also still an issue of dis
sion.

The objectives of our study will be the properties of an
ferromagnetically ordered bilayers which can be tested
perimentally. First of all, we are interested in the energy
elementary excitations—spin waves—which are access
by neutron scattering. A knowledge of the energies of sp
wave branches allows one to evaluate the next impor
quantitity—sublattice magnetization—and study its lo
temperature behavior as well as in the vicinity of the ph
transition. We can also evaluate the magnetic contributio
the internal energy of the system, and estimate the temp
ture behavior of the magnetic contribution to the spec
heatCv .

There are two basic approaches occurring in the literat
One can work directly with spin operators and apply eith
the mean-field approximation, or use a Green’s function~GF!
decoupled in self-consistent manner. An alternative pro
dure is to use some approximate boson representation
0163-1829/2002/65~10!/104512~8!/$20.00 65 1045
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spin operators and than use this boson Hamiltonian as
basis for the study.

There exists numerous literature in the field, so let
comment on some of this work. One early work was p
formed by Matsuda and Hida4 who considered the groun
state and elementary excitations of an antiferromagn
~AF! double layer in Bloch’s approximation for spin oper
tors. The interactions were all isotropic in spin space, w
three different couplings: one within each layer and one
tween the layers. Their basic result is that strong interla
coupling destroys the ground state AF long-range order.
shall later consider the result, which is of purely quantu
origin, below. Hida5 studied the low-temperature propertie
of this system by applying the Dyson-Maleev boson rep
sentation. Decoupling the nonlinear terms in a mean-fi
manner, he mainly confirmed the results of Matsuda a
Hida.4

The particular application to cuprate superconductors w
recently performed by Pratapet al.6 They used simple spin
wave pictures and applied the GF formalism. Their resu
are important to us for the sake of comparison.

Our work will concern only the valueS51/2 ~which
seems to correspond to Cu21 ions in cuprates!. Using the
Green’s-function formalism for both spin and boson ope
tors, we shall study the energy and sublattice magnetiza
of the system. Different temperature regimes will be d
cussed in detail as well as the transition temperatureTN .

The structure of the paper is as follows: in Sec. II w
describe the model and its relation to high-Tc superconduct-
ors. Section III is devoted to an evaluation of the expressi
for all relevant physical quantities within the framework
the random-phase approximation~RPA! for spin Green’s
functions, while the same procedure for boson approxim
representation is presented in Sec. IV. The results are
cussed in detail in Sec. V, while some concluding rema
are presented in Sec. VI.

II. MODEL HAMILTONIAN

In order to be able to compare our results with the stud
related to copper-oxide basedHTc superconductors, like
~1:2:3! structures, we shall consider a superlattice consis
of bilayers. The elements of bilayers are antiferromagn
cally ordered planes coupled antiferromagnetically. The
derlying lattice is split into two magnetic sublatticesa andb
in such a way that each spin of one sublattice is surroun
©2002 The American Physical Society12-1
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by six neighboring spins belonging to the other sublatti
This model can be applied to the system of spins of so-ca
Cu2 ions in a~1:2:3! structure, as shown in Fig. 1.7–9

The position of each spin is defined in the following ma
ner: SW mi ,rW(a); i 51 and 2;a5a, b, wherem1 and m2 are
the indices of the planes within the cell~for a superlattice!
andrW is two-dimensional vector defining the position with
the plane. The basic assumption is that the atoms in
neighboring planes are positioned exactly ‘‘one above
other’’ looking along thez(c) axis, which allows such simple
notations.

Interactions are assumed to be the nearest-neig
Heisenberg interactions, with a spin anisotropy within t
plane ~additionalSzSz interactiongJ) and a spatial anisot
ropy due to different couplings between the planes (Jb ,J8)
and within the planes (J). The magnetic field is along thez
axis.

We shall restrict ourselves to the particular caseSa5Sb
51/2, since it allows a simple calculation of the system e
ergy. It is better for this purpose to express the Hamilton
in terms of raising and lowering operatorsS6(Si

z5 1
2

2Si
2Si

1), so it can be written as

H/J5Ho1H21H4 , ~1!

Ho52
No

8
«2

1

2
NomH, «54g1lb1l8,

lb5
Jb

J
, l85

J8

J
~2!

