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Chirality tunneling in a ferromagnetic spin chain

JoséA. Freire
Departamento de Fı´sica, Universidade Federal do Parana´, Caixa Postal 19081, Curitiba-PR 81531-990, Brazil

~Received 20 September 2001; published 1 March 2002!

The quantum-mechanical oscillations between two domain walls of opposite chirality in a ferromagnetic
spin chain with easy and hard axis anisotropies are studied. The equations of motion of the instantons that
connect the degenerate ground states in imaginary time are obtained and it is shown that there are two
equivalent instantons that contribute to the expression of the splitting of the degenerate energy level. The
instanton solutions and the energy splittings are obtained numerically for different values of the anisotropy
parameters. It is found that the hard axis anisotropy inhibits chirality tunneling, in contrast to what happens in
the single spin problem where the hard axis anisotropy favors tunneling. This behavior is explained as a
crossover, driven by the increase of the hard axis anisotropy, from the ferromagnetic spin chain model to the
sine-Gordon model.
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I. INTRODUCTION

Macroscopic quantum phenomena have been observe
molecular magnets such as Mn12ac and Fe8. The hysteresis
loop in these systems show the magnetization relaxing
quantum mechanical tunneling of the effective spins510
through a barrier produced by the anisotropy field.1 The the-
oretical description of the phenomena is usually made us
a semiclassical approach and the instanton formalism.2 It was
pointed out by Loss and co-workers3 that more than one
instanton contributes to the expression of the energy split
of the degenerate vacua at zero applied field, and that
semi-integers, these two instantons interfere destructive
giving rise to a quench of the energy splitting. This was
interesting result since it provided an illustration of Krame
degeneracy in terms of interfering instantons. The effect w
observed4 with Fe8 with the aid of a field applied along th
hard axis that introduces a phase difference in the contr
tions of the two instantons.5

As for extended spin systems, there have been report
the observation of macroscopic quantum effects in thin r
earth magnetic films,6 domain wall junctions,7 and magnetic
nanowires.8 Calculations have used the semiclassical
proximation and the instanton formalism,2 as in the single
spin problem, but with the added twist of reducing the ma
degrees of freedom of the spin system to a single collec
coordinate.9 An analog of the quantum oscillations of th
molecular spin at zero field would be, in an extended syst
the quantum oscillations of the chirality of a ferromagne
domain wall.

Braun and Loss10 have studied the dynamics of a on
dimensional ferromagnetic domain wall in a periodic pote
tial and observed that the wall chirality plays the role o
gauge potential in the effective Lagrangian of the wall cen
coordinate. For a potential with the periodicity of the und
lying spin chain the resulting energy bands for each chira
will be degenerate only if the spin quantum numbers is
integer ~here I consider the case of a single chain!. In the
nondegenerate case (s semi-integer! an interesting effect
arises when the states of opposite chirality are connecte
tunneling. In this case the bands are mixed close to the po
0163-1829/2002/65~10!/104436~7!/$20.00 65 1044
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in the reciprocal space where band crossing occurs an
wall driven by an external field ink space will alternate its
chirality as it moves. In this same work Braun and Lo
calculated the level splitting due to chirality tunneling in th
limit of weak transverse anisotropy~easy axis anisotropy
much larger than hard axis anisotropy!. Takagi and Tatara11

have studied the effect, also using a collective coordin
approach and in the same limit of weak transverse ani
ropy, and have discussed the role played by the pinning
tential.

Here I discuss two other aspects of the problem. The fi
is the existence, as in the single spin case, of two instan
that contribute to the expression of the energy splitting,
Sec. III it is indicated under what conditions these solutio
may interfere destructively. The other is the actual nature
the spin chain instanton and the dependence of the en
splitting on the anisotropy ratio, these are revealed by
numerical solution of the imaginary time field equations
motion in Sec. IV. In Sec. V the observed decrease in
energy splitting with increasing hard axis anisotropy is e
plained as a crossover from the ferromagnetic spin ch
model to the sine-Gordon model and a contrast is made w
the behavior found in the single spin tunneling problem
conclude with general remarks on the parameter values
favor the observation of the quantum oscillations.

II. THE MODEL

Consider a spin chain with nearest neighbor Heisenb
ferromagnetic interaction, in addition to an easyx axis and a
hard z-axis anisotropies. The Hamiltonian of the lattic
model is

H52J(
i

Si 11•Si2
Ke

2 (
i

Sxi
2 1

Kh

2 (
i

Szi
2 . ~1!

