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Ultrasonic attenuation in magnetic fields for superconducting states with line nodes in SRuO,
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We calculate the ultrasonic attenuation in magnetic fields for superconducting states with line nodes vertical
or horizontal relative to the RuOplanes. This theory, which is valid for fields neldg, and not too low
temperatures, takes into account the effects of supercurrent flow and Andreev scattering by the Abrikosov
vortex lattice. For rotating in-plane field(®) the attenuatiorr(®) exhibits variations of fourfold symmetry
in the rotation angle®. In the case of vertical nodes, the transvefd®0 sound mode yields the weakest
(linean H and T dependence ofr, while the longitudinalL100 mode yields a strongéguadrati¢ H and T
dependence. This is in strong contrast to the case of horizontal line nodesaisetee same for th&100 and
L100 modegapart from a shift ofr/4 in field direction and is roughly a quadratic function bf and T. Thus
we conclude that measurementsaoin in-plane magnetic fields for different in-plane sound modes may be an
important tool for probing the nodal structure of the gap ipRSIO,.
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[. INTRODUCTION We shall show thaty(®) exhibits fourfold symmetric varia-
tions in rotation angle® of the magnetic field while the
A number of experiments give evidence that the superconvariations of«[ ®] have twofold symmetry. It turns out that
ducting state in layered SRuQ, (Ref. 1) consists of spin- the field and temperature dependencies dbr vertical gap
triplet Cooper pairs with broken time-reversal symmetry.nodes are quite different for longitudinal and transverse
More recent experiments at low temperatures have estatsound modes whilex for horizontal nodes is essentially the
lished power-lawT dependence of the specific hedt?,>  same for longitudinal and transverse sound modes. Thus ob-
the spin-lattice relaxation rateT?), the electronic thermal Servation of the field and temperature dependence &r
conductivity*® the penetration depfh,and the ultrasonic ongitudinal and transverse sound modes should yield impor-

attenuatior:® These properties are most naturally explainedi@nt information on the nodal structure of the gap in

in terms of a spin-triplet order parametei(p)=Az(p, SpRUG,.

. h h i functi h ol The ultrasonic attenuatioa in the vortex state nedl .,
+ipy)g(p) where the even-parity functiog(p) has vertical ¢, yyne || swave superconductors has been calculated pre-

line nodes(e.g., px—py or pxpy) or horizontal line ”O_qfs viously by Scharnberg and by Klimesh and Pesc¢filn Ref.
[e.9., cos¢p,+ao)] on the cylindrical Fermi surfack. 13 the Green’s functiorG of Brandt, Pesch, and Tewordt
Since the measured anisotropy of the in-plane thermal conBPT) (Ref. 19 has been employed which was derived from
ductivity x[@®] for rotating in-plane magnetic ficldis  the spatial Gorkov integral equation f&(r,r’,w) with ker-
smaller than the calculated anisotropy for vertical nddes, nel proportional to the “potential”

and since the anisotropy of the interplangd®] is )

insignificant? these authors have discarded vertical nodes V(I r)=A(r)A* (r.)ex —2|ef A.ds

and suggested instead horizontal nodes in the superconduct- (r1.r2) =A(r)A%(r2) 1 '

ing gap. Recently we have shown, however, that the ampli- . . .

tudes of k[ @] for vertical and horizontal line nodes are where A(r) is the Abrikosov vortex-lattice order parameter

about the sam¥ The small size of the observed amplitude andA is the_ vector potential of the magnet_ic field. Thi_s in-_
of k[®] is due to the result that the amplitude of the varia-tegral equation has been solved by expanding all functions in

tion of k[ ®] decreases with increasing impurity ScatteringZr?cljjrilr?erirrIiiﬁn\fgthrarlesvﬁ)/ﬁﬁtr;z C::ttg'gl'ggiiz’i;ggﬁégates
and temperature. The data for ultrasonic attenuatiom graip P