FIG. 1. Antiferromagnetic structure of YBa2Cu3O61x following
Refs. 7 and 8. Two Cu2 planes arem1 and m2 planes of the cell,
with an in-plane interactionJ and a square lattice parametera. The
intracell interaction isJb , and the intercell interaction isJ8. co

5d11d2 is the period of the superlattice along thez direction.
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H25 (
mi ,rW

@«aŜmir
W

2
~a!Ŝmir

W
1

~a!1«bŜmir
W

2
~b!Ŝmir

W
1

~b!#

1
1

2 (
mi ,rW a ,rW b

~Ŝmir
W

a

1
~a!Ŝmir

W
b

1
~b!1H.c.!

1
1

4 (
m1 ,rW

$Ŝm1rW
1

~a!@lbŜm2rW
1

~b!1l8Ŝm221rW
1

~b!#

1Ŝm1rW
1

~b!@lbŜm2rW
1

~a!1l8Ŝm221rW
1

~a!#1H.c.%

1
1

4 (
m2 ,rW

$Ŝm2rW
1

~a!@lbŜm1rW
1

~b!1l8Ŝm111rW
1

~b!#

1Ŝm2rW
1

~b!@lbŜm1rW
1

~a!1l8Ŝm111rW
1

~a!#1H.c.%, ~3!

H452g (
mi ,rW a ,rW b

Ŝmir
W

a

2
~a!Ŝmir

W
a

1
~a!Ŝmir

W
b

2
~b!Ŝmir

W
b

1
~b!

2
1

2 (
m1 ,rW ,aÞb5(a,b)

Ŝm1rW
2

~a!Ŝm1rW
1

~a!

3@lbŜm2rW
2

~b!Ŝm2rW
1

~b!1l8Ŝm221rW
2

~b!Ŝm221rW
1

~b!#

2
1

2 (
m2 ,rW ,aÞb5(a,b)

Ŝm2rW
2

~a!Ŝm2rW
1

~a!

3@lbŜm1rW
2

~b!Ŝm1rW
1

~b!1l8Ŝm111rW
2

~b!Ŝm111rW
1

~b!#,

~4!

where«a/b5 1
2 «6(mH/J).

III. SPIN FORMALISM

Let us start by writing the equations of motion for th
operatorsS6. They will serve two purposes:~a! to evaluate
spin GF’s, and~b! to derive the average energy of the sy
tem. The structure of the Hamiltonian implies a system
four coupled equations of motion for the operato
Ŝm1rW a

1 (a), Ŝm1rW b

2 (b), Ŝm2rW a

1 (a), and Ŝm2rW b

2 (b), and another

appears for the set of the four adjoint operators. We s
quote only one equation, while the rest of the system can
constructed by analogy. For example,

i\
dŜm1rW

1
~a!

dt
5«aŜm1rW

1
~a!1

1

2 (
rW b

Ŝm1rW b

2
~b!

1
1

2
lbŜm2rW

2
~b!1

l8

2
Ŝm221rW

2
~b!

2g(
rW b

Ŝm1rW
1

~a!Ŝm1rW b

2
~b!Ŝm1rW b

1
~b!
2-2
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2lbŜm1rW
1

~a!Ŝm2rW
2

~b!Ŝm2rW
1

~b!

2l8Ŝm1rW
1

~a!Ŝm221rW
2

~b!Ŝm221rW
1

~b!. ~5!

If we generalize the procedure proposed by Tyabliko10

for a simple Heisenberg system, we arrive at the basic re

H

J
5Ho1

1

2
H21

1

4 (
mi

(
rW

(
a5a,b

F Ŝmi ,rW a

2
~a!

dŜmi ,rW a

1
~a!

dt

2
dŜmi ,rW a

2
~a!

dt
Ŝmi ,rW a

1
~a!G . ~6!

It is important to emphasize that this is a completely ex
result with no approximation involved, and it will allow us t
determine the energy of the system (^H&), once we know the
correlation functions.

For this purpose we shall evaluate the Tyabliko
Green’s functions,10 using the equation of motion~5! and
applying the RPA. The basic idea of the approximation is
neglect the correlation of the longitudinal spin compone
Ŝz with the transversal onesŜ6 at different lattice sites, so
that

^^Ŝi
zŜj

6uB̂&&'^Ŝi
z&^^Ŝj

6uB̂&&5s^^Ŝj
6uB̂&&,

^Si
z&5s ~due to the translational invariance! .

