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Quaternion-based algorithm for micromagnetics

P. B. Visscher* and Xuebing Feng†
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~Received 5 April 2001; revised manuscript received 24 September 2001; published 12 February 2002!

We describe an algorithm for the integration of the Landau-Lifshitz equation for the precession of a magnetic
moment in the presence of dissipation. The algorithm describes the rotation of the magnetization vector in
terms of rotation matrices~implemented using quaternions!. Its major advantage is that it separates preces-
sional and dissipational rotations, which allows the former to be computed analytically over long time inter-
vals. This allows the use of a much longer time incrementDt than is possible with conventional algorithms,
especially for problems with low anisotropy and weak exchange coupling. The spirit of the method is similar
to that of the exact solution of the single-particle problem by Kikuchi@J. Appl. Phys.27, 1352~1956!#, who
also separated the precessional and dissipational motions.
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I. INTRODUCTION

In this paper we consider the problem of micromagne
simulation, i.e., the evolution of a collection of magne
moments~representing finite volume elements in a magne
material!.1–4 The evolution of this system is normally com
puted from the Landau-Lifshitz~LL ! equation.5 One of the
most serious limitations of most micromagnetics algorith
is that the time incrementDt must be chosen to be sma
enough that the fractional change in magnetization~essen-
tially the anglegHDt through which the magnetization pre
cesses duringDt) is very small; the error in a simple first
order Euler algorithm@such as Eq.~3! below# is proportional
to this angle. The error can be decreased, at the expen
complicating the code, by adopting a higher-order meth
such as a Runge-Kutta algorithm. However, it is highly d
sirable to be able to include thermal noise6— for example, to
study the thermal stability of magnetic media. This is ve
difficult in higher-order algorithms, so in the present pap
we restrict our consideration to first-order algorithms.

We will recast the LL equation in the form of an evolutio
equation for a rotation matrixR(t) ~for each volume ele-
ment! that gives the magnetizationM (t)5R(t)M (0) of that
volume element in terms of some reference vectorM (0).
This rotation matrix transforms from a rotating ’’local’’ ref
erence frame in whichM is stationary~this rotating reference
frame is related to the one that is familiar in the field
magnetic resonance7! to the lab frame. The matrix-rotatio
approach was originally motivated by a consideration un
lated to efficiency, namely, the desire to study coarse-gra
dynamics9 in a rotating reference frame in whichM is slowly
varying. However, the approach also has the advantage th
separates the precessional motion from the damping mo
in a way that is explained below; the precessional motion
be calculated exactly if the external field is constant~and
nearly exactly if the external field is slowly varying!. Thus
the time increment can be much larger than in a conventio
algorithm, without incurring unacceptable errors.

II. DERIVATION OF THE EVOLUTION EQUATION FOR
THE ROTATION MATRIX

The basic equation for the time evolution of the magne
zation M of a finite element of magnetic material is th
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Landau-Lifshitz equation, which can be written in the form

dM

dt
5gH3M1

ag

Ms
~M3H!3M . ~1!

Here H is the total magnetic field acting on the eleme
~which can include magnetostatic fields of external sour
or other elements, crystalline anisotropy, exchange,
Brownian random fields!, Ms is the saturation magnetization
g is the gyromagnetic ratio, anda is a dimensionless dissi
pation coefficient. In the absence of dissipation (a50) the
equation can be solved analytically; we will obtain this s
lution below. The magnetization precesses in a cone aro
the field vectorH ~let us assume for now that this include
only a constant external field! as shown in Fig. 1~a!.

First let us establish some notation: for any vectoru, let
RA(u) be the matrix that rotates by an angleuuu about the
direction of the vectoru. For infinitesimalu, the action of
RA(u) on an arbitrary vectorv is given byRA(u)v5v1u
3v5(11u3)v, so we may formally write

RA~u!5~1¿u3 !. ~2!