) A coordinates. In calculating physical quantities néhp it
SrRuG, measured for different sound directiogsand po- e suffices to consider only the=0 Fourier component

larizationse in the ab plane are found to be consistent with G(p,w). The corresponding anomalous Green’s function
a vertical line node structurpi— p§ or a horizontal line of  has been derived in the context of NMR theory by PéSch.
nodes in conjunction with significant gap modulation. The effective self-energy part occurring in the denominators
Since the question as to the nodal structure of the supeof these Green’s functions is proportional to the spatial av-
conducting gap in SRuQ, is still unresolved, we suggest erage off A(r)|? denoted bSAZEAZBcs(T)(l—H/ch)- Fur-
here measurements of the anisotropy of the ultrasound athermore, it depends decisively on the quantityv siné
tenuationa(®) for rotating in-plane magnetic fields. Indeed, whereA = 1/\2eH, v is the Fermi velocity in the plane per-
ultrasonic attenuation is another powerful tool for pmbingpendicular toH, and @ is the angle between the quasiparticle
the anisotropic gap structure becaus®) is sensitive to the  momentump and the fieldH. For §—0 the Green’s func-
relative orientations of the sound direction and polarizationijons G andF tend to the ordinary Green’s functions for an
q ande, the fieldH(®), and the nodal directions of the gap. swave superconductor with gap. For finite 6, the self-
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energy contains both the effects of the Doppler shift and thén magnetic fields neafl,.'*> We start with the normal and
Andreev  scattering by the  potential V(p')  anomalous BPT Green’s functior® and F which contain
=A%A%5(p,)exp(—A?p’?) for momentap’ in the plane poth the effects of supercurrent flow and scattering by the
perpendicular tdH. This potential is multiplied by the hole Aprikosov vortex lattice on the quasiparticle spectrtim.
propagatorG®(p—p’,— ) and integrated over ap’. The  These Green's functions are employed in the expressions for
theory ofa based on the Kubo formula and the BPT Green'sihe correlation functions for longitudinal and transverse

. 3 . . . .
function”® leads in the extreme clean limit to unphysical re- g, g propagation. Our method for evaluating the Kubo for-
sults in the final expressions. However, for small enough

mean free paths this method is ca_PabIe of describing ex- mula follows closely the method \{vh|ch has been used in the
periments neaH, sufficiently well* early th(la;)ry of ther.mal conductivity by Arr;begaokar and
Another approximation scheme far, which is based on 1ewordt:™ First the integral of RE5(¢,w) - G*(£—V-q,
the Eilenberger equations and the Larkin-Ovchinnikov equa— @o) —F-F*] over the energy variabl€ is carried out.
tions for the correlation functions via linear-responseHere q and w, are the wave vector and frequency of the
theory!* can be carried out in the limit—. In this approxi-  sound wave and is the Fermi velocity. This yields the resi-
mation scheme only thie=0 coefficient(spatial averageof  due of this expression at the pdfe= &, of the BPT Green’s
the solution is considered. These authors state that this apanction G(¢, ) given by Eqs(4) and(5). The most impor-
proximation is most questionable for quasiparticle directiongant term in the resulting expression is the quantity&ym
pl[H, and therefore they have concentrated on the speciglhich yields the scattering rates due to impurity scattering
case of longitudinal ultrasonic attenuation where the wave, - 4 Andreev scattering by the vortidese Eq(3)]. We have

vectorq is parallel toH. Then the main contributions to the obtained the Andreev scattering rate by calculatingzgm
correlation function arise from directioqsperpendicular to .
TEpeTh from Eqgs.(4) and(5) for given w/A, AA/v, gnd v=0 (no

g, and thus perpendicular td, for which their approxima- ) ' )

tion is best. impurity scattering as a function of the anglé= ¢—© be-
Since our main aim is to calculate for unconventional tween the quasiparticle directignand the fieldH. Then we

superconducting gaps with nodes, we employ BPT Green'find that foro=A (extended stat¢dm &, is zero in a range

functionsG and F whereA? is replaced byAf(p)|* with  of angles abové#=0 (p||H) which increases witho, and
f(p) containing thep dependence. This result has been deacomes finite of orderA/v)? in a broad range of angles

rived from the original spatial integral equation for Up to0 9= /2 (pL H) (see Fig. 5. It should be pointed out

