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The thermal evolution of first-order magnetization proces$&3MP’s) is intensively studied within a
description of the anisotropy energy of a single-ion one-sublattice system with two or three anisotropy con-
stants. By following the temperature-induced trajectories in the anisotropy-parameter plane, all possible types
of thermal evolution of the FOMP are detected by an effective parameter method in the mean-field approxi-
mation. Within the two-constant approximation, three types of thermal behavior of the FOMP are found.
Within the three-constant approximation, 12 types are found when the zero-temperature second-order anisot-
ropy c:onstanK(lJ is positive, and 14 types Whé(ﬁ is negative. Phase diagrams for the existence condition of
thermal behavior of the FOMP are given in the zero-temperature anisotropy space in combination with ana-
lytical and numerical calculations. For each type of variation of the FOMP, an example is selected to describe
the temperature dependence of the normalized amplitude and the critical field of the magnetization jump. The
relation between the type of variation of the FOMP and the spin-reorientation transition is discussed in detail.
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I. INTRODUCTION inherent to this kind of magnetization process.
Asti and Bolzonf carried out a complete phenomenologi-

Ferromagnetic materials may show jumps in magnetizaeal analysis of FOMP’s in uniaxial crystals within a three-
tion for certain combinations of anisotropy constart$iese  constant approximation to the anisotropy energy. Six types of
so-called first-order magnetization procesde®MP’s) have  FOMP’s (A1, A1C, A2, P1, P1C, andP2) were defined,
been observed in a large variety of magnetic matefidls. whereA (P) means that the magnetic field is applied parallel
The nature of this phenomenon is the same as that of a digperpendicularto thec axis. If the final state after the tran-
continuous spin-reorientation transiti®RT), which may be  sition is the saturation state, the FOMP is of type 1; other-
found with changing temperature. A FOMP occurs betweerwise it is of type 2. The lette€C denotes that the uniaxial
two inequivalent minima of free energy that correspond toanisotropy is of easy-cone type. Analytical expressions, com-
two particular directions of the magnetization vedibr and  puted plots, and diagrams of the critical parameteriical
is an irreversible rotation of the magnetization vedibibe-  magnetization and critical fieldvere given in detail in Ref.
tween two inequivalent magnetization stadMs and M, in 9. Asti and Bolzoni gave a unified view of FOMP’s in
an external magnetic field. During the FOMP, the momentniaxial crystals, and provided a method for a highly accu-
reorientation must overcome an energy barrier which may beate determination of the anisotropy constants at the tempera-
equal to the energy maximum between the two energyure where the phenomenon is present. Further study of the
minima or to the energy needed for the nucleation and distransformation of the singularity from FOMP’s in the case of
placement of domain walls, depending on the magnetizatioa polycrystalline uniaxial specimen revealed that for FOMP’s
mechanism of the jump, e.g., coherent rotation or domainef type P a discontinuity appears in the first derivative of the
wall nucleation and displacement. If thermal excitationmagnetization with respect to the magnetic field and that a
cannot supply enough energy for the magnetic moment t&OMP of typeA gives rise to a discontinuity in the second
surpass the energy barrier, hysteresis will be present in theerivativel® These results lead to an extension of the
magnetization curve, which is a common feature of first-singular-point-detection theory, with the possibility of mea-
order transitions. However, it is usually difficult to observe suring the critical field using polycrystalline specimens.
the hysteresis in FOMP’s, except perhaps at very low AFOMP can usually be observed only in a restricted tem-
temperature8 This is probably due to the low-energy barrier perature range. Thus, another important parameter, the criti-
between the two states or to the very low coercivity which iscal temperature, is frequently used to indicate the tempera-
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tures for onset and disappearance of a FOMP. Up to now, stable moment configuration corresponding to the absolute
systematic and complete study of the thermal behavior of aninimum of the free energy. The absolute minimum of the
FOMP has been absent, mainly due to the complexity of théree energy can be found by minimizing Ead) with respect
problem. The main difficulties for a theoretical study are howto the angled, which involves the first and second partial
to determine accurately the temperature dependence of ti§i€rivatives of the free energy with respect to the argle
anisotropy constants, and how to understand the effect o

temperature on the critical parameters of FOMP's. It is nec-— =sin 20(K ; + 2K, sir? §+ 3K 3 sin* §) + HM¢sin( 6— ¢)
essary to understand well how the trajectory undergone b

the anisotropy constants in the parameter space varies with =0, )
changing temperature. Recently, a very effective parametric

method was successfully applied to the Callen-Shtrikman §%F ) )

theory of magnetic single-ion anisotropy by Millev and (9_02:2K1—4(K1_3K2)S'”2 60— 2(8K,— 15Kg)sin' 0
Fzhnle!'? and was shown to be applicable within the

frameworks of the mean-fieldMF) approximation and the —36K 3 sin® 9+ HM cog 6— ¢)>0. 3

random-phase approximatidf. This parametric method The solutions satisfying Eq$2) and (3) correspond to the

makes it possible to calculate the exact thermal averages gfc4) energy minima, among which the absolute minimum is
the Stevens operatdfs* for arbitrary temperature and for chosen to determine the equilibrium state. If two absolute
any value of trtl‘f_gngmar momeditwithout any confinement minima coexist, a discontinuous jump of the magnetization is
or assumption; " and only needing to sweep the general-expected to occur. By considering the condition of two co-
ized effective field between zero and infinffy:*" Conse-  existing minima, Asti and Bolzofimade a detailed study of
quently, the temperature dependence of the single-ion anisofye magnetic phase diagrams of FOMP’s for two cases: the
ropy can be precisely calculated without recourse tGappiied fieldH either parallel or perpendicular to tieaxis
iteration:®*°In our previous work? the temperature depen- (wypeA and typeP FOMP’s, respectively The borderlines
dence of the uniaxial magnetic anisotropy constants and thgatween the six types of FOMP{a1, A1C, A2, P1, P1C
SRT in the single-ion one-sublattice system were intensivelyng p2) were analytically derived. The critical field and
investigated by means of an effective parametric method. Ipy,gnetization were determined so that the type of FOMP
the present work, taking advantage of the parametric metho%nd the location and the amplitude of the jump can be pre-
we thoroughly study the thermal evolution of a FOMP in the jcte if one knows the values of the anisotropy constants.
single-ion one-sublattice system by tracing the evolution of |, order to determine the thermal evolution of a FOMP,
the anisotropy flow induced by a temperature variation in thg,ne needs to know the temperature dependence of the anisot-
anisotropy space. This provides a clear insight into the unzqny constants. The theoretical framework of the parametric
usual magnetization processes occurring in ferromagnetigiethod for the temperature dependence of the anisotropy
uniaxial crystals. _ _ constants was described in detail in Ref. 22. Here we shall

The remainder of the present paper is organized as fokyoqyce this briefly for the convenience of the reader. In a
lows. The theoretical outline of the calculation method will gingle-ion one-sublattice system, the temperature depen-
be described briefly in Sec. II. Section il is devoted to ana-gence of the anisotropy constants can be determined through
lyzing the thermal evolution of a FOMP in a single-ion one-js rejations to the theoretically more fundamental anisotropy
sublattice system. As a starting point, in Sec. Ill A, we first . otficientsic. [see Eqs(A1)—(A3) in Appendix (A)].12223

N :

deal with the simple case of a description of the anisotropyrpe zero-temperaturground-stateanisotropy constants are
energy in terms of two anisotropy constants. The much morgo_ . _0)" The anisotropy coefficients are associated

complicated case of three anisotropy constants will be pre-' A
sented in Sec. Il B. A summary is given in Sec. IV. with the thermal averages of the Stevens operaof (T)
normalized to their zero-temperature vald®$?4?%|n the

case that the exchange interaction is dominant, i.e., if the
crystal-field anisotropy terms are much smaller than the
A one-sublattice system with uniaxial anisotropy in anduantum-mechanical exchange, which is usually represented
external magnetic field can be described phenomenologicalljy @ Heisenberg-exchange term in the Hamiltonian which is
by the free energy, involving the magnetocrystalline anisotre€sponsible for the strong magnetic behavior of the system of
ropy energy and the magnetostatic energy: interacting moment&*?®based on first-order thermodynamic
perturbation theory the anisotropy coefficients turn out to be