We arrive at two sets of four equation for the GF in t
(kW ,E) representation. The complete notation used will
Ga ib j

mn (kW ,E)[!Ŝmir
W

m (a)uŜmjr
W

n (b)@kW ,E (m,n51,2, a,b

5a,b; i , j 51,2).
We shall quote only one set of four equations in this a

proximation:

~E2 «̃a!Ga1b j

1n ~kW ,E!2sg~kW !Gb1b j

2n ~kW ,E!10

1sgzGb2b j

2n ~kW ,E!5
i

2p
Ca1b j

1n ,

sg~kW !Ga1b j

1n ~kW ,E!1~E1 «̃b!Gb1b j

2n ~kW ,E!1sgzGa2b j

1n ~kW ,E!

105
i

2p
Cb1b j

2n ,

01sgz* Gb1b j

2n ~kW ,E!1~E2 «̃a!Ga2b j

1n ~kW ,E!

2sg~kW !Gb2b j

2n ~kW ,E!5
i

2p
Ca2b j

1n ,

sgz* Ga1b j

1n ~kW ,E!101sg~kW !Ga2b j

1n ~kW ,E!

1~E1 «̃b!Gb2b j

2n ~kW ,E!5
i

2p
Cb2b j

2n , ~7!

where
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mn 5^@Ŝmi ,rW a

m
~a!,Ŝmj ,rW b

n
~b!#&,

g~kW !52~coskxa1coskya!,

gz5lbeikzd11l8e2 ikzd2, «̃a/b5 «̃6
mH
J

, «̃5s«.

There exists another set of four equations, following fro
the adjoint equations of motion.

Equations~7! have a determinant

D1~E!5F S E2
mH
J D 2

2 «̃2G2

12s2F S E2
mH
J D 2

2 «̃2G
3@g2~kW !1ugzu2#1s4@g2~kW !2ugzu2#2, ~8!

while the determinantD2(E) of the adjoint system satisfies

D2~E!5D1~2E!. ~9!

We are going to study only the case when the external fiel
absent. In this case, there appear only two, double degen
energy branches:

E1/25sA«22@g~kW !6ugzu#2. ~10!

A long, but straightforward, calculation, which exploits th
symmetry of the system, shows that for our purposes
need to know the Fourier transforms@the so-called spectra
densitiesI a ib j

mn (kW ,E)# of only three different correlation func

tions:

I a ia i

21 ~kW ,E!5
s

2 H S 11
«̃

E1~kW !
D d@E2E1~kW !#

1S 12
«̃

E1~kW !
D d@E1E1~kW !#

1S 11
«̃

E2~kW !
D d@E2E2~kW !#

1S 12
«̃

E2~kW !
D d@E1E2~kW !#J n~E!,

a5a,b, i 51,2, ~11!

I a ib i

11 ~kW ,E!5I a ib i

22 ~kW ,E!

52
s2

2 H g~kW !1ugzu

E1~kW !
$d@E2E1~kW !#

2d@E1E1~kW !#%1
g~kW !2ugzu

E2~kW !
$d@E2E2~kW !#

2d@E1E2~kW !#%J n~E!,

aÞb5a,b, i 51,2, ~12!
2-3
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I a ib j

11 ~kW ,E!5@ I a ib i

22 ~kW ,E!#*

52
s2gz

2ugzu H g~kW !1ugzu

E1~kW !
$d@E2E1~kW !#

2d@E1E1~kW !#%2
g~kW !2ugzu

E2~kW !
$d@E2E2~kW !#

2d@E1E2~kW !#%J n~E!,

aÞb5a,b, iÞ j 51,2 ~13!

wheren(E)51/(eE/u21) andu5kBT/J. Knowing this, we
are able to evaluate the energy of the system@by averaging
Eq. ~6!# and magnetization:

^H&
J

5Ho1(
kW

DEo~kW ,u!1(
kW

E~kW ,u!, ~14!

DEo~kW ,u!52s~u!@«2E1
B~kW !2E2

B~kW !

12«̃2E1~kW !2E2~kW !#, ~15!

E~kW ,u!52s~u!$@E1
B~kW !1E1~kW !#n@E1~kW !#

1@E2
B~kW !1E2~kW !#n@E2~kW !#%, ~16!

s r~u!5
1

S
s~u!5s r~0!

