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Interplay between spin and phonon fluctuations in the double-exchange model for the manganites
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We present exact solutions, mainly analytical, for the two-site double-exchange-Holstein model, that allow
us to draw a complete picture of the role of both phonon and spin quantum fluctuations in determining the
short-range correlations in the manganites. We provide analytical solutions of the model for arbitrary electron-
phonon coupling and phonon frequency, &+ 1/2 and for the classical spin lim§=<«, and compare these
results with numerical diagonalization of the realisiie 3/2 case. The comparison reveals that the realistic
caseS=3/2 is not well described by the classical spin limit, which is often used in literature. On the other
hand, the phonon fluctuations, parametrized by the phonon frequanatabilize ferromagnetic phases with
respect to the adiabatic limit. We also provide a complete analysis on the polaron crossover in this model.
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. INTRODUCTION the presence of a local Holstegaph coupling’ Since we are
interested in the relevant physics determining the interplay
It is known from the 1950’s that the double exchangebetween lattice and spin quantum fluctuations, we consider
mechanisri-3is at the basis of the magnetic properties of thethe simple Holstein model, instead of a more involved Jahn-
manganese perovskite’; ,A,MnO; [where R is a rare Tgller.coupling. This choice dpes not imply a Ipss of gener-
earth elemente.g., L3, andA is a divalent element such as ality since we are not discussing the role of orbital degrees of
Sr or C4. In this compounds, thd levels of each Mn jon freedom. ) )
host 4-x electrons. Three of them occupy the three low- _T_he two-site system has been extensively studied as the
lying t,4 levels, with aligned spins due to the Hund’s rule. minimal system able to capture the key featgrels of polaron
These electrons are basically localized, and only thex1 formation from the point of view of ground stdté!as well

. : ~ as spectral properti¢d!® Recently also the interplay be-
electrons in the level contribute to the transport properties. tweene-ph ande-e correlations has been studied semiana-
The discovery  of the so-called colossal

¢ istankeh icinated val of lytically within the same modét! However, as far as mag-
magnetoresistancenas originated an enormous revival Ol petic properties are concerned, it is quite obvious that a two-

studie_s on thes_e compounds, both on the _theoretic_al an(_j the o system does not allow for long-range order and phase
e_xpenmental side. The systematic e_xperlmental investigagansitions. Nevertheless, it showshort-range (nearest
tions of the last few years have underlined some weakness {feighbors correlations, that give substantial indications on
the previous understanding, unveiling a surprisingly richthe actual long-range properties of the system, at least in
phase diagram where a lot of competing phases are stabilizegrong coupling. In the context of the models for the manga-
by varying doping, temperature and chemical nature of theites it is in fact believed that the finite-size effects play a
dopants. One of the most relevant new theoretical trends ittle role.!®> We will discuss the relevance of our results to
the suggestion that the transport properties cannot be fulllarge systems in the following.
understood on the basis of the double exchange alone, and Due to the simplicity of the model, we can give complete
that the interplay of this mechanism and a significantexact phase diagrams without approximations. One of our
electron-phonon €-ph) interaction leading to a Jahn-Teller main results is a complete characterization of the role of the
(JT) effect is the key for the explanation of these properties. quantum fluctuations of the cotgy spins. In a microscopic
The preeminent role oé-ph effects has also been firmly model of the manganites, the core spins h&#3/2, and
established experimentally by various groups andhis value is usually thought to be large enough to get rid of
techniques$. quantum fluctuations and treat them as classical variables.
The complex entanglement between charge, orbital, an@e will explicitly test this assumption by comparing the lim-
lattice degrees of freedom represents a hard theoretical chating casesS=« (classical spinsand the extreme quantum
lenge, that is far from being solved. Many approximate socase S=1/2, where the effect of quantum fluctuations is
lutions and numerical results have been proposed, but th@aximum, with the realistiS=3/2 case.
complexity of the phase diagram has naturally forced various Analogously, we will discuss the role of lattice quantum
authors to many uncontrolled simplifications. In this work fluctuations, releasing the adiabatic approximation on the
we make a step back, and focus on a system for waiedlr  phonon degrees of freedom. The role of quantum phonon
lytical exact results can be obtained. Namely, we solve théluctuations is not trivial, as already known ferph models
double exchange model for a single electron on two sites imlone®~® For S=~ and S=1/2 we give analytical exact
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solutions of the model, exploiting an exact analytical solu-has crucial importance on the magnetic properties of the
tion of the two-site Holstein model. F&=3/2 we use stan- manganite$? We also consider a Holstein couplirig) be-
dard exact diagonalization to solve the model. Also in thistween the electron and a dispersionless mode of frequency
case no approximation is introduced and all the regimes are,,.
accessible. In this paper, we present tlexactsolution for the model