F=Kysir’ 6+K;sin® 6+ Kgsin® 6—HMgcod6—¢), (1)  linear combinations of the momenkd,=((3,)") [see Egs.

whereK, K,, andK are the uniaxial anisotropy constants. (A4)—(A6) in Appendix Al. HereJ, is the z component of
The in-plane anisotropy is assumed to be negligiblende ~ the angular momentum operator of a given iquy(J)

are the angles of the magnetization vediband the applied =(00(0) are certainl-dependent producté.All the mo-
magnetic fieldH with respect to the symmetry axésrespec- mentsM, and, consequently, alt,'s, can be expressed via
tively. The magnetization processes always take place in thihe first momentM, or, equivalently, the reduced magneti-
(c, H, M) plane, since the in-plane contributions to anisot-zation m=M,/J. The functional dependenceM,
ropy are neglected in E@l). If the direction of the magnetic =M_,(M;) itself proves to be model independent in all
field is fixed, the magnetization curve is determined by arenormalized quasi-independent collective-excitation theo-

II. THEORETICAL OUTLINE
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ries. All the momentdM, can be easily derived from the sponsible for the occurrence of a SRT, while the competition
moment-generating functioQ («,x) by means ohth-order  between the anisotropy energies and the magnetostatic en-
partial derivatives with respect @ [see Eq(A7) in Appen-  ergy is responsible for the occurrence of a FOMP. However,
dix A]. In the MF and dominant-exchange approximations,the thermal behavior of a FOMP in a one-sublattice system is
neglecting the influence of an applied magnetic field on thettributed to the competition between the different anisotropy
magnetic order, one can derive a simple expression for theonstants. Thus it would be possible to investigate the ther-
relation betweerx andt [t=T/T, and T, is the MF Curie  mal evolution of a FOMP in a one-sublattice system by ob-
temperature; see EqGA8) in Appendix A]. Therefore, the serving the thermal behavior of the anisotropy constants,
temperature dependence of the anisotropy coefficients armhalogously to the way we have previously carried out a
anisotropy constants for arlycan be indirectly computed in systematic analysis of a SRY.

the whole ordering temperature range by using the general-

ized effective fieldx as a parametéP:*?> By means of this A. Case of two anisotropy constants

effective parametric method, a general discussion and classi- it the highest-order zero-temperature anisotropy constant
fication of the temperature dependence of the uniaxial anisofg ;oo «gzo) only two constants are required to describe
ropy cqnstants was exhaustlvely performed in Ref. 22 for 3he uniaxial anisotropy. In this case, as shown in &®) in
single-ion one-sublattice system. Subsequently, all poss'blﬁppendix A K, has the same temperature dependence as the

SRT’s were detected by tracing the evolution of the anisotz ) . Jcqer anisotropy coefficient. Consequenkly(t) de-

ropy flow in the anisotropy space including the phase dia- . . . 0
grams for easy-magnetization directiogEMD’s). creasegor increasesstrictly monotonically forK3>0 (or

In the present contribution, the thermal evolution of aK2<O) with increasing temperature. As ¥, both second-

FOMP in a single-ion one-sublattice system will also be thor-@nd fourth-order basis functions enter into its expression, so

oughly investigated by tracing the evolution of the anisot-that three generic types of variation K(t) exist, that de-

; _ w0/ 0
ropy flow in the anisotropy space, but involving the phasd®&nd only on the rat.|o<0—K2/K31 of the zero-temperature
diagrams for the existence of the FOMP. anisotropy constantsi) for xo> 3, K;(t) has an extremum
that is @ minimum or a maximum depending on the sign of

KO (i) for —Z<x,<Z, K.(t) decreasegor increases
strictly monotonically fork>0 (or K9<0); and (iii) for

The anisotropy coefficients, are the basis functions that Xo<—3. Ka(t) has a zero point at a certain temperature
describe the temperature dependence of the anisotropy coRétween zero Kelvin and Curie temperatuiesince the
stants. The temperature dependence of the anisotropy coeffemperature dependence Kf andK, is solely determined
cients is unique|y determined by a givéﬁ.Z,ZO,ZZ For any by the zero-temperature conditions, i.e., the valudégoand
value ofJ, all three basis functions decrease strictly mono-K3, these values are of crucial importance. If the paikgf
tonically with increasing temperature, is convex upward and KS is given, the temperature flow of the anisotropy is
in the whole temperature range, while both and x5 pos-  fully determined within the MF approximation, and is valid
sess a typical bell shape and an inflection pA#ftAn ex-  for the whole class of nontrivial collective-excitation
ception to the convex-upward behavior @5 is its strictly  theories?* lllustrative results are shown in Fig. 1 for all typi-
linear behavior in the classical limit df—c. The higher the cal initial conditions and theoretical trajectories are presented
order of the anisotropy coefficient, the faster it decreasefor the anisotropy in the three generic regimes discussed
with increasing temperature. Providddis fixed, the tem- above. As the anisotropy constdfy evolves upon variation
perature dependence of the anisotropy constants is solely def temperature without changing its sign, a trajectory starting
termined by the set of zero-temperature anisotropy constanis the upper K,>0) or lower K,<<0) half-plane will stay
K?, Kg, and Kg [see Eqs(A1)—(A3) in Appendix A]. Since in its plane. If the anisotropy constalky has a zero point, a
a variation ofJ does not affect the general classification of flow starting in the right K;>0) or left (K;<0) half-plane
the types of anisotropy constanfiss 3 is usually chosen in  will leave its plane(i.e., will cross the borderline of the two
the calculation procedurd?? This will make neither the half-plane$ at the temperature wheke, changes its sign. At
analysis nor its exposition longer. As long as the zerot=1, all trajectories flow into the origin with a slope ap-
temperature constants are known, the exact temperature deroaching zero, because both single-ion anisotropy constants
pendence of the anisotropy constants can be accurately cdlecome zero at the Curie temperature &gl decreases
culated by the above-mentioned parametric method withifiaster thark ; at high temperature€:’ The thick solid lines
the  mean-field approximation. Subsequently, thein Fig. 1 are the borderlines for the existenceAdf andP1
temperature-driven anisotropy flow can be depicted througlrOMP’s. This picture is static in the sense that at a given
the trajectory followed by the anisotropy constants in anisottemperature, sayl;, K;(T1) andK,(T;) have definite val-
ropy space when the temperature is vafied this trajectory  ues that determine a point in tig-K, plane, and variations
crosses the borderline separating different regions of stablef the temperature and applied magnetic field do not affect
magnetic phases, a magnetic phase transition is expectedtht location of the borderlines. After scrutinizing the anisot-
the crossing point? If the phases have different EMD’s, an ropy trajectories in the case of two anisotropy constants, as
SRT will take place. If the phases have different FOMP’s, theshown in Fig. 1, three kinds of crossovers exist between the
type of FOMP will change. In a one-sublattice system, thetrajectories and the borderlines. Accordingly, three types of
competition between different anisotropy constants is rethermal evolutions of the FOMP’s take plac@) P1, (ii)

lll. TYPES OF THERMAL EVOLUTION OF FOMP’S
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FIG. 1. Anisotropy flow diagram in theK(-K,) plane. The FIG. 2. Phase diagram in th&{-K3) plane for different kinds

solid lines are the borderlines between thé and P1 types of  ©f thermal behaviors of the FOMP'&) P1, (Il) P1-Al, (Ill) Al.
FOMP’s. The dashed straight lines represent the results of the

analysis of the types of temperature dependenci,oiithin the  the critical temperature, if one plots the ratip(t)
two-constant approximation. The representative initial conditions=K (t)/K ,(t) as a function of the reduced temperattiren
(K?—Kg) can be read off the coordinates of the open circles. Thq:ig_ 3, we presenp(t) for some representative cases for
arrows indicate the direction of temperature evolutionTas- which a crossover is detected. From the intersections( o)f
creases from zero @c . with the lines of crossoves <=4, —1, and—6, one is able