Then the LL equation may be written

FIG. 1. ~a! Precession of the magnetization about the magn
field. ~b! The coordinate axes in the local rotating reference fram
M3H points out of the paper.
©2002 The American Physical Society12-1



h

t

e

t

i-

n

s

n
ite

e
a
ot

th
th

we

see

a-
the
to

n
ut
ther

the
t
r

an
iva-
the

s
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M ~ t1dt!5F11gdtH31
agdt

Ms
~M3H!3GM ~ t !, ~3!

where the right-hand side has a rotation matrix@•••# applied
to M (t). We write dt instead ofDt to emphasize that it is
infinitesimal here. This rotation matrix can be written as t
product of two matrices~ignoring terms of orderdt2),

@11gdtH3#F11
agdt

Ms
~M3H!3G

5RA~gdtH!RAS agdt

Ms
~M3H! D , ~4!

in terms of the axis rotation matrix defined above, leading
an evolution equation forM :

M ~ t1dt!5RA~gHdt!RAS agdt

Ms
M3HDM ~ t !. ~5!

Equation ~5! has a simple physical interpretation. Th
rightmost axis rotation factorRA@(agdt/Ms)M3H# rotates
M (t) about the vectorM3H, a rotation in the plane of the
paper in Fig. 1~b! that movesM toward H. This is a dissi-
pation effect that will eventually causeM to be parallel toH.
The leftmost axis rotationRA(gHdt) is the precession abou
the magnetic fieldH.

We are looking for a rotation matrixR(t) which gives
M (t)5R(t)M (0), whereM (0) points in some reference d
rection that may as well be taken to be (0,0,Ms). Then Eq.
~5! becomes an equation forR(t1dt):

R~ t1dt!M ~0!5RA~gHdt!RAS agdt

Ms
M3HDR~ t !M ~0!.

~6!

There is still some arbitrariness in the choice ofR(t);
multiplying it on the right by any rotation aboutM (0) gives
another acceptableR(t). Clearly the simplest choice of a
equation forR(t) is

R~ t1dt!5RA~gHdt!RAS agdt

Ms
M3HDR~ t !. ~7!

We can show that this choice is the unique one that keepH
in a fixed plane in the local rotating reference frame@the
plane of the paper in Fig. 1~b!# in the case thatH is constant;
this seems as good a choice as any.

At this point, we can see the exact solution in the u
dampeda50 case. If we evolve the system over a fin
time intervalT by applying the rotationRA(gHdt) repeat-
edly (T/dt times!, the product of these rotations aboutH is
exactlyRA(gHT). This rotation, applied to the initialM (0),
gives a magnetization vector that precesses aroundH.

If we now allow a to be nonzero and again evolve th
system T/dt times, this consolidation of rotations into
single large rotation does not work because there are r
tions about a different axis mixed in, and~finite! rotations do
not commute. However, there is a trick for separating
precession rotations from the dissipation rotations: move
10441
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dissipation rotations to the right ofR(t) in Eq. ~7!. Although
these two rotations do not commute, this can be done if
replace the cross product~which is now in the lab frame! by
its value (M3H) local5R(t)21(M3H) rotated to the local
frame:

RAS agdt

Ms
M3HDR~ t !5R~ t !RAS agdt

Ms
~M3H! local D .

~8!

~This is easiest to prove formally in terms of quaternions;
the Appendix.! We are now left with

R~ t1dt!5RA~gHdt!R~ t !RAS agdt

Ms
~M3H! local D . ~9!

Now note that if we apply these two infinitesimal rot
tions repeatedly, this time one on the right and one on
left, the ones on the left can again be multiplied exactly
give RA(gHT). This only works exactly ifH is constant, but
the error will be small ifH is slowly varying. Thus the al-
gorithm defined by Eq.~9! does not require the precessio
anglegHdt to be small; it can even be of order 1 witho
loss of accuracy. This argument does not apply to the o
axis rotation, representing dissipation, because (M3H) local
is not constant. Thus we must require the argument of
second rotation, of orderagHdt, to be small, but this is no
restrictive since usuallya will be small. In general, the erro
is of orderaDu, whereDu is the angle of rotation, in this
casegHdt. In the case of constantH, Eq. ~9! can be turned
into a simple differential equation for the angleu betweenH
andM ~namely,du/dt5gaMsH sinu) which gives immedi-
ately the exact solution found by Kikuchi10 in 1956.

