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Chirality tunneling in a ferromagnetic spin chain
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The quantum-mechanical oscillations between two domain walls of opposite chirality in a ferromagnetic
spin chain with easy and hard axis anisotropies are studied. The equations of motion of the instantons that
connect the degenerate ground states in imaginary time are obtained and it is shown that there are two
equivalent instantons that contribute to the expression of the splitting of the degenerate energy level. The
instanton solutions and the energy splittings are obtained numerically for different values of the anisotropy
parameters. It is found that the hard axis anisotropy inhibits chirality tunneling, in contrast to what happens in
the single spin problem where the hard axis anisotropy favors tunneling. This behavior is explained as a
crossover, driven by the increase of the hard axis anisotropy, from the ferromagnetic spin chain model to the
sine-Gordon model.
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I. INTRODUCTION in the reciprocal space where band crossing occurs and a
wall driven by an external field ik space will alternate its
Macroscopic quantum phenomena have been observed #hirality as it moves. In this same work Braun and Loss
molecular magnets such as Mac and Fg The hysteresis calculated the level splitting due to chirality tunneling in the
loop in these systems show the magnetization relaxing vidmit of weak transverse anisotropfeasy axis anisotropy
quantum mechanical tunneling of the effective spin10  much larger than hard axis anisotrop¥akagi and Tatara
through a barrier produced by the anisotropy fielthe the-  have studied the effect, also using a collective coordinate
oretical description of the phenomena is usually made usingPproach and in the same limit of weak transverse anisot-
a semiclassical approach and the instanton formdlikmas ~ ropy, and have discussed the role played by the pinning po-
pointed out by Loss and co-workérthat more than one tential.
instanton contributes to the expression of the energy splitting Here | discuss two other aspects of the problem. The first
of the degenerate vacua at zero applied field, and that, fd6 the existence, as in the single spin case, of two instantons
semi-integers, these two instantons interfere destructively that contribute to the expression of the energy splitting, in
giving rise to a quench of the energy splitting. This was anSec. lll it is indicated under what conditions these solutions
interesting result since it provided an illustration of Kramer'smay interfere destructively. The other is the actual nature of
degeneracy in terms of interfering instantons. The effect wathe spin chain instanton and the dependence of the energy
observedl with Fe; with the aid of a field applied along the Splitting on the anisotropy ratio, these are revealed by the
hard axis that introduces a phase difference in the contribuaumerical solution of the imaginary time field equations of
tions of the two instantors. motion in Sec. IV. In Sec. V the observed decrease in the
As for extended spin systems, there have been reports g@ergy splitting with increasing hard axis anisotropy is ex-
the observation of macroscopic quantum effects in thin rar@lained as a crossover from the ferromagnetic spin chain
earth magnetic ﬁ|mg,domain wall junctiong' and magnetic model to the sine-Gordon model and a contrast is made with
nanowires Calculations have used the semiclassical apthe behavior found in the single spin tunneling problem. |
proximation and the instanton formalishgs in the single conclude with general remarks on the parameter values that
spin problem, but with the added twist of reducing the manyfavor the observation of the quantum oscillations.
degrees of freedom of the spin system to a single collective
coordinate’ An analog of the quantum oscillations of the
molecular spin at zero field would be, in an extended system,
the quantum oscillations of the chirality of a ferromagnetic Consider a spin chain with nearest neighbor Heisenberg
domain wall. ferromagnetic interaction, in addition to an easgxis and a
Braun and Los¥ have studied the dynamics of a one- hard z-axis anisotropies. The Hamiltonian of the lattice
dimensional ferromagnetic domain wall in a periodic poten-model is
tial and observed that the wall chirality plays the role of a
gauge potential in the effective Lagrangian of the wall center K Ky,
coordinate. For a potential with the periodicity of the under- H=—-J> S.1-S— ?e > Sfi+7 > S O
lying spin chain the resulting energy bands for each chirality : ! !
will be degenerate only if the spin quantum numiseis
integer (here | consider the case of a single chaim the | will deal with this model in the larges-and long wave-
nondegenerate cases (semi-integer an interesting effect length limits. The spins are assumed to be locally aligned
arises when the states of opposite chirality are connected ynd the low energy excitations of the system correspond to
tunneling. In this case the bands are mixed close to the poinmooth changes in the direction of the magnetization field. |