1

11s r~0!F~u!
, ~17!

s r~0!5F «

2N
(

kW
S 1

A«22@g~kW !1ugzu#2

1
1

A«22@g~kW !2ugzu#2
D G21

, ~18!

F~u!5
«̃

N (
kW

F 1

E1~kW !
n@E1~kW !#1

1

E2~kW !
n@E2~kW !#G ,

~19!

where E1/2
B (kW )5 1

2
A«22@g(kW )6ugzu#2 are the energies in

Bloch’s approximation andN5No/2 is the number of mag
netic elementary cells. These expressions will be the bas
our further calculations.

IV. BOSON TREATMENT

An alternative approach is to introduce Bose operato
There has been plenty of work in this field, but in our op
ion, one should review the work completely. Introduci
Bose operators in the Bloch approximation, we can write
following boson Hamiltonian:

HB

J
5Ho1(

kW
HkW , ~20!
10451
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2 F«aâi
1~kW !âi~kW !1«bb̂i

1~kW !b̂i~kW !

1
g~kW !

2
@ âi

1~kW !b̂i
1~2kW !1H.c.#G

1
1

2
$gz* @ â1~kW !b̂2

1~2kW !1b̂1
1~kW !â2~2kW !#1H.c.%.

~21!

Herea denotes spins-up,b denotes spins-down, and indice
1 and 2 indicate the corresponding planes. This is a q
dratic Hamiltonian, which can be diagonalized at least in t
ways: one can use a typical Bogolyubov-Tyablikov ‘‘uv
transformation or calculate boson Green’s functions. B
methods obviously lead to the same results, which are c
pletely equivalent to the ones obtained using spin GF’s.
fact, the excitation energiesE1/2

B and the energy of the system
^H&B are obtained from Eqs.~10! and ~14! by direct substi-
tution s→S5 1

2 .

^H&B

J
5Ho1(

kW
DEo

B~kW !1(
kW

EB~kW ,u!, ~22!

DEo
B~kW !52@«2E1

B~kW !2E2
B~kW !#, ~23!

EB~kW ,u!52E1
B~kW !n@E1

B~kW !#12E2
B~kW !n@E2

B~kW !#. ~24!

However, the expression for magnetization is not that sim
since here one does not apply any self-consistent approx
tion ~this is the result in lower-order approximation!. The
sublattice magnetization in this case is evaluated as

sB5S2^âi
1âi&5so

B2DsB~T!, ~25!

so
B512

«

4N (
kW

S 1

E1
B~kW !

1
1

E2
B~kW !

D , ~26!

DsB~u!5
«

2N (
kW

S n@E1
B~kW !#

E1
B~kW !

1
n@E2

B~kW !#

E2
B~kW !

D . ~27!

V. DISCUSSION OF THE RESULTS

Let us start our discussion with the comparison of t
results of the spin~the RPA! and boson approximations fo
the ground state (T50 K). We compares r(0), which is
given by Eq.~18! for a spin formalism and Eq.~26! for a
boson formalism. The results are summarized in Fig. 2
terms oflb ~intracell coupling!. Probably unrealistically high
values oflb are included just for the sake of compariso
with the results of Refs. 4 and 5.

First of all, we must stress that the numerical values of
magnetization for a corresponding bilayer@two-dimensional
~2D!# and superlattice~3D! differ only at third significant
figure, so they cannot be distinguished at the plot. For
reason, the plot shows only two curves—one for the s
RPA treatment and the other for bosons.
2-4
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Let us concentrate on the behavior for small values oflb ,
which is similar in both cases and represented in insets.
increase oflb leads to an increase of the antiferromagne
ordering, until it reaches a saturation value forlb'1. Then
the magnetization begins to decrease, and this is where
encounter two essentially different types of behavior.

It can be seen that within the boson treatment, the lo
range order~LRO! at T50 always vanishes for strong intra
cell coupling.~This agrees, in a certain degree with the
sults of Refs. 4 and 5, where the LRO vanishes
comparatively lower values oflb .) On the other hand
within the spin treatment, the LRO never vanishes, but
ymptotically tends to zero for very high values oflb . This
implies that, according to the boson treatment, quantum fl
tuations forlb>10 can destroy the in-plane LRO, while
according to the spin treatment, this practically never occ
The formal reason for such a disagreement lies in the
that the boson expression represents only the first term in
expansion of the spin result. Matsuda and Hida4 tried to pro-
pose an explanation based on the creation of singlet s
consisting of spins belonging to neighboring planes, relat
this to the spin-fluctuation mechanism of pair formation
high-Tc superconductors.11,12 Our results, which do not sup
port singlet formation, do not exclude this mechanism in
superconducting phase, since they are valid only for the
phase of high-Tc cuprates@x,0.41 for ~1:2:3!#. As we have
mentioned, the curves for two and three dimensions pra
cally coincide, implying that the in-plane quantum fluctu
tions are dominant.

