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Order of the metal-to-superconductor transition
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We present results from large-scale Monte Carlo simulations on the full Ginzburg-La@daumodel,
including fluctuations in the amplitude and the phase of the matter field, as well as fluctuations of the non-
compact gauge field of the theory. From this we obtain a precise critical value of the GL parampeter
separating a first-order metal-to-superconductor transition from a second-ordek,onré0.76+0.04)/\2.

This agrees surprisingly well with earlier analytical results based on a disorder theory of the superconductor to
metal transition, where the valug,=0.7984/2 was obtained. To achieve this, we have done careful infinite
volume and continuum limit extrapolations. In addition we offer an interpretatiof;ofnamely, that it is also

the value separating type-l and type-Il behavior.
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[. INTRODUCTION At the mean-field level Eq) reduces to the well-known
GL equations and the model exhibits a second-order phase
The character of the metal-to-superconductor transition igransition when the temperatu@r y) is varied through
an important and long-standing problem in condensed mattesome critical value. In a seminal paper by Halperin, Luben-
physics. The critical properties of a superconductor may beky, and M&° it was shown that by ignoring spatial fluctua-
investigated at the phenomenological level by the Ginzburgtions in ¢ and then integrating out th& field exactly one
Landau (GL) model of a complex scalar matter field gets a term¢|® in the effectives action. Treating this action
coupled to a fluctuating mass-less gauge fialdThe GL  at the mean-field level leads to the prediction of a first-order
model ind dimensions is defined by the functional integral transition in the charged model for any value of the charge
or, equivalently, for any value of the GL parameter. The first-
order character of the transition is most strongly pronounced
Z:J DAD¢ exd —S(A, ¢)], for large values of the chargemall x), but even then it is
very weak. Fork<<1 (type ) the neglect of spatial variation
1 in the matter fieldy is a reasonable approximation, whereas
s:f d’x ~F5+|Dj¢|*+ m2|¢>|2+)\|¢|4}, (1) for k=1 (type Il) fluctuations in¢ must be taken into ac-
4 count. By doing a one-loop renormalization graiRG) cal-
culation using the: expansion it was showfthat no stable

whereF;; = 3;,A;— d;A;, Dij=d;+igA;, qis the charge cou- . : : .
pling the condensate matter field to the fluctuating gauge'—nfrareOI fixed point could exist unless the numbeof com-

field, A is a self-coupling, aneh? is a mass parameter which ponents of the order parameter was artificially extended to

changes sign at the mean-field critical temperature. Thié\|>N°:365’ far beyond the physically relevant casehbf

model is also used to describe a great number of other ph 5= 2- Consequently, the conclusion was that gauge field fluc-

nomena in nature, including such widely separated pheno uations change the order of the phase transition to first order

ena as the Higgs mechanism in particle phySipbase tran- irrespectiveof the value ofk.

sitions in liquid crystalg;? crystal melting and the quantum These é)retcilctlons Wetrﬁ dlfflc(le!t ttodte_st expenmenttﬁllyf(_)nt
Hall effect®® and it is also used as an effective field theorySUperCOn uctors since ne preadicted Jump across he frst-

describing phase transitions in the early Universe. order.transition_ is very small irp)hysica[units, even if Fhe
The GL model may conveniently be formulated in termseffectlvetheory in !Eq.(;) has a strong fwst-orgjer transition.
of two dimensionless parameteys=m?q* and x=\/q2 See, e.g,, App_e_ndle in Ref. 11. For con_ventlonal supercon-
when all dimensionful quantities are expressed in powers Oguctor_s the critical region Yvhere mean-flelq _behawor_b_reaks
the scaleq. Here,y is temperature like and drives the sys- down is extremely narrow; consequently, it is very difficult

tem through a phase transition, axe 2 is the well-known to distinguish a small finite jump from continuous behavior.