G(r,r’,w) which contains in the kernal the nonlocal order hat the d g fth dqf ) ith
parameterd (r;,r}) andA* (r,,r}) . The method consists in nat the denominator of the second factor in £3).(without
the absolute squareoccurs also in the expression for the

writing A(rq,r;)=A(rq,ri—ry) andA*(r,,r3)=A*(r,,r, _ _ HEs
—r}) and introducing Fourier integrals with respect to thedensity of states in the vortex stdfein the limit 6=¢—©
relative coordinates. In this way one can show that, to a good*0 (pl|H) the expression for in Eq. (3) (for gl—0) tends
approximation p’ ~1/A<pg), the A2 in the BPT Green's to the well-known expression for the inverse relaxation rate
function is replaced by\?|f(p)[>. . Im &o— Im(w?—|A|%) 2 (where w=w+17) times the co-
Another problem arises from the fact that we consider herence factor %(|Z)|2—|A|2)/|Z>2—|A|2| which was first

for longitidunal and transverse sound waves with propaga-, - . . : .
tion vectorq in the ab plane of SsRUQ;, together with a derived in Appendix C of Ref. 19. In the hydrodynamic re-

field H in the plane which is rotated with respect to the gime, wor<1, we obtain, by including vertex corrections in

direction by the rotation angl®. This means that the angle analogy to Ref. 18, the_foll_owing expression fo_r the ratio of
betweery andH takes on all values, including perpendicu- the qltrasound attenuation in the superconducting state

lar to H so that the main contributions i arise from direc-  that in the normal stater, :

tions of p near the direction oH. As has been pointed out

above, for_these directions the_ BPT Green's func_:tion is cl_ose g 2rdg

to the ordinary Green’s function which is physically quite as *0w m

plausible. Furt)rllermore, fqpl|H our correlatior?fa/nctior{ gq. @ J; ﬁseCH(“’/ZT){ o E[Wij(‘f’)]zl(‘/’)

(3), tends to the one derived in Ref. 18 fdr=0. Therefore

we believe that, in contrast to the semiclassical approxima- 2nd ¢ 2 , [?mdé -1
tion schemé our method can deal quite well with general + o Lmi( @) | (gl | 5-1(¢) :
. . . . 0 & 0 T
directions ofH with respect tag in the ab plane.
In Sec. Il we present the general theory on the basis of the (h)

BPT Green’s function. In Sec. Il we discuss the ultrasonic
attenuation results for different sound modes and several su-
perconducting states with vertical and horizontal line nodeshere
The conclusions are given in Sec. IV.

Il. GENERAL THEORY OF ULTRASONIC ATTENUATION 72 (b)=2 cog(2¢), (L100);
NEAR H,

Our present theory for the ultrasonic attenuatioolosely 5 2
follows the method for calculating the thermal conductivity T $)=2sim(24), (T100), @)
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($)= Im & /T _ c 1
[(Im &/T)?+(aD?(@- p)?] S
{1—m[AA/v sin(p—O) 1| f|2|w(zo) |2 s |
11+ 2[AA /v sin(é— ©) 2 F2[1+i Vazow(zg) 1|2 ]
©) |
Zo=(w+iy+&)Avsing—0)], A=(2eH) 2 |
y=TIg, g=N(w,H)/Ng. 4

Herew, and, are the weight factors for tHe100 (T110)
andT100 (L110) sound modés®wherelL = longitudinal, T
= transverse, and||[100] or [110]. We use the following
notation:I" is the normal-state impurity scattering ratejs

0.0 : : * * : ; . : : :
the in-plane Fermi velocity® = 2 (H,a) is the direction of 00 01 02 05 04 05 06 07 08 09 10
H in the ab plane,A? is the spatial average of the absolute H/ HCZ
square of the order parameter for the Abrikosov vortex lat-
tice, and f(¢)|? is the normalized absolute square of the gap ~FIG. 1. Ultrasonic attenuation/«, vs applied fieldH/H, at
function. The quantity,, and thus the pol&, of G, is given ~ T=0 for longitudinal and transverse in-plane sound mod&80

by the transcendental equatior? (®=0; ®=/(H,a)) and T100 (O = =/4) for impurity scattering
ratel'/A,=0.1. Vertical gap nodes: solid and dashed curves without
Zo=2(w+iy)[Alvsin(¢—0)] and with vertex corrections in the unitary impurity scattering limit,

) ] respectively. Horizontal gap nodes: dash-dot curve.
+iva[AAl sin(p—0) 13 f|Pw(z,). (5)

Here, w(z) =exp(—z?)erfc(—12z). Note that Eqs(4) and  for the L100 (® =0) and T100 (® = 7/4) modes aff =0