I will deal with this model in the large-s and long wave-
length limits. The spins are assumed to be locally align
and the low energy excitations of the system correspond
smooth changes in the direction of the magnetization fiel
©2002 The American Physical Society36-1
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JOSÉA. FREIRE PHYSICAL REVIEW B 65 104436
introduce the fieldsu andw so that, in the continuum limit
the energy of a spin texture is~takex as the coordinate alon
the chain!

H@u,w#5E FJ2 ~u821sin2uw82!2
Ke

2
sin2u cos2w

1
Kh

2
cos2uGdx. ~2!

The correspondence between the constants of the
tinuum model and those of the lattice model isJ5Ja(\s)2

and K5K(\s)2/a. a is the lattice parameter ands is the
individual spin quantum number.

The matrix element of the imaginary-time evolution o
erator between two coherent states can be written as a
integral using the complex fieldsz andz̄ of the stereographic
projectionz5tan(u/2)eiw and z̄5tan(u/2)e2 iw:

^zf ue2HT/\uzi&5E exp$2SE@z,z̄#/\%D@z,z̄#. ~3!

The Euclidean action is

SE@z,z̄#5
\s

a E
0

TE z̄ż2zż̄

11zz̄
dxdt1E

0

T

H@z,z̄#dt, ~4!

where the energy of a field configuration is now rewritten

H@z,z̄#5E FJ2 4z8z̄8

~11zz̄!2
2

Ke

2

~z1 z̄!2

~11zz̄!2

1
Kh

2

~12zz̄!2

~11zz̄!2Gdx. ~5!

The first integral in the action is the Wess-Zumino te
coming from the overlap of spin coherent states.12 In terms
of the originalu andw fields it reads

SWZ@u,w#5 i
\s

a E
0

TE @~12cosu!ẇ#dxdt. ~6!

As for the boundary conditions on the fields one has13

z~x,0!5zi~x!, z̄~x,T!5zf* ~x!. ~7!

In looking for paths that extremize the action above o
often encounters solutions such thatz(x,T)Þzf(x) and
z̄(x,0)Þzi* (x). In such cases a boundary term in the acti
omitted in Eq.~4!, play an important role.14 This term reads

~SE!bound52
\s

a E F lnS 11zi~x!z̄~x,0!

11zi~x!zi* ~x!
D

1 lnS 11z~x,T!zf* ~x!

11zf~x!zf* ~x!
D Gdx. ~8!
10443
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Domain walls of opposite chiralities are degenerate
trema of the energy functional. For walls centered at
origin and for a chain that extends over the entirex axis,
these states are

z1~x!5n@ tanh~x/l!1 i sech~x/l!#, ~9!

z2~x!5n@ tanh~x/l!2 i sech~x/l!#. ~10!

l5AJ/Ke is the natural length in the problem that me
sures the size of the wall,n561 is the wall charge and the
inner signal determines the wall chirality. Both walls are co
fined to theu5p/2 plane. In what follows I will consider
finite chains with ferromagnetic boundary conditions at t
chain ends, and it will be assumed that the wall is pinn
due to some inhomogeneity in the anisotropy constants, a
arbitrary point away from the ends. The fieldsz6 will differ
from the ones above but I will assume that the pinning p
tential does not move the spins away from theu5p/2 plane,
so thatuz6u51 andz15z2* .

To study the problem of macroscopic quantum cohere
~MQC! between these states one computes the matrix
ment ^z1ue2HT/\uz2& using the saddle point approximation
The problem is analogous to a particle in a double well p
tential. The solutions that extremize the Euclidean acti
called instantons, connect the two degenerate states in im
nary time.15

The instanton equations of motion are

ż51Fz92
2z̄~z8!2

~11zz̄!
1

z1 z̄2z2z̄2z312az~12zz̄!

2~11zz̄!
G ,

~11!

ż̄52@z↔ z̄#. ~12!

Here I useAJKe as unit of energy,l as unit of length and
\s/aKe as unit of time. In these units the only parameter l
is the ratioa5Kh /Ke .

One must solve these equations using as boundary co
tions z(x,0)5z2(x) and z̄(x,T)5z1* (x)5z2(x). This con-
stitutes a boundary value problem for two independent co
plex fields sincez̄Þz* , meaning that the fieldsu andw, at
the saddle point of the path integral~3!, are complex.

