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Interplay between spin and phonon fluctuations in the double-exchange model for the manganite

Massimo Capone
Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ and Istituto Nazionale per la Fisica della Materia (INFM), Unita` Roma 1,

Piazzale Aldo Moro 2, I-00185 Roma, Italy

Sergio Ciuchi
Dipartimento di Fisica, Universita` de L’Aquila, and Istituto Nazionale per la Fisica della Materia (INFM), Unita` de L’Aquila,

Via Vetoio, I-67100 L’Aquila, Italy
~Received 3 July 2001; revised manuscript received 27 September 2001; published 12 February 2002!

We present exact solutions, mainly analytical, for the two-site double-exchange-Holstein model, that allow
us to draw a complete picture of the role of both phonon and spin quantum fluctuations in determining the
short-range correlations in the manganites. We provide analytical solutions of the model for arbitrary electron-
phonon coupling and phonon frequency, forS51/2 and for the classical spin limitS5`, and compare these
results with numerical diagonalization of the realisticS53/2 case. The comparison reveals that the realistic
caseS53/2 is not well described by the classical spin limit, which is often used in literature. On the other
hand, the phonon fluctuations, parametrized by the phonon frequencyv0, stabilize ferromagnetic phases with
respect to the adiabatic limit. We also provide a complete analysis on the polaron crossover in this model.
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I. INTRODUCTION

It is known from the 1950’s that the double exchan
mechanism1–3 is at the basis of the magnetic properties of t
manganese perovskitesR12xAxMnO3 @where R is a rare
earth element~e.g., La!, andA is a divalent element such a
Sr or Ca#. In this compounds, thed levels of each Mn ion
host 42x electrons. Three of them occupy the three lo
lying t2g levels, with aligned spins due to the Hund’s ru
These electrons are basically localized, and only the 12x
electrons in theeg level contribute to the transport propertie
The discovery of the so-called ‘‘colossal
magnetoresistance4 has originated an enormous revival
studies on these compounds, both on the theoretical and
experimental side. The systematic experimental invest
tions of the last few years have underlined some weaknes
the previous understanding, unveiling a surprisingly r
phase diagram where a lot of competing phases are stabi
by varying doping, temperature and chemical nature of
dopants. One of the most relevant new theoretical trend
the suggestion that the transport properties cannot be
understood on the basis of the double exchange alone,
that the interplay of this mechanism and a significa
electron-phonon (e-ph) interaction leading to a Jahn-Telle
~JT! effect is the key for the explanation of these propertie5

The preeminent role ofe-ph effects has also been firml
established experimentally by various groups a
techniques.6

The complex entanglement between charge, orbital,
lattice degrees of freedom represents a hard theoretical c
lenge, that is far from being solved. Many approximate
lutions and numerical results have been proposed, but
complexity of the phase diagram has naturally forced vari
authors to many uncontrolled simplifications. In this wo
we make a step back, and focus on a system for whichana-
lytical exact results can be obtained. Namely, we solve
double exchange model for a single electron on two site
0163-1829/2002/65~10!/104409~12!/$20.00 65 1044
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the presence of a local Holsteine-ph coupling.7 Since we are
interested in the relevant physics determining the interp
between lattice and spin quantum fluctuations, we cons
the simple Holstein model, instead of a more involved Ja
Teller coupling. This choice does not imply a loss of gen
ality since we are not discussing the role of orbital degree
freedom.

The two-site system has been extensively studied as
minimal system able to capture the key features of pola
formation from the point of view of ground state8–11 as well
as spectral properties.12,13 Recently also the interplay be
tweene-ph ande-e correlations has been studied semian
lytically within the same model.14 However, as far as mag
netic properties are concerned, it is quite obvious that a t
site system does not allow for long-range order and ph
transitions. Nevertheless, it showsshort-range ~nearest
neighbors! correlations, that give substantial indications
the actual long-range properties of the system, at leas
strong coupling. In the context of the models for the man
nites it is in fact believed that the finite-size effects play
little role.15 We will discuss the relevance of our results
large systems in the following.

Due to the simplicity of the model, we can give comple
exact phase diagrams without approximations. One of
main results is a complete characterization of the role of
quantum fluctuations of the coret2g spins. In a microscopic
model of the manganites, the core spins haveS53/2, and
this value is usually thought to be large enough to get rid
quantum fluctuations and treat them as classical variab
We will explicitly test this assumption by comparing the lim
iting casesS5` ~classical spins! and the extreme quantum
case S51/2, where the effect of quantum fluctuations
maximum, with the realisticS53/2 case.

Analogously, we will discuss the role of lattice quantu
fluctuations, releasing the adiabatic approximation on
phonon degrees of freedom. The role of quantum pho
fluctuations is not trivial, as already known fore-ph models
alone.16–18 For S5` and S51/2 we give analytical exac
©2002 The American Physical Society09-1
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solutions of the model, exploiting an exact analytical so
tion of the two-site Holstein model. ForS53/2 we use stan-
dard exact diagonalization to solve the model. Also in t
case no approximation is introduced and all the regimes
accessible.

A similar study has been reported in Ref. 19, where
two-site double exchange model forclassical spinsis solved
by perturbation theory around a variational reference s
obtained by a Lang Firsov canonical transformation. O
work overcomes some limitations of Ref. 19, namely t
classical spin limit. Contrary to Ref. 19, we are also able
explore the adiabatic regimev0!t, well beyond the region
in which the Lang Firsov result is a good reference state

The paper is organized as follows: In Sec. II we introdu
the model and the methods for our analytical solutions.
Sec. III we present the phase diagram of the model and
cuss the role of quantum fluctuations; due to the comple
of the phase diagram the discussion is divided in three s
sections: in the first the effect of the magnetic degrees
freedom on the polaron crossover is considered; in the
ond we discuss the effect of thee-ph interaction on the mag
netic phase diagram of the model, and in the third subsec
the full phase diagram is presented.

In Sec. IV we discuss the relevance of our results
larger size systems and for the experimental scenario. Fin
we give concluding remarks in Sec. V.