(5) differ from the corresponding equations in Ref. 15 in thatand impurity scattering ratE/A,=0.1. A, is the BCS gap
the sing in the original quantityA A/v siné is replaced by parameter, and we will always use the vagie=1.2 for the
sin(¢—0) for p lying in the directiong andH lying in the  Aprikosov parameter. It is seen that/«, for the L100
direction® in theab plane, and\? is replaced byA?|f(¢)|*>  mode exhibits a strong upward curvature ridas while it is

for a gap with vertical lines of nodes. For a general state withy more linear function ofl for the T1L00 mode. For increas-
f(p) one has to replace stwith the expression given in Ed. ing I'/A, the upward curvatures decrease.

(7) of Ref. 12 and carry out the double integral over the polar The solid curves foreg/a, in Fig. 1 are calculated by
and azimuthal angleg and ¢. In the following calculations  neglecting the vertex corrections in E@), while the dashed
we will neglect the term proportional toq()? in the first  curves include the vertex corrections in the unitary impurity
denominator of Eq(3) assuming the long-wavelength limit scattering limit. One recognizes that the effect of the vertex
ql<1. The dependencies oA(\/v)? and (\/v)? onH/Hc,  corrections in the unitary limit is rather small. This is also
are presented in Ref. 12. The expreSSion for ultrasonic attrue for |mpur|ty Scattering in the Born limit Whedg|2 in
tenuation in Eq(1) is similar to the expression for in Ref.  the denominator of Eq(1) is replaced by 1. It is interesting
12 apart from the missing factas?, the weight factorr,  that, for field direction angle® = /4 and® =0, the vertex
instead ofp?, and the vertex correctiofisecond term in the corrections for the.100 andT100 modes, respectively, van-
curly brackets in Eq(1)]. For the vertex corrections we have ish. In the following calculations and figures we shall neglect
used the expressions in Ref. 18 for the unitary liMdif  the vertex corrections.

= /2 of the phase shift for impurity scattering. In the limit  In Fig. 2 we show the dependence ®f/«a, on the in-
w—0, an analytical expression for the solutiag=ixy of  plane field direction® at T=0 for fixed field strength,
Eq. (5) is obtained which yields, in close analogy #9> a  AA/v=0.2, and impurity scattering ratE/A,=0.1. One

much simpler expression fats/«,, in the limit T—0. sees thaiw(®) has variations in® of fourfold symmetry
where the minima and maxima occur@t&=0 and /4 for
Il. RESULTS AND DISCUSSION OF ULTRASONIC the L100 mode. For th&100 mode the maxima and minima
ATTENUATION FOR DIFFERENT SOUND MODES are reversed. The maxima and minima can be explained as
AND SEVERAL SUPERCONDUCTING STATES an effect of thep) dependence of the weighting factofﬁ in
WITH VERTICAL AND HORIZONTAL LINE NODES Eqg. (2) and the density of states since the expression

R |- --]72in the denominator off(#) in Eq.(3) is proportional

First we consider thef-wave pairing stated=Az(p,  to [N(¢,0)|%. The density of states has a minimymaxi-

+ipy)(p§—p§) for which |f|>=cog(2¢) has four vertical mum) for quasiparticles traveling parallgberpendicularto

line nodes ath=7/4,3w/4, . .. on thecylindrical Fermi sur-  the field!® The minima forL100 andT100 occur at® =0
face. In Fig. 1 we show our results fa/ @, versusH/H.,  andw/4, respectively, because the corresponding weight fac-
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FIG. 2. asla, vs ®=/(H,a) for in-plane field rotation aff
=0 for sound mode4.100 andT100 and gap parametexA/v
=0.2(H/H;,=0.78) andI'/A,=0.1. Solid curves: vertical gap
nodes. Dashes curves: horizontal gap nodes.

tors 7%, and %, have maxima a® =0 and/4. For higher
fields (e.g., AA/v=0.1) a small local maximum and two
neighboring minima occur aroun® = 7/4 for the T100 ) ‘ ‘ - ‘
mode due to the node of the gap@t /4. 0 1 2 3 9 4