. to determineT ., unambiguously for the corresponding cross-
P1-Al, and(ii) Al. The crossovers are unique, and takeover. When the crossovers take place with increasing the

place at a certain critical temperatufg, corresponding to temperature. the EOMP will disappear or its tvpe will
the disappearance or a change of the type of FOMP. The perature, Wil disapp s ype wi

existence and type of the crossovers are determined solely by

the zero-temperature valuesk§ andK$. As shown in Fig. 6
2, at zero temperature, three hatched atedls andlll can - p
be distinguished in th&9-K$ plane, that correspond to the 4 -
three types of the crossovers. All three areas are in the lower - P
half-plane. That isK2<0 is a prerequisite for the existence 2 g
of a FOMP in the case of two anisotropy constants. The areas
are defined as follows: ~ 0f05
> S S
. 0 :
(1) the P1 area: — 1K9<KI< - iKY, K3I>0, 2 b
(1) the P1-Al area: —K9<K9<-IK?  K?>0, 4 _25 ___________________________
(1) the Al area:  &O<K%<-K%  K9<o. * )
The conditions listed above are for the existence of the three 6
types of the thermal behavior of the FOMP. The borderlines 1 | | |

for the disappearance of the FOMP’s of typ& andP1 are 0.0 0os 6_4 = 06 08 10
K9=2K? and — £KY, respectively. The crossover frofil =TT

to Al is atk9=— K. Itis interesting to note that tHe1-A1l

area is the same as the a9 to plane(P) wedge in Fig. 3 FIG. 3. Temperature dependence of the ratio of the first and

of Ref. 20, which means that all systems in this area possesgcond anisotropy constantét) = K4 (t)/K»(t). The solid horizon-
both a SRT fromA to P, and a change of FOMP type from g jines p,,,s=4, —1, —6 are the borderlines between thé and

Pl to Al N P1 types of FOMP’s in the representatipr- p(t); crossing these
As to the critical temperatur€,, of the FOMP, thek, vs  lines corresponds to disappearance or to type changes of the
K plots are only indicative. However, it is easy to determineFOMP’s.
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first critical temperaturel ., is equal to the axis-to-plane
SRT temperaturd@,. This shows that the change of the type
of FOMP is due to the change of the EMD from axis to plane
(see the angle of the EMD with respect to thexis) at the
Al T, first critical temperature. BelowW,, the normalized ampli-
W tude increases to unity and the normalized critical field de-
creases to zero with increasing temperature. Then the nor-
malized amplitude decreases to zero, and the normalized
critical field increases to a maximum, as the temperature in-
creases fronf 4 to T,,. AboveT,,, no FOMP is observed,
and the EMD remains in the plane. Therefore, in the case of
“ two anisotropy constants, one-sublattice systems with zero-
- temperature anisotropy constants in alleare rich of mag-
0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 . . . .
<T/T netic phenomena, like a first-order axis-to-plakié SRT, a
¢ P1 type of FOMP at low temperature¥ € T,) and anAl
FIG. 4. Temperature variation of the angle of the EMD with type of FOMP at high temperature$ {;<T<T;).
respect to the axis, normalized tar/2 (open squargsthe normal-
ized amplitude, and the critical field of the FOMRapen circlegin

(1)

am P1-Af

oo o

AP

a0

0o,
©0-0-0-—q

some typical systems. The initial ratios between the first and second B. Case of three anisotropy constants
Z:';(c:hrc;pzyocor'Stants used in the calculation @e-2.5, (Il) 1.1, If the zero-temperature highest-order anisotropy constant

is nonzero K3#0), three constants are needed to describe
change. Usually, one is interested in the critical field and théhe uniaxial anisotropy. In this case, the third anisotropy con-
amplitude of a FOMP; thus it is meaningful to study the Stant has the same temperature dependence as the sixth-order
thermal behavior of the critical field and the amplitude be-anisotropy coefficient. Just like, in the case of two anisot-
fore the jump disappears. As shown in Ref. 9, one easilyopy constants, in the case of three anisotropy consténts
obtains an expression in termsxf K, /K, for the normal- possesses three generic types of thermal behavior depending
ized critical fieldh,,=H/|H,| (whereH, is the anisotropy on the ratio of the intrinsic constants: Kg/KO, because the
field), the normalized amplitud&smy,=AM/Mg (Where fourth- and sixth-order basis functions enter into the expres-
M, is the saturation magnetizatiprand the normalized criti-  sjon for the temperature dependencer #3, K,(t) has an
cal magnetizatiorm, =M /Ms (whereM, is the magneti-  extreme value. For 2 <r< 2, K,(t) is a strictly monotonic
zation at the initial state of the FOMPFOY aP1 type of function. |If r<_1_é, Kz(t) becomes zero at some

FOMP, one obtains, using,=2K;/Ms, temperaturé? In the three-constant case, the temperature de-

——— pendence oK; becomes very complicated due to the three
mcr:L/Xl, (4  basis functions and two independent variabigs- K9/K?
3 andy,=KYK? involved in Eq.(A1). As a result of all pos-
Amg=1-m,, (5) sible combinations betweer, andy,, seven types of tem-
perature dependence Kf;(t) may be observed. A detailed
her=Me( 1+ 2xm2). (6)  Pphase diagram for these different temperature dependencies
) in the parameter spacedy,) was presented in Fig. 4 of
For anAl type of FOMP withH,=[—2(K;+2K3)]/Ms,  Ref. 22. The most interesting feature is that, in the case of
one obtain the seventh typeK,(t) may exhibit two zero points, i.e., it
eyl changes sign twice for realistic values of the initial param-
mcr:L/Xl, 7) eters. This results in a trajectory that is cut into three parts
3 distributed over the two parameter spaces) with K(t)
Amelem ® >0 andK,(t)<0,2! that are needed for a complete descrip-
cr cr tion of the anisotropy in the case of three constarttere
Mef 1+2x(1—mZ) ]| x=K,/K; andy=Ks/K;. WhenK;(t) goes to zero, the
he= TTox ‘ (99  trajectory comprising the poinfx(t),y(t)] will go to infin-

ity in the chosen parameter space and, after the change of
The temperature dependence of the normalized amplitudgign ofK,(t), re-emerge in another section of the parameter
and the critical field are shown in Fig. 4 for three typical space. IfK,(t) has only one zero point, its trajectory will
cases, corresponding to three kinds of thermal evolution ofonsist of two parts. IK,(t) has no zero point, it will not
the FOMP. In the cases &1 andAl, the normalized am- leave the parameter space determined by the sigK‘l)of
plitude decreases to zero if the temperature increases fro@enerally speaking, the trajectdrg(t),y(t)] starts from the
zero to the critical temperature, whereas the normalized critiinitial point (xg,Yo), and finally ends in the origin, at the
cal field increases to a maximum. In the casd®@fA1, the  Curie temperature, except for some special c&ses.
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03 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9
=TT,

FIG. 6. Temperature variation of the angle of the EMD with
respect to the axis, normalized tar/2 (open squargsthe normal-
ized amplitude, and the critical field of the FOMR&pen circlegin
some typical systems in the casek}>0. The initial parameters
used in the calculation afe) (—3.0,—2.0), (b) (—3.0,1.75, and(c)
(—4.0,3.5.

-1
N played in Figs. 6—9. Furthermore, the relevant anisotropy

FIG. 5. Phase diagram for different kinds of thermal behavior ofIOWS are drawn all together in they planes in Fig. 10 and
the FOMP’s in the initial parameter spacey{yo) with K3>0: (1) labeled with the same letters. In Fig. 10, the dotted cuoves
Al, (2) AL1C-Al, (3) ALC, (4) A1C-P2, (5) P2, (6) o', p g q', r, andr’ and the dotted line§ m, n, andn’

denote the borderlines between the six types of FOMFIs:

P2-A1C-P2, (7) P2-Al1C, (8) P2-A1C-Al, (9) P2-P1-Al, _
(10) P1-A1, (12) P2-P1, and(12) P1. The curvesy, oandr and A1C, A2, P1, P1C, andP2, at arbitrary temperature. The
the straight lines, m, andn are the borderlines between four types equations of borderlines in Fig. 10 are listed in Appendix C.

of FOMP’s:Al, A1C, P1, andP2 at zero temperature. The configu-  Al. Region 1 in Fig. 5, below the lindsand m, is the
rations of different regions around powtare schematically repre- largest one. Only a1 type of FOMP is observed in the
sented in the inset. systems, with initial points inside this regime. The normal-
1 K90 ized crif[ical parametens,, Am,, andh, for anAl_ type qf