Il. THE MODEL
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introduce the field® and ¢ so that, in the continuum limit, Domain walls of opposite chiralities are degenerate ex-
the energy of a spin texture {gakex as the coordinate along trema of the energy functional. For walls centered at the
the chain origin and for a chain that extends over the entiraxis,
these states are
_ J 12 : 12 ]Ce :
H[9,<P]—f 5 (0 +sirffe )—?SIHZGCOSZQD z.(X)=n[tanHx/\) +i sectix/\)], 9
+%co§0 dx. @ Z_(X)=n[tanh(x/\)—i sechx/\)]. (10

A= JI K, is the natural length in the problem that mea-
The correspondence between the constants of the cofures the size of the wal==1 is the wall charge and the
tinuum model and those of the lattice modeljis Ja(#s)? inner signal determines the wall chirality. Both v_vaIIs are con-
and K=K (#s)%a. a is the lattice parameter arglis the f!n_ed to t_he0=_7-r/2 plane. In what follows | W|II_<_:onS|der
individual spin quantum number. f|n|t¢ chains W|th_ferr_omagnet|c boundary condltlo_ns at the
The matrix element of the imaginary-time evolution op- hain ends, and it will be assumed that the wall is pinned,
erator between two coherent states can be written as a pa#iy to some inhomogeneity in the anisotropy constants, at an

. . . — . arbitrary point away from the ends. The fielels will differ
integral using the com_plex f|e_I ndz of th_e stereographic from th}é F:)nes aboze but | will assume that the pinning po-
projectionz=tan(#/2)e'? andz=tan(#/2)e™'¢:

tential does not move the spins away from the /2 plane,
so that|z.|=1 andz, =Zz* .

(z;|e Tt z,) = f exp{_SE[ZE]/ﬁ}D[ZE]. (3) To study the problem of macroscopic quantum coherence
(MQC) between these states one computes the matrix ele-
The Euclidean action is ment(z,|e”"1"|z_) using the saddle point approximation.

The problem is analogous to a particle in a double well po-
5 (T ( 22— — T tential. The solutions that extremize the Euclidean action,
SE[Z,?]=—SJ fzz Z_dedTJrf H{zz]d7, (4 called.insggntons, connect the two degenerate states in imagi-
alJol 1+zz 0 nary time:

. . o ) The instanton equations of motion are
where the energy of a field configuration is now rewritten as

22(2')2 z+z-7°2- 2+ 2az(1-22)

— J 477 K¢ (z+2)? z=+|7'~ =+ — :
B N e e B el e 1 2(1
H[z,z] f 2 11237 2 (14227 (1+z2 (1+z2 W
Ky (1—22)? P
- (1+z7)21 (5) z=—[z~72]. (12

Here | use\JK, as unit of energyh as unit of length and
The first integral in the action is the Wess-Zumino termzs/afC, as unit of time. In these units the only parameter left
coming from the overlap of spin coherent statetn terms s the ratioa= K, /K, .
of the original# and ¢ fields it reads One must solve these equations using as boundary condi-
tions z(x,0)=z_(x) andz(x,T)=2z%(x)=z_(x). This con-
hs (T . . :
Swi 0, 0]=i _J f [(1—cos6)p]dxdr. (6)  Sstitutes a boundary value problem for two independent com-
aJo plex fields sincez# z*, meaning that the field8 and ¢, at
the saddle point of the path integi@), are complex.
The instanton solution allows one to determine the split-
_ ting of the degenerate energy level. This is obtained, in the
z(x,00=z(x), z(x,T)=2zf(x). (7)) limit T—, from value of the Wess-Zumino part of the Eu-

. ) ] clidean action
In looking for paths that extremize the action above one

often encounters solutions such thatx,T)#z;(x) and o i
z(x,0)# zf (x). In such cases a boundary term in the action, Axexg — —J’ J —dxdr]|. (13
omitted in Eq.(4), play an important rolé* This term reads a 1+zz