The sound attenuation for the othfewave pairing state,
proportional top,p, with |f|?=sir?(2¢), is obtained from FIG. 3. Integrandexs(Q)/a, in Eq. (1) for as/a, [without the
the previous expression fof|?>=cog(2¢) by a simple trans-  factor (1/2)secR(w/2T)] vs reduced frequenc = w/A for gap
formation, ¢’ = ¢— w/4, in Eq. (1). This exchanges the re- parameterAA/v=0.2(H/H,,=0.78) and field directiongd®=0
sults forL100 andT100 which become functions of the new (solid curve$ and ® = /4 (dashed curvgs and I'/A,=0.1. (@)
field rotation angle®’ =0 — 7/4. L100 andT 100 for vertical gap nodegb) L100 for horizontal gap

We consider now the spin-triplet pairing state with hori- nodes.
zontal line nodeSwhere the squared gap amplitude is pro-
portional to|f|?= cos(cp,)=co]x]. Then, in addition to the Now necessary to solve E) for z, as a function of()
¢ integration in Eq.(1), one also has to do the integration =/A, and then to integrate the resulting expression for
over y from —= to +. In Fig. 1 we have included our 1(#) in Eq. (3) [multiplied by 77 (¢), etc] over ¢ (and x
result for ag/a, versusH/H., for the modeL100 atT=0  for horizontal nodes We denote byrg(Q)/a, the resulting
andI'/A,=0.1. A strong upward curvature occurs nédy,  integrand of the » integral [without the factor
which is similar to that of thé. 100 mode for vertical nodes, (1/2T)seclk(w/2T)]. In Fig. Ya) we plotag(Q)/a, vs Q for
but is quite distinct from the almost linear dependence off|>=cog(2¢) for large field magnitude [AA/v
asla, on H/H, for the T100 mode in the case of vertical =0.2(H/H.,=0.78)] and field direction® =0 and /4 for
nodes. In Fig. 2 we have plotted our results for the in-planéboth theL100 andT100 modes. It is interesting that the
field variation a(®) for the L100 andT100 modes. Note curves for® =0 andw/4 cross at finite frequencig$ which
that the functiona(®) for T100 is obtained by shifting the means that the minima and maxima in(®) are inter-
function forL100 by® = 7r/4 along the® axis. This can be changed. Furthermore, th@ dependence foif100 at ®
seen by a variable transformatiefl = ¢— 7/4 in Eqs.(1)—  =m/4 is almost linear while, fot. 100 and® =0, it is qua-
(3) making use of the fact that|?=cos(y) does not depend dratic. In Fig. 3b) we show ay(Q)/«a, for the state|f|?
on ¢. Comparison of the curves in Fig. 2 shows that the=cog(cp,).
amplitudes of the variationg(®) for vertical and horizontal The temperature dependence ®f/«, is obtained ac-
nodes are about the sartieere about 109% However, there cording to Eq. (1) by integrating the expression
is a marked difference in the form of the variations for the(1/2T)secR(w/2T) ay(Q)/ e, over . For the variable trans-
L100 andT100 modes for vertical nodes because, for theformation from » to Q=w/A we make use of the
T100 mode, the gap node manifests itself in the structureelations A/A,=[1—(H/H)1¥¥Ba and H/H,=[1
around/4. In contrast to this, the form of the variations for +68,(AA/v)?]"1.* In Fig. 4 we show our results for
horizontal nodes is the same apart from the shiftid  «a./a, vs T/T, for vertical gap nodes at low- and high-field
along the® axis. strength AA/v=0.6 and 0.2, oH/H.,=0.28 and 0.78and

We turn now to thew dependence of thé integrals in  field directions® =0 and ® = 7/4 for the L100 andT100
Eqg. (1) which determine thél dependence o&/«,. It is  modes. One recognizes that, for Idwthe attenuation of the
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FIG. 4. ag/a, vs TIT, for vL100, v T100, andhL100 v =
vertical,h = horizontal gap nodesfor field directions® =0 (solid
curves and ®=m/4 (dashed curvgs (&) AA/v=0.6(H/H,
=0.28),I'/A;=0.2;(b) AA/v=0.2(H/H,=0.78),I'/A;=0.1.