II. METHODS OF SOLUTION

We consider the Holstein double exchange model o
two-site cluster for a single electron

H52t(
s

~c1,s
† c2,s1c2,s

† c1,s!2JH (
i 51,2

si•Si1J1S1•S2

2g~n12n2!~a1a†!1v0a†a, ~1!

whereSi ( i 51,2) is a local spin associated to the localiz
t2g electrons on each site,ci ,s(ci ,s

† ) destroys~creates! an
electron of spins on site i, ni5(sci ,s

† ci ,s is the number

operator on each site,s i5cia
† sW abcib is the spin operator on

each site (sW are the Pauli matrices!. a (a†) is the destruction
~creation! operator for a lattice distortion that couples to t
difference of density between the two sites. The lattice d
placementX is given by X5A\/2mv0(a1a†). We could
have started from a standard Holstein model with a pho
mode per each site, coupled to the local density. It is in f
easy to show that, in this case, the symmetric combinatio
the two phonon modesA51/A2(a11a2) couples to the tota
density, giving rise to a trivial term, and the only term left
the one we introduced, where the phonon mode may be w
ten in terms of the local ones asa51/A2(a12a2).

We explicitly consider, in addition to the hopping betwe
the two sites and the Hund’s rule term (JH) that couples
ferromagnetically the conduction electrons to the localiz
ones, an antiferromagnetic superexchange term (J1) between
the core electrons.JH is always taken to be the largest ener
scale, consistently with the physics of the manganites. T
latter term, even thoughJ1 is significantly smaller thanJH ,
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has crucial importance on the magnetic properties of
manganites.20 We also consider a Holstein coupling~g! be-
tween the electron and a dispersionless mode of freque
v0.

In this paper, we present theexactsolution for the model
~1!. In particular for the classical spin caseS5` and the
extreme quantum caseS51/2 we provideanalytical solu-
tions for arbitrary values of both the electron-phonon co
pling and of the phonon frequencyv0, exploiting an exact
solution of the two-site Holstein model reported in Append
A. In theS53/2 case, a numerically exact solution by mea
of exact diagonalization is instead presented. Despite
electronic Hilbert space is really small, the infinite phon
Hilbert space requires some truncation. As customary~see,
e.g., Ref. 16!, we allow for a maximum number of phonon
nph per site and check for convergence as a function of
number. The values ofnph for which convergence is achieve
depend on the physical regime. Even in the strong coup
limit, and in the adiabatic regime, where a large number
phonons is present in the ground state, this number may b
mostnph;100, a number that can be easily handled with
Lanczos method. In the following subsections, we descr
the analytical solutions forS51/2 andS5`.

It is clear that a two-site system cannot undergo a t
phase transition. Nevertheless this is the minimal mode
which non local correlation functions can be defined. The
correlation functions will help us in defining the nature of t
ground state of the system. Quite obviously, changing
parameters of the Hamiltonian, the ground state will disp
different physics. In the following we will call these modifi
cations ‘‘transitions,’’ with slight abuse of language. Depen
ing on the way in which the nature of the ground state of
system changes, we will distinguish between continuous
discontinuous ‘‘transitions.’’ For a ‘‘discontinuous trans
tion’’ we mean the level crossing between states having
ferent quantum numbers resulting in a discontinuous cha
of the non local correlation function. On the other hand,
define as ‘‘continuous transition’’~crossovers! the continuous
change of the nature of the ground state without change
the quantum numbers.

A. Exact solution for SÄ`

Following Ref. 2, in the classical spins case we can w

H~u!5J1cosu2HH~u!1EHund, ~2!

where EHund is the contribution of the Hund’s term to th
total energy andHH is the Hamiltonian of a two-site Holstein
model in which the hoppingt is replaced byt̄ 5t cos(u/2).
The canting angleu, that measures the relative orientation
the core spins fully characterizes the magnetic arrangem
If u50 the spins are aligned and a ferromagnetic~FE! state
is found, whereas foru5p, an antiferromagnetic state~AF!
is found. Intermediate values ofu describe canted~CA!
states. Therefore, the solution of the classical spins two-s
Holstein double-exchange model can be obtained by m
mizing on u, once the eigenvalues ofHH are known, as
shown in Appendix A. ForJH@J1 the extremal condition
then gives
9-2
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INTERPLAY BETWEEN SPIN AND PHONON . . . PHYSICAL REVIEW B65 104409
sin~u/2!S 22J1cos~u/2!2
t

2

]EH

] t̄
D 50, ~3!

which shows that the ferromagnetic stateu50 is always an
extremum ofE(u).21 Then the ‘‘transition’’ from FE to CA
state is continuous. The critical couplingJ1 for this ‘‘transi-
tion’’ is given by the vanishing of the term in parentheses
Eq. ~3!

J1
c5

2EH
kin

4
, ~4!

where EH
kin5t]EH /]t is the kinetic energy of the Holstei

model, i.e., the kinetic energy of the system withJ150 ~No-
tice thatEH

kin is a negative quantity!. The effect ofe-ph in-
teraction on the FE→CA ‘‘transition’’ is therefore the substi-
tution t→2Ekin .

Now let us consider the discontinuous FE→AF ‘‘transi-
tion.’’ We have to compare the FE and AF energies obtain
by Eq. ~2!, respectively, withu50 andu5p. The critical
coupling is given by

J1
c5

EH~0!2EH~ t !

2
, ~5!

whereEH(0)52g2/v0 is the energy of the atomic Holstei
model.

B. Exact solution for SÄ1Õ2

In this case, neglecting for the moment the phonon
grees of freedom, the electronic Hilbert space~including the
core spins! is in principle made by 16 states, that reduce to
if the symmetry for inversion of all the spins is considere
As shown in Appendix B, this problem can be simplifie
and the largest subspace to deal with is a 333 sector, but the
remaining problem is still not trivial if we switch on th
coupling with the phonons. Fortunately, in the limitJH@t, a
further simplification occurs~also shown in Appendix B!,
leading to the possibility to express the eigenvalues of
model in terms of the two-site Holstein model. The details
the solution are reported in Appendix B. In such a way,
can characterize the condition for the only possible ‘‘tran
tion,’’ i.e., the one from FE to AF ground state. The ‘‘trans
tion’’ is discontinuous and can be obtained from the comp
son of the energies of the different phases, that we com
in Appendix B. The critical coupling for the FE→AF ‘‘tran-
sition’’ is then given by

J1
c5

4@EH~ t/2!2EH~ t !#

3
, ~6!

whereEH is the energy of the two-site Holstein model. Co
trary to the classical spin case quantum spin fluctuations
low for non zero effective hoppingt̄ 5t/2 in the AF phase.