As for the boundary conditions on the fields onefias

in the limit of largeT, z becomes continuous at=T andz
becomes continuous at=0, meaning thatz(x,T)—z, (X)

and?(x,O)—>zi(x). The double integral above is in terms of

(8)  dimensionless variables, the importance of quantum effects
is measured by the value sftimes the number of spins in

1+zi(x)?(x,0)) The boundary term, Ed8), makes no contribution since,

hs
(Se)bound™ — _f

a 1+27(x)Z (x)

1+z(x,T)z¥‘(x))
n _—

1+2z¢(x)Zf (X)
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Fig. 1). Moreover, in the appendix it is shown that in this
case the determinait, is also real. These results, combined
with the special value of the integral in EQL5), give the
following energy splitting for walls symmetrically pinned:

Asymoc Kze_S\NZ[ZE]/ﬁ(l_l_eiZWNS)’ (17)

whereN=L/a is the total number of spins in the chain. The
phase factor ist1 if Ns is integer and—1 if Ns is semi-
integer. In the later case there is a quenching of the energy
splitting due to instanton interference.
This effect is analogous to the destructive interference
FIG. 1. The instantom(x, 7) viewed as a line in the spin sphere between instantons in the single spin proble@fiMQC be-
that evolves fromz_ to z, over the north pole. The instantam tween the statefS,= +s) in a Hamiltonian containing an
=1/7* is the instanton that goes over the south pole. The fiekl ~ easyx axis and a hard axis. In that case, when the spin
obtained fromz through the relatioz(x,7) =z(x,— 7) (same fow ~ quantum numbes is semi-integer, the energy splitting is
andw). zero and the degeneracy of the equivalent states is not re-
moved, as it should not be by Kramer’s theorem since the
the wall region,\/a. This number represents the spins thatdégenerate states are related by time reversal. However, in
actually participate in the tunneling event. | shall be inter-the case of the MQC between two symmetrically pinned

ested in the dependence bfon the anisotropy parameter ~ Walls, the stateg, andz_ are not related by time reversal,
defined above. the quenching of the energy splitting is accidental and cannot

be attributed to Kramer’s theorem.
A numerical calculation was performed to solve the in-
stanton equations aimed at finding the nature of these spin
From the form of the equations of motigfl) and(12), instantons and the dependence of the Wess-Zumino action on
and the assumption thét..|=1, it is easy to show that if the anisotropy parameter. The study was restricted to walls
{ZE} are solutions thedw=1/z* W= 1/2_*} are also solu- Symmetrically pinned at the chain center, thus yielding a rez_il
tions. Figure 1 shows these solutions projected in the spipwz- N real systems the walls are pinned at random posi-

sphere. From the form of the Wess-Zumino action, @&8), tions along Fhe chain and 'this produces imaginary parts in the
one finds the following relation between the two actions: action and in the determinant of fluctuations. Since the en-

ergy splitting must be taken as the modulusioin Eq. (16),

— . — 2hs\ it is the real part o5y, and the modulus df, that will play
S\Nz[W,W]IS\Nz[Z,Z]JFITf [o(X,T) = @(x,0)Jdx. the major role,

(14

IIl. TWO INSTANTONS

Acc|K,|e~SwAza/h (18)

The initial and final values of the field are obtained The imaginary part oS, the phase oK, and A will

=7 —glo- =7, =¢@¢ -
ferrc')arr Z():H%)re izsino(tamu:r??ozlgz,-sr;i d f;boft tr:'e :;ct); ara?zrl;oveonly contribute with a numerical factor of order unity. One
P+ . . . 9 . “expects that the value of the real part of the action should be

If, however, the wall is symmetrically pinned at the chain

center. one obtains relatively in_sgnsitive to the actual !ocation of the.pinning site
' as long as it is away from the chain ends by a distance much
L g greater thark. This is because the existence of a larger fer-
f [+ (X)—@_(x)]dx=——(mod 27L/\). romagnetic region in one side of the pinning site than in the
0 A other does not change the inhomogeneous part of the instan-
(19 ton, which is what determines the magnitude of the action.

