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Order of the metal-to-superconductor transition
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We present results from large-scale Monte Carlo simulations on the full Ginzburg-Landau~GL! model,
including fluctuations in the amplitude and the phase of the matter field, as well as fluctuations of the non-
compact gauge field of the theory. From this we obtain a precise critical value of the GL parameterk tri

separating a first-order metal-to-superconductor transition from a second-order one,k tri5(0.7660.04)/A2.
This agrees surprisingly well with earlier analytical results based on a disorder theory of the superconductor to
metal transition, where the valuek tri50.798/A2 was obtained. To achieve this, we have done careful infinite
volume and continuum limit extrapolations. In addition we offer an interpretation ofk tri , namely, that it is also
the value separating type-I and type-II behavior.
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I. INTRODUCTION

The character of the metal-to-superconductor transitio
an important and long-standing problem in condensed ma
physics. The critical properties of a superconductor may
investigated at the phenomenological level by the Ginzbu
Landau ~GL! model of a complex scalar matter fieldf
coupled to a fluctuating mass-less gauge fieldA. The GL
model ind dimensions is defined by the functional integra

Z5E DAiDf exp@2S~Ai ,f!#,

S5E ddxF1

4
Fi j

2 1uDifu21m2ufu21lufu4G , ~1!

whereFi j 5] iAj2] jAi , Di5] i1 iqAi , q is the charge cou-
pling the condensate matter field to the fluctuating gau
field, l is a self-coupling, andm2 is a mass parameter whic
changes sign at the mean-field critical temperature. T
model is also used to describe a great number of other
nomena in nature, including such widely separated phen
ena as the Higgs mechanism in particle physics,1 phase tran-
sitions in liquid crystals,2,3 crystal melting,4 and the quantum
Hall effect,5,6 and it is also used as an effective field theo
describing phase transitions in the early Universe.7

The GL model may conveniently be formulated in term
of two dimensionless parametersy5m2/q4 and x5l/q2

when all dimensionful quantities are expressed in power
the scaleq2. Here,y is temperature like and drives the sy
tem through a phase transition, andx5k2 is the well-known
GL parameter. These parameters are related to the stan
dimensionful textbook8 coefficientsa,b of the GL model by

y5
m* c2

128p2as
2kB

2T2
a, x5

1

8pas\c S m* c

\ D 2

b5k2,

~2!

whereas is the fine structure constant9 andm* is an effec-
tive mass parameter.
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At the mean-field level Eq.~1! reduces to the well-known
GL equations and the model exhibits a second-order ph
transition when the temperature~or y) is varied through
some critical value. In a seminal paper by Halperin, Lube
sky, and Ma10 it was shown that by ignoring spatial fluctua
tions in f and then integrating out theA field exactly, one
gets a termufu3 in the effectivef action. Treating this action
at the mean-field level leads to the prediction of a first-or
transition in the charged model for any value of the cha
or, equivalently, for any value of the GL parameter. The fir
order character of the transition is most strongly pronoun
for large values of the charge~small k), but even then it is
very weak. Fork!1 ~type I! the neglect of spatial variation
in the matter fieldf is a reasonable approximation, where
for k*1 ~type II! fluctuations inf must be taken into ac
count. By doing a one-loop renormalization group~RG! cal-
culation using the« expansion it was shown10 that no stable
infrared fixed point could exist unless the numberN of com-
ponents of the order parameter was artificially extended
N.Nc5365, far beyond the physically relevant case ofN
52. Consequently, the conclusion was that gauge field fl
tuations change the order of the phase transition to first o
irrespectiveof the value ofk.

These predictions were difficult to test experimentally
superconductors since the predicted jump across the fi
order transition is very small inphysicalunits, even if the
effectivetheory in Eq.~1! has a strong first-order transition
See, e.g., Appendix A in Ref. 11. For conventional superc
ductors the critical region where mean-field behavior bre
down is extremely narrow; consequently, it is very difficu
to distinguish a small finite jump from continuous behavi
However, there exists an isomorphism between the ph
transition in superconductors and the smectic-A to nem
transition in liquid crystals.12 On the latter systems exper
ments can be carried out in the critical regime,13 and second-
order phase transitions are found. This contradicts
e-expansion argument above and presumably indicate
breakdown of the expansion for this gauge-field theory, si
«542d51.