A similar study has been reported in Ref. 19, where thg1). In particular for the classical spin ca§e=> and the
two-site double exchange model faassical spings solved  extreme quantum cas=1/2 we provideanalytical solu-
by perturbation theory around a variational reference statéons for arbitrary values of both the electron-phonon cou-
obtained by a Lang Firsov canonical transformation. Oumpling and of the phonon frequenay,, exploiting an exact
work overcomes some limitations of Ref. 19, namely thesolution of the two-site Holstein model reported in Appendix
classical spin limit. Contrary to Ref. 19, we are also able toA. In the S=3/2 case, a numerically exact solution by means
explore the adiabatic regimey<t, well beyond the region of exact diagonalization is instead presented. Despite the
in which the Lang Firsov result is a good reference state. electronic Hilbert space is really small, the infinite phonon

The paper is organized as follows: In Sec. Il we introduceHilbert space requires some truncation. As custonfaeg,
the model and the methods for our analytical solutions. Ire.g., Ref. 16 we allow for a maximum number of phonons
Sec. lll we present the phase diagram of the model and disy,, per site and check for convergence as a function of this
cuss the role of quantum fluctuations; due to the complexityyaumber. The values af,, for which convergence is achieved
of the phase diagram the discussion is divided in three suldepend on the physical regime. Even in the strong coupling
sections: in the first the effect of the magnetic degrees ofimit, and in the adiabatic regime, where a large number of
freedom on the polaron crossover is considered; in the seg@honons is present in the ground state, this number may be at
ond we discuss the effect of tleeph interaction on the mag- mostn,,~100, a number that can be easily handled with the
netic phase diagram of the model, and in the third subsectionanczos method. In the following subsections, we describe
the full phase diagram is presented. the analytical solutions foB=1/2 andS= .

In Sec. IV we discuss the relevance of our results for |t is clear that a two-site system cannot undergo a true
larger size systems and for the experimental scenario. Finallphase transition. Nevertheless this is the minimal model in

we give concluding remarks in Sec. V. which non local correlation functions can be defined. These
correlation functions will help us in defining the nature of the
II. METHODS OF SOLUTION ground state of the system. Quite obviously, changing the

] ) parameters of the Hamiltonian, the ground state will display
We consider the Holstein double exchange model on @jfferent physics. In the following we will call these modifi-

two-site cluster for a single electron cations “transitions,” with slight abuse of language. Depend-
ing on the way in which the nature of the ground state of the
H= —tE (CLTCz,aJF C;,ocl,a)_‘JH_E o-S+3,S,-S, system_changef, we _V\_/|II dlftmgwsh Pe_tween_ continuous gnd
- i=1,2 discontinuous “transitions.” For a “discontinuous transi-
N N tion” we mean the level crossing between states having dif-
—g(ny—ny)(at+a’)+wea'a, ()

ferent quantum numbers resulting in a discontinuous change
whereS, (i=1,2) is a local spin associated to the localizeg©f the non local correlation function. On the other hand, we

t,, electrons on each Sit&:i,g(cfr,g) destroys(creates an dﬁfme asfiﬁntmutous tr?rgﬁ|t|or(trozso;/etr)sthihcorltm#ous f
electron of spino on sitei, ni=2(,cif0ci,g is the number CNange of tne nature of the ground state without change o