III. RESULTS

In this section, we present the phase diagrams of
model ~1!, with a particular emphasis on the interplay b
10440
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tween the role of phonon and spin quantum fluctuatio
~measured, respectively, byv0 /t and the value of the ‘‘lo-
cal’’ spin of the t2g electronsS). Due to the relatively large
number of parameters that determine the phase diagram
organize the discussion of the results in subsections: in
first subsection we discuss the polaron crossover in the
ferent regimes, providing a unifying picture of the effect
both phonon and spin fluctuations, and of electron-spin c
relation, that generalizes in a consistent way the conditi
for the small polaron crossover in the simplest Holste
model.16–18 In the second subsection, we discuss the m
netic ‘‘transitions’’ occurring in our model. Both the natur
of the magnetic phases and the relation between the mag
state and the occurrence of polaronic behavior are stron
dependent on the value of the spinS. Finally, in the last
subsection, we present complete phase diagrams in thel-J1
plane, where the role of lattice and magnetic degrees of f
dom is highlighted.

A. The polaron crossover

Models with electron-phonon interaction quite genera
exhibit a polaronic ground state when the coupling stren
is large enough. The transformation of the free electron i
a small polaron is not a phase transition, but a continu
crossover. For the Holstein model and a single particle, it
been shown that the condition for the crossover significan
depends upon the ratio between the phonon frequencyv0
and the typical electronic energy scalet. In the adiabatic
regime v0!t, the crossover occurs forl5g2/v0t.1,
whereas in the antiadiabatic regimev0@t, the crossover is
controlled by the~purely phononic! variablea5g/v0.16–18

As a matter of fact, the crossover couplinglpol is pushed to
larger values ofl as the frequency is increased. Moreov
the crossover becomes smoother and smoother asv0 /t gets
larger.

The conditions for a polaron crossover in the adiaba
and antiadiabatic regimes can be understood on basic ph
cal grounds. In the adiabatic regime, the key condition is t
a bound state can be formed. The conditionl.1 expresses
this property, since it just implies that the polaron bindi
energyEpol5g2/v0 exceeds the kinetic energy of a free ele
tron ;t. On the other hand, in the antiadiabatic limit, th
electronic energy scalet is not the largest scale, and th
polaron crossover is ruled by the conditiona2.1, that cor-
responds to the excitation of a significant number of phon
~or, equivalently, to a sizable lattice distortion!. The cross-
over conditions we have just described are based on sim
model independent, physical insights, and are therefore
pected to basically hold, with some marginal changes, a
for more complicated models such as the double-excha
model we are considering.

It must be noted that, since the formation of a polaron
not a phase transition with an associated broken symme
there is some ambiguity in determining a physically sensi
clear-cut criterion for the polaron crossover. In most previo
studies, including that of Ref. 19, the crossover line has b
drawn as the locus of the points in which some relev
expectation values, such as the electron-lattice correla
9-3



in
ra
th
th
efi

ud
-

a
th
at
s
at
ot

h
lu

ic
a

ng

es

ha

-
ur

r
o

ter
the
. It
dal
o a
he

tic
en-
cor-
een

n-

ing
ag-

the

ou-
o

on

net

n is

MASSIMO CAPONE AND SERGIO CIUCHI PHYSICAL REVIEW B65 104409
function 1/N( i^niXi& or the average number of phonons
the ground state change their behavior. This kind of cha
terization has no problem in the adiabatic regime, where
crossover is rather sharp, but it is more questionable in
antiadiabatic regime. In this work we use a much more d
nite criterion, that is based on aqualitative difference be-
tween polaronic and nonpolaronic states. Namely, we st
the ~quantum! probability distribution function for the dis
placement operatorP(X)5^0uX&^Xu0&, where u0& is the
ground state wave function anduX& denotes the state with
displacementX. In the adiabatic limitv050, the phonon
degrees of freedom are described by classical variables,
no quantum fluctuations are present. The solution of
model involves a minimization of the electronic ground st
as a function ofX. As a result, the probability distribution i
a single~or a few! d function, centered at the values th
minimize the energy. More explicitly, if the system is n
polaronic, a single value ofX minimizes the energy, while in
the polaronic regime, two different minima are obtained. T
polaron crossover is then associated with the coupling va
in which a singled function leaves place to two symmetr
peaks. As soon as the quantum fluctuations of the lattice
restored by introducing a finite phonon frequencyv0, the d
functions broaden, but the qualitative features do not cha
The polaronic regime is characterized by abimodaldistribu-
tion, while the nonpolaronic state present aunimodaldistri-
bution. In the particular case of a single particle on two sit
the polaronic regime presents two symmetric peaks atX5
6X0, and the nonpolaronic state in nondistorted, so t
P(X) is peaked atX50.

Figure 1 shows the evolution ofP(X) varying l in the
two-site Holstein model forv0 /t50.1 ~representative of the
adiabatic regime! and v0 /t54 ~representative of the antia
diabatic regime!. In both cases a smooth crossover occ
between a quasifree electron state~unimodal distribution!
and a polaronic state~bimodal distribution!. The figure also
clearly shows that the crossover in indeed much sharpe
the adiabatic case than in the antiadiabatic one. Furtherm

FIG. 1. Phonon displacement distribution functionP(X) for the
two-site Holstein model forv0 /t50.1 andv0 /t54. The various
lines in the two panels correspond to different values ofl. For
v0 /t50.1 l ranges from 0 to 1.4, whereas forv0 /t54 0,l,4.
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P(X50) in the polaronic region rapidly vanishes soon af
the crossover in the adiabatic case, while it stays finite in
antiadiabatic, despite it is a local minimum in both cases
is worth emphasizing that that the monomodal to bimo
crossover ofP(X) has also been reported as signature t
crossover toward a ‘‘polaronic’’ state also in studies of t
Holstein modelin the thermodynamic limitusing dynamical
mean field theory~DMFT!.22,23

B. Magnetic correlations

In this section we discuss the behavior of the magne
correlations in the two-site double exchange model. As m
tioned above, we are only able to describe short range
relations. We parametrize the magnetic correlations betw
the two sites by means of the scalar product^S1•S2& between
the core spins.