GL parameter. These parameters are related to the standz{r'&) wever, .there exists an isomorphism betvyeen the pha;e
ransition in superconductors and the smectic-A to nematic

dimensionful textbodkcoefficientsa, 4 of the GL model by transition in liquid crystald? On the latter systems experi-

. . o ments can be carried out in the critical regifi@nd second-
m®c 1 (m C) _ 2 order phase transitions are found. This contradicts the

y= 128m2ak3T? @ X= 8maghc| h e-expansion argument above and presumably indicates a
) breakdown of the expansion for this gauge-field theory, since
e=4—-d=1.
where ag is the fine structure constdrandm* is an effec- In Ref. 14 it was shown, using duality arguments and
tive mass parameter. Monte Carlo simulations, that the GL model should have a
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second-order transition for large However, what remains neously broken and therefore no local order parameter
true is that deep in the type-l regime, the transitisfiirst ~ general any non-gauge-invariant order parametan exist.
order. There should therefore be a tricritical poky Ky On the other hand, one can explicitly break the gauge sym-
where the transition changes order. metry by a gauge fixing, thereby facilitating a meaningful
A first estimate forx,; was obtained by Kleinert in Refs. definition of a local order parameter. This should nonetheless
15 and 16 by developing a disorder theory formulation frompe chosen in a formally gauge-invariant manner to get
which he calculated the value gauge-independent results. In our simulations, we have cho-
sen not to fix the gaug€.In this case a phase transition must

33 [ 4 ( 77) 4 0.798 be found either by usingonlocal®?*order parameters or by

Ly 1 9\3 W looking for non analytic behavior in local quantiti¥sas we

have done. E.g., the quantity:|?) will have a jump at a
analytically!” Subsequent® this picture of a tricritical fi'rst—order transition, but it will not disappear in the symmet-
point separating first- and second-order transitions was givefic Phase as a proper order parameter should. At a second-
further support by Monte Carlo simulations, and moreoveorder transition there will be no jump, but the susceptibility
an attempt was even made to determig, giving xy;  X|y2 Will still have a peak.
~0.4/4/2. However, the problem turns out to be extremely N principle, we could therefore decide the order by look-
demanding even by present day supercomputing standard8d for a jump in some local quantity &), but in finite
and not too much emphasis can be put onpiieeise numeri-  systems the discontinuity will be rounded. In our case this is
cal valueobtained in this early attempt. To our knowledge, particularly problematic since the first-order transitions are
this is the most recent attempt to find a precise value«gr very weak, giving small jumps, even in infinite systems. At a
numerically, although large-scale simulations have been pefirst-order transition ordered and disordered phases coexist
formed much more recently for>=0.0463 anck?=2, giv-  and have the same free energy. In a finite system there will
ing first-order and continuous transitions, respectively. therefore be oscillations between the different phases. Be-

The one-loope-expansion result of Halperiat all® has  cause of the surface energy between the two pure states, the
subsequently been improved to two-loop ortfeéEventually,  probability of finding the system in an intermediate mixed
an infrared stable fixed point was found even for the physicatate is lower than for either of the pure states, and histo-
caseN=2 by combining two-loop perturbative results with grams of an arbitrary observable will show a pronounced
PadeBorel resummation techniquésFrom this latter work  double-peak structure. This is in contrast to a second-order
one can also get an estimate of the critisalfrom «*  {ransition where the diverging correlation length forbids co-
= Ju*/6f*~0.62A2. Since Pad®orel techniques are existence since the whole system is correlated. The histo-
rather uncontrolled, only simulations can tell if such a ré-grams then have a single peak. Typical histograms are shown

summation is allowed here. in Fig. 2, below.

From the above we can conclude that a tricriticabepa- Thus, when these histograms have a double-peak structure
rating first- and second-order transitioreist however &  which becomes more pronounced when the system size in-
precise valugemains to be determined. creases, the transition is first order, otherwise?Rot.

We would also like to mention the distinction between pjore precisely, we have the following scaling for the dif-

type-l and type-Il superconductors, which is related to theerence in free energy between the mixed and pure phases for
response to an external magnetic field. When an eXtem%lufﬁCiently largeL >L

field is increased beyond a critical fieltl. it enters a type-I
superconductor, and superconductivity is destroyed. For
type-ll superconductors the magnetic field entersaafux AF(L)=1nP(X,L) ma— N PO, L) i~ L9 2, 3)

line lattice when H>H_,, and superconductivity is still

present in this mixed state. At the mean-field level type-l and

type-Il superconductors are differentiated by 1/y2. How-  whereP(X,L) is the probability for a given observabiein

ever, there is priori no reason to assume that this numericala system of size.%, and L9 ! is the cross-sectional area
value is robust against fluctuation effects, and we will arguehetween the ordered and disordered phases. Near the tricriti-
that the criticalx separating first- and second-order phasecal value ofx such scaling is difficult to achieve since we are
transitions coincides with the separating type-l and type-Il interested in the limit of vanishingly weak first-order transi-