In Ref. 14 it was shown, using duality arguments a
Monte Carlo simulations, that the GL model should have
©2002 The American Physical Society01-1
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second-order transition for largek. However, what remains
true is that deep in the type-I regime, the transitionis first
order. There should therefore be a tricritical pointk5k tri
where the transition changes order.

A first estimate fork tri was obtained by Kleinert in Refs
15 and 16 by developing a disorder theory formulation fro
which he calculated the value

k tri5
3A3

2p
A12

4

9 S p

3 D 4

'
0.798

A2

analytically.17 Subsequently18 this picture of a tricritical
point separating first- and second-order transitions was g
further support by Monte Carlo simulations, and moreo
an attempt was even made to determinek tri , giving k tri

.0.4/A2. However, the problem turns out to be extreme
demanding even by present day supercomputing stand
and not too much emphasis can be put on theprecise numeri-
cal valueobtained in this early attempt. To our knowledg
this is the most recent attempt to find a precise value fork tri
numerically, although large-scale simulations have been
formed much more recently fork250.0463 andk252, giv-
ing first-order and continuous transitions, respectively.11,19

The one-loop«-expansion result of Halperinet al.10 has
subsequently been improved to two-loop order.20 Eventually,
an infrared stable fixed point was found even for the phys
caseN52 by combining two-loop perturbative results wi
Padé-Borel resummation techniques.21 From this latter work
one can also get an estimate of the criticalk from k*
5Au* /6f * '0.62/A2. Since Pade´-Borel techniques are
rather uncontrolled, only simulations can tell if such a
summation is allowed here.

From the above we can conclude that a tricriticalk, sepa-
rating first- and second-order transitions,exist however a
precise valueremains to be determined.

We would also like to mention the distinction betwe
type-I and type-II superconductors, which is related to
response to an external magnetic field. When an exte
field is increased beyond a critical fieldHc it enters a type-I
superconductor, and superconductivity is destroyed.
type-II superconductors the magnetic field enters asa flux
line lattice when H.Hc1, and superconductivity is stil
present in this mixed state. At the mean-field level type-I a
type-II superconductors are differentiated byk51/A2. How-
ever, there isa priori no reason to assume that this numeri
value is robust against fluctuation effects, and we will arg
that the criticalk separating first- and second-order pha
transitions coincides with thek separating type-I and type-I
superconductors atyc .

II. ORDER OF THE TRANSITION

The model in Eq.~1! has a phase transition fory5yc . For
y,yc the system is in its superconducting~broken! phase
while for y.yc it is in the normal~symmetric! phase. Note
that here, broken and symmetric do not refer to a breakdo
of the local gauge symmetry present in Eq.~1!. Elitzur’s
theorem22 states that a local symmetry can never be spo
10450
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neously broken and therefore no local order parameter~in
general any non-gauge-invariant order parameter! can exist.
On the other hand, one can explicitly break the gauge s
metry by a gauge fixing, thereby facilitating a meaning
definition of a local order parameter. This should nonethel
be chosen in a formally gauge-invariant manner to
gauge-independent results. In our simulations, we have c
sen not to fix the gauge.23 In this case a phase transition mu
be found either by usingnonlocal19,24order parameters or by
looking for non analytic behavior in local quantities,11 as we
have done. E.g., the quantity^ucu2& will have a jump at a
first-order transition, but it will not disappear in the symme
ric phase as a proper order parameter should. At a sec
order transition there will be no jump, but the susceptibil
x ucu2 will still have a peak.

In principle, we could therefore decide the order by loo
ing for a jump in some local quantity as^ucu2&, but in finite
systems the discontinuity will be rounded. In our case this
particularly problematic since the first-order transitions a
very weak, giving small jumps, even in infinite systems. A
first-order transition ordered and disordered phases coe
and have the same free energy. In a finite system there
therefore be oscillations between the different phases.
cause of the surface energy between the two pure states
probability of finding the system in an intermediate mix
state is lower than for either of the pure states, and his
grams of an arbitrary observable will show a pronounc
double-peak structure. This is in contrast to a second-o
transition where the diverging correlation length forbids c
existence since the whole system is correlated. The hi
grams then have a single peak. Typical histograms are sh
in Fig. 2, below.