L100 mode is approximately a quadratic functiontofvhile

it is nearly linear for theT100 mode a®) = 7/4. These dif-
ferent lowT power laws for the.100 andT 100 modes agree
roughly with the results of Ref. 10 for zero field. It is inter-
esting that the quadratic and linedependencies ot/ a,
for the L100 andT100 modes correspond to the quadratic
and linear dependencies @f/«,, on H/H, for these modes
(see Fig. 1L In Fig. 4 we also showg/a, vs T/T, for the
L100 mode for horizontal gap nodes and field directiéns
=0 and w/4. We recall that the results fdr100 for ®
=0(m/4) are identical to those for100 for ® = 7/4(0).
One sees that the dependenceTas nearly quadratic.

IV. CONCLUSIONS

In summary, we have calculated the ultrasonic attenuation
a in layered SyRuQ, in the presence of in-plane magnetic
fields for spin-triplet superconducting states with vertical or
horizontal line nodes in the gap. This theory takes into ac-
count the effects of supercurrent flow and Andreev scattering
(see Fig. 5 by the Abrikosov vortex lattice nedt.,. For
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0

n/2 'é T

FIG. 5. Andreev scattering given by 1&g /A, (for y=0), ver-
rotating in-plane fieldH(®) the attenuationy(®) exhibits ~ Susf=<(p,H) for fixed A=AA/v~[(Hc,/H)—1]"7 63, and
variations of fourfold symmetry in the rotation andgle At ~ Q2=w/A. (8 A=0.2 and2=0.0, 1.0, 1.2, and 1.§from top to
T=0 the minima occur a® =0 and/2 for theL100 sound bottom); (b) 2=1.0 andA=0.6, 0.2, and 0.1from top to bottony;
mode, and a® = =/4 and 3r/4 for the T100 mode. The (c) Q=1.2 andA=0.6, 0.2, and 0.1from top to botton.
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amplitudes of the variations are about the sard (%) for 0.7 '

both horizontal and vertical nodes. However, in the case of S @ A
vertical nodesg/(®) for the T100 mode shows characteristic o6t \\ //’ \\ P
structure in the directions of the nodes. For horizontal nodes ' e S

the variationsa(®) for the L100 andT100 modes are the c

same if® is shifted bysr/4. The distinction between vertical 3 0.5 T100 g
and horizontal nodes also manifests itself in the different \m ]
field and temperature dependenciesxoffFor vertical nodes el /\/\
the ratioas/ «, €xhibits a strong upward curvature as a func- 04F L1o0—" |
tion of H/H, nearH,, for the L100 mode while it is more ]
linear for theT100 mode. In the case of horizontal nodes, the 0.3 . I

attenuation for both thé-100 andT100 modes shows a 0 /2 o) T
strong upward curvature neét.,. The temperature depen-

dence of the sound attenuation is determined by the fre- 1.0

guency dependence of the integrand), Q= w/A, in the 0.9 ]
expression fowg/a,, . Itis interesting that the curves for the c 08 -
functionsa/(Q) for field directions® =0 andw/4 cross each e 0.7 .
other twice for increasing) indicating that the maxima and \w 0.6 -
minima are interchanged twice. This causes corresponding I 05 8
crossings in th& dependencies at for the two field direc- 0.4 -
tions. For vertical gap nodes, at low «a¢/«a, exhibits ap- 03l .
proximately aT? power law for theL100 mode and a 0.2 .
roughly linear T dependence for tfiel00 mode. For hori- 04 -
zontal gap nodes the functions/«, vs T/T, for the L100 ool v v v e
andT100 modes are identical for field direction differing by 0.0 01 02 0.3 04 05 06 07 08 09 1.0
/4. For low and high fieldsys/a, follows roughly aT? H/Heo

power law.

The ultrasonic attenuation in SRuQ, in zero field has
been measured for the four in-plane modes00, T110,
T500, andL110. The attenuation follows a low-temperature
power lawT® for the L100 (T110) mode and'** for the -
T100 mode. In Ref. 8 &% power law belowT;y, and aT? = £ (H,a) for H/H:;=0.78;(b) as/a, vsH/Hc, at T=0 and for
dependence aboveé;,, has been measured for thel10 I'740=0.1.
mode. Calculations based on the assumption of a circular
cylindrical Fermi surface and vertical gap notfegield a  fourfold angular modulation, (X cos4$), 0<|\|<1, in
linear T dependence ofr,/«a, for the T100 (L110) mode the plane. This has the effect that the dashed curves in Fig. 2
which disagrees with the measur&4* power law and, for for the variationsa(®) of the L100 andT100 modes drift
the L100 mode, a power law close to the measured one. Thapart with a shift(and thus the anisotropythat increases
fact that the weakest T dependence occurs folth@0 mode  with increasing amplituda of the fourfold gap modulation.
is taken as an indicatidrthat the gap nodes point in the See Fig. 6a) for the case\ = 1/2. Corresponding splittings
[110] direction because this yields an excess of quasiparticlegccur in the attenuation curvesversus the fieldFig. 1) and
with wave vectors in this direction. temperaturgFig. 4) for the L100 (T110) andT100 modes