Since our interest in the model is motivated by the ma
ganites, we will always assume thatJH is the largest energy
scale. In theS5` case we letJH go to infinity, and in the
finite spin case, we takeJH510t.

In the absence of electron-phonon coupling, and assum
that JH is the largest energy scale, the direct antiferrom
netic exchange between the core electrons determines
magnetic properties of the system. For zero and smallJ1, the
spins are ferromagnetically aligned due to the Hund’s c
pling. IncreasingJ1, antiferromagnetic correlations tend t
appear.

The nature of the spin correlations depends crucially
the value of the spinS5S15S2, since the latter rules the
possible values of̂S1•S2&. More explicitly, in the classical
spin casê S1•S2&5S2cos(u), where the canting angleu be-
tween the spins is a continuous variable. The ferromag
continuously evolves into a canted state asJ1 is enhanced.
The canting angle asymptotically tends top, corresponding
to the antiferromagnetic state, asJ1 is enhanced. Panel~a! in
Fig. 2 displays the dependence of^S1•S2& on J1S2 for the
classical spin case forJH5`.

In the quantum case the nonlocal magnetic correlatio
given by

FIG. 2. ^S1•S1& for S5`,3/2,1/2 ~from top to bottom! as a
function of J1.
9-4
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INTERPLAY BETWEEN SPIN AND PHONON . . . PHYSICAL REVIEW B65 104409
^S1•S2&5
1

2
@Stot~Stot11!2S1~S111!2S2~S211!#,

~7!

and assumes only a few values. In Eq.~7! Stot is the modulus
of the total spin. ForS15S251/2, Stot50 and 1 are the two
only possible values. ForS15S253/2, we can have four
values (Stot50,1,2,3). It must be noted anyway, that the to
spin operatorS2 does not commute with the Hamiltonian~1!,
so that the energy eigenstates have no reason to be e
states ofStot

2 .
An inspection to the results in the absence of electr

phonon coupling shows indeed that, forS51/2, the magnetic
state abruptly varies, forJ15J1(FE2AF), from a fully po-
larized ferromagnet to an antiferromagnetic state, which
not fully polarized. The ‘‘transition’’ is a level crossing be
tween two states with different symmetry. The exact value
^S1•S2& in this state depends on bothJH andJ1, even if the
dependence onJ1 @for J1.J1(FE2AF)] is really weak, as it
appears in panel~c! of Fig. 2.

The S53/2 case is strictly analogous toS51/2, and
shows the fully polarized FE state, followed by three diffe
ent combinations of the AF states. Also in this case,
precise values of̂S1•S2& in the three states depend onJH
and J1, and the dependence onJ1 is really weak in each
region. Moreover, the state with the largest negative corr
tion is really close to the full antiferromagnet. We label t
two intermediate spin phases as canted 1~CA1! and canted 2
~CA2!, and the ‘‘most antiferromagnetic’’ as antiferroma
netic tout court. The dependence of^S1•S2& on J1 is shown
in Fig. 2~b!. We notice that the scale ofJ1 associated with the
change in the magnetic structure is consistent with the
perimental estimates.24

C. The phase diagram

In this section we discuss the interplay between the m
netic properties and thee-ph coupling and finally determine
the phase diagram of our model. We tune the relevanc
lattice and magnetic degrees of freedom, by varying
strength of the electron-phonon couplingl, and of the anti-
ferromagnetic coupling between the core spinsJ1. Then we
draw various phase diagrams in thel-J1 plane. Each of the
diagrams is characterized by the values of the spinS and of
the phonon frequencyv0, that parametrize the relevance
quantum spin and lattice fluctuations, respectively. We c
sider theS5`, S53/2 and S51/2 cases, andv0 /t50.1
~adiabatic regime! and 4 ~antiadiabatic regime!. Finally, we
always assume that the Hund’s rule couplingJH is the largest
energy scale. In the classical case, we takeJH5`, and in the
quantum cases, we useJH510t. We denote ‘‘discontinuous
transitions’’ with full lines and ‘‘continuous transitions’’ with
dashed lines.

1. The effect of J1 on the polaron crossover

In Sec. III A, we have briefly described the conditio
ruling the polaron crossover in the Holstein model. In t
adiabatic regimev0 /t!1, the condition for a polaron
ground state is that the polaron binding energyEpol5g2/v0
10440
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is larger than the free electron kinetic energy, measured bt.
It is quite natural to generalize this condition to the doub
exchange model, at least when the polaron crossover oc
between two phases that share a common magnetic stat
this case, we can replace the bare hoppingt by the ‘‘mag-
netically renormalized’’ kinetic energy atl50 ( t̄ ). Thus the
crossover condition is determined by the condition

lmg5
g2

v0 t̄
.1. ~8!

In the S5` case the magnetic hopping is given by

t̄ 5t cosS u

2D , ~9!

whereu is the canting angle between thet2g spins.2,3 In the
quantum casesS51/2 andS53/2, one can view the canting
angle as a quantized quantity, that can assume only a
discrete values. We anticipate that these arenot the quantized
values of the semiclassical approximation.

Regardless the value ofSandv0 /t, for small values ofJ1
the ground state is always ferromagnetic due to the Hun
rule. A crossover occurs between a ferromagnetic itiner
electron and a ferromagnetic polaron. Within this region,
magnetic hopping is fixed to the free valuet̄[t, and does
not depend onJ1. As a result, the model is completel
equivalent to a two-site Holstein model, and the crossove
associated with a vertical line in thel-J1 diagram, as shown
in all the phase diagrams~Figs. 3–8!. The crossover value o
l depends only on the ratiov0 /t, and moves from thel
.1 in the extreme adiabatic limit, tol.1.2 for v0 /t50.1,
to a substantially larger value (l.3.46) forv0 /t54, where
the condition for the polaron crossover is close toa2.1
~that impliesl.4).