The instanton solution allows one to determine the sp
ting of the degenerate energy level. This is obtained, in
limit T→`, from value of the Wess-Zumino part of the Eu
clidean action

D}expF2
sl

a E E z̄ż2zż̄

11zz̄
dxdtG . ~13!

The boundary term, Eq.~8!, makes no contribution since
in the limit of largeT, z becomes continuous att5T and z̄
becomes continuous att50, meaning thatz(x,T)→z1(x)
andz̄(x,0)→z2* (x). The double integral above is in terms o
dimensionless variables, the importance of quantum effe
is measured by the value ofs times the number of spins in
6-2
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CHIRALITY TUNNELING IN A FERROMAGNETIC SPIN CHAIN PHYSICAL REVIEW B65 104436
the wall region,l/a. This number represents the spins th
actually participate in the tunneling event. I shall be int
ested in the dependence ofD on the anisotropy parametera
defined above.

III. TWO INSTANTONS

From the form of the equations of motion~11! and ~12!,
and the assumption thatuz6u51, it is easy to show that if

$z,z̄% are solutions then$w51/z* ,w̄51/z̄* % are also solu-
tions. Figure 1 shows these solutions projected in the s
sphere. From the form of the Wess-Zumino action, Eq.~13!,
one finds the following relation between the two actions:

SWZ@w,w̄#5SWZ* @z,z̄#1 i
2\sl

a E @w~x,T!2w~x,0!#dx.

~14!

The initial and final values of thew field are obtained
from z(x,0)5z25eiw2 and z(x,T)5z15eiw1. For a gen-
eralw1 there is not much to be said about the integral abo
If, however, the wall is symmetrically pinned at the cha
center, one obtains

E
0

L/l

@w1~x!2w2~x!#dx52
pL

l
~mod 2pL/l).

~15!

Adding the two contributions to the energy splitting giv

D}Kze
2SWZ[z,z̄]/\1Kwe2 iDwe2SWZ* [z,z̄]/\, ~16!

where Kw is the determinant of the fluctuations above t

$w,w̄% solution ~same forKz) and Dw is the term propor-
tional to thew field integral in Eq.~14!. In the appendix it is
shown that the determinants are related, in the general c
by complex conjugation,Kz5Kw* . In the very particular case
of walls symmetrically pinned at the chain center, the bou
ary conditions on the instanton fields imply thatz(x,t)
52z* (2x,t) ~same for z̄), leading to a purely rea
SWZ@z,z̄# ~if $z,z̄% is the pair that goes over the north pole

FIG. 1. The instantonz(x,t) viewed as a line in the spin spher
that evolves fromz2 to z1 over the north pole. The instantonw

51/z* is the instanton that goes over the south pole. The fieldz̄ is

obtained fromz through the relationz̄(x,t)5z(x,2t) ~same forw

andw̄).
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Fig. 1!. Moreover, in the appendix it is shown that in th
case the determinantKz is also real. These results, combine
with the special value of the integral in Eq.~15!, give the
following energy splitting for walls symmetrically pinned:

Dsym}Kze
2SWZ[z,z̄]/\~11ei2pNs!, ~17!

whereN5L/a is the total number of spins in the chain. Th
phase factor is11 if Ns is integer and21 if Ns is semi-
integer. In the later case there is a quenching of the ene
splitting due to instanton interference.

This effect is analogous to the destructive interferen
between instantons in the single spin problem3 of MQC be-
tween the statesuSx56s& in a Hamiltonian containing an
easyx axis and a hardz axis. In that case, when the sp
quantum numbers is semi-integer, the energy splitting i
zero and the degeneracy of the equivalent states is no
moved, as it should not be by Kramer’s theorem since
degenerate states are related by time reversal. Howeve
the case of the MQC between two symmetrically pinn
walls, the statesz1 andz2 are not related by time reversa
the quenching of the energy splitting is accidental and can
be attributed to Kramer’s theorem.

A numerical calculation was performed to solve the
stanton equations aimed at finding the nature of these
instantons and the dependence of the Wess-Zumino actio
the anisotropy parametera. The study was restricted to wall
symmetrically pinned at the chain center, thus yielding a r
SWZ . In real systems the walls are pinned at random po
tions along the chain and this produces imaginary parts in
action and in the determinant of fluctuations. Since the
ergy splitting must be taken as the modulus ofD in Eq. ~16!,
it is the real part ofSWZ and the modulus ofKz that will play
the major role,

D}uKzue2SWZ
R [z,z̄]/\. ~18!