. . _ _ the quantum numbers.
operator on each site;=c;,0,4Ciz is the spin operator on

each site § are the Pauli matricesa (a') is the destruction A. Exact solution for S= «
(creation operator for a lattice distortion that couples to the
difference of density between the two sites. The lattice dis-
placementX is given by X=\/ﬁ/2mw9(a+ a’). We could H(6)=J,c080—Hy(6)+Epung, )
have started from a standard Holstein model with a phonon
mode per each site, coupled to the local density. It is in facwhere Eyqq is the contribution of the Hund's term to the
easy to show that, in this case, the symmetric combination dtal energy and, is the Hamiltonian of a two-site Holstein
the two phonon mode&=1/\/2(a; +a,) couples to the total model in which the hopping is replaced byt =t cos@/2).
density, giving rise to a trivial term, and the only term left is The canting angl®, that measures the relative orientation of
the one we introduced, where the phonon mode may be writhe core spins fully characterizes the magnetic arrangement.
ten in terms of the local ones as=1/\2(a;—a,). If 6=0 the spins are aligned and a ferromagné&E) state

We explicitly consider, in addition to the hopping betweenis found, whereas fof= 7r, an antiferromagnetic statéF)
the two sites and the Hund’s rule ternd) that couples is found. Intermediate values of describe cantedCA)
ferromagnetically the conduction electrons to the localizedstates. Therefore, the solution of the classical spins two-sites
ones, an antiferromagnetic superexchange téghljetween Holstein double-exchange model can be obtained by mini-
the core electronsly is always taken to be the largest energymizing on 6, once the eigenvalues di, are known, as
scale, consistently with the physics of the manganites. Thishown in Appendix A. Fordy>J; the extremal condition
latter term, even thoughy is significantly smaller thady, then gives

Following Ref. 2, in the classical spins case we can write
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t 9Ey tween the role of phonon and spin quantum fluctuations
sin(6/2)| —2J,co9 0/2) — 5 = =0, (3)  (measured, respectively, hy,/t and the value of the “lo-
at cal” spin of thet,, electronsS). Due to the relatively large
which shows that the ferromagnetic state 0 is always an number of parameters that determine the phase diagram, we
extremum ofE(6) 2! Then the “transition” from FE to CA Organize the discussion of the results in subsections: in the
state is continuous. The critical couplidg for this “transi- first subsection we discuss the polaron crossover in the dif-

tion” is given by the vanishing of the term in parentheses inf€"€nt regimes, providing a unifying picture of the effect of

Eq. (3) both_phonon and spin fluqtuations, _and of electron-spin_ cor-
relation, that generalizes in a consistent way the conditions

_Elﬂn for the small polaron crossover in the simplest Holstein

Ji= 7 4 model!®~8 In the second subsection, we discuss the mag-

netic “transitions” occurring in our model. Both the nature
where EH”=t&EH/¢9t is the kinetic energy of the Holstein of the magnetic phases and the relation between the magnetic
model, i.e., the kinetic energy of the system with=0 (No-  state and the occurrence of polaronic behavior are strongly
tice thatEK" is a negative quantily The effect ofe-ph in-  dependent on the value of the sph Finally, in the last
teraction on the FE>CA “transition” is therefore the substi- Subsection, we present complete phase diagrams iR-the
tution t— — Eyp - plane_, where_- the role of lattice and magnetic degrees of free-
Now let us consider the discontinuous F&F “transi-  dom is highlighted.
tion.” We have to compare the FE and AF energies obtained
by Eq. (2}, rgspectively, withf=0 and 6= . The critical A. The polaron crossover
coupling is given by
Models with electron-phonon interaction quite generally
. Enx(0)—Ex(t) exhibit a polaronic ground state when the coupling strength
1= G s large enough. The transformation of the free electron into
a small polaron is not a phase transition, but a continuous
whereE(0)= — g’/ w, is the energy of the atomic Holstein crossover. For the Holstein model and a single particle, it has
model. been shown that the condition for the crossover significantly
depends upon the ratio between the phonon frequesgcy
B. Exact solution for S=1/2 and the typical electronic energy scdleln the adiabatic
regime wo<t, the crossover occurs fok=g% wot=1,