In the other limiting case, we shall concentrate on
phase transition, where we shall discuss only the result
the RPA treatment, since the boson approximation is
valid in this temperature range, as shown by Irkhinet al.13

The expression foruN within the RPA can be obtained from
Eq. ~17! in the limit s→0:

uN5
J

C11C2
, C1/25

2«

N (
kW

1

«22@g~kW !6ugzu#2
.

~28!

We shall first analyze this expression numerically for a se
parameters relevant for high-Tc cuprates@~1:2:3!# frequently
stated in the literature.7,8,14,15,16It turns out that the essentia
parameter is the in-plane anisotropyg511h. As long as
hÞ0, for both two- and three-dimensional cases, forJ

FIG. 2. Ground-state relative magnetization:~1! boson treatment
and ~2! spin RPA treatment.
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'100 meV andlb5531022 we obtain values ofuN

'430 K close to experimental valuesuN'415 K.7,14 For
the three-dimensional case, one can also look at the isotr
system (g51), while keeping the parameterslb andl8 fi-
nite. The values ofuN are then highly underestimated. Th
results are summarized in Table I.

This implies that, contrary to common statements, it is
three dimensionality which is essential for the antiferroma
netic ordering in this system, but in-plane spin anisotro
(hÞ0). This is in agreement with the opinion shared
some authors9,11,12 that two-dimensional spin fluctuation
also play an essential role in the superconductive phase.
is also supported by the fact that the AF phase transition
~1:2:3! for x50, at a temperature of 41565 K is of second
order, with a critical exponent for the staggered magneti
tion b50.2560.03, which is characteristic of a 2D AF
system.7

It might seem strange that the small finite value of
plane spin anisotropy (h) influences the value ofTN so dras-
tically. In fact, we can explain this effect starting from the 2
case, where this is rather transparent. Looking back at
pression~28! we see that integralsC1/2 strongly depend on
the in-plane anisotropy. Wheng51, this term exactly can-
cels the contribution ofg(kW ) for kW→0. Thus, it is the part
with h that preserves the convergence of the integral~similar
to the integral appearing in the proof of Mermin-Wagn
theorem17,18!. The same reasoning can be applied to the
case. Here the convergence is preserved forg51, yet the
influence ofh still remains.

At this point, we wish to demonstrate a problem that o
curred frequently in the literature, concerning an importa
technical detail. In a two-dimensional case, the integrat
over the first Brillouin zone~IBZ! is usually taken in the
limits (6p/a) for kx andky , both for ferromagnet and an
tiferromagnet with simple quadratic lattice. However, t
correct boundaries are dictated by the shape of the IBZ.
an antiferromagnet, each quadrant of the IBZ is a triangle
2D momentum space, i.e., the boundaries inkx ,ky>0 range
are@0<kx<p/a,0<ky<(p/a)2kx#. So, not only is the AF
IBZ twice smaller, but one also must take into account
variable boundaries. A typical example of this mistreatm
is the work by Singhet al.19 However, we must commen
upon this work in more detail. At first sight, the autho
reached an extremely good agreement between theory
experimental results, in particular for the transition tempe
ture @for the system~1:2:3!#. We previously showed that no
such agreement could be achieved in the absence of
anisotropy~for g51; see Table I!. The agreement is in fac
the consequence of the underestimated volume of unit
appearing in expressions~5! and ~6! in Ref. 19, vo5a2c
instead ofvo54a2c. This is combined with incorrect inte
gration boundaries, so the proper value of the integralI (r ) is
about twice as large, and the transition temperature follow
from their estimates is in fact twice as small.

We now turn our attention to the intermediate region
low, but finite temperatures, and compare the boson and
expressions for the energy and magnetization. General
pressions are summarized in Eqs.~14! and~17! for spins and
2-5
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TABLE I. Transition temperature dependence on system parameters.

h

1024 0

lb l8 J ~meV! TN ~K! lb l8 J ~meV! TN ~K!