The imaginary part ofSWZ , the phase ofKz and Dw will
only contribute with a numerical factor of order unity. On
expects that the value of the real part of the action should
relatively insensitive to the actual location of the pinning s
as long as it is away from the chain ends by a distance m
greater thanl. This is because the existence of a larger f
romagnetic region in one side of the pinning site than in
other does not change the inhomogeneous part of the ins
ton, which is what determines the magnitude of the actio

IV. THE NUMERICAL SOLUTION

The numerical method employed to solve Eqs.~11! and
~12! is the same used in Ref. 16 to solve the imaginary ti
equations that govern the quantum nucleation of a phase
in a one-dimensional model of a superfluid. As in that ca
one has two independent complex fieldsz(x,t) and z̄(x,t),
the first with its initial value fixed, equal toz2(x), the other
with its final value fixed, equal toz1* (x)5z2(x).

I used a space-time grid and wrote the field equatio
using finite differences. A typical grid had 50 points in th
space coordinate axis, with a uniform grid spacing ofdx
50.03 ~in units of l) and 40 points in the imaginary tim
6-3
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JOSÉA. FREIRE PHYSICAL REVIEW B 65 104436
axis, with a grid spacing that ranged fromdt50.8020.25
~in units of \s/aKe). The choice of the chain length,L
53l, was dictated by computational convenience and se
the purpose of illustrating the behavior of the instantons
be found in larger chains.

In principle one would have to work in the range2L/2
<x<L/2 and2T/2<t<T/2, however some symmetries a
low us to restrict our attention to one fourth of this doma
The fieldsz2(x) andz1(x) used as temporal boundary co
ditions are stationary solutions of Eqs.~11! and ~12!. They
had to be obtained numerically and are the finite chain a
logs of Eqs.~9! and~10!. Ferromagnetic boundary condition
were used at the ends of the chain. The instantons retain
symmetry of the chirality states upon spatial inversio
z(x,t)52z* (2x,t) ~same forz̄).

Another existing symmetry isz(x,t)5 z̄(x,2t), that fol-
lows, even for finiteT, from Eqs. ~11! and ~12! and the
boundary conditions used. These two symmetries allow
us to restricted ourselves to the range 0<x<L/2 and
2T/2<t<0.

The use of a finiteT, when in fact the instanton one i
seeking only exists in the limitT→`, is justified since the
temporal dependence of the instantons show that they ha
sharp structure close tot50 connected to the degenera
states by smooth tails. This implies that the main contri
tion to the value ofSWZ comes from the central portion o

FIG. 2. The surfaces of the real and imaginary parts ofz(x,t)
for a50.6. The field starts with negative chirality, asz2 , and ends
with positive chirality, asz1 . The isolines run from20.8 to 0.8 in
steps of 0.2.x is in units ofl andt is in units of\s/aKe .
10443
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the instanton@recall the dependence ofSWZ on the time de-
rivative of the fields, see Eq.~4!#.

The numerical algorithm used was a combination of Ne
ton’s method17 and Powell’s hybrid method18 to enlarge the
radius of convergence. An initial trial state was given and
sequence of steps was taken to bring the equations to z
For the typical grid size one has 4000 complex variables
equations.

Figure 2 shows an instanton in the (x,t) plane. In this
figure thez field is shown evolving fromz2 to z1 , the field
z̄ is not represented since it can be obtained from the rela
z̄(x,t)5z(x,2t). Upon changing the value of the aniso
ropy parameter the instanton retains its general form but
‘‘imaginary tunneling time’’~the imaginary time size of the
nonuniform central portion of the instanton! decreases with
increasinga. This effect is analogous to what happens in t
tunneling of a particle between the minima of a symmet
double well. In this case the instanton is the zero-ene
solution of Newton’s equation in the inverted potential. A
the barrier increases the ‘‘imaginary tunneling time’’~defined
as above by the size of the transition region from one mini
to the other! decreases. This is illustrated in Fig. 3. On
should view the two chirality states as analogous to the e
librium positionsx56a and the instanton of Fig. 2 as th
imaginary time trajectoryx(t).