whereas in the antiadiabatic regimg>t, the crossover is
16-18

In this case, neglecting for the moment the phonon de
grees of freedom, the electronic Hilbert spaiteluding the ! . h
core spingis in principle made by 16 states, that reduce to gcontrolled by the(purely phononig variable =g/ w,.
if the symmetry for inversion of all the spins is considered.AS @ matter of fact, the crossover coupling, is pushed to
As shown in Appendix B, this problem can be simplified, larger values of\ as the frequency is increased. Moreover,
and the largest subspace to deal with isa3Bsector, but the (e crossover becomes smoother and smoothers gets
remaining problem is still not trivial if we switch on the arger. o , L
coupling with the phonons. Fortunately, in the lirdif>t, a The conditions for a polaron crossover in the adiabatic
further simplification occurgalso shown in Appendix B and antiadiabatic regimes can b_e understood on bf’iSIC_ physi-
leading to the possibility to express the eigenvalues of th&al grounds. In the adiabatic regime, the.key condition is that
model in terms of the two-site Holstein model. The details of2 bound state can be formed. The conditionl expresses
the solution are reported in Appendix B. In such a way, wethiS Property, Since It just implies that the polaron binding
can characterize the condition for the only possible “transi-8N€rgYEpa=g°/wo exceeds the kinetic energy of a free elec-
tion,” i.e., the one from FE to AF ground state. The “transi- tron ~t. On the other hand, in the antiadiabatic limit, the
tion” is discontinuous and can be obtained from the compari£lectronic energy scale is not the largest scale, and the
son of the energies of the different phases, that we compufeolaron crossover is ruled by the conditiefi>1, that cor-
in Appendix B. The critical coupling for the FE: AF “tran- responds to the excitation of a significant number of phonons

sition” is then given by (or, equivalently, to a sizable lattice distortjorThe cross-
over conditions we have just described are based on simple,
. AEn(t/2)—Ex(1)] model independent, physical insights, and are therefore ex-
1= 3 , (6) pected to basically hold, with some marginal changes, also

for more complicated models such as the double-exchange
whereEy is the energy of the two-site Holstein model. Con- model we are considering.
trary to the classical spin case quantum spin fluctuations al- It must be noted that, since the formation of a polaron is
low for non zero effective hoppinE:t/Z in the AF phase. Not a phase transition with an associated broken symmetry,
there is some ambiguity in determining a physically sensible
Il RESULTS clear-cut criterion for the polaron crossover. In most previous
studies, including that of Ref. 19, the crossover line has been
In this section, we present the phase diagrams of thdrawn as the locus of the points in which some relevant
model (1), with a particular emphasis on the interplay be-expectation values, such as the electron-lattice correlation
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FIG. 1. Phonon displacement distribution functi®(X) for the 1, s
two-site Holstein model foiw,/t=0.1 andw,/t=4. The various

lines in the two panels correspond to different values\ofFor FIG. 2. (S;-S,) for S==,3/2,1/2 (from top to bottom as a

wo/t=0.1 A ranges from O to 1.4, whereas fog/t=4 0<\<4. function of J;.

P(X=0) in the polaronic region rapidly vanishes soon after

function 1NS;(n;X;} or the average number of phonons in the crossover in the adiabatic case, while it stays finite in the
. 9 P antiadiabatic, despite it is a local minimum in both cases. It

the_ grqund state change thelr beha}wor. .Th's kmd of characl—s worth emphasizing that that the monomodal to bimodal
terization has no problem in the adiabatic regime, where th

crossover is rather sharp, but it is more questionable in th rossover ofP(X) has also been reported as signature to a
oo ; . P, d .Crossover toward a “polaronic” state also in studies of the
antiadiabatic regime. In this work we use a much more defi;

nite criterion, that is based on gualitative difference be- Holstein modeln the thermodynamic limiusing dynamical

; 22,23
tween polaronic and nonpolaronic states. Namely, we studglnean field theoryDMFT).