scaling-

superconductors af; . tions. Consequently, a very lardeis required in order to
observe proper scaling. Only for quite strong first-order tran-
Il. ORDER OF THE TRANSITION sitions have we been able to observe proper scaling as pre-

dicted by Eq.(3); however, we have generally taken a mo-
The model in Eq(1) has a phase transition fgr=y.. For  notonous increase iAF (L) with system size as a signature
y<y. the system is in its superconductiigroken phase of a first-order phase transition. For the weakest first-order
while for y>y. it is in the normal(symmetrig phase. Note transitionsAF(L) will typically decrease for smalL and
that here, broken and symmetric do not refer to a breakdowthen start to increase. It is therefore important to observe
of the local gauge symmetry present in Ed). Elitzur's  monotonic behavior through several system sizes before a
theoren?® states that a local symmetry can never be spontaeonclusion can be drawn from the histograihs.
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Ill. PHASE DIAGRAM y

We are searching for the point in the,{) plane where a
first-order and a second-order line meet; i.e., according to the
rather loose definitici of Lawrie and Sarbacf we are
looking for atricritical point. At a tricritical pointtwo cou-
pling constants must be fine-tuned to nontrivial values, and
consequently a tricritical theory can be described with the

Normal state

Tricritical
point

mean-field free energy Y| .
f= V> + co(y — Vi) [#7+ ca(x—Xii) [ ]+ 5 ] °. @

. Lo . _ . Type-1 "“- Type-1I
Right at the tricritical point the coefficients in front of both Superconductor Ky Superconductor
|4]? and|¢|* vanishsimultaneouslyThe upper critical di- ;
mension for this model i”*=3 and mean-field theory Y x)
should be valid(up to logarithmic corrections When ap- 5 17°
proaching the tricritical point from the first-order side, mean- : :I
field theory predicts that the jumfp||? will vanish as Xiri 05 X

Al ]?~ (Xgi— X). (5) FIG. 1. A conjectured phase diagram in they) planein the

vicinity of the tricritical point The thick solid line is a line of

We will make use of the above scaling in Sec. VI to first-order transitions separating type-I superconductivity and the
estimatex,;. For further information about tricritical points, normal(metallic) state, and the thin solid line is a second-order line
we refer to an extensive review by Lawrie and Sarb&ch.  separating type-ll superconductivity from the normatetallio

In Fig. 1 we haveassumedhat the tricritical point sepa- state. The dashed line separates type-I and type-Il superconductiv-
rating first- and second-order phase transitions coincidely- The dotted horizontal and vertical lines indicate the coordinates
with the point separating type-l and type-Il superconductiv-Of the tricritical point & ,y;)=(0.30,0.03).
ity. In principle the line of second-order transitions could
extend into the type-l region, with an intermediate state ofmension of the loops. If we formally extend this relation to
type-l superconductivity with a second-order phase transitionthe first-order regime, i.e., [gg— 0", we find that the fractal
to the normal state. This would be the case if the mean-fieldimension of the vortex loopd ,— d—i.e., the vortices col-
value «;;;; = 1/\2 werenot renormalized by fluctuations. We lapse on themselveffiling space completely—rendering
have not focused on the aspect of type-1 and type-Il superthe transition discontinuous. This collapse is what we would
conductivity in our simulations; we will, however, argue that expect from vortices interacting attractiveiye., type ), and
the overall structure of the phase diagram shown in Fig. 1 iby turning the argument above around we conclude that
correct in the vicinity of the tricritical point. type-1 superconductors must have a first-order transition to

The microscopic difference between type-l and -Il superthe normal state.
conductors lies in the sign of the effective vortex-vortex in- We emphasize that the detailstiapeof the line x.(y)
teraction. Ind= 3 there exists alual formulation of the GL remains to be determined. We have presented arguments
model which is given by a complex scalar matter fiedd above that it ends in the tricritical poink ,yy). Moreover,
coupled minimally to a massive gauge field. This gauge fieldleep in the broken regime, mean-field theory should apply.
can thus safely be integrated out to yield an effectoal Consequently, we expect that the ling(y) converges to-
|#|* theory, where the coefficient of tHe|* term gives the wards the mean-field valug,, = 1/2 in they— — oo limit.
effective vortex-vortex interaction. A positive such term sig-
nals vortex repulsion, i.e., type-1l behavior, while a negative
term signals type-I behaviofthis vortex-vortex interaction IV. LATTICE MODEL
term is proportional tox— ky; where «;; is indeed to be
identified with our tricritical value ofk.'® Using the dual
formulation of the GL theory, it then becomes clear that
is at the same time the value that separates first- and seco
order behaviorand the value that separates attractive from
repulsive effective vortex-vortex interactions, i.e., type-l
from type-Il behavior. | b(cont) 2= Bril ¥gam)| 122, (6)