The Euclidean action, being dependent on the time
rivative of the instanton ~also true in the quantum
mechanical analog!, increases in value with decreasin
‘‘imaginary tunneling time.’’ This leads to a smaller value o
the energy splitting.

I performed the calculation for several values of the a
isotropy ratioa. The dependence of the Wess-Zumino acti
on a is shown in Fig. 4. There one observes an increase
the action with increasinga, the line represents the powe
law fit SWZ54.7(\sl/a)a0.7. Values ofa larger than 0.65
were not obtained due to convergence problems in the N
ton method employed.

FIG. 3. ~a! Two double wells with the same stationary states
x56a but with different barriers.~b! An illustration of the corre-
sponding instantons. The potential with a larger barrier~solid line!
has an instanton with a smaller ‘‘imaginary tunneling time.’’
6-4
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CHIRALITY TUNNELING IN A FERROMAGNETIC SPIN CHAIN PHYSICAL REVIEW B65 104436
In Ref. 10 Braun and Loss have found, in the limit
small a, SWZ;a0.5. The slight difference in the exponen
may be due to their use of a collective coordinate appro
and to the fact that their analysis is not applicable in
whole range of values ofa studied here.

The lesson from the dependence of the instantons an
the action ona is that the hard axis anisotropyinhibits
chirality tunneling in the same way that a larger barrier
hibits tunneling in the double well potential. This is in co
trast to the role played byKh in the single spin tunneling
problem. This is discussed in the next section.

V. THE LARGE a LIMIT

For a single spin in an anisotropy field of the type us
here, see Eq.~1!,

H52
Ke

2
Sx

21
Kh

2
Sz

2 , ~19!

one observes that a large hard axis anisotropyfavors spin
tunneling between the statesuSx56s&. To understand why
the single spin behaves so differently from the ferromagn
chain I analyze the tunneling process in the large-s limit
usingu andw as coordinates. The Euclidean action analog
Eq. ~4! reads

SE@u,w#5E
0

TF i\s~12cosu!ẇ2
Ke\

2s2

2
sin2u cos2w

1
Kh\2s2

2
cos2uGdt. ~20!

In the limit of largea5Kh /Ke one may integrate out th
u variable to obtain~here time is in units of 1/Ke\s):

SE@w#5\sE
0

TF i ẇ1
ẇ2

2a
2

1

2
cos2wGdt. ~21!

The first term is responsible for the instanton interferenc3

the remaining terms are the Euclidean action of a particle
dimensionless massa21 in a double well potential indepen

FIG. 4. The Wess-Zumino action for the instanton solution
units of \sl/a versusa5Kh /Ke . The solid line corresponds to
SWZ54.7a0.7.
10443
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dent of the anisotropy. Increasinga makes the particle mas
smaller and has the effect of enhancing quantum effects
tunneling thereby. One should also note that ifKh were ex-
actly zero theSx operator would commute with the Hami
tonian and one could not have transitions between its
eigenvectors.

One can make a similar analysis of the chirality tunneli
problem. To compute the matrix element^z1ue2HT/\uz2& in
the limit of largea I chose to work with the originalu andw
fields. In terms of these the Euclidean action is (x andt are
dimensionless!:

SE@u,w#5
\sl

a E E F i ~12cosu!ẇ1
1

2
~u821sin2uw82!

2
1

2
sin2u cos2w1

a

2
cos2uGdxdt. ~22!

Whena@1 one can make an expansionu5p/21du and
keep onlyadu2/2 among the terms ofo(du2). After inte-
grating out the fielddu one gets the following effective ac
tion:

SE@w#5
\sl

a E E F i ẇ1
w82

2
1

ẇ2

2a
2

cos2w

2
Gdxdt.

~23!

This is the Euclidean action of the Sine-Gordon mode19

with an extra time derivative term already derived in Ref. 1
The two states of opposite chirality are also station
solitons or kinks of the sine-Gordon model. They a
solutions of

w95coswsinw, ~24!

and correspond to the fieldsw6 of Sec. III (z65eiw6). The
two fields, w1(x) and w2(x), have different topological
charges from the point of view of the sine-Gordon mod
w1 :p→0 and w2 :2p→0. Since topological charge is
conserved quantity19 tunneling between these objects is fo
bidden. Therefore the observed decrease of the chirality
neling rate with increasinga can be understood as a cros
over from the ferromagnetic spin model to the sine-Gord
model.