T FOMP in the three-constant case can be determined with the

In the case oK?>0, 12 types of thermal behavior of a definition ofH,=[ —2(K;+ 2K ,+3K3)]/Ms,° by means of
FOMP are found after detailed investigation of the trajectothe following equations:
ries for all possible initial points Xp,Yo): (1) Al, (2)

Al1C-Al, (3) A1C, (4) AL1C-P2, (5) P2, (6) P2-A1C-P2, (d) (@) (f)
(7) P2-A1C, (8) P2-A1C-A1,(9) P2-P1-A1,(10) P1-A1, g 08 Tor=T, mmn P2-A1C-P2
(11) P2-P1, and(12) P1. The phase diagram is summarized & CA ]Tm T,
in Fig. 5, where lined, m, andn and curveg, o, andr are S oa | %{I %””%o
the borderlines between four types of FOMR$, A1C, P1, < A1C-P2 2 po m%
andP2 at zero temperature. The equations of the borderlines § I T=Ts 9 ACA
in Fig. 5 are listed in Appendix B. Lind starts at point 0.0 - 8 o
s(—9/4,11/8), which is a common intersection point of § j T =T|J)
curvesc, €, g, f andh. At point s, all three anisotropy con- s g =
stants possess the same temperature dependence as the tt - g S $
anisotropy coefficient, so that the trajectory will always be at g 3 %T|
this point with varying temperature. Poistis the crossing m% mj 5=
point for four types of thermal behavior &f;, which makes

0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

it an important point in the phase diagrafilwelve typical T

initial points are chosen to represent the 12 types of thermai ¢

behavior of the FOMP. Each initial point is symbolized by a  F|G. 7. Temperature variation of the angle of the EMD with
letter betweena and |, wherea corresponds to the initial respect to the axis normalized tar/2 (open squarésthe normal-
point in region 1,b to that in region 2, etc. For all initial jzed amplitude, and the critical field of FOMP{spen circles in
points, the thermal variation of the normalized amplitude andsome typical systems in the casekd}>0. The initial parameters
critical field of the FOMP, and the normalized angle of theused during the calculation afd) (—4.0,3.75, (e) (—3.8,4.0, and
EMD with respect to the axis (if an SRT existy are dis-  (f) (—3.0,2.262.
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(h)

O § A(CP)

P2-A1C-A1

(a)

A{CA)

Am_, 20/%
=)

P2-A1C

QUMY

0.0

09 03 0.6

=TT,

FIG. 8. Temperature variation of the angle of the EMD with
respect to the axis normalized tar/2 (open squargsthe normal-
ized amplitude, and the critical field of FOMP(spen circleg in
some typical systems in the casek}>0. The initial parameters
used during the calculation afg) (—2.7,1.83, (h) (—2.3,1.35, and
(i) (—-1.9,1.0.

Symi+4yme— 3(x+2y)m3— 2(x+2y)mg+x+y+1=0,

(10
Amg=1-m, (11)
o | el 1+2x(1-m)+ 3y(1—m§)?])
cr—

1+2x+3y N (12

Figure Ga) shows the temperature dependence of the nor-

malized amplitude and critical field of akl type of FOMP
below its critical temperature for one typical initial point in
this region. Its anisotropy flova in Fig. 10 contains two
parts(al anda2) due to the one zero point &f;. Below the
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K. >0

-10 . L
-10

"o

K,<0

-5

-10
-10

critical temperature, the normalized amplitude decreases to

0-0 $——0—0-0-0°

...'00~o

FIG. 9. Temperature variation of the angle of the EMD with
respect to the axis normalized tar/2 (open squargsthe normal-
ized amplitude, and the critical field of FOMP(spen circleg in
some typical systems in the caseKﬁ>O. The initial parameters
used during the calculation afp (—1.7,0.8, (k) (=1.75,0.9, and
() (6.0-2.5.

FIG. 10. Anisotropy flows in the plané&-y) for these typical
thermal behaviors of the FOMP’s shown in Figs. 6-9 and 12-16.
Dotted lined, m, n, andn’ and dotted curves, o', p, g q’, r, and
r' are the borderlines among the six types of FOMR4%; A1C,

A2, P1, P1C, andP2 at arbitrary temperature. The upper plane
corresponds tdK;>0, and the lower one t&,;<<0. The arrows
indicate the direction of temperature evolutionTasicreases from
zero toT,.

zero, and the normalized critical field increases to a maxi-
mum with increasing temperature. Even if there is a zero
point for K, below T, no anomaly occurs in the tempera-
ture dependence a&fm,, andh.. The disappearance of the
Al type of FOMP is due to the crossing of the second part
(a2) of the anisotropy flow with the borderline’ in the
parameter space witk;<<0. At the borderlinen’, the nor-
malized critical amplitude of the jump in th&l type and
A1C type of FOMP’s is zero.

Al1C-Al. Region 2 is below curves and o and above
line I in Fig. 5. The systems with initial points inside this
area exhibit a continuous cone-to-plaf@P) SRT and two
types of FOMP’s(an A1C type at low temperature and an
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Al type at high temperatureEquations(10)—(12) are also A[ 17x%+ x(60y—11xz)1’2} 14
- , 14

applicable to theA1C type of FOMP. As shown in Fig.(6), hcrzg 2 30y
it is clear that the first critical temperature is equal to the

temperaturel ¢ of the (CP) SRT. No anomaly is observed in

the temperature dependence\ofi,, when the type of FOMP  ith

changes fromA1C to Al. However,h. has a sharp peak at

the first critical temperature. Tracing down the anisotropy

flow b1-b2 in Fig. 10, one finds that its crossing with bor- (60y— 11x?) 2
derlinel is responsible for thé€CP) SRT and the FOMP-type A= {T
variation fromA1C to Al. The second critical temperature

corresponds to the crossing with the borderlirle At the
borderlinel, h., becomes infinitely large, which is the reason tT

why a sharp peak exists in the thermal curvéngfat the first the type of FOMP changes froi1C to P2. Then,Am,,

cr!tlcal temperatgre. Cu.rv'elm F|g. Sis numerlgally Qeter- decreases whill, increases, until a FOMP d?2 type dis-
mined by collecting the initial points whose trajectories pass

through the common crossing poi} —3) of borderlines appears aT_CfZ' N .
and ng’J in Fig. 10. If one takegs IoZe‘tri;ter’sz})power I&to ap- P2. Region 5 in Fig. 5 is below cunwgand above curves
proximate the temperature dependence of the basis functioffs ™ @ndf. The systems with the initial points inside this
., the equation satisfied by cureean be deducefee Eq. reglon_exhlbn only aPZ_ type of FOMP. From the anisotropy
(B12) in Appendix BJ. When the phase transition takes placefloW €in Fig. 10, the disappearance of tRe type of FOMP
at |OW temperature, zZener’s power |aW will be an easy ands due to the CrOSS|ng of the anISOtI‘Opy ﬂOW W|th the border'
effective way to analyze the thermal behavior of the anisotline g. In Fig. 7(e) it is seen tha m, decreases to zero and
ropy. h., increases to a maximum value when the temperature in-
A1C. In region 3 in Fig. 5, below curves ando and  creases td . Curvefin Fig. 5 is determined from the initial
above curvee, the systems possess only AdC type of points whose anisotropy flows pass through the common
FOMP. Curvec is the boundary between the types 4 and 7 ofcrossing pointz (—3, ) of borderlinesg and n. Within the
temperature dependence kf(t).?? Line b separates region framework of Zener’s power law, one can obtain its equation
3 into two subregions. In the region below libgK,(t) has [see Eq.(B13) in Appendix B]. Curveh consists of initial
one zero point and a continuous cone-to-plé@E) SRT can  points whose anisotropy flows are tangent with the border-
be observedthis case is not illustrated in Fig.).6In the |ine o.
region above lineb, K,(t) has two zero points and a con-  p2-A1C-P2. Region 6 is enclosed by curvesc, andh.
tinuous cone-to-axi¢CA) SRT existysee Fig. €&)]. Below |y systems with initial points inside this region, discontinu-
the SRT temperature fdiCP) or (CA), the ALC FOMP ar- g5  axis-to-cone and discontinuous cone-to-é@A SRT
rives at its critical temperaturg;, when the anisotropy flow 5,4 FOMP-type changeB2-A1C-P2 [see Fig. Tf)] take
crosses the borderling (see the anisotropy flowl-c2-c3 place. AP2-type FOMP can occur when the EMD is an easy

in Fig. 10. Above the critical temperature, if the anisotropy axis. both at low tem ;
: . , peratures and at high temperatures. The
flow crosses directly the borderline(CP) SRT takes place. anisotropy flowf shown in Fig. 10 demonstrates that the two