Thus, when these histograms have a double-peak struc
which becomes more pronounced when the system size
creases, the transition is first order, otherwise not.25

More precisely, we have the following scaling for the d
ference in free energy between the mixed and pure phase
sufficiently largeL.Lscaling:

DF~L !5 ln P~X,L !max2 ln P~X,L !min;Ld21, ~3!

whereP(X,L) is the probability for a given observableX in
a system of sizeLd, and Ld21 is the cross-sectional are
between the ordered and disordered phases. Near the tri
cal value ofk such scaling is difficult to achieve since we a
interested in the limit of vanishingly weak first-order trans
tions. Consequently, a very largeL is required in order to
observe proper scaling. Only for quite strong first-order tra
sitions have we been able to observe proper scaling as
dicted by Eq.~3!; however, we have generally taken a m
notonous increase inDF(L) with system size as a signatur
of a first-order phase transition. For the weakest first-or
transitionsDF(L) will typically decrease for smallL and
then start to increase. It is therefore important to obse
monotonic behavior through several system sizes befo
conclusion can be drawn from the histograms.26
1-2
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III. PHASE DIAGRAM

We are searching for the point in the (x,y) plane where a
first-order and a second-order line meet; i.e., according to
rather loose definition27 of Lawrie and Sarbach28 we are
looking for a tricritical point. At a tricritical point two cou-
pling constants must be fine-tuned to nontrivial values, a
consequently a tricritical theory can be described with
mean-field free energy

f 'u¹cu21c1~y2ytri!ucu21c2~x2xtri!ucu41c3ucu6.
~4!

Right at the tricritical point the coefficients in front of bot
ucu2 and ucu4 vanishsimultaneously. The upper critical di-
mension for this model isd* 53 and mean-field theory
should be valid~up to logarithmic corrections!. When ap-
proaching the tricritical point from the first-order side, mea
field theory predicts that the jumpDucu2 will vanish as

Ducu2;~xtri2x!. ~5!

We will make use of the above scaling in Sec. VI
estimatextri . For further information about tricritical points
we refer to an extensive review by Lawrie and Sarbach.28

In Fig. 1 we haveassumedthat the tricritical point sepa
rating first- and second-order phase transitions coinc
with the point separating type-I and type-II superconduc
ity. In principle the line of second-order transitions cou
extend into the type-I region, with an intermediate state
type-I superconductivity with a second-order phase transi
to the normal state. This would be the case if the mean-fi
valuek I/II 51/A2 werenot renormalized by fluctuations. W
have not focused on the aspect of type-I and type-II sup
conductivity in our simulations; we will, however, argue th
the overall structure of the phase diagram shown in Fig.
correct in the vicinity of the tricritical point.

The microscopic difference between type-I and -II sup
conductors lies in the sign of the effective vortex-vortex
teraction. Ind53 there exists adual formulation of the GL
model which is given by a complex scalar matter fieldf
coupled minimally to a massive gauge field. This gauge fi
can thus safely be integrated out to yield an effectivelocal
ufu4 theory, where the coefficient of theufu4 term gives the
effective vortex-vortex interaction. A positive such term s
nals vortex repulsion, i.e., type-II behavior, while a negat
term signals type-I behavior.This vortex-vortex interaction
term is proportional tok2k tri where k tri is indeed to be
identified with our tricritical value ofk.15 Using the dual
formulation of the GL theory, it then becomes clear thatk tri
is at the same time the value that separates first- and sec
order behavior,and the value that separates attractive fro
repulsive effective vortex-vortex interactions, i.e., type
from type-II behavior.