the (quantum probability distribution function for the dis-
placement operatoP(X)=(0|X)(X|0), where |0) is the
ground state wave function anfX) denotes the state with In this section we discuss the behavior of the magnetic
displacementX. In the adiabatic limitwy=0, the phonon correlations in the two-site double exchange model. As men-
degrees of freedom are described by classical variables, atidned above, we are only able to describe short range cor-
no quantum fluctuations are present. The solution of theelations. We parametrize the magnetic correlations between
model involves a minimization of the electronic ground statethe two sites by means of the scalar prodi&t S,) between
as a function ofX. As a result, the probability distribution is the core spins.
a single(or a few & function, centered at the values that  Since our interest in the model is motivated by the man-
minimize the energy. More explicitly, if the system is not ganites, we will always assume thhj is the largest energy
polaronic, a single value of minimizes the energy, while in scale. In theS=%« case we letl go to infinity, and in the
the polaronic regime, two different minima are obtained. Thefinite spin case, we také, = 10t.
polaron crossover is then associated with the coupling value In the absence of electron-phonon coupling, and assuming
in which a singleé function leaves place to two symmetric thatJy is the largest energy scale, the direct antiferromag-
peaks. As soon as the quantum fluctuations of the lattice aneetic exchange between the core electrons determines the
restored by introducing a finite phonon frequengy, the 5  magnetic properties of the system. For zero and siqathe
functions broaden, but the qualitative features do not changapins are ferromagnetically aligned due to the Hund'’s cou-
The polaronic regime is characterized bpimodaldistribu-  pling. Increasingl;, antiferromagnetic correlations tend to
tion, while the nonpolaronic state present@modaldistri-  appear.
bution. In the particular case of a single particle on two sites, The nature of the spin correlations depends crucially on
the polaronic regime presents two symmetric peakX=at the value of the spirB=S;=S,, since the latter rules the
+Xo, and the nonpolaronic state in nondistorted, so thapossible values ofS;-S,). More explicitly, in the classical
P(X) is peaked aX=0. spin cas€S,; - S,) = S?cos(), where the canting anglé be-
Figure 1 shows the evolution &®(X) varying A in the tween the spins is a continuous variable. The ferromagnet
two-site Holstein model fowy/t=0.1 (representative of the continuously evolves into a canted stateJass enhanced.
adiabatic regimeand wqy/t=4 (representative of the antia- The canting angle asymptotically tends# corresponding
diabatic regimg In both cases a smooth crossover occurgo the antiferromagnetic state, &gis enhanced. Pan& in
between a quasifree electron stdteiimodal distribution  Fig. 2 displays the dependence (@&,-S,) on J;S? for the
and a polaronic statébimodal distribution. The figure also  classical spin case fal,=cc.
clearly shows that the crossover in indeed much sharper in In the quantum case the nonlocal magnetic correlation is
the adiabatic case than in the antiadiabatic one. Furthermorgiven by

B. Magnetic correlations
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1 is larger than the free electron kinetic energy, measured by
(S1:%)=5[Sl( St 1) = Su(S1+1) = Sy(S+ 1)), It is quite natural to generalize this condition to the double-
@) exchange model, at least when the polaron crossover occurs
between two phases that share a common magnetic state. In
and assumes only a few values. In Ef). S, is the modulus  this case, we can replace the bare hopgity the “mag-

of the total spin. Fof5;=S,=1/2, S,=0 and 1 are the two  petically renormalized” kinetic energy at=0 (t). Thus the

only possible values. FoB,=S,=3/2, we can have four crossover condition is determined by the condition
values §=0,1,2,3). It must be noted anyway, that the total

spin operatof? does not commute with the Hamiltoniéh), g2

so that the energy eigenstates have no reason to be eigen- Nmg=—==1. (8)

states 0fSZ,. wot
An inspection to the results in the absence of electron-
phonon coupling shows indeed that, ®+ 1/2, the magnetic In the S= case the magnetic hopping is given by
state abruptly varies, fa¥,;=J,(FE—AF), from afully po-
larized ferromagnet to an antiferromagnetic state, which is — 0
not fully polarized. The “transition” is a level crossing be- t=t COS( E)' ©

tween two states with different symmetry. The exact value of

(S1-S;) in this state depends on bally andJ,, even if the  where# is the canting angle between thg, spins?3 In the

dependence ody [for J;>J,(FE—AF)] is really weak, as it quantum caseS=1/2 andS=3/2, one can view the canting

appears in pandk) of Fig. 2. angle as a quantized quantity, that can assume only a few
The S=3/2 case is strictly analogous t6=1/2, and discrete values. We anticipate that thesererthe quantized

shows the fully polarized FE state, followed by three differ- values of the semiclassical approximation.