If Ky(t) changes its sign twicdCA) SRT occurs at the sec- crossings with borderline are responsible for thACA SRT

ond zero point ofK(t). In the temperature dependence of i i i
h. in Fig. 6(c), there is an extremum below the critical tem- gnd theP2-A1C-P2 type change of the FOMP. The cross

peratureT,,, which is due to the large curvature of its an- ing with borderline_q corresponds to the third critical tem-
isotropy flow before crossing the borderlimé. When the  PEratureTes at which Am, of the P2 type of FOMP be-
initial point is just on the lineb, no SRT can be observed COMes zero. In Fig. () it is seen thatAm jumps
because the anisotropy flow does not approach the origin b@iscontinuously alfe;, (=Ts) and atTep (=Ts).
the point(—Z, 0) in the parameter space witk, <0. P2-A1C. Region 7 is enclosed by curveso, ande. Line
A1C-P2. Region 4 is above curveand below curve. If b separates this region into two subregions. In the region
the anisotropy flow originates from this regipsee Fig. 7d), below lineb, a discontinuous axis-to-cone and a continuous
and the anisotropy flowd in Fig. 10], it first crosses the cone-to-planeA(CP) SRT can be observed, while in the
borderlineo, which leads to a discontinuous cone-to-a@&  region above linéd, a discontinuous axis-to-cone and a con-
SRT and simultaneously to a type variation of the FOMPtinuous cone-to-axi&(CA) SRT exist{see Fig. 8)]. When
from ALC to P2. The critical temperatur€,,, for the FOMP  the initial point is just on lineb, only a discontinuous axis-
of type P2 is reached if borderling is crossed. The normal- to-coneAC SRT is realized. The discontinuous SRT from
ized critical parameter&m,, andh,, for a P2 type of FOMP  axis to cone is related to the crossing of the anisotropy flow
in the three-constant case can be determined by the followingith borderlineo (see the anisotropy flog1-g2-g3 in Fig.
equations with the definitiohl ,=2K,/M (see Ref. § 10). At the same time, the type of FOMP changes fié&to
Al1C at T.q. Subsequently, when the anisotropy flow
2 1U211/2 crosses the borderling’, the A1C type of FOMP will dis-
AMm.— —5x—(60y—11x%) (13) appear af,,. AboveT,,,, if the anisotropy flow crosses the
cr 6y ' borderlinel, the continuous cone-to-plane SRT will take

1/2
—3X

o1, AMg is discontinuous antl,, becomes zero when
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place; if K;(t) has its second zero point, the continuousing with borderlinem causes the SRT and the type change of

cone-to-axis SRT occurksee Fig. &)]; if the anisotropy

flow approaches the poiltt-3,0), no other SRT is observed.

The last case corresponds to the initial points on bne
P2-A1C-ALl. Region 8 is enclosed by the cunesy and

the FOMP afT ;. The FOMP of typeAl disappears af.,
when the anisotropy flow crosses borderlirie An anomaly
can be observed in both the temperature dependentengf
and that ofh, at T,.

g. Discontinuous axis-to-cone and continuous cone-to-plane P2-P1. Region 11 in Fig. 5 is enclosed by lireand

A(CP) SRT and FOMP-type changé®-A1C-Al can be
observed in systems with initial points inside this redisee
Fig. 8h)]. The anisotropy flowh1-h2 shown in Fig. 10 in-

curvesr andf. As shown in Fig. &), in the whole tempera-
ture range of magnetic order no SRT and only change of the
type of FOMP fromP2 to P1 take place. The anisotropy

dicates that the discontinuous axis-to-cone SRT and the typlow k shown in Fig. 10 indicates that the type change of the

variation of the FOMP fromP2 to A1C are related to the

FOMP must be attributed to the crossing with borderline

crossing with borderline, and the subsequent continuous The subsequent crossing with borderlinedetermines the

cone-to-plane SRT and th&lC-to Al-type variation of the
FOMP to the crossing with borderlirle The disappearance

critical temperaturd ., for the disappearance of Rl type
of FOMP. At borderlinen, Am,, of a P1-type FOMP be-

of theAl-type FOMP is due to the crossing of the anisotropycomes zero. Fm 0 K to T,», h, continuously increases to

flow with borderlinen’ at the third critical temperaturg,,s.

Curveg in Fig. 5 has been numerically determined by col-

lecting initial points whose anisotropy flows will pass
through the pointt(—2,1) which is the common crossing
point of borderlined andm. Equation(B14) in Appendix B
describes curveg on the basis of Zener's power law. As
shown in Fig. &), Am,, is discontinuous al =T, but
continuous afl .;,=Ts,. h,, shows an anomaly &t,.
P2-P1-Al. Region 9 is enclosed by lineand curves

a maximum value. A kink emerges in the temperature depen-
dence ofAm,, at T4. If the initial point is on lineb, a P1
type of FOMP can persist up to the Curie temperature, be-
cause the anisotropy flow approaches the po6ing,0) and
does not cross the borderlime

P1. Region 12 in Fig. 5 is below curveand linen and
above lineb. Systems with initial points inside this region
exhibit only aP1 type of FOMP, and no SR[Bee Fig. 9)].
When the anisotropy flow in Fig. 10 crosses borderling

andg. Systems with initial points inside this region exhibit a the amplitude of thé1 type FOMP becomes zero. When the

discontinuous axis-to-plandP SRT and the FOMP-type
changesP2-P1-Al [see Fig. 8)]. The normalized critical
parametersn,,, Am,, andh,, for aP1 type of FOMP in the

initial point is on lineb, aP1 type of FOMP can be observed
in the whole temperature range of magnetic ordering, as the
anisotropy flow never crosses borderlime

three-constant case can be determined by the following equa- In the remaining region above curwg and linen, no

tions, usingH,=2K; /Mg (Ref. 9:

Bymi+4yme+ 3(x+y)m3+2(x+y)mg+x+y+1=0,

(195
Amg=1-mg, (16)
her= | Me(1+ 2xm2+3ymd)|. 17

As shown in Fig. 8), the first critical temperatur&,,, cor-

FOMP and SRT can be detected at any temperature because
the anisotropy flow originating from this region does not
cross any borderline for the EMD or the existence of a
FOMP in the parameter spatey). The thermal behaviors of
FOMP’s and SRT’s in systems with initial points inside each
region in Fig. 5 are summarized in Table 1.

2. K9<0

If the sign ofK‘l) is changed, the competition between the

responding to the disappearance d?2 type of FOMP and anisotropy constants will be varied. Consequently, the phase
the successive onset of Rl type of FOMP can only be diagram for the existence of a FOMP is modified. Therefore,
distinguished from the kink in the temperature dependencdifferent types of thermal behavior of FOMP’s and different

of Am.,. No anomaly is observed &, in the thermal
curve ofh,. From the anisotropy flowl-i2 displayed in
Fig. 10, one sees that the type change of the FOMP f#@m

conditions of their existence are expected in the initial plane
Xo-Yo. The phase diagram of the conditions of their exis-
tence is shown in detail in Fig. 11, where the lingn, and

to P1 is due to the crossing of the anisotropy flow with n’ and the curves’, q’, andr’ are the borderlines between

borderliner. Subsequently, its crossing with borderline
leads to theAP SRT and the type variation of FOMP from
Pl toAl atT.,=Ts. At the borderlinem, Am,, is equal to

1 andh,, becomes zero. AA1-type FOMP can persist up to
the third critical temperatur&,; when the anisotropy flow
crosses borderlin@’. Above T.,, Amg, (h,) decreases
(increases monotonically with increasing temperature
until Te,s.