An independent argument for why the transition betwe
the normal state and type-I superconductivitymust be first
order is based on the geometrical properties of a vor
tangle: In a recent paper29 we have calculated the fracta
dimension of vortex loops and found the scaling relationb
5n(d2DH)/2, whereb is the order parameter exponent,n
is the correlation length exponent, andDH is the fractal di-
10450
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mension of the loops. If we formally extend this relation
the first-order regime, i.e., letb→01, we find that the fractal
dimension of the vortex loopsDH→d—i.e., the vortices col-
lapse on themselves~filling space completely!—rendering
the transition discontinuous. This collapse is what we wo
expect from vortices interacting attractively~i.e., type I!, and
by turning the argument above around we conclude t
type-I superconductors must have a first-order transition
the normal state.

We emphasize that the detailedshapeof the line xc(y)
remains to be determined. We have presented argum
above that it ends in the tricritical point (xtri ,ytri). Moreover,
deep in the broken regime, mean-field theory should ap
Consequently, we expect that the linexc(y) converges to-
wards the mean-field valuexI/II 51/2 in they→2` limit.

IV. LATTICE MODEL

To perform simulations on the model in Eq.~1! we define
it on a numerical lattice of sizeN3N3N with lattice con-
stanta. The physicalvolume is thenV5L35(Na)3. By in-
troducing a lattice field given by

uf (cont)u25bHuc (latt)u2/2a, ~6!

wherebH so far is an arbitrary constant, Eq.~1! takes the
form

Z5E DAiDc exp@2S~Ai ,c!#

FIG. 1. A conjectured phase diagram in the (x,y) plane in the
vicinity of the tricritical point. The thick solid line is a line of
first-order transitions separating type-I superconductivity and
normal~metallic! state, and the thin solid line is a second-order li
separating type-II superconductivity from the normal~metallic!
state. The dashed line separates type-I and type-II supercondu
ity. The dotted horizontal and vertical lines indicate the coordina
of the tricritical point (xtri ,ytri).(0.30,0.03).
1-3
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S5bG (
xW ,i , j

1

2
Fi j

2 2bH(
xW ,i

Re@c* ~xW !Ui~xW !c~xW1 ı̂ !#

1
bH

2 F61
y

bG
2 G(

xW
ucu21bR(

xW
ucu4, ~7!

where we have defineda i(xW )5aqAi(xW ), Ui(xW )5eia i (x
W ),

bG51/aq , Fi j 5a i(xW )1a j (xW1 ı̂ )2a j (xW )2a j (xW1 ̂), and
bR5xbH

2 /4bG . Here Fi j is essentially a lattice curl of the
fluctuating gauge field, andaq5aq2 is a dimensionless lat
tice constant. To obtain correct continuum limit results,
will ultimately be interested in the limitaq→0. It is further-
more possible to select a value ofbH such that the action ca
be written in the form

S5bG (
xW ,i , j

1

2
Fi j

2 2bH(
xW ,i

Re@c* ~xW !Ui~xW !c~xW1 ı̂ !#

1(
xW

ucu21bR(
xW

@ ucu221#2. ~8!

This is achieved providedbH satisfies the relation (bH/2)
3@61y/bG

2 #12bR51.
The amplitude and gauge-invariant phase differenceD

5arg@c* (xW )Ui(xW )c(xW1 ı̂ )# are coupled through the secon
term in Eq.~8!. The ordered state is characterized by coD
&1 and ucu close to the minimum in the potential energ
whereas in the disordered state cosD'0. In the disordered
state the amplitude behavior is determined byx; for small x
the coupling toD dominates anducu deviates significantly
from the minimum in the potential, whereas for largex am-
plitude fluctuations are suppressed.

Given the fact that the theory in Eq.~1! is a continuum
theory, one has to perform an ultraviolet~short-distance!
renormalization, and thusm25m2(q2) has to be interpreted
as a renormalized mass parameter at a given scaleq2 within
a given renormalization scheme, e.g., the minimal subt
tion (MS) scheme. Since this continuum theory should r
resent thea→0 limit of the lattice theory in Eq.~8!, the
parametery must be varied whena is being varied. In our
case the leading terms ina can be obtained by requiring tha
some physical correlator calculated in both lattice and c
tinuum perturbation theory should coincide. Thus we have
make the substitution30,31

y→y2
3.1759115~112x!

2p
bG

2
~2418x28x2!@ ln~6bG!10.09#21.114.6x

16p2

1O~1/bG!. ~9!