Adding the two contributions to the energy splitting gives
IV. THE NUMERICAL SOLUTION

AxK o~ SwrAzdit f K a~ideg= Sy lzadlh, (16) The numerical method employed to solve E¢kl) and

. . _ (12) is the same used in Ref. 16 to solve the imaginary time
whereK,, is the determinant of the fluctuations above theqq ations that govern the quantum nucleation of a phase slip
{w,w} solution (same forK,) and A¢ is the term propor- in a one-dimensional model of a superfluid. As in that case

tional to thee field integral in Eq.(14). In thg appendix itis  j o has two independent complex fieki, 7) andz(x, 7),
shown that the determinants are related, in the general Casfe first with its initial value fixed, equal to_(x), the other

by complex conquatiod&z K} . Inthe very particular case with its final value fixed, equal ta (x)=z_(X).

of walls symmetrically pinned at the chain center, the bound- | used a space-time grid and wrote the field equations
ary conditions on the instanton fields imply thatx,7) sing finite differences. A typical grid had 50 points in the
=—2z"(—x,7) (same forz), leading to a purely real space coordinate axis, with a uniform grid spacingdof
Swzl z,z] (if {z,z} is the pair that goes over the north pole in =0.03 (in units of \) and 40 points in the imaginary time
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rivative of the fields, see Ed4)].
The numerical algorithm used was a combination of New-
5 ton’s method’ and Powell’s hybrid methdfl to enlarge the
radius of convergence. An initial trial state was given and a
-1.5 X sequence of steps was taken to bring the equations to zero.

FIG. 2. The surfaces of the real and imaginary partg(at7) For the typical grid size one has 4000 complex variables and

for «=0.6. The field starts with negative chirality, as, and ends eqlljft'ons'z h . in th | In thi

with positive chirality, az, . The isolines run from-0.8 to 0.8 in ! 'gure _S O_WS an Instantqn in the, €) plane. In _t IS

steps of 0.2x is in units of A and 7 is in units of#s/alC,. f_lgure thez field is shown evolving fronz_ to z,, the field
o _ _ z is not represented since it can be obtained from the relation

axis, with a grid spacing that ranged frotr=0.80-0.25 2(x,7)=2(x,— 7). Upon changing the value of the anisot-

(in units of _ﬁs/aICe). The choipe of the chain length, ropy parameter the instanton retains its general form but the
=3\, was dictated by computational convenience and Serve?maginary tunneling time” (the imaginary time size of the

the purpose of illustrating the behavior of the instantons tq,,,uniform central portion of the instantodecreases with

be foun_d n larger chains. . increasinga. This effect is analogous to what happens in the
_ 'i principle one<wo<uld have to work in the rangeL/2  ynneling of a particle between the minima of a symmetric
<x=<L/2 and—T/2=7<T/2, however some symmetries al- o pie well. In this case the instanton is the zero-energy

low us to restrict our attention to one fourth of this domain'solution of Newton's equation in the inverted potential. As
The fieldsz_(x) andz, (x) used as temporal boundary con- yhe parrier increases the “imaginary tunneling tinteefined

ditions are stationary solutions of Eqd.l) and (12). They 55 ahove by the size of the transition region from one minima
had to be obtained numerically and are the finite chain angy, he other decreases. This is illustrated in Fig. 3. One

logs of Eqs(9) and(10). Ferromagnetic boundary conditions gpqyiq view the two chirality states as analogous to the equi-
were used at the ends of the chain. The instantons retain thg i, m positionsx=*a and the instanton of Fig. 2 as the

symmetry of the chirality states upon spatial inverSiO”'imaginary time trajectory(r).

z(x,7)=—2*(—x,7) (same forz). B The Euclidean action, being dependent on the time de-
Another existing symmetry ig(x,7)=z(x,—7), that fol-  rivative of the instanton(also true in the quantum-
lows, even for finiteT, from Egs.(11) and (12) and the mechanical analgg increases in value with decreasing
boundary conditions used. These two symmetries allowetimaginary tunneling time.” This leads to a smaller value of
us to restricted ourselves to the rangesX<L/2 and the energy splitting.
—T/2<r<0. | performed the calculation for several values of the an-
The use of a finitel, when in fact the instanton one is isotropy ratioa. The dependence of the Wess-Zumino action
seeking only exists in the limiT — o, is justified since the on « is shown in Fig. 4. There one observes an increase of
temporal dependence of the instantons show that they havetlae action with increasing, the line represents the power-
sharp structure close to=0 connected to the degenerate law fit Sy, =4.7(fis\/a)a®’. Values of @ larger than 0.65
states by smooth tails. This implies that the main contribuwere not obtained due to convergence problems in the New-
tion to the value ofS,,; comes from the central portion of ton method employed.
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4 - . - . . - dent of the anisotropy. Increasirgmakes the particle mass
smaller and has the effect of enhancing quantum effects and
tunneling thereby. One should also note thaKjf were ex-