P1-Al. Region 10 is below curveand lineb, and above
line m. A discontinuous axis-to-plan&P SRT and a change
of the FOMP from typeP1 to Al can be found in the sys-
tems with initial points inside this regidsee Fig. §)]. The

anisotropy flowj 1-j2 shown in Fig. 10 reveals that its cross-

four types of FOMP’sA1l, A1C, A2, andP1C at zero tem-
perature. The equations of some borderlines in Fig. 11 are
listed in Appendix B. Line b starts from the point
s(—2,4), a common crossing point of the numerically de-
termined curveg, c¢’, j, andg’. Fourteen types of thermal
behavior of FOMP's[(1) Al, (2) A1C-Al, (3) A1C, (4)
A2-Al, (5) A2, (6) P1C-A2, (7) P1C, (8) P1C-P1, (9)
A2-P1C-P1, (100 A2-P1, (11) P1C-A2-P1, (12
A2-A1-P1-Al, (13) P1C-A2-Al1-P1-Al, and (14
P1C-A2-A1l] are found after a systematic investigation of
the anisotropy flow of any initial point, yo) in the initial
parameter space witKg<O. For each type of thermal be-
havior of the FOMP, one representative initial point is se-

104414-9



YU, ZHANG, de BOER, BRICK, AND BUSCHOW PHYSICAL REVIEW B65 104414

TABLE I. Summary of thermal behavior of FOMP’s and SRT’s observed in a single-ion one-sublattice
system with initial point inside each region in Fig(the case 0K2> 0). The asterisk points to the remaining
region outside the 12 nominated regions. The arrows indicate the direction of increasing temperature, and the
letter above the arrow denotes the borderline where the transition takes place. The letter between parentheses
in the FOMP column is the borderline where the FOMP disappears. The parentheses in the SRT column
indicate that the transition is of second order.

No. FOMP SRT
1 Al(n’) /
| |
2 A1C —— Al(n’) (C— P)
’ | K4=0
3 A1C(n') (C—— P)/,(C— A)
(o] (o]
4 A1C —— P2(q) C— A
5 P2(q) /
(o) o] (o) (0]
6 P2 AlC P2(q) A— C— A
0 | o
0 A (C P), A C,
7 P2 — A1C(n’) o
A— . (C——A)
o | o |
8 P2 AlC Al(n") A— - (C——P)
r m m
9 P2— s P1— Al(n') A— P
m m
10 P1—— Al(n') A— P
r
11 P2 — P1(n) /
12 P1(n),P1
* / /

lected to show the thermal variation of the normalized am-observed, while, in the region above litee K,(t) has no
plitude and critical field of the FOMP, and the normalized zero point and a continuous cone-to-plai@P) SRT exists
angle of the EMD with respect to the axis (if an SRT  [Fig. 120)]. If the initial point is just on lineb, no SRT is
exists in Figs. 12-16. Some relevant anisotropy flows mayobserved during the whole temperature range of magnetic
be found in Fig. 10 by looking for the same notation. order. Below the SRT temperatutig for (CP) or (CA), the

Al. The largest region in Fig. 11, region 1, is locatedA1C type of FOMP reaches its critical temperatiig when
above curve’ and linel. No SRT and only a1l type of  the anisotropy flowo in Fig. 10 crosses the borderlin€.
FOMP can be observed in systems with initial points insideAbove the critical temperaturd, for an A1C type of
this region[Fig. 12(m)]. The critical temperatur&,, for the ~ FOMP. if the anisotropy flow crosses borderlin¢CP) SRT
Al type of FOMP is reached when the anisotropy fiovin occurs; ifK;(t) changes its sigiCA) SRT takes place at the

the bottom part of Fig. 10 crosses the borderlirie Amg, zero point ofKy(t).

decreases, wherehg increases with increasing temperature. theAczdﬁ\/t.sSegc;?n :nlc?i Fg. sltérlr?sbv?/:?r\llvir?iltjixé gir:gsai?\(;\i/dee
A1C-Al. Region 2 in Fig. 11 is below link and above ] - Y P

curvee. Systems with initial points inside this region exhibit this region exhibit a change of FOMP froA® type toA1

: type, but no SRT. The normalized critical paramet&rs
a continuous cone-to-plane€CP) SRT and a FOMP type . cr
changes fromA1C to A1 [Fig. 12n)]. The crossing of tra- andh,, for anA2-type FOMP in the three-constants case can

jectoryn in Fig. 10 with the borderliné corresponds to this pe de]:[el_rim_ine_dzbﬁ tieZLO”J(:VBV:?g E/}unatisnfS u§ing the defini-
SRT and the change in the type of FOMP. The crossing wittion Of Ha=[ = 2(K, 2 3)J/M; (Ref. 9

borderline n’ corresponds to the disappearance of the 5(x+3y)—G|Y?
Al-type FOMP afl,. A sharp peak in the thermal curve of Amg= T , (18
h. occurs at the first critical temperature at,, (=Ts). _
Curve e is numerically determined by collecting the initial With
points whose trajectories flow through the crossing point of _ 1124+ 81v2+ 112
the borderlines andn’. Equation(B12) in Appendix B de- G=(60y— 11"+ 81y"+ 54xy) ™,
scribes curvee within Zener’s power law. and
A1C. Region 3 in Fig. 11 is below the curve Like p
. . . . . A + 17(x+ —
region 3 in the case d€9>0, lineb also cuts this region into thE[ C(x :())/;({1+(;< f;/)) G}}, (19
X+ oy

two subregions. In the region below ling K,(t) has one
zero point and a continuous cone-to-a®A) SRT can be with
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e
[

Am,, 20/
o
iy

0.0

FIG. 13. Temperature variation of the angle of the EMD with
respect to the axis normalized tor/2 (open squang the normal-
ized amplitude, and the critical field of FOMP(spen circleg in
some typical systems in the casel(ﬂ<0. The initial parameters
used during the calculation atp) (—3.8,3.8, (g9) (—2.0,1.5, and
(r) (2.2,1.33.

As shown in Fig. 18), the first critical temperaturé,,;, at

FIG. 11. Phase diagram for different kinds of thermal behaviorwhich the change takes place fréx2 to Al types of FOMP,
of the FOMP’s in the initial parameter spacey€{y,) with K3<0:  can be seen as a kink in the temperature dependence of
(1) A1, (2) A1C-A1, (3) A1C, (4) A2-Al, (5) A2, (6) P1C-A2, Am;,. However, no anomaly occurs in the temperature de-
(7) P1C, (8 P1C-P1, (90 A2-P1C-P1, (10) A2-P1, (11 pendence oh, at T,. The trajectoryp in Fig. 10 suggests
P1C-A2-P1, (12 A2-A1-P1-Al, (13) P1C-A2-A1-P1-Al, that its crossings with borderlines$ andn’ correspond with
and(14) P1C-A2-Al. The curves’, o', andq’ and the straight the change of the FOMP froA2 to Al type, and with the
linesl, n, andn’ are the borderlines between four types of FOMP's: disappearance of an Al-type FOMP, respectively. Cuhas
Al, AlC, A2, andP1C at zero temperature. The configurations of heen numerically determined by collecting the initial points
the different regions around point are schematically represented \yhose anisotropy flows pass through the crossing point

in the inset. z' (Y of the borderlines’ andn’. Curvei crosses with
2 curveso’ andc at pointv. With Zener’s power law, one can
_|3(x+3y)+G derive Eq.(B16) in Appendix B, that describes curve
10y ' A2. Region 5 in Fig. 11 is below the curvand above the
©) ® e A2-P1C-P1 (1)
B 0.8
L Q
[aY] T ¢ -..
8%04 r’ T, o I Too=Te %
S I ™ To=Ts | b
P1C "’% “ 2 \
(CA) P(CA 1
: | i |
¢ T Tes
0
o o
= 3
S ’q
umj mmn&g ‘ s
0.3 06 0.9 0.3 0.6 0.9 03 0.6 0.9

=TT,

FIG. 12. Temperature variation of the angle of the EMD with  FIG. 14. Temperature variation of the angle of the EMD with
respect to the axis normalized tar/2 (open squargsthe normal-  respect to the axis normalized tor/2 (open square the normal-
ized amplitude, and the critical field of FOMP(spen circleg in ized amplitude, and the critical field of FOMP(spen circleg in
some typical systems in the caseKﬁ<O. The initial parameters some typical systems in the casel(ﬁ<0. The initial parameters
used during the calculation ae) (6.0,7.0, (n) (7.0,~5.3), and(0) used during the calculation afe) (—2.6,1.2, (t) (—4.0,2.5, and
(5.0,-5.5). (u) (—4.0,3.08.
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initial points inside this regiofFig. 13r)]. When trajectory

in Fig. 10 crosses borderline’, the SRT and the type
change of the FOMP take place Bt,,=Ts. Crossing with
borderline ' leads to the disappearance of &2-type
FOMP atT,. Curvec is the same as that in Fig. 5, and
curveg’ has numerically been determined by collecting the
initial points whose anisotropy flows pass the crossing point
t’(—1,%) of borderlineso’, q’, andn. Equation(B15) in
Appendix B describes curvg’ within Zener's power law.
Am, shows a discontinuous jump at,; .