Our results for the ultrasound attenuation for verticalwhich are identical in our simple model of horizontal line
nodes in magnetic fields up tid., also yield the weakest nodegsee Fig. @)]. In fact, theH and T dependencies af
(linean H andT dependence for th€100 mode because the for the T1L00 mode become weaker than those of tH®0
corresponding weight factor has a maximum in the directiormode for increasing amplitude of the gap modulation. We
of a vertical gap node. Our calculations yield a strorigeia-  remark that such a fourfold angular modulation occurs in the
dratio H and T dependence for the100 mode because the gaps of the passivee and 8 bands where horizontal line
corresponding weight factor has a maximum in the directiomodes are induced by the nodelgs®&ave gap in the active
of a vertical gap antinode. This is in strong contrast to theband by interband proximity effeé?.We have fitted this gap
case of horizontal line nodes where we obtain a roughly quamodulation in the passive bands with our gap model dis-
dratic H and T dependence foboth the L100 andT100 cussed above and estimate a rather small valug fidfrabout
modes, which are actually identical for in-plane field direc-0.1. Thep-wave gap without line nodes is approximated in
tions differing by /4. this model withh = —0.692* For thisp-wave gap the attenu-

At this point we would like to mention the modifications ation curves for th&'100 andL 100 modes in Figs. 1 and 2
required if one takes the model of horizontal line nodes sug¢solid curveg are, roughly speaking, interchanged, which is
gested in Ref. 7. This model can be simulated by multiplyingplausible because the gap minima occur in the directipns
the costp,) used in this papetsee Ref. 9by a gap with =0,7/2, ... .This has the effect that tHe and T dependen-

FIG. 6. as/«,, for a gap with horizontal line nodes and fourfold
angular modulation in the planex €1/2) for the L100 (solid
curves and T100 (dashed curvegssound modes(a) a¢/a, vs ©
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cies of a for the L100 mode become weaker than those officients normalized to their normal-state values are insensi-
the T100 mode. This appears to be in disagreement withive to the observed normal-state anisotropies. Here we have
experiment. taken a temperature-independent scatteringlfegesing rise

It should be pointed out that our theory is based on a&o a temperature-independent normal-state attenuation which
number of simplifying assumptions. First, we have consid-agrees roughly with the data for the 00 andT100 mode<.
ered only the lowest-order Fourier coefficient of the Green'sthys it cannot be excluded that the effect of the normal-state
fUnCtionS with respect to the reCiprocal AbrikOSOV vortex |at' anisotropy exceeds a” anisotropies in the Superconducting
tice. As the field decreases, the higher Fourier coefficientgiate calculated in this work.
become more and more important and, né#y, the In spite of the above uncertainties we believe that mea-
Doppler-shift method for a single vortex becomes more apsyrements of the field dependencies addition to the tem-
propriate. Second, we have assumed a cylindrical singlgerature dependenciesf the ultrasonic attenuation for dif-
sheet Fermi surface, whereas the huge anisotropy observestent in-plane sound modes can still provide useful
between theT110 and T100 normal-state attenuation jnformation about the nodal structure of the energy gap in
coefficient$ indicates that the anisotropy follows from the SKLRUO;.
nature of the three orbitals forming the three sheets of the
Fermi surface in SRuQ,.?? These authors showed that in
the case of SRuQ, a simple viscosity tensor describing the ACKNOWLEDGMENTS
electron-phonon interaction may not be sufficient for ultra-
sound attenuation. If this is the case our predictions could be We thank K. Scharnberg, N. Schopohl, and T. Dahm for
changed. Third, we have assumed that the attenuation codielpful discussions.
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