The reader will note that we have so far not included
exchange field. However, the basic idea of the above der
tion can be applied in the presence of an exchange field—
basic idea is that we separate the total magnetic fieldH into
two parts,

H5Hs_lab¿Hs_loc ~10!

whereHs_lab is slowly varying in the lab frame~this includes
only the external field, above! andHs_loc is slowly varying in
the local ~rotating! frame. The axis rotationRA(gHs_labdt)
induced byHs_lab is applied to the left ofR(t) whereas
RA(gHs_locdt) is applied~along with the dissipation term a
above! on the right:

R~ t1dt!

5RA~gHs_labdt!R~ t !RAS gHs_locdt1
agdt

Ms
~M3H! local D .

~11!

Assuming that the neighboring magnetizationsMn (n in-
dexes the neighbors! precess similarly toM itself, the ex-
change fieldHexch5(nJMn (J is an exchange constant! is
slowly varying in the local frame in whichM is constant.
Thus it should be included inHs_loc, in the right-handRA
factor in the evolution equation@Eq. ~11!#.
2-2
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QUATERNION-BASED ALGORITHM FOR MICROMAGNETICS PHYSICAL REVIEW B65 104412
In this paper we have dealt only with the case of an i
tropic material. In a real micromagnetic simulation we wou
need to deal with anisotropic materials in which there is
additional effective anisotropy fieldHanis which points along
a fixed easy axis. The easy axis rotates in the local frame
clearly Hanis is most slowly varying in the lab frame, an
should be included with the external field in computi
Hs_lab. This limits the time incrementsdt to values over
which the variation inHanis can be neglected—effectivel
the error becomes proportional togHKdt instead ofgHdt,
whereHK is the conventional anisotropy field. For soft low
anisotropy materials this is a significant improvement; in
highly isotropic system this error can be improved if we a
willing to tabulate or parameterize the single-particle mag
tization trajectories and replaceRA(gHs_labdt) by a table
lookup.

We have implemented the algorithm described above;
stead of rotation matrices it is most efficient to deal w
quaternions~see the Appendix!, although these are entirel
equivalent and do not change any of the considerations
scribed above. As a test of the convergence with respec
the time incrementdt, we have integrated a test trajectory f
a single particle~Fig. 2! over about 17 precession periods

We plot the magnitude of the error in the final vect
magnetization in Fig. 3. It is true that a higher-order~e.g.,
Runge-Kutta! method is more efficient if an extremely hig
accuracy is demanded~because it treats the damping ter
more accurately! but in the accuracy range that makes se
for comparison to experiment, such as the range show
Fig. 3, the matrix method is much more efficient.

In addition to the above simple test, we have checked
this algorithm gives correct spin-wave frequencies, wh
can be calculated analytically for periodic square arrays.
have also used this algorithm for calculations on a ther
equilibium ensemble.9

The results above are for a one-cell system in which th
is no exchange interaction. We have also done simulation
a periodic cubic array~up to 83838 cells! to verify that the
algorithm treats exchange correctly. The spin-wave frequ
cies can be calculated analytically for this case,11 and agree
with the results of the quaternion algorithm. We have a

FIG. 2. Trajectory of the magnetization of a single partic
showing the initial magnetization vector and the subsequent pa
its head.
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compared Lyapunov exponents~growth rates of the instabil-
ity due to time-step error! for spin waves to those of the
Euler algorithm; the Euler algorithm is about twice as u
stable~i.e., requires twice as small aDt to show the same
instability! as the quaternion algorithm.11

It might appear that a rotation-matrix-based algorithm
significantly less efficient than one in which only the thr
componentsMx , M y , andMz need to be updated. Howeve
quaternion multiplication is faster than matrix multiplicatio
Also, in a practical case the calculation of the magnetost
interaction~which we have not included here! is much more
time consuming, so the time required to update the rota
matrix is negligible.