IncreasingJ1, phases with antiferromagnetic correlatio
between the core spins appear. The nature of these ph
depends on the value ofS, as shown in Sec. III B. We star
from the quantum cases, that present sharp level crossin
l50, wheret̄ sharply jumps following the magnetic corre
lations shown in Fig. 2. If we neglect the really weak depe
dence onJ1 of ^S1•S2& within a given magnetic phase, th

FIG. 3. Phase diagram forS53/2 andv0 /t50.1.
9-5
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polaron crossover is controlled by the condition~8!, where t̄
is the value corresponding to the actual magnetic phase

The exact results obtained as described in Sec. II con
this expectation, and the polaron crossovers among ph
with the same magnetic correlation are in fact delimited
vertical dashed lines in all the diagrams forS51/2 andS
53/2 ~Figs. 3–6!. The value of the crossover coupling obv
ously changes in the different magnetic phases. The FE s
is the one with the largest kinetic energy due to the dou
exchange mechanism, so that the criticall is the highest in
this phase, and it decreases by decreasing the value o
magnetic correlation according to Eq.~8! ~see, e.g., Figs
3,4!. Notice that the effect of the value of^S1•S2& on the
crossover coupling is much more evident in the adiab
limit ~Fig. 3!, where the competition between the polar
energy and the kinetic energy rules the crossover, than in
antiadiabatic regime~Fig. 4!, where the electronic kinetic
energy is not the most relevant quantity. In the extreme
tiadiabatic limitv0 /t→` this dependence must complete
disappear, since the kinetic energy plays no role in the cr
over.

The formation of polaron does not only occur as smo
crossover between states with the same magnetic correla
Indeed, in theS51/2 case~see Fig. 5!, if we continuously
increaseJ1, we have that, between the vertical dashed lin
corresponding to the polaronic crossovers within the FE
the AF phases, a first-order ‘‘transition’’~level crossing! oc-
curs from a ferromagnetic non-polaronic state and an ant

FIG. 5. Phase diagram forS51/2 andv0 /t50.1.

FIG. 4. Phase diagram forS53/2 andv0 /t54.
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romagnetic polaron. The interplay between the localizing
fect of both thee-ph and the antiferromagnetic magnet
interaction strongly favors the AF polaronic state with r
spect to the competing phases.

Similar level crossings occur for all the finite-spin case
with more involved details depending upon the value oS
and v0. For example, in the antiadiabatic regimev0 /t54,
the FE-AF polaron ‘‘transition’’ occurs only in a narrow
range of parameters~see Fig. 6, compared to the adiaba
case, Fig. 5!. This is simply due to the fact that, in thi
regime, the crossover values forl in the FE and the AF are
very close. In the extreme antiadiabatic limitv0 /t→` this
region would indeed vanish.

In the richerS53/2 case, the CA1 and CA2 states intru
between the FE and the AF at weake-ph coupling. In the
adiabatic regime~see Fig. 3!, no polaron crossover occur
within the canted phases, and both these phases unde
first order ‘‘transition’’ to the AF polaron. Only the FE an
AF phases display the usual polaron crossover. In the an
diabatic case, besides the aforementioned reduction of
regions in which the polaron formation becomes first ord
canted polaronic states are stabilized by the phonon quan
fluctuations.~The ‘‘critical’’ frequency above which canted
polaronic states appear isv0 /t.1).

In the S5` case, where canted phases with a continu
canting angle are stable, the polaron crossover is not re
sented by a vertical line, since the kinetic energy is a c
tinuous function ofJ1 with t̄5t cosu(J̄1), and u( J̄1) is the

FIG. 6. Phase diagram forS51/2 andv0 /t54.

FIG. 7. Phase diagram forS5` andv0 /t50.1.
9-6
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INTERPLAY BETWEEN SPIN AND PHONON . . . PHYSICAL REVIEW B65 104409
value of the canting angle atl50. Again, all results are
consistent with the condition~8!. In this case, the phono
fluctuations play a somewhat qualitative role. In the extre
adiabatic limit the CA state undergoes a level crossing to
AF polaronic state. Thee-ph interaction and the antiferro
magnetic couplingJ1 cooperate to stabilize the AF polaro
without forming a canted polaron. As soon as we introduc
finite, but smallv0 /t, a tiny slice of a canted polaronic phas
appears to bridge between the canted state and the antif
magnetic polaron. In the antiadiabatic regime, the hu
quantum fluctuations strongly favor a canted polaronic st
and the antiferromagnetic polaron appears only forl.10
andJ1.2.

The above results show that the effect of the magn
correlations on the small polaron crossover is influenced
the spin quantum fluctuations. In particular, theS53/2 case,
which is relevant to the manganites is not qualitatively sim
lar to the classical spin case, that is usually considered
simplicity. Many features of theS53/2 case are in fact direc
consequences of the quantum nature of the spins, and
similar to the simplest quantum caseS51/2.

2. The effect of e-ph coupling on magnetic ‘‘transitions’’

In this section we analyze how the various magne
‘‘transitions’’ described in Sec. III B are influenced by th
e-ph interaction. In the previous section we have found a
lytical results for the ‘‘transition’’ from FE to AF states fo
JH→`. The expressions, given by Eqs.~5! and ~6!, can be
recast in the common form

J1
cS25

EH~AF!2EH~FE!

^S1•S2&FE

S2
2

^S1•S2&AF

S2

, ~10!

whereEH(AF)@EH(FE)# is the energy of the Holstein mode
for the antiferromagnetic~ferromagnetic! spin alignment,
and^S1•S2& in the different magnetic phases is computed
g50. In particular, the evaluation ofEH for a given phase
simply amounts to finding the ground state of the Holst
model where the bare hoppingt is replaced byt̄ . This rela-

FIG. 8. Phase diagram forS5` andv0 /t54.
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tion also holds for the case ofS53/2, once the proper value
for the kinetic energy in the antiferromagnetic phaset̄ 5t/4
is used.

