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Quaternion-based algorithm for micromagnetics
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We describe an algorithm for the integration of the Landau-Lifshitz equation for the precession of a magnetic
moment in the presence of dissipation. The algorithm describes the rotation of the magnetization vector in
terms of rotation matrice@mplemented using quaterniondts major advantage is that it separates preces-
sional and dissipational rotations, which allows the former to be computed analytically over long time inter-
vals. This allows the use of a much longer time incremnthan is possible with conventional algorithms,
especially for problems with low anisotropy and weak exchange coupling. The spirit of the method is similar
to that of the exact solution of the single-particle problem by KikudhiAppl. Phys27, 1352(1956], who
also separated the precessional and dissipational motions.
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[. INTRODUCTION Landau-Lifshitz equation, which can be written in the form
In this paper we consider the problem of micromagnetic dM o
simulation, i.e., the evolution of a collection of magnetic —=yHXM+ l(M XH)XM. (1)
moments(representing finite volume elements in a magnetic dt Ms

materia).1~* The evolution of this system is normally com-

puted from the Landau-LifshitzLL) equatiom> One of the  Here H is the total magnetic field acting on the element
most serious limitations of most micromagnetics algorithmswhich can include magnetostatic fields of external sources
is that the time incremenAt must be chosen to be small or other elements, crystalline anisotropy, exchange, and
enough that the fractional change in magnetizatiessen-  Brownian random fields M is the saturation magnetization,
tially the angleyHAt through which the magnetization pre- y is the gyromagnetic ratio, and is a dimensionless dissi-

cesses durindt) is very small; the error in a simple first- pation coefficient. In the absence of dissipatian=0) the

order Euler algorithnfisuch as Eq(3) below] is proportional g0y /ation can be solved analytically; we will obtain this so-

E:Oortrr:'sl'i:;[?r:e' tﬁzeciggr ganaz?) ?ﬁ]cressrﬁdh::_évgefxgi?sg Eﬂion below. The magnetization precesses in a cone around
P 9 - by pting 9 he field vectorH (let us assume for now that this includes

such as a Runge-Kutta algorithm. However, it is highly de- : -
sirable to be able to include thermal ndisefor example, to only a constant external fildéis shown in Fig. @).

study the thermal stability of magnetic media. This is very First let us esta_bllsh some notation: for any veaolet

difficult in higher-order aligorithms, so in the present paperRa(f) be the matrix that rotates by an angli about the

we restrict our consideration to first-order algorithms. direction of the vectom. For infinitesimal, the action of
We will recast the LL equation in the form of an evolution Ra(#) on an arbitrary vectow is given by Ra(6)v=v+ 6

equation for a rotation matriR(t) (for each volume ele- XVv=(1+6X)v, so we may formally write

men) that gives the magnetizatidvl (t) = R(t)M(0) of that

volume element in terms of some reference ved¥0). Ra(6)=(1+6X). )

This rotation matrix transforms from a rotating "local” ref-

erence frame in whicM is stationary(this rotating reference

frame is related to the one that is familiar in the field of Then the LL equation may be written

magnetic resonanbeto the lab frame. The matrix-rotation

approach was originally motivated by a consideration unre- H H

lated to efficiency, namely, the desire to study coarse-grained 4 7'y

dynamicg in a rotating reference frame in whidh is slowly i

varying. However, the approach also has the advantage that it R ]’S’oy i

separates the precessional motion from the damping motion, : i

in a way that is explained below; the precessional motion can :

be calculated exactly if the external field is constéentd |

nearly exactly if the external field is slowly varyingrhus i

the time increment can be much larger than in a conventional

algorithm, without incurring unacceptable errors. (a)

MxH

® o
Il. DERIVATION OF THE EVOLUTION EQUATION FOR *159
THE ROTATION MATRIX

FIG. 1. (a) Precession of the magnetization about the magnetic
The basic equation for the time evolution of the magneti-field. (b) The coordinate axes in the local rotating reference frame;
zation M of a finite element of magnetic material is the M XH points out of the paper.
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dissipation rotations to the right &(t) in Eq. (7). Although
M(t), (3)  these two rotations do not commute, this can be done if we
replace the cross produ@thich is now in the lab frameby
where the right-hand side has a rotation mdfrix- ] applied  its value M XH),ca=R(t) "}(M X H) rotated to the local
to M(t). We write dt instead ofAt to emphasize that it is frame:
infinitesimal here. This rotation matrix can be written as the

avyd

t
v (MXH)X

M(t+dt)=| 1+ ydtHx +

icesi i 2 avydt aydt
product of two matricegignoring terms of ordedt?), RA( l\a/lf MxH | R(t)= R(t)RA( '\;’ (Mx H)Iocal)-
aydt ° ) ®)
[14 ydtHx ]| 1+ ——(MXH) X
s (This is easiest to prove formally in terms of quaternions; see
aydt the Appendix. We are now left with
ZRA(ydtH)RA( M, (MXH) |, (4)

aydt
Ms

in terms of the axis rotation matrix defined above, leading to R(t+dt)=Ra(YHADR(1)R,

an evolution equation fo:

(M X H)Iocal)- (9)

Now note that if we apply these two infinitesimal rota-
tions repeatedly, this time one on the right and one on the
left, the ones on the left can again be multiplied exactly to
give RA(yHT). This only works exactly iH is constant, but

Equation (5) has a simple physical interpretation. The the error will be small ifH is slowly varying. Thus the al-
rightmost axis rotation factaRa[ (aydt/M)M X H] rotates  gorithm defined by Eq(9) does not require the precession
M(t) about the vectoM X H, a rotation in the plane of the angle yHdt to be small; it can even be of order 1 without
paper in Fig. 1b) that movesM towardH. This is a dissi- |oss of accuracy. This argument does not apply to the other
pation effect that will eventually caudé to be parallel tdH. axis rotation, representing dissipation, becauglexH) gcal
The leftmost axis rotatioR,(-yHdt) is the precession about is not constant. Thus we must require the argument of the
the magnetic fieldH. second rotation, of orderyHdt, to be small, but this is not

We are looking for a rotation matriR(t) which gives restrictive since usuallg will be small. In general, the error
M(t)=R(t)M(0), whereM(0) points in some reference di- is of orderaA 6, whereA 6 is the angle of rotation, in this
rection that may as well be taken to be (8)Q). Then Eq.  caseyHdt. In the case of constamt, Eq.(9) can be turned

ayd
Ms

M xH M(t). (5

(5) becomes an equation f&{(t+dt): into a simple differential equation for the anglehetweenH
dt andM (namely,dd/dt=yaMH sin 6) ngiqch gives immedi-
_ ay ately the exact solution found by Kikuctiin 1956.
R(t+dOM(0)=Ra(yHAUR, M, M>H JR(OM(0). The reader will note that we have so far not included an

(6)  exchange field. However, the basic idea of the above deriva-
tion can be applied in the presence of an exchange field—the

There is still some arbitrariness in the choiceRft);  pasic idea is that we separate the total magnetic Feldto
multiplying it on the right by any rotation aboM (0) gives o parts,

another acceptablR(t). Clearly the simplest choice of an

equation forR(t) is H=Hs jas+Hs ioc (10
aydt whereH; |4 is slowly varying in the lab framéthis includes
R(t+d)=Ra(yHAORA| -u—MXHR(1).  (7)  only the external field, aboy@ndHy i is slowly varying in
s _

the local (rotating frame. The axis rotatiofRa(yHs 1adt)
We can show that this choice is the unique one that kéeps induced byH, ., is applied to the left ofR(t) whereas
in a fixed plane in the local rotating reference fraftlee  R,(yH, o dt) is applied(along with the dissipation term as
plane of the paper in Fig.()] in the case thal is constant; above on the right:
this seems as good a choice as any.
At this point, we can see the exact solution in the un- R(t+dt)
dampeda=0 case. If we evolve the system over a finite

time interval T by applying the rotatiorR,(yHdt) repeat- aydt
edly (T/dt times, the product of these rotations abdtitis =RaA(YHs_adOR(DRA| YHs_odt+ M (MXH)ocal |-
exactlyR,(yHT). This rotation, applied to the initid¥ (0), (12)

gives a magnetization vector that precesses ar¢ind

If we now allow a to be nonzero and again evolve the  Assuming that the neighboring magnetizatidig (n in-
system T/dt times, this consolidation of rotations into a dexes the neighborgrecess similarly taM itself, the ex-
single large rotation does not work because there are rotahange fieldHg,.n=2=,IJM, (J is an exchange constaris
tions about a different axis mixed in, affhite) rotations do  slowly varying in the local frame in whiciM is constant.
not commute. However, there is a trick for separating theThus it should be included il ., In the right-handR,
precession rotations from the dissipation rotations: move théactor in the evolution equatiofEg. (11)].
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FIG. 2. Trajectory of the magnetization of a single particle, 1e=05 0.0001 0.001 0.01

showing the initial magnetization vector and the subsequent path of

. dt
its head.

FIG. 3. Convergence of the final magnetization shown in Fig. 2:

In this paper we have dealt only with the case of an isolines labeled “Euler” and “quaternion” give errors in the final vec-
tropic material. In a real micromagnetic simulation we would ©r magnetization as a function of time incremeitt The line for
need to deal with anisotropic materials in which there is arT%ec_ond-c_)rder al_gorith_m was not actually calculated, but is drawn to
additional effective anisotropy field ;s which points along ~ ndicate its scaling wittdt.
a fixed easy axis. The easy axis rotates in the local frame, so
clearly H,pnis is most slowly varying in the lab frame, and compared Lyapunov exponer(growth rates of the instabil-
should be included with the external field in computingity due to time-step errorfor spin waves to those of the
Hs 1ap- This limits the time incrementslt to values over Euler algorithm; the Euler algorithm is about twice as un-
which the variation inHa,s can be neglected—effectively stable(i.e., requires twice as small A&t to show the same
the error becomes proportional §dH,dt instead ofyHdt,  instability) as the quaternion algorithih.
whereHy is the conventional anisotropy field. For soft low- |t might appear that a rotation-matrix-based algorithm is
anisotropy materials this is a significant improvement; in agjgnificantly less efficient than one in which only the three
h|ghly isotropic system this error can bg |mprove_d if we arecomponentsv,, M, , andM need to be updated. However,
willing to tabulate or parameterize the single-particle magneEJuaternion multiplication is faster than matrix multiplication.