3T actly zero theS, operator would commute with the Hamil-
< tonian and one could not have transitions between its two
V? » eigenvectors.

One can make a similar analysis of the chirality tunneling
problem. To compute the matrix elemeut, |e”*"*|z_) in
1} 1 the limit of large« | chose to work with the originad and ¢
fields. In terms of these the Euclidean actionxsafd = are
dimensionless

0 1 1 1 1 1 1
0 01 02 03 04 05 06 07 A Sh 1
o sE[e,q;]:Tf f [i(l—cos@)cp+5(0’2+sir120go’2)
FIG. 4. The Wess-Zumino action for the instanton solution in 1
units of Zish/a versusa=K,/K.. The solid line corresponds to — Zsirfo C052¢+300520 dxdr. (22
Swz=4.7a°". 2 2

In Ref. 10 Braun and Loss have found, in the limit of ~Whena>1 one can make an expansior 7/2+ 50 and
small a, Sy~ a®5 The slight difference in the exponents keep onlya56%/2 among the terms 0b(56°). After inte-
may be due to their use of a collective coordinate approacBrating out the field5¢ one gets the following effective ac-
and to the fact that their analysis is not applicable in thellon:
whole range of values ot studied here.

The lesson from the dependence of the instantons and of S nsh o _+ :_ coSe dxd
the action ona is that the hard axis anisotropyhibits E[(P]_ ¢ 2a 2 T
chirality tunneling in the same way that a larger barrier in- (23

hibits tunneling in the double well potential. This is in con- o _ ' _
trast to the role p|ayed th in the Sing|e Spin tunne“ng This is the Euclidean action of the Sine-Gordon mdﬁel,

prob]em' This is discussed in the next section. with an extra time derivative term already derived in Ref. 10.
The two states of opposite chirality are also stationary
V. THE LARGE a LIMIT solitons or kinks of the sine-Gordon model. They are
solutions of
For a single spin in an anisotropy field of the type used
here, see Eq1), ¢"=cosgsing, (24)
Ke Kn and correspond to the fields. of Sec. lll (z. =€'%+). The
H=— 7SX+ 781, (19  two fields, ¢, (x) and ¢_(x), have different topological

charges from the point of view of the sine-Gordon model,
one observes that a large hard axis anisotrigwors spin ¢, :7—0 and¢_:—7—0. Since topological charge is a
tunneling between the stat¢S,= +s). To understand why conserved quantity tunneling between these objects is for-
the single spin behaves so differently from the ferromagnetididden. Therefore the observed decrease of the chirality tun-
chain | analyze the tunneling process in the lasgkmit neling rate with increasing can be understood as a cross-
usingf and¢ as coordinates. The Euclidean action analog taover from the ferromagnetic spin model to the sine-Gordon
Eq. (4) reads model.

2:2
S
N cos?¢; VI. CONCLUSION

T i e
SE[0,<p]=JO ifs(1—cosh)p— 5

The problem of chirality tunneling in a ferromagnetic do-
main wall was treated with the instanton formalism. A chain
(20) geometry was used which implies that the results obtained
are applicable to three-dimensional magnets as long as the
In the limit of largea=K,/K, one may integrate out the domain walls form a planar boundary region. Assuming uni-
0 variable to obtairn(here time is in units of K As): formity in the direction perpendicular to the chains, one may
use the above results after multiplying the argument of the
WKB exponent byN.,, the number of chains in the cross
(21)  sectional plane.
A comparison was made with the problem of a single spin
The first term is responsible for the instanton interferehce,tunneling in an anisotropic environment described by an easy
the remaining terms are the Euclidean action of a particle oAnd a hard axis. In both cases a pair of instantons contribute
dimensionless mass ! in a double well potential indepen- to the tunneling rate and under certain circumstances inter-