In addition, the continuum and lattice condensate ma
fields are related by
10450
c-
-

-
o

r

^f* f&cont

q2
5

bHbG

2
^c* c& latt2

3.175911bG

4p

2
ln~6bG!10.668

8p2
1O~1/bG!. ~10!

In Eq. ~10! the first term comes from Eq.~6!, while the
second and third terms are linear and logarithmic div
gences due to renormalization.

Note that the complicated counterterms in Eq.~9! merely
affect thevalueof yc separating the normal from the supe
conducting state for a givenx, not the overallstructureof the
phase diagram. The divergences in Eq.~10! in the continuum
limit are constants that cancel when the jump in^f* f&
across a first-order phase transition is calculated.

V. DETAILS OF SIMULATIONS

In order to use Eq.~8! to study the continuum theory o
Eq. ~1!, it is necessary to carefully take two limits separate
First, the infinite-volume limitL→` is taken; thereafter, the
continuum limit a→0. For reliable results one should hav
a!j!L, wherej is a typical correlation length for the prob
lem. In statistical physics, the continuum limit is usually n
considered, either because the models are inherentlylattice
modelsor the models are studied around a second-order c
cal point where there exists at least one diverging len
scale. Under such circumstances the short length-scale p
erties, like the lattice constant, are rendered irrelevant w
studying universal properties. On the other hand, if o
wants to study nonuniversal properties~such as critical cou-
pling constants! or first-order transitions without a divergin
length scale, details of the system even on the shortest le
scales have to be correctly taken into account in order to g
reliable results.

The Monte Carlo simulations are performed on Eq.~8!,
updating phases, amplitudes32 and gauge fields. We hav
used periodic boundary conditions and noncompact ga
fields without any gauge fixing. To reduce autocorrelati
times we have added global updating of the amplitude
overrelaxation of the scalar field33,34 such that one sweep
consists of~1! conventional local Metropolis updates fo
phase, amplitude, and gauge field,~2! global radial update by
multiplying the amplitude uniformly with a common facto
~acceptance according to Metropolis dynamics!, and~3! two
to three overrelaxation ‘‘sweeps’’ updating both the amp
tude and the phase of the scalar field. The acceptance ra
the Metropolis steps is kept between 60% and 70% as l
as possible by adaptively adjusting the maximum allow
changes in the fields. For further details of the technical
pects of the simulations, see Refs. 33 and 34.

We have performed simulations for the parameters
Table I. The simulations have been done in a hierarch
manner: For a givenx we have first keptaq andN fixed, and
simulated on typically three to eighty values. These runs
have been combined with Ferrenberg-Swendsen35,36 re-
weighting techniques, and a~pseudo!critical y has been lo-
cated by requiring that the reweighted histograms have
equally high37 peaks. Then the system size has been
creased
1-4
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TABLE I. The lattice sizesN3 used for each (aq ,x) pair. For each lattice size typically between three a
eighty values were used. The symbols are defined bys ~not simulated!, ! ~simulated!, andd ~simulated and
results shown in Fig. 2!.