An independent argument for why the transition between
the normal state and type-I superconductivityst be first \yhere g, so far is an arbitrary constant, E€L) takes the
order is based on the geometrical properties of a vorteXorm
tangle: In a recent papérwe have calculated the fractal
dimension of vortex loops and found the scaling relatgn
=vp(d—Dy)/2, wherep is the order parameter exponent,
is the correlation length exponent, abd, is the fractal di-

To perform simulations on the model in Eg) we define
it on a numerical lattice of siz&l X NX N with lattice con-
stanta. The physicalvolume is therV=L3%=(Na)>. By in-

oducing a lattice field given by

z:f DA Dyrexd —S(A;,4)]
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<¢* ¢>con BHBG * 3-17591:BG
qz t: 2 <¢ ¢>Iatt_ T

X,i <]

1 - - . A
S=Bc 2 Fi—Bu REY* COUC)Y(X+1)]

Bu y In(68¢)+0.668
+ |6 5 | 2 P+ B2 [yl ) -4 O(lUBe).  (10)
2 B 8772
Gl X X
) In Eqg. (10) the first term comes from Eq6), while the
where we have definedy;(x)=aqA(x), U;(x)=e'«®  second and third terms are linear and logarithmic diver-

gences due to renormalization.
Note that the complicated counterterms in E2). merely
affect thevalue of y. separating the normal from the super-

Bo=1a;, Fij= (%) + (X +1) = o (X) — e (X+]), and
Br=XPBH/4Bs . HereF;; is essentially a lattice curl of the

. . _ 2 . . .
f!uctuatmg gauge f|e|d_, andy=ag" is a d|men3|_onless lat- conducting state for a given not the overalktructureof the
tice constant. To obtain correct continuum limit results, Wephase diagram. The divergences in Ed) in the continuum
will ultimately be interested in the limia,— 0. Itis further-  |imit are constants that cancel when the jump (ih* &)
be written in the form

V. DETAILS OF SIMULATIONS

B 1, .o S A In order to use Eq(8) to study the continuum theory of
S= 'BG;%J- EFiJ _'BHE R4 () Ui()g(x+1)] Eq. (1), itis necessary to carefully take two limits separately.
' ' First, the infinite-volume limilL — is taken; thereafter, the
2 2 2 continuum limita— 0. For reliable results one should have
+2; v +'BRE§ [lyl*=1] ®) a<<¢<L, whereé is a typical correlation length for the prob-
lem. In statistical physics, the continuum limit is usually not
considered, either because the models are inheréattlge
> - modelsor the models are studied around a second-order criti-
X[_?_;eylfrﬁgﬁtjf;;rlla gauge-invariant phase differece cal point where there exists at least one diverging length
- IR scale. Under such circumstances the short length-scale prop-
=ard ¢* (x)U;(x) ¢(x+1)] are coupled through the second grties, like the lattice constant, are rendered irrelevant when
term in Eq(8) The ordered state is characterized bthOS studying universal properties_ On the other hand1 if one
=1 and|y| close to the minimum in the potential energy, wants to study nonuniversal propertiesich as critical cou-
whereas in the disordered state des0. In the disordered pling constantsor first-order transitions without a diverging
state the amplitude behavior is determinedxpyor smallx  |ength scale, details of the system even on the shortest length
the coupling toA dominates andy| deviates significantly scales have to be correctly taken into account in order to give
from the minimum in the potential, whereas for largam-  reliable results.
plitude fluctuations are suppressed. The Monte Carlo simulations are performed on &),
Given the fact that the theory in E¢l) is a continuum  ypdating phases, amplitud@sand gauge fields. We have
theory, one has to perform an ultraviol&thort-distance  used periodic boundary conditions and noncompact gauge
renormalization, and thus’=m?(q?) has to be interpreted fields without any gauge fixing. To reduce autocorrelation
as a renormalized mass parameter at a given sgaithin  times we have added global updating of the amplitude and
a given renormalization scheme, e.g., the minimal subtracoverrelaxation of the scalar fieft®* such that one sweep
tion (MS) scheme. Since this continuum theory should repconsists of(1) conventional local Metropolis updates for
resent thea—0 limit of the lattice theory in Eq(8), the  phase, amplitude, and gauge figl@), global radial update by
parametetry must be varied whea is being varied. In our multiplying the amplitude uniformly with a common factor
case the leading terms acan be obtained by requiring that (acceptance according to Metropolis dynamiesd(3) two
some physical correlator calculated in both lattice and conto three overrelaxation “sweeps” updating both the ampli-
tinuum perturbation theory should coincide. Thus we have tdaude and the phase of the scalar field. The acceptance ratio in
make the substituticf3! the Metropolis steps is kept between 60% and 70% as long
as possible by adaptively adjusting the maximum allowed
changes in the fields. For further details of the technical as-
pects of the simulations, see Refs. 33 and 34.