ent combinations of the AF states. Also in this case, the Regardless the value &andwg/t, for small values ofl;

precise values ofS,;-S,) in the three states depend dp the ground state is always ferromagnetic due to the Hund’s

and J;, and the dependence ah is really weak in each rule. A crossover occurs between a ferromagnetic itinerant

region. Moreover, the state with the largest negative correlaelectron and a ferromagnetic polaron. Within this region, the

tion is really close to the full antiferromagnet. We label themagnetic hopping is fixed to the free valtiest, and does
two intermediate spin phases as canté@Al) and canted 2 not depend onl;. As a result, the model is completely
(CA2), and the “most antiferromagnetic” as antiferromag- equivalent to a two-site Holstein model, and the crossover is
netic tout court The dependence dB,-S,) on J; is shown  associated with a vertical line in theJd; diagram, as shown

in Fig. 2(b). We notice that the scale df associated with the in all the phase diagrani&igs. 3—8. The crossover value of
change in the magnetic structure is consistent with the exx depends only on the rati@y/t, and moves from théa

perimental estimate?. =1 in the extreme adiabatic limit, to=1.2 for wy/t="0.1,
to a substantially larger value & 3.46) forwy/t=4, where
C. The phase diagram the condition for the polaron crossover is closed®=1

(that impliesh=4).

IncreasingJ,, phases with antiferromagnetic correlation
ﬁetween the core spins appear. The nature of these phases
lattice and magnetic degrees of freedom, by varying th¢!€Pends on the value & as shown in Sec. Il B. We start
strength of the electron-phonon couplingand of the anti- from the quantum cases, that present sharp level crossings at
ferromagnetic coupling between the core splpsThen we A =0, wheret sharply jumps following the magnetic corre-
draw various phase diagrams in the]l p|ane_ Each of the lations shown in Flg 2. If we negleCt the I’eally weak depen-
diagrams is characterized by the values of the §pimd of ~ dence onJ; of (S;-S;) within a given magnetic phase, the
the phonon frequency,, that parametrize the relevance of
guantum spin and lattice fluctuations, respectively. We con- 0.3
sider theS=, S=3/2 andS=1/2 cases, and,/t=0.1
(adiabatic regimeand 4 (antiadiabatic regime Finally, we
always assume that the Hund'’s rule couplihgis the largest
energy scale. In the classical case, we thke oo, and in the
guantum cases, we usg=10t. We denote “discontinuous
transitions” with full lines and “continuous transitions” with
dashed lines.

In this section we discuss the interplay between the mag
netic properties and the-ph coupling and finally determine
the phase diagram of our model. We tune the relevance

1/t

1. The effect of J on the polaron crossover FE

| FEplol
In Sec. Ill A, we have briefly described the conditions 0 '
. : . 0 0.8 1.8
ruling the polaron crossover in the Holstein model. In the A
adiabatic regimewg/t<1, the condition for a polaron
ground state is that the polaron binding enekgy,= 9%/ wg FIG. 3. Phase diagram f@=3/2 andw,/t=0.1.
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0.3 —r—

I/t

FIG. 4. Phase diagram f@=23/2 andwy/t=4. FIG. 6. Phase diagram f@=1/2 andwy/t=4.