aq x N

8 12 16 20 24 32 40 48 64 96

5.0a 0.10 ! s s s s s s s s s

0.15 ! ! ! ! ! ! s s s s

0.16 ! ! d d d d s s s s

0.17, 0.18, 0.19 ! ! d s d d d s s s

2.0 0.10 ! ! s s s s s s s s

0.15 ! ! ! s s s s s s s

0.20 ! ! ! s ! ! ! s s s

0.22 s s d s d d d s s s

0.23, 0.24, 0.25 s s d s d d d s d s

1.0 0.08 ! ! ! s s s s s s s

0.10 ! ! ! ! s s s s s s

0.12, 0.13, 0.14 ! ! ! s ! ! s s s s

0.15, 0.16, 0.17 s ! ! ! ! ! ! s s s

0.18, 0.20 ! ! ! s ! ! ! ! s s

0.22 ! ! ! s ! ! ! ! ! s

0.24, 0.25, 0.26, 0.27 ! ! d s d d d d d s

0.30 ! ! ! s ! ! ! ! s s

0.50 s s ! ! ! ! ! s s s

0.5 0.16 s s s s d d d d s s

0.20, 0.24 s s s s d d d d d s

0.26, 0.28 s s s s d d d d d d

0.30 s s s s d d d d d s

aIn Ref. 18 the lattice spacing corresponds toaq55.0. The system sizes used were 93 and 153.
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to access theinfinite-volume limit, and finally we have varied
aq to determine thecontinuum limit. At the transition the
number of sweeps was chosen so that the system oscil
back and forth between the ordered and disordered s
about 10 times. Depending on system size andx value ~i.e.,
thestrengthof the first-order transition! this resulted in abou
105–106 sweeps. All computations were performed on
SGI Origin 3800 at the Norwegian High Performance Co
puting Center, using up to 32 nodes in parallel for the larg
systems. A total of about 53104 CPU hours were used, co
responding to.1.531017 floating point operations.

VI. RESULTS

To find xtri5k tri
2 our strategy has been to start atx!xtri

where the transition is clearly first order, and then slow
increasex into the problematic tricritical area wherex
&xtri . During the simulations we have sampled the latt
amplitude

ucu25
1

N3 (
xW

uc~xW !u2 ~11!
10450
ted
tes

-
st

e

and histograms of this quantity constitute the raw data
most of the subsequent analysis.38 The connection between
continuum and lattice condensates is given by Eq.~10!.

Histograms reweighted to the criticaly value are shown in
Fig. 2. We have used two different methods to findxtri(aq)
from the histograms, and finally at the end of this section
have extrapolated these values toaq50 to find the con-
tinuum limit.

A. Extrapolation of Dzcz2 to zero

The distance between the peaks of a histogram g
Ducu2(N), and by computing this for several different sy
tem sizes one can compute the infinite-volume lim
limN→`Ducu2 of the discontinuity at the transition. Then on
can ~in principle! extrapolate to largerx and find the value
xtri where the discontinuity disappears. Results
limN→`Ducu2 as a function ofx are shown in Fig. 3.

For smallx the curves in Fig. 3 show a distinct positiv
curvature, but when approachingxtri we find thatDucu2 van-
ishes as}(xtri2x), in accordance with mean-field theor
Eq. ~5!. Also in the original attempt to locatextri with Monte
Carlo simulations18 this extrapolation was done; howeve
1-5



.

S. MO, J. HOVE, AND A. SUDBO” PHYSICAL REVIEW B 65 104501
FIG. 2. Normalized histogramsP(ucu2) as a function ofucu2 for ~a! aq50.5, ~b! aq51.0, ~c! aq52.0, and~d! aq55.0. For each lattice
spacing the histograms for the smallestx are correctly placed horizontally. For largerx they are offset horizontally in steps of 1 for clarity
For system sizes see Table I.

FIG. 3. limN→`Ducu2 as a
function of x5k2 for the lattice
constants~a! aq55.0, ~b! aq52.0,
~c! aq51.0, and~d! aq50.5. The
line l i(x), i 51, . . . ,4, is a fit to
Eq. ~5! wherexc is given in Table
II.
104501-6
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ORDER OF THE METAL-TO-SUPERCONDUCTOR TRANSITION PHYSICAL REVIEW B65 104501
the extrapolation was done starting from quite smallx val-
ues, and the resultingxtri was much smaller than the one w
calculate.

The extrapolated results forxtri are shown in Table II. The
values found should provide a reasonable upper limit
xtri(aq).

B. Finite-size scaling ofDF „N…

It is also possible to study theheightof the peaks in the
histograms@P(ucu2)max# relative to the minimum betwee
them@P(ucu2)min#. This constitutes the best method of det
mining whether a transition is first order or not, but o
cannot extrapolate to findxtri . In Fig. 4 we show some typi
cal results forDF(N)5 ln Pmax2ln Pmin as a function of sys-
tem sizeN for aq50.5.

For x50.16 we clearly see the scalingDF(N)}N2 for
N*40. This is expected since the histograms in Fig. 2 sh
a very pronounced double-peak structure. For largerx this
becomes less clear. Our estimates ofxtri for the different
lattice constants are given in Table II. The results are con
tently somewhat below those found with the method given
Sec. VI A and give a reasonable lower limit forxtri .