tization trajectories and replad@a(yHs iafit) by a table Also, in a practical case the calculation of the magnetostatic

lookup. . . : . ;
We have implemented the algorithm described above; inl_nteract|on(wh|ch we have not included heres much more

stead of rotation matrices it is most efficient to deal with%n;?riic?gsnuerg:?g%lseo the time required to update the rotation
quaterniongsee the Appendix although these are entirely '
equivalent and do not change any of the considerations de-

scribed above. As a test of the convergence with respect to

the time incremendit, we have integrated a test trajectory for

a single particlgFig. 2) over about 17 precession periods. e have described an algorithm for micromagnetic com-
We plot the magnitude of the error in the final vector pytation, based on rotation matrices or quaternions. It is
magnetization in Fig. 3. It is true that a higher-orderg.,  pased on the observation that some of the fields are slowly
Runge-Kutta method is more efficient if an extremely high yarying in the lab frame and some are slowly varying in the
accuracy is demandeghecause it treats the damping term |ocal rotating frame; the matrix method allows us to separate
more accuratelybut in the accuracy range that makes sensghese effects and do an exact or nearly exact treatment of the
for comparison to experiment, such as the range shown igrecession in the lab frame, while treating damping in the
Fig. 3, the matrix method is much more efficient. local rotating frame. We have implemented this algorithm
In addition to the above simple test, we have checked thahitjally for an isotropic system, but this idea generalizes to

this algorithm gives correct spin-wave frequencies, whichthe case of anisotropic systems, and work is in progress on
can be calculated analytically for periodic square arrays. Weyn anisotropic implementation.

have also used this algorithm for calculations on a thermal
equilibium ensemblé.

The results above are for a one-cell system in which there
is no exchange interaction. We have also done simulations in
a periodic cubic arrayup to 8x8x 8 cellg to verify that the This work was supported by the NSF under Grant No.
algorithm treats exchange correctly. The spin-wave frequenMRSEC-DMR9809423 and by the U.S. DOE under Grant
cies can be calculated analytically for this cdsand agree No. DE-FG02-98ER45714. This work was assisted by useful
with the results of the quaternion algorithm. We have alsadiscussions with Sanjoy Sarker and Mourad Benakili.
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APPENDIX: QUATERNIONS (ii) Associativity: @p)r=q(pr).
(i) The relation of the quaternion product to dot and

A quaternion is a quadruple of real numbers cross products is

=(0d0,91,92,93)- They were introduced by Hamilton in

1853, and their properties were described in detail by Ratz. vw=(0V)(0OW)=(—V-W,VXW), (A2)
The components; are sometimes referred to as “Euler pa-

rameters”(not to be confused with the related Euler angles so that

Here we will summarize only the most critical facts that are 1

needed to compute rotations using quaternions. VX W= E(vw—wv). (A3)

The last three components can be thought of as a space
vector g, so q=(qg,q). The multiplication rule is

(00,9 (Po.P) = (GoPo—d-P,4X P+ op+0po). We define
the conjugate quaternion byi{,q)'=(qo,—q); the magni-
tude is defined byg|?=q3+q- g, which is also equal tq'q

andqq'. There are two important subsets of quaternions.

(i) Vectors: ifpy=0, the quaternion (P) is essentially an
ordinary vector; when a boldface symbwl appears in a
guaternion expression it should be interpreted ag) (0,

(i) Unit quaterniongrotations: If |q|?=1, the operation
v—qvq' is a rotation of the vectov. [You can see this by
showing that the resulting quaternion is a vedia., has no
zeroth componeitand has the same length ag

Useful facts about quaternions are as follows.

(i) A rotation by the infinitesimal angl@ about the unit

vectorn is given by

1 .
q=1+ ;6n,

5 (A1)

as you can verify by checking that it changeby #vxn. It
can then be shown that a rotation by a finite angjle given

by el/zeﬁ

(iv) Conjugate of product:f{q)"=q'p".
Using these facts, we can show that the quaternion corre-
sponding to the axis rotatioR, [Eq. (2)] is

e'?’2. (A4)
The quaternion form of Eq6) is
q(t+dt)M(0)g'(t+dt)
aydt
=0ga(yHdt)ga M, MXH|q(t)M(0)
qu(t)qL(%thXH gA(yHdY).  (A5)

The quaternion form of Eq9) is identical to Eq(9) with R
replaced byg.

In addition to having fewer components than a rotation
matrix, the quaternion makes it easier to interface with com-
puter graphics. Most computer graphics programs specify ro-
tations using quaternions, at least internally, so the quater-
nion can be passed directly to the graphics functions in a
package such as Open Inventor.
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