VI. CONCLUSION

The problem of chirality tunneling in a ferromagnetic d
main wall was treated with the instanton formalism. A cha
geometry was used which implies that the results obtai
are applicable to three-dimensional magnets as long as
domain walls form a planar boundary region. Assuming u
formity in the direction perpendicular to the chains, one m
use the above results after multiplying the argument of
WKB exponent byNch, the number of chains in the cros
sectional plane.

A comparison was made with the problem of a single s
tunneling in an anisotropic environment described by an e
and a hard axis. In both cases a pair of instantons contrib
to the tunneling rate and under certain circumstances in
6-5
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JOSÉA. FREIRE PHYSICAL REVIEW B 65 104436
fere leading to a quench of the energy splitting. In the sin
spin case the interference depends solely on the spin q
tum number whereas in the case of the chain the interfere
is not of topological origin and happens only for a very sp
cial type of degenerate chirality states, one where the wa
pinned exactly at the chain center. Differently from the sin
spin problem the energy splittingdecreaseswith increasing
hard axis anisotropy, this was explained as a crossover f
the ferromagnetic spin chain model to the sine-Gord
model.

The parameter that controls the size of the WKB tunn
ing exponent issl/a, the number of spins in the centra
portion of the wall times the individual spin quantum num
ber. This indicates that, in addition to a small hard axis
isotropy, a hard ferromagnet, one with a small value ol
5AJ/Ke, also favors the observation of the MQC effect.

The calculation presented here ignored the translatio
degrees of freedom of the wall, this assumed the presenc
a strong pinning potential, which in fact also favors the o
servation of MQC.11

The oscillations of chirality could in principle be probe
with a magnetic field in the easy plane, perpendicular to
easy axis. Very similar to the case of nanomagnets a r
nance in the ac susceptibility would point to a MQC effect20

As pointed out in Ref. 10, a static field along the hard a
can tune the barrier height that separates the two wall chi
ties and make the effect more easy to observe.

In comparison with the same problem in an antiferrom
netic spin chain21 one observes that the parameter that c
trols the WKB exponent does not involvel there, being
simply proportional tos, indicating that antiferromagneti
chains are better suited to the observation of MQC than
romagnetic chains. An interesting application of the a
proach followed here would be to numerically solve t
antiferromagnetic spin chain instanton equations a
contrast the results with the qualitative description put fo
in Ref. 21.
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APPENDIX: THE DETERMINANT OF FLUCTUATIONS

Here it is shown that the determinant of fluctuations ab
the solutions$z,z̄% and $w51/z* ,w̄51/z̄* % are related by
complex conjugation. First note that if$u,w% correspond to
sc
,

a

o
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the solution$z,z̄%, then$p2u* ,w* % correspond to the solu
tion $1/z* ,1/z̄* %.

Insertu1j andw1h in the expression for the Euclidea
action, Eq.~22!. The second order term reads

SE
(2)@j,h#5

\sl

a E E ~j h!S a b

c dD S j

h D dxdt,

~A1!
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cos 2u, ~A2!

b5 isinu]t1w8sin2u]x2
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sin2u cos 2w, ~A3!

c50, ~A4!

d52
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u8sin2u]x1

1

2
cos 2wsin2u. ~A5!

For the other solution usep2u* 1j andw* 1h in the ac-
tion to obtain

SE
(2)@j,h#5

\sl

a E E ~j h!S a* 2b*

2c* d* D S j

h D dxdt,

~A6!

where it was used that cosu*5(cosu)* etc. Comparing Eqs
~A1! and ~A6!, leads one to conclude thatKz5Kw* .

The results above apply whenever there are pairs of s
tions such as$z,z̄% and $w51/z* ,w̄51/z̄* %, which is guar-
anteed to happen if the degenerate chirality states are un
dular, uz6u51. In the case of a symmetrically pinned wa
one has in addition thatz1(x)52z1* (2x); this, together
with the ferromagnetic boundary condition at the chain en
imply that the instanton fields satisfy,z(x,t)52z* (2x,t)
~same forz̄). From the form of the action, see Eqs.~4! and
~5!, it follows that the second functional derivatives,d2S/dz2

etc., at the point (x,t) are the complex conjugate of th
corresponding terms in (2x,t). The matrix of second de
rivatives separates in two blocks according to the sign ox,
and the full determinant, which is the product of the bloc
determinant, is real. This result was used to obtain Eq.~17!.
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