Equation~10! results from the competition between th
magnetic energy balance, controlled byJ1, and the ‘‘po-
laronic’’ energy, i.e., the energy resulting from thee-ph cou-
pling. Since the AF phase has always a smaller hopping w
respect to the FE phase, the first qualitative effect of thee-ph
interaction is to lower the energy of the antiferromagne
phase with respect to the ferromagnetic one, therefore fa
ing antiferromagnetism. The region of stability of the F
phase is always shrunk by increasingl. More generally, the
e-ph interaction favors phases with smaller values of^S1
•S2&, so that the boundaries of the different magnetic pha
are always marked by downward curves in theJ1-l plane.

In the limit of small t, the energy difference in the nu
merator of Eq.~10! reduces to the pure kinetic energy of th
Holstein model close to the atomic limit. Definingg5 t̄ /t,
we can write

lim
t→0

@EH~gt !2EH~ t !#5 lim
t→0

~12g!t
EH@ t1~12g!t#2EH~ t !

~12g!t

5~12g!t
]EH~ t !

]t
52EH

kin~12g!.

~11!

In the smallt limit the condition~10! reduces then to

J1
c5k~S!~2EH

kin!, ~12!

wherek(S) is a constant that contains the factor 12g, and
depends on the value of the spinS and on the ‘‘transition’’
under consideration, such that, in the absence ofe-ph inter-
action the condition is simplyJ1

c5k(S)t. This latter relation
is analogous to Eq.~8!, since the effect of thee-ph interac-
tion results in the substitutiont→2EH

kin , but, contrary to
that, it is valid only fort→0.

This result gives valuable information about the role
the retardation effects in thee-ph coupling. In general terms
the interaction mediated by the phonons is in fact retard
and becomes instantaneous only ifv0 /t→`. In such a limit,
as we have shown, the kinetic energy rules the magn
‘‘transitions.’’As soon as the approximationt→0 is released,
the retardation effects imply that Eq.~10! must be used. No-
tice thatEH(AF)2EH(FE)52EH

kin1D, whereD is the dif-
ference between thee-ph interaction energies in the tw
phases, and turns out to be always positive. The overall
fect of the retardede-ph interaction is therefore to reduce th
stability of FE phases with respect to AF and CA phases

In the S53/2 case all the magnetic ‘‘transitions’’ are dis
continuous, as described in Sec. III B, so that similar ar
ments can be applied, and Eq.~10! allows one to compute
the ‘‘transition’’ coupling, once the energy of the Holste
model and the magnetic energy of the appropriate phase
known.

The situation is different only for the continuous trans
tion n between the FE and CA phases in the classical s
9-7
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MASSIMO CAPONE AND SERGIO CIUCHI PHYSICAL REVIEW B65 104409
case. In this case the continuity of the ‘‘transition’’ implie
that the energy difference between the phases is infinitesi
so thatEH

kin52t]EH(t)/]t rules the ‘‘transition’’ not only
for small t, but for arbitrary values oft, as shown by Eq.~4!.
This preliminary analysis suggests a really important diff
ence between the classical spin limitS5` and the quantum
S53/2 case.

Now we can give some description and interpretation
the exact phase diagrams in light of the above analysis
the adiabatic limitv0 /t50, for finite value ofS, and forl
,lpol , the energy of thee-ph model alone does not depen
uponl, so that the relative stability of the various magne
phases is in turn expected to bel independent. The magneti
‘‘transitions’’ are therefore associated with horizontal lines
the l-J1 plane. If we introduce phonon fluctuations, the k
netic energy depends uponl also before the crossover, an
the boundary between the magnetic states acquires a
slope, that becomes larger and larger by increasingv0 /t.
This behavior can be easily seen comparing Fig. 3 with 4~or
Fig. 5 with 6!. The case of the classical spin variables, wh
the magnetization is a continuous variable, can be un
stood in similar terms. The crossover between the FE and
CA phase in fact closely follows the curve obtained us
Eq. ~4!.

As discussed previously, the phonon fluctuations alw
favor FE phases with respect to AF and CA phases, as it
be seen comparing the phase diagrams forv0 /t50.1 with
the corresponding withv0 /t54 ~at the same value ofl). In
we increase the quantum fluctuations of the phonons, by
creasing the phonon frequencyv0, the retardation effects ar
decreased, so that the localization of the electrons is m
more difficult. An enhanced mobility of the electron resu
in an enhanced stability of the FE phases due to the do
exchange mechanism.

IV. RELEVANCE OF THE TWO-SITE SYSTEM

In this section we discuss the relationship between
two-site model and larger systems. Some peculiarities of
two-site system must be addressed in order to properly c
pare our findings with those of larger systems. We not
that, in the absence of magnetic interactions~Holstein
model!, the lattice deformations obtained within the prese
model ~Fig. 1! are similar to those of an half-filled band.23

We can therefore compare the polaron crossover obta
through the procedure outlined in Sec. III A with a spinle
fermion system withx51/2 or, in the presence of magnet
interaction, with the case of one polaron every two sit
However the spectral functions~see Appendix A! are similar
to those obtained for a single polaron in an infinite s
lattice.17

We emphasize that the capability of the two-site system
capture the physics of polaron crossover is not accidental
can be easily rationalized. This is essentially due to the
treme short-range character of the polaronic state. In
spirit we expect the results of our calculations to be som
how related to a dynamical mean field theory, where
local quantum fluctuations are exactly taken into accou
while the spatial correlations are frozen.25 Similarly to the
10440
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DMFT, our exact solutions faithfully reproduce the physi
of the model if the local and short-range effects are do
nant, as it is the case for the manganites. More specific
the one-electron solution of the two-site Holstein model~see
Appendix A! is surprisingly similar to the one-electron solu
tion of the Holstein model for an infinite lattice within
DMFT. Looking at a given site, the role played by the ‘‘e
fective quantum medium’’ of DMFT is here simply playe
by the other site. It must be noticed, however, that our sm
cluster cannot determine whether the polaronic and the d
calized states are Fermi liquids or not.