P1C. Only aP1C-type FOMP exists in systems with an
initial point inside region 7 which is below curvg¢sandg’
and above linen. Line b separates this region into two sub-
regions. In the region below ling a continuous cone-to-axis
(CA) SRT can be observddrig. 14s)], while in the region

FIG. 15. Temperature variation of the angle of the EMD with above lineb, a continuous cone-to-plat€P) SRT exists. If
respect to the axis normalized tar/2 (open squarésthe normal-  the initial point is just on lineb, no SRT occurs. Below the
ized amplitude, and the critical field of FOMP{spen circlesin ~ SRT temperature fofCP) and(CA) SRT's, when the anisot-
some typical systems in the casek}<0. The initial parameters ropy flow s1-s2 in Fig. 10 crosses borderlin@, the
used during the calculation are(v) (—3.0,2.125, (W) P1C-type FOMP reaches its critical temperatdig. Above
(—2.35,1.475%, and(x) (—5.0,4.16. the critical temperaturd,, if the anisotropy flow crosses
borderlinel, (CP) SRT occurs; ifk(t) changes its sign like

curveso’ andq’. No SRT and only a2 type of FOMP is  the anisotropy flovsin Fig. 10,(CA) SRT takes place at the
observed in systems with initial points inside this region. Inzero point ofKy(t). Curvej has been numerically deter-
Fig. 130q) it can be seen thaAm,, of the FOMP becomes Mmined by collecting the initial points whose critical tempera-
zero whileh,, reaches a maximum at the critical temperatureture T¢, of the P1C-type FOMP is just equal to the transition

T.. This happens when the trajectoqyin Fig. 10 crosses temperaturel of the (CA) SRT.
the borderliney’. P1C-P1. Region 8 is above curjeand below lineb and

P1C-A2. Region 6 is enclosed by curveso’, andg’. A curveo’. A continuous cone-to-axi€CA) SRT and a change
discontinuous cone-to-plar@P SRT and a change of FOMP of the FOMP fromP1C to P1 type exist in systems with

from P1C to A2 type can be observed in the systems withinitial points inside this regioFig. 14t)]. The trajectory
t1-t2 in Fig. 10 shows that the SRT and the type change of

the FOMP take place at the zero pointkof(t), and that the
crossing with borderline in the parameter space wit;
>0 corresponds with the disappearance &flatype FOMP.
A sharp peak clearly emerges in the temperature dependence
of hg atTeq (=T), sinceh,, determined by Eq(17) tends
to infinity at the zero point oK 4(t). No anomaly occurs in
the temperature dependenceXsfi,, when the type of FOMP
changes fronP1C to P1.

A2-P1C-P1. Region 9 is above curv& and below line
b. A discontinuous plane-to-cone and a continuous cone-to-
axisP(CA) SRT and FOMP-type changé®-P1C-P1 can
be found in the systems with initial points inside this region
[Fig. 14u)]. From the trajectoryul-u2 in Fig. 10, one
knows that the discontinuous plane-to-cone SRT and the type
variation of FOMP fromA2 to P1C are due to the crossing
with borderlineo’. A discontinuous jump oAm,, occurs at
T (=Tg) together with the type variation of the FOMP
from A2 to P1C. The ensuing continuous cone-to-axis SRT
and the type change of the FOMP frdrlC to P1 have the
same origin as discussed above in region 8.

FIG. 16. Temperature variation of the angle of the EMD with ~A2-P1, P1C-A2-P1. Both regions 10 and 11 in Fig. 11
respect to the axis normalized tar/2 (open squarésthe normal- ~ areé on lineb that starts from poins and crosses curve’ at
ized amplitude, and the critical field of FOMP(spen circlesin  Pointu’. The part of lineb above pointi” belongs to region
some typical systems in the casek}<0. The initial parameters 10, while the part between points ands belongs to region

used during the calculation argy) (—2.4,1.5253 and (2) 11. When the initial point is on liné above points, K;(t)
(—2.3,1.4253. has one zero point; thus its anisotropy flow consists of two

081 p2-P1

| %
P1C-A2-P1 T Tl
of

20/m

or’

0.4
8 T =T Jiains o e .
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parts. The first one is along line from the initial point to  behavior of the FOMP’s and SRT'’s existing in systems with
infinity, and the second one is along libefrom infinity in initial points inside each region in Fig. 11 are summarized in
the third quadrant to the poifit-Z,0) in the parameter space Table II. _ _

with K,>0. Therefore, when the initial point is in region 10, SO far, we have analyzed the 1ig. 5 and 14(Fig. 11)
ypes of thermal behaviors of the FOMP’s for the cases of
SRT, and a type change of the FOMP fra¥g to P1 [Fig. K9>0 andK9<o0, respectively. In total, there are 23 differ-
15(v)] occurs at the zero point ¢, (t). If the initial point is ent types of thermal behaviors of the FOMP in a single-ion

in region 11, a discontinuous cone-to-plane SRT and typgne-sublattice system, depending on the different combina-
change of FOMP fromP1C to A2 will take place[Fig. ions of the three initial anisotropy constants. In the case of

O_ . .
15(w)] before the zero point ok ,(t) when the anisotropy K3=0, only thr_ee kinds of thermal behaw_ors of_ the FOMP
- were found. This demonstrates that the third anisotropy con-
flow crosses the borderline’. In both cases, &1-type

. . stant plays a highly important role in diversifying the tem-

FOMP may persist up .to the ?“”e temperature. , perature behavior of the system. Further inspection reveals

AZ-Al-P1-Al. Region 12 is above linb and curveo’ 5t the 23 types of thermal behavior of the FOMP can be
and below curvec’. A discontinuous plane-to-axis and a yegarded as different assemblies of 17 kinds of elementary
discontinuous axis-to-plarRAP SRT and a change of type of nermal variations of the FOMR1) A1, (2) A1C, (3) A2,
FOMPA2-A1-P1-Al can be observed in systems with ini- (4) p1, (5) P1C, (6) P2, (7) A2-Al, (8) P2-P1, (9)
tial points inside this regiofFig. 15x)]. One finds from the  A1C-A1, (10) A1C-P2, (11) P2-A1C, (12 P1-Al, (13
trajectory x1-x2-x3 in Fig. 10 thatK,(t) has two zero A1-P1, (14) P1C-A2, (15 A2-P1C, (16) P1C-P1, and
points. When trajectory1 crosses borderling’, the type of  (17) A2-P1. The last arisen FOMP disappears in Fig. 10 at
FOMP changes fronA2 to Al. Then, after the first zero borderlinen’ for the A1 andA1C variations, atq’ for the
point of K4(t), when trajectoryx2 crosses borderlinen A2 variation, atn for the P1 andP1C variations, and at|
twice, the PAP SRT and the type change of the FOMP for the P2 variation. Type changes2-Al andP2-P1 of
Al-P1-Al take place before the second zero poinKeft). the FOMP occur at borderlines and r, respectively. No
The curvec’ has been numerically determined by collecting SRT takes place at the critical temperatures for these two
the initial points whose anisotropy flows are tangent to thekinds of type changes of the FOMP, and the kink in the
borderlinem in the parameter space wity,>0. thermal curve ofAm, provides a straightforward method to