polaron crossover is controlled by the conditi@, wheret romagnetic polaron. The interplay between the localizing ef-
is the value corresponding to the actual magnetic phase. fect of both thee-ph and the antiferromagnetic magnetic
The exact results obtained as described in Sec. Il confirninteraction strongly favors the AF polaronic state with re-
this expectation, and the polaron crossovers among phasépect to the competing phases.
with the same magnetic correlation are in fact delimited by ~Similar level crossings occur for all the finite-spin cases,
vertical dashed lines in all the diagrams ®#1/2 andS  with more involved details depending upon the valueSof
=3/2 (Figs. 3—6. The value of the crossover coupling obvi- and wy. For example, in the antiadiabatic regimg/t=4,
ously changes in the different magnetic phases. The FE stateeé FE-AF polaron “transition” occurs only in a narrow
is the one with the largest kinetic energy due to the doublgange of parameter&ee Fig. 6, compared to the adiabatic
exchange mechanism, so that the critizak the highest in  case, Fig. b This is simply due to the fact that, in this
this phase, and it decreases by decreasing the value of tfiegime, the crossover values forin the FE and the AF are
magnetic correlation according to E(B) (see, e.g., Figs. Very close. In the extreme antiadiabatic linait/t—c this
3,4). Notice that the effect of the value ¢5;-S,) on the  region would indeed vanish.
crossover coupling is much more evident in the adiabatic In the richerS=3/2 case, the CAl and CA2 states intrude
limit (Fig. 3), where the competition between the polaronbetween the FE and the AF at weakph coupling. In the
energy and the kinetic energy rules the crossover, than in thadiabatic regimesee Fig. 3 no polaron crossover occurs
antiadiabatic regiméFig. 4), where the electronic kinetic within the canted phases, and both these phases undergo a
energy is not the most relevant quantity. In the extreme anfirst order “transition” to the AF polaron. Only the FE and
tiadiabatic limitwy/t—co this dependence must completely AF phases display the usual polaron crossover. In the antia-
disappear, since the kinetic energy plays no role in the crossliabatic case, besides the aforementioned reduction of the
over. regions in which the polaron formation becomes first order,
The formation of polaron does not only occur as smoothcanted polaronic states are stabilized by the phonon quantum
crossover between states with the same magnetic correlatiofuctuations.(The “critical” frequency above which canted
Indeed, in theS=1/2 case(see Fig. 5, if we continuously  polaronic states appear i, /t=1).
increasel;, we have that, between the vertical dashed lines In the S=x case, where canted phases with a continuous
corresponding to the polaronic crossovers within the FE anganting angle are stable, the polaron crossover is not repre-
the AF phases, a first-order “transitiorflevel crossingoc-  sented by a vertical line, since the kinetic energy is a con-
curs from a ferromagnetic non-polaronic state and an antifetinuous function ofJ; with t=t cosé(J;), and 6(J;) is the

0.8 T : ] T 0.8 T T T T
06 AF AFpol o6l & i
; | CA AFpol |
-
~ 04 |- —
\ -
: LN ’
E 0.2 - : -
| - FE i  FEpol
0 : | I | ol 1 vl
0 0.8 1.6 0O 04 08 12 16 2
A A
FIG. 5. Phase diagram f@=1/2 andwy/t=0.1. FIG. 7. Phase diagram f@=c and wy/t=0.1.
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0.8 — T . tion also holds for the case &= 3/2, once the proper value

) J—
i . for the kinetic energy in the antiferromagnetic phaset/4
06 i i is used.
' Equation(10) results from the competition between the
\ CApol i magnetic energy balance, controlled By, and the “po-
3 laronic” energy, i.e., the energy resulting from tagh cou-
\ g pling. Since the AF phase has always a smaller hopping with
02 \ ] respect to the FE phase, the first qualitative effect oktipé
___________ interaction is to lower the energy of the antiferromagnetic
pEp?f T phase with respect to the ferromagnetic one, therefore favor-
: : ing antiferromagnetism. The region of stability of the FE
phase is always shrunk by increasingMore generally, the
e-ph interaction favors phases with smaller values(8f
FIG. 8. Phase diagram f@= andw,/t=4. -S,), so that the boundaries of the different magnetic phases
are always marked by downward curves in fhex plane.

value of the canting angle at=0. Again, all results are In the limit of smallt, the energy difference in the nu-
i . » A merator of Eq(10) reduces to the pure kinetic energy of the

consistent with the conditiof8). In this case, the phonon ] R oY

fluctuations play a somewhat qualitative role. In the extreméi0IStein model close to the atomic limit. Defining=t/t,

adiabatic limit the CA state undergoes a level crossing to th&/€ can write

AF polaronic state. The-ph interaction and the antiferro-

magnetic coupling); cooperate to stabilize the AF pol i i Eult+ (1= ytI—En(D)

_ _ 1 perate to stabilize the AF polaron |im[E,(yt)—Ey(t)]=lim(1— y)t
without forming a canted polaron. As soon as we introduce a—.o t—0 (1=t
finite, but smallwy /t, a tiny slice of a canted polaronic phase
appears to bridge between the canted state and the antiferro- —(1- it JEH() = —ENN(1— )
magnetic polaron. In the antiadiabatic regime, the huge Y at H v
guantum fluctuations strongly favor a canted polaronic state, (11)
and the antiferromagnetic polaron appears only Xor10
andJ;>2.