To check whether the above considerations about the
evance of the two-site cluster as far as the polaron cross
is concerned may be valid also in the presence of magn
interaction, we compare our results to more realistic mod
for manganites. There are not indeed so many solution
the double exchange model in the presence ofe-ph coupling.
In particular, to the best of our knowledge, there are no ph
diagrams studies of the Holstein-double-exchange mo
Studies of more realistic JT double-exchange model, keep
into account the full tridimensional structure and the orbi
degrees of freedom, are instead available, but most of th
are forced to consider the classical limit for either t
phonons or the core spins, due to the large local Hilb
space.15,26,27,20

Among the various studies we want to draw the attent
of the reader to Refs. 15 and 26, in which phase diagrams
respectively,x50 and x50.5 La12xCaxMnO3, in agree-
ment with experimental findings are reported. A comm
feature of the above works is the presence of a transitio
small values ofJ1 and intermediatel from an itinerant FE
phase to a FE phase with significant lattice distortions,
beled as JT phase in Ref. 15, and orbitally ordered stat
Ref. 26. This transition represents the natural counterpar
the polaron crossover within the FE phase that we find in
model, as it can be seen by direct comparison with all
phase diagrams. Despite the density of carriers is differen
the two studies, thee-ph coupling for which this transition
occurs is very similar. In the same references it is also fou
that finite-size effects are not so important for the descript
of this transition, thus confirming that the physics underlyi
the polaron crossover is essentially local.

Other analogies between phases diagram of Refs. 15
26 and Fig. 7 can be noticed. In all the phase diagra
increasingJ1, the FE phase is replaced by some other m
netic ordering~‘‘non-FE’’ phases!. In our model the ferro-
magnet is simply replaced by CA or AF phases, while in t
more realistic models, more complicated phases involv
orbital degrees of freedom are stabilized~the CE phase for
x50.5 and theA-type antiferromagnet forx50). Nonethe-
less, the shape of the curves separating the FE phase t
‘‘non-FE’’ phases looks very similar in all the systems, d
spite the different nature of the ‘‘non-FE’’ phase in the d
ferent models. We emphasize that our simple model is
able to account for the different orbital and magnetic ord
ings found by experiments, while the more realistic JT co
pling correctly reproduces the experimentally observ
phases.
9-8
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V. CONCLUSIONS

In this work the two-site double exchange model for
electron coupled with phonons is solved exactly for an
tremely wide range of parameters and physical regimes.
S51/2 andS5` we give an analytical exact solution fo
arbitrary e-ph coupling and phonon frequency. ForS53/2
the solution is obtained through standard numerical te
niques. The availability of these solutions allows us to stu
the effect of both phonon and spin quantum fluctuations,
of their mutual interplay.

This study, though limited to the extreme small size of t
two-site cluster, is shown to be a good description of lar
systems, since the relevant physics involves local and sh
ranged quantities. One of our main results is a comp
characterization of the effect of the double exchange an
an antiferromagnetic coupling between thet2g spins on the
small polaron crossover. In this regard, we give an analyt
estimate for the crossover coupling, given bylmg5g2/v0 t̄

.1, wheret̄ is the kinetic energy renormalized by the ma
netic effects.

From a complementary point of view, we considered
detail the effect of thee-ph interaction on the magnetic prop
erties of the system. In this case, we give an analytical c
dition for the magnetic ‘‘transitions’’ in the presence of
finite l, given by Eq.~10!. This relation can be simplified in
the limit t→0, where there is no retardation effect. The co
parison between the general case and the atomic limit all
us to quantitatively describe the role of retardation in sta
lizing AF ~or CA! phases.

A comparison of the realisticS53/2 case with the classi
cal spin caseS5` shows that this latter approximation do
not reproduce some qualitative features of the phase
gram. A proper study of the manganites should therefore t
into account the quantum nature of the core spins.
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APPENDIX A: THE EXACT SOLUTION
OF THE TWO-SITE HOLSTEIN MODEL

In this appendix we sketch the solution through a con
ued fraction expansion of the two-site Holstein model.
continued fraction solution has been already reported in
literature28 for a related model in the field of quantum optic
Here we derive the continued fraction expansion for eig
values and eigenvectors of the two-site Holstein model us
a different method.

The Holstein model for an electron on two sites can
written in a pseudospin representation in terms of the P
matrices

HH5v01a†a2gsz~a1a†!2tsx , ~A1!

where1 is the unity matrix. The Hamiltonian can be diag
nalized in the electron subspace using a transformation in
duced in Ref. 8
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U5
1

A2
S 1 ~2 !a†a

21 ~2 !a†aD ~A2!

and the property

~2 !a†a~a1a†!~2 !a†a52~a1a†! ~A3!

we obtain forH̃H5UHHU21

H̃H5S H̃H~ t ! 0

0 H̃H~2t !
D , ~A4!

where

H̃H~6t !5v0a†a2g~a1a†!7t~2 !a†a. ~A5!

In each block we have a purely phononic HamiltonianH̃H
(6t). The eigenvalues and eigenvectors can be determ
by continued fraction solution for the resolvent betweenum&
and un& phonon states

Gm,n
6 ~v!5K mU 1

v2H̃H~6t !
UnL . ~A6!

Using

1

v2H
5

1

v2H0
1

1

v2H0
HI

1

v2H
~A7!

with H05v0a†a7t(2)a†a andHI52g(a1a†) we get the
recursion

Gm,n
6 ~v!5dm,nG0

6~v2nv0!

2g(
p

G0
6~v2nv0!Xn,pGp,n

6 ~v!, ~A8!

whereXn,p5^nua1a†up&. This tridiagonal recursion can b
solved for the diagonal elements through a continued fr
tion solution29

Gn,n
6 ~v!5

1

v2nv06t2Sem2Sabs
, ~A9!

where

Sabs5
ng2

v1v07t2
~n21!g2

v12v06t2
~n22!g2

�2
g2

v1nv01~7 !nt
~A10!

and
9-9
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Sem5
~n11!g2

v2v07t2
~n12!g2

v22v06t2
~n13!g2

v2nv07t2•••.