P1C-A2-A1-P1-Al. Region 13 in Fig. 11 is enclosed by determine the critical temperatures. The other nine kinds of
line b and the curves’ andc’. With increasing temperature, type changes of the FOMP are accompanied by some kinds
systems with initial points inside this region exhibit discon-of SRT occurring at the critical temperatures. The type
tinuous cone-to-plane, discontinuous plane-to-axis, and disshangeA1C-Al of the FOMP occurs at borderline 1 to-
continuous axis-to-plan€PAP SRT'’s, together with a type gether with (CP) SRT, A1C-P2 at o together with CA,
change of the FOMPP1C-A2-A1-P1-Al [Fig. 16y)]. P2-A1C at o together withAC, P1-A1 at m together with
The discontinuous cone-to-plane SRT and the type change &P, A1-P1 atm together withPA, P1C-A2 ato’ together
the FOMP fromP1C to A2 are connected with the crossing with CP, A2-P1C ato’ together withPC, P1C-P1 at the
of the anisotropy flow with borderline’, and the successive zero point ofK,(t) together with(CA), A2-P1 at the zero
PAP SRT and type change of the FOM{2-A1-P1-Al are  point of K,(t) together withPA In these nine types of
the same as in region 12. changes of the FOMP, the critical temperature of the FOMP

P1C-A2-Al. Region 14 is enclosed by curves c, and is equal to the SRT temperature.
o’. A discontinuous cone-to-plar@P SRT and a change of

type of FOMPP1C-A2-Al are found for systems with ini- IV. SUMMARY
tial points inside this regioffFig. 16z)]. The crossing of the
first part of the trajectorgl-z2-z3 in Fig. 10, with border- We have systematically investigated all possible types of

line o', is connected with SRT and the type change of thethe thermal behavior of the FOMP in a single-ion one-
FOMP fromP1C to A2. The subsequent change of FOMP sublattice system within the two- and three-constant approxi-
from A2 to Al type arises from the crossing with borderline mations to the uniaxial anisotropy free energy. Based on the
r’. Finally, when the third part of the trajectomi-z2-z3 relations between the anisotropy constants and the anisotropy
crosses borderlinen’ in the first quadrant, thedl-type  coefficients, we have employed a powerful parameter
FOMP reaches its critical temperatufg.. method to calculate the temperature behavior of a system
In the remaining region below line and curvey’ in Fig. within the MF approximation. An analysis of the anisotropy
11, no FOMP can be observed at any temperature becauiew in the parameter space has enabled us to find all pos-
the anisotropy flow originating from this region does notsible types of thermal variations of the FOMP. In the two-
cross any borderline for the existence of a FOMP in theconstant approximation, there are three types of thermal be-
parameter space-y). As to SRT, this region can be divided haviors of the FOMP. In the three-constant approximation,
into three subregions by lindsandb (see Fig. 9 in Ref. 22 12 types are found in the case ¥§>0 and 14 types in the
In the subregion above line no SRT can be observed. A case ofK8<0. The phase diagrams concerning the condi-
continuous cone-to-plang€P) SRT can be observed in the tions for their existence in the initial parameter spaces are
subregion between lindsandb, and a continuous cone-to- presented after exhausting the observation of the anisotropy
axis (CA) SRT in the subregion below link. The thermal flows originating from different initial points. The relation
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TABLE Il. Summary of the thermal behavior of FOMP’s and SRT's observed in a single-ion one-
sublattice system with an initial point inside each region in Fig(idthe case 0K2<0). The asterisk points
to the remaining region outside the 14 nominated regions. The arrow indicates the direction of increasing
temperature, and the letter above it is the borderline where the transition takes place. The letter inside the
parentheses in the FOMP column is the borderline where the FOMP disappears. The parentheses in the SRT
column indicate that the transition is of second order.

No. FOMP SRT
1 Al(n") /
| |
2 A1C — Al(n') (C——P)
, K;=0 I
3 ALC(N') (e A).1L(C P)
4 A2 — . AL(n') /
5 A2(q") /
o’ of
6 P1C—— A2(q’) C——P
K1=0 I
! P1C(n) (c A).1,(C P)
8 K1=0 K;=0
P1C —— P1(n) (Cc A)
o’ Ky=0 o’ Ky=0
9 A2 P1C P1(n) P— - (C——A)
K1=0 K1=0
10 A2 —— P1 P——A
o’ Ky=0 o’ Ky=0
11 PIC— > A2— > P1 C——P— A
r’ m m m m
12 A2 Al P1 AL(n') P— A— P
3 o' r’ m m o’ m m
1 P1C A2 Al P1 Al(n’) C P A P
0/ rl 0/
14 PIC—— A2 — AL(n") cC— P
% / K;=0 I
(C A)./,(C P)
between the SRT's and the thermal behavior of FOMP’s has Ko(t) = (KI+ 22K 9)k,(t) — BK kg (1), (A2)
been discussed in detail. Seventeen types of elementary ther-
mal changes of the FOMP’s have been derived from all the o—
K3(t): K3K6(t) (A3)

possible types of thermal behavior of the FOMP’s. The nor-
malized amplitude of the FOMP’s, the critical field, and the ] o ]
critical temperature are given for each type of change and/ofhe anisotropy coefficients,, can be expressed as linear
disappearance of the FOMP's. Prototype substances to whigtombination of the momentsl ,=((J,)"):

our analysis applies are all materials in which there is a well-

defined single-ion contribution to the overall anisotropy aris- . 1

ing from magnetic rare-earth ions. K2:m[3M2—J(J+ 1], (A4)
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-6J(J+1)], (A5)

Ke= 231M4+[735-3151(J+1)]M,4+[294
APPENDIX A k6= pg(3) 123 Mot [ I+ D)Mo+l
In uniaxial symmetry, the relations between the anisot- —525)(J+1)+1051%(J+1)%]M,— 60J(J+1)
ropy constant; and anisotropy coefficients, are L AQ2(J41)2- 53+ 1) (A6)

Ka(t) = (K§+ $K5+ FK3)ra(t)
6 0 180 0— oo The momentsM, can be deduced from the moment-
— 7 (Ko+ 11K3) ka(t) + 11K3ke(t),  (Al)  generating functio)(a,x):
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" e 5Py{(7+8xy+8yo) 22 11xo+ 18y) ¥=0,

M(¥)=——5 Q(a,X) » ° (B12)

C[23+1 . f: 378y (74 8xy+8yg) - 73" (11xo+ 18y,) =0,
n sin 5 (a+x) sinH (a+Xx)/2] (B13)

T oah 2J+1 : . 4187 1 18_
: . g 48y[(7+ 8%+ 8yo) M+ (11x0+ 18y) 18=0,

sml-( 5 X / sinh(x/2) (B14)

(A7) gt 3MEy](7+8x+8yg) - (11, + 18y0)1®=0,
Within the MF approximation, the relation between the gen- (B15)

eralized effective fielck and the normalized temperatures
i1 8(10yq) (7+8x%y+8yo) 1t (11xy+ 18yo)8=0.

_ 3 m " (B16)
S (A8)
APPENDIX C
APPENDIX B

The equations of the borderlines among the six types of
The equations of some borderlines in Figs. 5 and 11 are &8OMP’s, AL, A1C, A2, P1, P1C, andP2 at arbitrary tem-

follows:22 perature in Fig. 10 are as follows:
l: 2xo+3yo+1=0, (B1) l: 2x+3y+1=0, (CY
m:  Xg+Yyo+1=0, (B2) m: x+y+1=0, (C2
n: 6xy+15y,+1=0, (B3) n: 6x+15+1=0, (C3
n: 4xy—1=0, (B4) n: 4x—1=0, (Co
0 Xx5—4y,=0, (B5) 0: x?—4y=0, (C5)
0': X3—2Xgyo—3y5—4ye=0, (B6) 0': x%2—2xy—4y—3y?=0, (C6)
q: 3x3—5y,=0, (B7) p: x?>—3y=0, (C7)
Q' 3x3+8xeyo+12y3—5y,=0, (B8) q: 3x?-5y=0, (C8)
r: Xg—5X3yo+ 61x3ya+ 255y s+ 225/5— 8X3yo q’: 3x%+8xy+12y2—5y=0, (C9)
+52y5+ 1055+ 16y5=0, (BY i x*—5xdy+61x2y2+ 255y3+ 2254 — 8x%y + 52xy?
r' x3+x8yo—8xéyo—36x0yg—27yg+16y§=0(, 0 +105y°+16y*=0, (C10
B1

r's x4+ x3y—8x%y—36xy?>— 27y3+ 16y>=0,
b: X+ 7Yo+8=0, (B11) (C11)
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