This is achieved provide@,, satisfies the relation3y/2)

3.1759118%1 + 2x)

y—=y—
2m ¢ We have performed simulations for the parameters in
Table I. The simulations have been done in a hierarchical
_ _gy2 _
_ (—4+8x—8x)[In(655) +0.09 ~ 1.1+ 4.& manner: For a givem we have first kepa, andN fixed, and
1672 simulated on typically three to eight values. These runs
have been combined with Ferrenberg-Swentfsénre-
+O(LBg)- ©) weighting techniques, and @seudgcritical y has been lo-

cated by requiring that the reweighted histograms have two
In addition, the continuum and lattice condensate matteequally highi’ peaks. Then the system size has been in-
fields are related by creased
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TABLE I. The lattice sizedN® used for eachd, ,x) pair. For each lattice size typically between three and
eighty values were used. The symbols are define®binot simulateg, » (simulated, and® (simulated and
results shown in Fig. )2

aq X N

[ee]
[y
N
H
(o]
N
o
N
N
w
N
N
o
iy
[ee]

64 96

50 0.10
0.15
0.16

0.17, 0.18, 0.19

* o o o
* o+ o+ O

2.0 0.10
0.15
0.20
0.22
0.23, 0.24, 0.25

0+ x O ®0®* O

O O * * *
O O * *»

1.0 0.08
0.10

0.12, 0.13, 0.14

0.15, 0.16, 0.17

0.18, 0.20
0.22
0.24, 0.25, 0.26, 0.27

0.30
0.50

* O0O0O0O* O+ O|O0O0OO0OO|OC@* O
* o+ @+t x x OO0 | @00+ OO0 | @0 * O
* o+ @+t x x 0O0| 0@+ OO0 | @0 * O
*+ @+ x O0OOC| @@+ OO | ®@00O0

* ook @ * o ok A A %

0.5 0.16
0.20, 0.24
0.26, 0.28

0.30

0000 OO0 OOOO|OOOOO|OOOO
000 OO OOOOO | @O0OO0OOO|OOOO0O
OO0 0O00O0OOOOOO|OOOOO|OOOO

OO OO|O* * % %+ O * * *
OO OO O * * % * * % * %

(OCNONONG)
(ONONONG)
o000
o000
o000

%n Ref. 18 the lattice spacing correspondsatp=5.0. The system sizes used wereaghd 15.

to access thafinite-volume limitand finally we have varied and histograms of this quantity constitute the raw data for
a4 to determine thecontinuum limit At the transition the most of the subsequent analy¥isThe connection between
number of sweeps was chosen so that the system oscillatedntinuum and lattice condensates is given by EG).

back and forth between the ordered and disordered states Histograms reweighted to the criticavalue are shown in
about 10 times. Depending on system size avdlue(i.e.,  Fig. 2. We have used two different methods to fing(a,,)

the strengthof the first-order transitiorthis resulted in about  from the histograms, and finally at the end of this section we

10°-10° sweeps. All computations were performed on anhaye extrapolated these values dg=0 to find the con-
SGI Origin 3800 at the Norwegian High Performance Com-ii,um limit.

puting Center, using up to 32 nodes in parallel for the largest
systems. A total of about®10* CPU hours were used, cor-
responding to=1.5x 10" floating point operations. A. Extrapolation of A[gfZ to zero