.

~A11!

At zero temperature the Green function of the two-site H
stein model defined as

Gi , j~v!52 i ^0uTci~ t !cj
†~0!u0& ~A12!

can be expressed as

G1,1~v!5
1

2
@G0,0

1 ~v!1G0,0
2 ~v!#,

G1,2~v!5
1

2
@G0,0

1 ~v!2G0,0
2 ~v!#, ~A13!

thereforeG0,0
6 are thek-space propagators whose poles det

mines the bonding and antibonding eigenvalues ofHH . The
residues of the lowest energy pole ofGn,n

6 determine the
square of the projection of the phonon ground state on
um& statebm

6 . Let us write Eq.~A11! for n50 in a recursive
fashion

Sp
65

pg2

v2pv01~7 !pt2Sp11
6

, ~A14!

whereS1
6 is the continued fraction of Eq.~A11! therefore

the equation which gives the eigenvalue of the two-site H
stein model is

v6t2S1
650. ~A15!

By linearizing this recursion around themth solutionEm

of Eq. ~A15! letting zp
65]Sp

6/]Em we get

zp
65~zp11

6 21!
pg2

Em2pv01~7 !pt2Sp11
6

. ~A16!

Finally the coefficientbm
6 is given by

bm
65A 1

12z1
6

. ~A17!

The ~quantum! probability distribution function for the dis
placement operator can be determined using the harm
oscillator wave functionsCn(X) as

P~X!5(
m,n

@~bm
1!* bn

11~bm
2!* bn

2#Cm* ~X!Cn~X!.

~A18!
10440
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APPENDIX B: THE EXACT SOLUTION
OF THE TWO-SITE HOLSTEIN DOUBLE-EXCHANGE

MODEL FOR SÄ1Õ2

Let us start form the caseg50. We choose the following
basis set labeling the states according to the total spinStot
5S1s whereS is the spin of the Mg31 ion ands that of the
eg electron. We have two states in theS53/2 sectoruA&
5u⇑⇑&u↑•&,uA8&5u⇑⇑&u•↑& and six states in theS51/2 sec-
tor uB&5u⇑⇓&u↑•&,uB8&5u⇓⇑&u•↑&, uC&5u⇓⇑&u↑•&,uC8&
5u⇑⇓&u•↑& uD&5u⇑⇑&u↓•&,uD8&5u⇑⇑&u•↓&, where
u⇑& (u⇓&) represent an up~down! spin state for the core
spins andu↑& (u↓&) are the same for theeg electrons. The
Hamiltonian is invariant for flipping of all the spins so the
are all the states we need. The statesuA& and uD& have a FE
character while the statesuB& and uC& have AF character.
The S53/2 subspace, spanned by the combinations ofuA&
and uA8&, decouples from the other states even in the pr
ence ofe-ph phonon interaction.

If we consider the symmetric and antisymmetric com
nations

uA6&5
1

A2
~ uA&6uA8&),

uB6&5
1

A2
~ uB&6uB8&),

uC6&5
1

A2
~ uC&6uC8&),

uD6&5
1

A2
~ uD&6uD8&), ~B1!

in the absence of thee-ph interaction the symmetric an
antisymmetric sectors are decoupled so that the part of
Hamiltonian matrix which pertains to Hund and antiferr
magnetic interactions consists of three blocks:

H3/25S J12JH

4
2t 0

0
J12JH

4
1t
D , ~B2!

H1/2,15S 2
J11JH

4

J1

2
2t 0

J1

2
2t 2

J12JH

4
2

JH

2

0 2
JH

2

J11JH

4
2t

D ~B3!

the last blockH1/2,2 can be obtained from Eq.~B3! by the
substitution t→2t. The e-ph matrix elements couple th
subspaces (A1,B1,C1,D1) and (A2,B2,C2,D2). The
subspace spanned byuA6& can be diagonalized indepen
dently having the same eigenvalues and eigenvectors
9-10
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two-site Holstein model~see Appendix A!. The Hamiltonian
matrix in theS1/2 can be written

H1/25S H1/2,11v01a†a 2g1~a†1a!

2g1~a†1a! H1/2,21v01a†aD . ~B4!

Here1 is the 33 3 unit matrix. We can diagonalizeH1/2 in
the phonon space by means of the unitary transformatio
to

sh

tt.

,
et

o

d

B

10440
U5
1

2 S @11~2 !a†a#1 @211~2 !a†a#1

@211~2 !a†a#1 @11~2 !a†a#1
D . ~B5!

Using the property given in Eq.~A3! we get for H̃1/2

5UH1/2U
21
H̃1/25S @v0a†a2g~a†1a!#11H1/2
at 2t~2 !a†aD 0

0 @v0a†a1g~a†1a!#11H1/2
at 1t~2 !a†aD

D , ~B6!
and
where we have splitH1/2,65H1/2
at 6tD in the atomic (t50)

part and in the hopping dependent term

D5S 0 1 0

1 0 0

0 0 1
D ~B7!

and H1/2
at can be obtained from Eq.~B4! with t50. The

Hamiltonian Eq.~B6! can be diagonalized in each spin sec
by an independent transformation which diagonalizesH1/2,6
for a given phonon numbern. The diagonalization gives six
eigenvaluesE1/2,6(n) for each phonon number. Forn50
andJH@t,J1 the lowest of them are

E1/2,2
FE 52

JH

4
2t1

J1

4
, ~B8!
r

E1/2,2
AF 52

JH

4
2

t

2
2

J1

2
. ~B9!

By replacingt→t(2)a†a we are left with a purely phononic
Hamiltonian in the FE/AF sector

H̃1/2
FE5v0a†a2g~a†1a!2

JH

4
2t~2 !a†a1

J1

4
,

~B10!

H̃1/2
AF5v0a†a2g~a†1a!2

JH

4
2

t

2
~2 !a†a2

J1

2
.

~B11!

The comparison between the energies of the FE
the AF phases leads to the condition~6! for the magnetic
‘‘transition.’’
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