1022 1026 80 313.004 1022 1027 80 210.964

1022 1025 80 313.383 1022 1025 80 253.143

531022 1025 80 343.595 531022 1025 80 272.705 3D

1022 1026 100 391.255 1022 1027 100 263.70

1022 1025 100 391.728 1022 1025 100 316.428

531022 1025 100 429.494 531022 1025 100 340.88

1022 1026 120 469.506 1022 1027 120 316.446

1022 1025 120 470.074 1022 1025 120 379.714

531022 1025 120 515.392 531022 1025 120 409.057

1022 0 80 312.961

531022 0 80 343.096

1022 0 100 391.20 2D

531022 0 100 428.87

1022 0 120 469.442

531022 0 120 514.644
n

a
le
u

so

y’’
h

tia
th

n

th
d

ey
ye

p in

ree-

mi-
in Eqs.~22! and ~25! for bosons. Here we also comment o
some of the results that occurred in the literature.

We have already demonstrated the essential role of m
netic anisotropy. However, before going into any details,
us comment upon different manifestations of anisotropy. O
approach includes two types of anisotropy: one is the ani
ropy in spin space~simply put, spin anisotropy! and here it
appears as the in-plane anisotropy ofxxz type. On the other
hand there also appears a so-called ‘‘spatial anisotrop20

since interlayer and intralayer exchange integrals differ. T
distinction between the two types of anisotropy is essen
spatial anisotropy does not influence the existence of
acoustic branch@the Goldstone mode is limk→0E(k)50#,
and the energy gap in this branch appears only as a co
quence of the spin anisotropy. However, Pratapet al.6 intro-
duced spatial anisotropy by adding a term depending on
dispersion along thez axis, which can be strictly introduce
only for an infinitely extended superlattice in thez direction.
It is important to stress that with this kind of interaction th
obtained a gap for the acoustic branch in the single bila
which is definitely an incorrect result.

Let us first discuss the single bilayer (l850,kz50). The
spin-wave dispersion law in the boson case becomes

E1/2
B ~kW !5

1

2
A~4g1lb!22@g~kW !6lb#2, ~29!
10451
g-
t
r
t-

e
l:
e

se-

e

r,

which differs from expression (7) in Ref. 6 only bygÞ1.
Due to the spin anisotropy, both branches possess a ga
the long-wavelength limit:

D1/2
2 54~g71!@2~g61!1lb#. ~30!

In the lowest temperature range, i.e., 0,u,D1, the expres-
sion for the magnetization is

DsB~u!52
4g1lb

p~41lb!
u ln~12e2D1 /u!1O~e2D2 /u!.

~31!

One should note that Pratapet al.,6 in the lowest range, ob-
tained~due to an erroneous integration overkz) a quadratic
temperature dependence, characteristic of a th
dimensional antiferromagnet~as will be shown later!, while
in the next temperature range, the behavior is formally si
lar to the one that we produceu ln u; yet the difference is in
the origin of the gap. In the next temperature rangeD1,u
,D2 the magnetization has the form

DsB~u!5
4g1lb

p~41lb!
u ln

u

D1
1O~e2D2 /u!, ~32!

while for D2,u,uN we obtain,
2-6
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DsB~u!5
4g1lb

p~41lb!
u ln

u

D1
1

4g1lb

p~42lb!
u ln

u

D2
. ~33!

We shall now analyze the energy of the system forg51
only. This particular case is characterized by the fact that
of the branches (E1

B) is now gapless~Goldstone mode!. One
has

^H&5N
16Jz~3!

p~41lb!
u31N

32Jlb

p~42lb!
u expS 2

2Alb

u D ,

~34!
rs
r
e

.

i

n

ts
o
a
i

-

A

t
lo

10451
e

wherez(3) is Rieman’s function. Finally let us write dow
an expression forCv5d^H&/dT,

Cv5N
48kBz~3!

p~41lb!
u21NO~e22Alb/u!, ~35!

where the second term decays exponentially at low temp
tures, and this can be neglected.These results obviously
fer from the corresponding ones Eqs.~30! and ~31! in Ref.
6#. We now proceed to the 3D case, i.e., to a superlat
extended infinitely in thez direction. The excitation energie
are given by
E1/2
B ~kW !5