The distance between the peaks of a histogram gives
VI. RESULTS Aly]?(N), and by computing this for several different sys-
i ) tem sizes one can compute the infinite-volume limit
To find xy= i, our strategy has been to starba&x limy_,.A]]? of the discontinuity at the transition. Then one
where the transition is clearly first order, and then slowlycan (in principle) extrapolate to largex and find the value
mcreasex.mto the. probllematlc tricritical area where ~ Xq where the discontinuity disappears. Results for
=<Xyi. During the simulations we have sampled the IattlceIimN AW as a function of are shown in Fig. 3
amplitude For smallx the curves in Fig. 3 show a distinct positive
curvature, but when approaching; we find thatA|4|? van-
1 ishes asx(xy—X), in accordance with mean-field theory,
| 2= — E | p(x)|2 (12) Eq.(5). Also in the or|.g|nal attempt to locate,; with Monte
N "% Carlo simulation¥ this extrapolation was done; however,
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10 T T T T T T 10 T T T T T T T T
i
a)ag=05 9
8 r 8
7
6 6
5
4t 4
3
2 F 2
1
o] 0
7 T T T T T T T T 8 T T T T T T T
i
gL Dag=10 x=0.26 ] 7 dag=50 i .
x=0.25 k¥
\4 %2027 6 x=0.18 .
5 [ i
£
5r i -
4r 7 x=0.17 i
3F .
o L B ]
i L 4 .
0

1.5 2 25 3

FIG. 2. Normalized histograrrB(W) as a function OW for (a) a;=0.5, (b) ag=1.0,(c) a4=2.0, and(d) a4=>5.0. For each lattice
spacing the histograms for the smallgsire correctly placed horizontally. For largethey are offset horizontally in steps of 1 for clarity.
For system sizes see Table I.

1
Al

FIG. 3. limy_-Al¢]? as a
function of x=«? for the lattice
constantga) a,=>5.0, (b) a;=2.0,

0.1 0.12 0.14 0.16 0.18

X X
(0) ag=1.0, and(d) a4=0.5. The
! ' 1= 1.0, Ayl® - ' " d) ag=05, Ay - line I;(x), i=1,...,4, is a fit to
0.6 F % % % I p— 1 ) 2q o p— () i
\ 3 4 Eq. (5) wherex, is given in Table

Ayl

0.14 0.18 0.22 0.26 0.3 0.16 0.2 0.24 0.28 0.32
X X
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TABLE Il. x,; found from extrapolation of IirnﬂxAW to zero 0.35 T T T T
and finite-size scaling ocAF(N).
— 03 F ; 2nd order -
% X (from ATy[?) Xy (from AF(N)) #
5.0 0.174-0.002 0.17%0.005 > 025 | 7
2.0 0.246-0.002 0.23%0.005 %
1.0 0.286-0.010 0.266:0.010 * 02k T
0.5 0.294-0.005 0.286:0.020 .
0.15 | 1st order 1
the extrapolation was done starting from quite smxa¥al- o1 . , , , .
ues, and the resulting,; was much smaller than the one we ) 1 2 3 4 5
calculate. aq

The extrapolated results fag; are shown in Table Il. The

values found should provide a reasonable upper limit for FIG. 5. Plot ofxyi(ay) using the results from extrapolation of
xm(aq)_ A y|? to zero and from finite-size scaling afF (N) given in Table
Il. The solid line is a linear fit giving Iimqﬂoxtri(aq):0.287
S . +0.004. The dotted lines indicate “worst case scenarios” giving
B. Finite-size scaling ofAF (N) limaqHOXtri(aq)=0-295t0-025-
It is also possible to study theeightof the peaks in the

histograms{ P(|#]*) max] relative to the minimum between whereo=d(<d) for first- (secondy order transitions. How-
them[P(|/|%) minl- This constitutes the best method of deter-ever, these results are more ambiguous than those from the
mining whether a transition is first order or not, but onehistograms, and we have therefore chosen to work mainly
cannot extrapolate to fing,;. In Fig. 4 we show some typi- with the histograms.
cal results forAF(N) =In P,,.—In P,y @s a function of sys-
tem sizeN for a;=0.5.