C. Other methods

Finite-size scaling of the maximum in susceptibilities
the quantitiesucu2 and L̄ gives results that are consiste
with the above conclusions:

xS5Nd~^S2&2^S&2!;Ns, SP$ucu2,L̄%, ~12!

TABLE II. xtri found from extrapolation of limN→`Ducu2 to zero
and finite-size scaling ofDF(N).

aq xtri ~from Ducu2) xtri ~from DF(N))

5.0 0.17460.002 0.17560.005
2.0 0.24660.002 0.23560.005
1.0 0.28660.010 0.26060.010
0.5 0.29460.005 0.28060.020
10450
r

-

w

s-
n

wheres5d(,d) for first- ~second-! order transitions. How-
ever, these results are more ambiguous than those from
histograms, and we have therefore chosen to work ma
with the histograms.

D. Final result for k tri

It is clear that it becomes increasingly difficult to obta
good estimates ofk tri(aq) when the lattice constant is re
duced. This is easy to understand since thephysicalvolume
(Naq)3 will be drastically reduced for the same lattice size
lattice units. The size ofN necessary to access the scali
regime is~approximately! inversely proportional to the lat
tice constantaq .

In Fig. 5, we showxtri(aq) found from extrapolation of
Ducu2 to zero and from finite-size scaling ofDF(N) as given
in Table II. A linear fit to the data gives limaq→0xtri(aq)

50.28760.004 with a confidence level of 25%. This is pro
ably an underestimate of the error, since we have no part
lar reason to assume a linear behavior. Since the error
xtri(aq) increases considerably when we reduceaq one can-

FIG. 5. Plot ofxtri(aq) using the results from extrapolation o
Ducu2 to zero and from finite-size scaling ofDF(N) given in Table
II. The solid line is a linear fit giving limaq→0xtri(aq)50.287
60.004. The dotted lines indicate ‘‘worst case scenarios’’ givi
limaq→0xtri(aq)50.29560.025.
FIG. 4. DF(N)5 ln Pmax(N)
2ln Pmin(N) for aq50.5. The line
is }N2 which is the scaling in Eq.
~3! ~for d53).
1-7
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not rule out other behaviors, as quadratic. From the ‘‘wo
case scenario’’ shown by the dotted lines in the figure we
limaq→0xtri(aq)50.29560.025. This in all likelihood gives a
more realistic estimate of the error, and we therefore give
final estimate ofk tri as limaq→0k tri(aq)5(0.7660.04)/A2.

VII. CONCLUSION

In summary, we have presented results from large-sc
Monte Carlo simulations showing that the critical value
the Ginzburg-Landau parameter that separates first-o
from second-order behavior at the superconductor–norm
metal transition point, isk tri5(0.7660.04)/A2. This is in
remarkable agreement with the first estimate ofk tri obtained
by Kleinert15 using a mean-field theory on the dual of th
Ginzburg-Landau model, but differs almost by a factor o
from the subsequent early simulation results
Bartholomew.18

The reason for the remarkable agreement with our re
and those of Ref. 15, is that for small to intermediate valu
of k, the original problem is in the strong-coupling regim
and is mapped onto a weak-coupling problem in the d
formulation. The dual model is then expected to yield rath
precise results at the mean-field level.15 The dual description
of the Ginzburg-Landau model has recently met with cons
erable success in predicting the phase structure of extr
type-II superconductors, even in magnetic fields.39–42We in-
terpret the good agreement between our results and thos
ta
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s

e
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Ref. 15 as further support of the dual description of t
Ginzburg-Landau model, now also in the intermediate-k re-
gion.

We have also argued that thisk tri coincides with thek
separating type-I and type-II superconductivity. In the sup
conducting regime forkP(k tri,1/A2) we thus predict the
possibility of going from type-I to type-II superconductivit
by increasing the temperature. This could in principle
possible to observe by studying the vortex structure o
superconductor with such intermediate values ofk by small-
angle neutron scattering, when lowering the tempera
through the linexc(y). However, more work is needed t
elucidate the properties of the linexc(y) in Fig. 1.
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