III. CONCLUSION

We have described an algorithm for micromagnetic co
putation, based on rotation matrices or quaternions. I
based on the observation that some of the fields are slo
varying in the lab frame and some are slowly varying in t
local rotating frame; the matrix method allows us to separ
these effects and do an exact or nearly exact treatment o
precession in the lab frame, while treating damping in
local rotating frame. We have implemented this algorith
initially for an isotropic system, but this idea generalizes
the case of anisotropic systems, and work is in progress
an anisotropic implementation.
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FIG. 3. Convergence of the final magnetization shown in Fig
lines labeled ‘‘Euler’’ and ‘‘quaternion’’ give errors in the final vec
tor magnetization as a function of time incrementdt. The line for
second-order algorithm was not actually calculated, but is draw
indicate its scaling withdt.
2-3



tz.
a-
s
re

ac

.

d

rre-

n
m-
ro-
ter-

a

P. B. VISSCHER AND XUEBING FENG PHYSICAL REVIEW B65 104412
APPENDIX: QUATERNIONS

A quaternion is a quadruple of real numbersq
5(q0 ,q1 ,q2 ,q3). They were introduced by Hamilton in
1853, and their properties were described in detail by Ka8

The componentsqi are sometimes referred to as ‘‘Euler p
rameters’’~not to be confused with the related Euler angle!.
Here we will summarize only the most critical facts that a
needed to compute rotations using quaternions.

The last three components can be thought of as a sp
vector q, so q5(q0 ,q). The multiplication rule is
(q0 ,q)(p0 ,p)5(q0p02q•p,q3p1q0p1qp0). We define
the conjugate quaternion by (q0 ,q)†[(q0 ,2q); the magni-
tude is defined byuqu2[q0

21q•q, which is also equal toq†q
andqq†. There are two important subsets of quaternions

~i! Vectors: ifp050, the quaternion (0,p) is essentially an
ordinary vector; when a boldface symbolv appears in a
quaternion expression it should be interpreted as (0,v).

~ii ! Unit quaternions~rotations!: If uqu251, the operation
v→qvq† is a rotation of the vectorv. @You can see this by
showing that the resulting quaternion is a vector~i.e., has no
zeroth component! and has the same length asv.#

Useful facts about quaternions are as follows.
~i! A rotation by the infinitesimal angleu about the unit

vector n̂ is given by

q511
1

2
un̂, ~A1!

as you can verify by checking that it changesv by uv3n̂. It
can then be shown that a rotation by a finite angleu is given
by e1/2un̂.
104412
e

~ii ! Associativity: (qp)r 5q(pr).
~iii ! The relation of the quaternion product to dot an

cross products is

vw[~0,v!~0,w!5~2v•w,v3w!, ~A2!

so that

v3w5
1

2
~vw2wv!. ~A3!

~iv! Conjugate of product: (pq)†5q†p†.
Using these facts, we can show that the quaternion co

sponding to the axis rotationRA @Eq. ~2!# is

eiu/2. ~A4!

The quaternion form of Eq.~6! is

q~ t1dt!M ~0!q†~ t1dt!

5qA~gHdt!qAS agdt

Ms
M3HDq~ t !M ~0!

3q†~ t !qA
† S agdt

Ms
M3HDqA

† ~gHdt!. ~A5!

The quaternion form of Eq.~9! is identical to Eq.~9! with R
replaced byq.

In addition to having fewer components than a rotatio
matrix, the quaternion makes it easier to interface with co
puter graphics. Most computer graphics programs specify
tations using quaternions, at least internally, so the qua
nion can be passed directly to the graphics functions in
package such as Open Inventor.
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