1

2
A~4g1lb1l8!22$g~kW !6@~lb1l8!222lbl8~12coskzco!#1/2%2, ~36!
ng
ter-

ma-

es-
re-

ergy
te
-
his
the
hat
v-

t of

e

nd
AF
whereco5d11d2 is the lattice constant in thez direction. It
is important to note that for a superlattice formed of bilaye
the intralayer (lb) and interlayer (l8) interaction terms ente
into all expressions in an absolutely symmetrical mann
Further analysis will be based on the isotropic case (g51),
whereE1

B is the Goldstone mode whileE2
B possesses a gap

In the lowest temperature range, foru<min@lb ,l8#, expres-
sion ~27! gives

DsB~u!5
1

6
Alb1l8

«lbl8
u21O~e2D2 /u!, D252Alb1l8.

~37!

The quadratic temperature dependence of magnetization
typical AF 3D behavior. Also note thatlb andl8 enter the
expression completely symmetrically. For min@lb ,l8#<u
!uN there arises a crossover from three- to two-dimensio
behavior:

DsB~u!'
1

2p
u lnFuS 4~lb1l8!

«lbl8
D 1/2G . ~38!

The above example indicates that although there exis
formal symmetry between couplings, when their order
magnitude differs substantially there obviously appears
asymmetry which governs the behavior. For example,
~1:2:3! structures, wherelb@l8(l8'1022lb), we have

DsB~u!'
1

2p
u lnF2u

1

~«l8!1/2G , ~39!

so the weaker interlayer couplingl8 determines the 2D be
havior.

Let us now turn our attention to the results of a RP
treatment. In the presence of in-plane anisotropy (gÞ1),
both excitation energy branches possess a gap, so tha
basic temperature dependence of the magnetization at
temperatures is exponential:'exp(2D1/2/u). This case will
,

r.

s a

al

a
f
n
n

the
w

not be analyzed in detail. In the isotropic regime (g51), in
the lowest temperature range, the expression forDs(T) is
equal to

Ds~u!5
1

3
Alb1l8

«lbl8
u21O~e2sr (0)D2 /u!, ~40!

which differs from Eq.~37! only by a factor of 2. This dif-
ference follows from the different procedure of evaluati
the magnetization, since the spin magnetization is de
mined in a self-consistent way. In the range min@lb ,l8#
<u!uN , there occurs a crossover, leading to

Ds r~u!5
s r~0!

p
u lnFus r~0!S 4~lb1l8!

«lbl8
D 1/2G . ~41!

This differs from the boson expression@Eq. ~38!#, not only
by a numerical factor~2!, but also by the presence ofs r(0)
which is again the consequence of self-consistent approxi
tion.

The expressions for the energy of the system will be
sentially different due to the presence of a temperatu
dependent magnetization in the expressions for the en
@Eqs.~15! and~16!#. Even the correction of the ground-sta
energyDEo does not vanish forTÞ0, but changes in a simi
lar manner as it does for the magnetization. In fact, it is t
correction that dictates the low-temperature behavior of
energy, it is a quadratic function of the temperature, so t
Cv'u. This behavior is essentially different from the beha
ior of the energy of a boson system (^H&;u4,Cv;u3), and
is a consequence of the fact that a more correct treatmen
spin statistics~in terms of RPA decoupling! reflects the fer-
mionic nature of spin (S5 1

2 ) operators acting at the sam
site.

VI. CONCLUSION

The aim of this study was to review the similarities a
differences in the results obtained by treating a magnetic
2-7
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bilayer in boson and RPA-spin approximations, and at
same time indicate to various misinterpretations occurring
some particular applications. One of the basic achievem
of our study is the application to a spin system occurring
~1:2:3! structures, where we have shown that, in the anti
romagnetic phase (x,0.4), the in-plane anisotropy and two
dimensional quantum spin fluctuations both play an imp
tant role, much more significant than previously assum
However, we stress that our results cannot be simply
trapolated to the superconductive phase, although they p
ably indicate the importance of these fluctuations. Finally,
M
, a
n
,

tie
m

m

10451
e
n
ts

n
r-

r-
d.
x-
b-
e

must stress once more that the Tyablikov~or RPA! approxi-
mation for the Heisenberg model, although very simple, c
forms to the Mermin-Wagner theorem in all relevant limitin
cases.
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