KthSZ
2

+ cogé|dr

2

et 1
i+ Z_Ecog(’o dr

.
Se[cp]=ﬁsfo
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fe(e leading toa quench of the energy splitting. In the_ singlghe solution{z,?}, then{m— 6*,¢*} correspond to the solu-
spin case the interference depends solely on the spin quaps (1/z* 1/2—*}
tum number whereas in the case of the chain the interference Inserté+§ a-nd<p+ 7 in the expression for the Euclidean
is not of topological origin and happens only for a very SPe-, ction Eq.(22). The second order term reads
cial type of degenerate chirality states, one where the wall is '

a b\[¢&

dxdr,
c d/\»@

pinned exactly at the chain center. Differently from the single
(A1)

SN

spin problem the energy splittindecreasesvith increasing szz)[g,n]= TJ f (& m
hard axis anisotropy, this was explained as a crossover from
the ferromagnetic spin chain model to the sine-Gordon
model. where

The parameter that controls the size of the WKB tunnel-
ing exponent iss\/a, the number of spins in the central
portion of the wall times the individual spin quantum num-
ber. This indicates that, in addition to a small hard axis an- 1
isotropy, a hard ferromagnet, one with a small valuexof — ~cos 20 coLp— Xcos 20, (A2)
=JJI K, also favors the observation of the MQC effect. 2 2

The calculation presented here ignored the translational
degrees of freedom of the wall, this assumed the presence of b=isingd,+ ¢'sin20d, — Esinze oS 2o (A3)
a strong pinning potential, which in fact also favors the ob- 7 2 ’
servation of MQC!!

The oscillations of chirality could in principle be probed c=0, (A4)
with a magnetic field in the easy plane, perpendicular to the
easy axis. Very similar to the case of nanomagnets a reso-  4_ _ Esinzaa _ Ea’sinzaa + Ecos 2psir?0. (A5)
nance in the ac susceptibility would point to a MQC efféct. 2 > 2 2
As pointed out in Ref. 10, a static field along the hard axiSgq; the other solution use— §*
can tune the barrier height that separates the two wall chiraliﬁon to obtain
ties and make the effect more easy to observe.

In comparison with the same problem in an antiferromag- hS\ a* —b*\/[ &
Tff(f ﬂ)(_c )( )dxdr,

_ i 1 1 20 12
a= 5% cosf— Eﬁxx+§cos 1)

+ £ and ¢* + 7 in the ac-

netic spin chaifit one observes that the parameter that con- S&)[ ¢, 7]= . .
trols the WKB exponent does not involve there, being d (A6)
simply proportional tos, indicating that antiferromagnetic

chains are better suited to the observation of MQC than ferwhere it was used that cé%=(cos#)* etc. Comparing Egs.
romagnetic chains. An interesting application of the ap-(A1l) and(A6), leads one to conclude tht, =K, .

proach followed here would be to numerically solve the The results above apply whenever there are pairs of solu-

antiferromagnetic spin chain instanton equations angions such as{z?} and {w=1/z* ,w= 1/2—*} which is guar-

icnorlth(ra?stztlhe results with the qualitative description put forth, ieeq to happen if the degenerate chirality states are unimo-

dular, |z.|=1. In the case of a symmetrically pinned wall,
one has in addition that, (x) = —z%(—x); this, together
ACKNOWLEDGMENTS with the ferromagnetic boundary condition at the chain ends,

The author wishes to thank Daniel P. Arovas for fruitful imply that the instanton fields satisfg(x,7) = —z*(—x,7)

discussions and FUNPAR for financial support. (same forz). From the form of the action, see Edd) and
(5), it follows that the second functional derivative&S/ 6z
APPENDIX: THE DETERMINANT OF FLUCTUATIONS etc., at the pointX,7) are the complex conjugate of the

o . ) corresponding terms in<{x,7). The matrix of second de-
the solutions{z,z} and{w=1/z*,w=1/z*} are related by and the full determinant, which is the product of the blocks
complex conjugation. First note that{it), ¢} correspond to determinant, is real. This result was used to obtain(Ed).
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