For x=0.16 we clearly see the scalingF(N)=N? for
N=40. This is expected since the histograms in Fig. 2 show

a very pronounced double-peak structure. For largéllis  good estimates ok;(a,) when the lattice constant is re-
becomes less clear. Our estimatesxgf for the different  quced. This is easy to understand since ghgsicalvolume
lattice constants are given in Table II. The results are consis(N aq)3 will be drastically reduced for the same lattice size in
tently somewnhat below those found with the method given inattice units. The size oN necessary to access the scaling
Sec. VIA and give a reasonable lower limit fRg; . regime is(approximately inversely proportional to the lat-
tice constang, .

_In Fig. 5, we showxi(a,) found from extrapolation of

> T . .
Finite-size scaling of the maximum in susceptibilities of.ij| to zero and from finite-size scaling aF(N) as given

h ied I and L qi ks th _ in Table II. A linear fit to the data gives Iiggﬁoxt,i(aq)
1 € quantities||* an L glyes results that are consistent =0.287+0.004 with a confidence level of 25%. This is prob-
with the above conclusions:

ably an underestimate of the error, since we have no particu-
lar reason to assume a linear behavior. Since the errors in

D. Final result for ey

It is clear that it becomes increasingly difficult to obtain

C. Other methods

xs=NI(S)—(9)?)~N", Se{l¢2L}, (12  xy(ay) increases considerably when we redageone can-
T T T 1 T T T T 06 T T T T
o a) x=0.18 i b) x = 0.20 c) x=0.24
= 1=z Z o3} .
T I T 05F { 1T I {
< 1F T < < I
: 21 SERS ti=ge
0 1 1 1 O """" 1 1 1 1 1 1 1 1
20 30 40 50 60 20 30 40 50 60 70 20 30 40 50 60 70 FIG. 4. AF(N)=InP(N)
N N N —InPpin(N) for a;=0.5. The line
0.4 — 0.4 — is N2 which is the scaling in Eq.
d) x=0.26 e) x=D.28 (3) (for d=3).
S 02 —{ i g o2 % .
L w
s (LITT1T. o1 o - N T S A ——
St ] By
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
N N
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not rule out other behaviors, as quadratic. From the “worsiRef. 15 as further support of the dual description of the
case scenario” shown by the dotted lines in the figure we geGinzburg-Landau model, now also in the intermediates-
Iimaqﬂoxtri(aq)=0.295t 0.025. This in all likelihood gives a gion.

more realistic estimate of the error, and we therefore give our We have also argued that thig; coincides with thex

final estimate ofcy; as lim, _okyi(ag) = (0.76+ 0.04)2. separating type-1 and type-Il superconductivity. In the super-
E conducting regime fork e (ky;,1/\/2) we thus predict the
VIl CONCLUSION possibility of going from type-I to type-ll superconductivity

by increasing the temperature. This could in principle be
In summary, we have presented results from large-scalgossible to observe by studying the vortex structure of a
Monte Carlo simulations showing that the critical value of superconductor with such intermediate values dfy small-
the Ginzburg-Landau parameter that separates first-ord@ngle neutron scattering, when lowering the temperature
from second-order behavior at the superconductor—normathrough the linex.(y). However, more work is needed to
metal transition point, isc,;=(0.76+0.04)/y2. This is in  elucidate the properties of the ling(y) in Fig. 1.
remarkable agreement with the first estimatecgfobtained
by Kleinert® using a mean-field theory on the dual of the
Ginzburg-Landau model, but differs almost by a factor of 2
from the subsequent early simulation results of We especially thank Dr. K. Rummukainen for generously
Bartholomew!® providing us with the software for the data analysis and for
The reason for the remarkable agreement with our resultumerous helpful discussions during a visit by two of us
and those of Ref. 15, is that for small to intermediate value$S.M. and J.H.to Nordita and later. We also thank Professor
of x, the original problem is in the strong-coupling regime H. Kleinert, Dr. F. Nogueira, and Professor Z."@asvicfor
and is mapped onto a weak-coupling problem in the duautseful discussions. We also thank all of the above for critical
formulation. The dual model is then expected to yield rathereadings of the manuscript. A.S. thanks H. Kleinert and the
precise results at the mean-field leV2The dual description Freie UniversitaBerlin for their hospitality while this work
of the Ginzburg-Landau model has recently met with considwas being completed. This work was supported by the Nor-
erable success in predicting the phase structure of extremwegian Research Council via the High Performance Comput-
type-1l superconductors, even in magnetic fieldig€?We in-  ing Program and Grant No. 124106/4(®.M. and A.S). and
terpret the good agreement between our results and those lof NTNU (J.H).
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