The above results show that the effect of the magnetic
correlations on the small polaron crossover is influenced by I$=k(S)(—EM), (12)
the spin quantum fluctuations. In particular, e 3/2 case,
which is relevant to the manganites is not qualitatively simi-where x(S) is a constant that contains the factor %, and
lar to the classical spin case, that is usually considered fodepends on the value of the sggand on the “transition”
simplicity. Many features of th&= 3/2 case are in fact direct under consideration, such that, in the absence-ph inter-
consequences of the quantum nature of the spins, and agetion the condition is simply; = «(S)t. This latter relation

In the smallt limit the condition(10) reduces then to

similar to the simplest quantum caSe- 1/2. is analogous to Eq(8), since the effect of the-ph interac-
tion results in the substitutiob——EK", but, contrary to
2. The effect of eph coupling on magnetic “transitions” that, it is valid only fort—0.

. . . . This result gives valuable information about the role of
In this section we analyze how the various magnetic : : .
B o . : . the retardation effects in treeph coupling. In general terms,
transitions” described in Sec. lll B are influenced by the . . . .o
. ) ) ; the interaction mediated by the phonons is in fact retarded,
e-ph interaction. In the previous section we have found ana- . . o
: . L, and becomes instantaneous onlwjf/t—o. In such a limit,
lytical results for the “transition” from FE to AF states for oo :
. . as we have shown, the kinetic energy rules the magnetic
Jy—. The expressions, given by Eq®) and (6), can be " , 9 i
recast in the common form transitions.” As soon as the approximatidr- 0 is released,
the retardation effects imply that EGL0O) must be used. No-

tice thatEy(AF) — E4(FE)=—EK"+ A, whereA is the dif-

En(AF) — Eq(FE) ference between the-ph interaction energies in the two
{8?= , (10 phases, and turns out to be always positive. The overall ef-
(St- SZ>FE_ (S1-So)ar fect of the retarde@-ph interaction is therefore to reduce the
2 2 stability of FE phases with respect to AF and CA phases.

In the S=3/2 case all the magnetic “transitions” are dis-

) ) continuous, as described in Sec. Il B, so that similar argu-
whereEy (AF)[Ex(FE)] is the energy of the Holstein model ments can be applied, and EG.0) allows one to compute

for the antiferromagnetidferromagnetit spin alignment,  the “transition” coupling, once the energy of the Holstein

and(S,;-S,) in the different magnetic phases is computed atmodel and the magnetic energy of the appropriate phases are
g=0. In particular, the evaluation dy for a given phase known.

simply amounts to finding the ground state of the Holstein  The situation is different only for the continuous transi-
model where the bare hoppirids replaced byt. This rela-  tion n between the FE and CA phases in the classical spin
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case. In this case the continuity of the “transition” implies DMFT, our exact solutions faithfully reproduce the physics
that the energy difference between the phases is infinitesimadf the model if the local and short-range effects are domi-
SO thatEﬂ”z —tdEy(t)/at rules the “transition” not only nant, as it is the case for the manganites. More specifically
for smallt, but for arbitrary values of, as shown by Eq4).  the one-electron solution of the two-site Holstein mo@ele
This preliminary analysis suggests a really important differ-Appendix A is surprisingly similar to the one-electron solu-
ence between the classical spin lirSit-« and the quantum tion of the Holstein model for an infinite lattice within
S=3/2 case. DMFT. Looking at a given site, the role played by the “ef-
Now we can give some description and interpretation offective quantum medium” of DMFT is here simply played
the exact phase diagrams in light of the above analysis. IRy the other site. It must be noticed, however, that our small
the adiabatic limitwy/t=0, for finite value ofS and forh  cjyster cannot determine whether the polaronic and the delo-
<Apol, the energy of the-ph model alone does not depend ¢jized states are Fermi liquids or not.
uponX, so that the relative stability of the various magnetic 14 check whether the above considerations about the rel-

phases is in turn expected to bendependent. The magnetic gy ance of the two-site cluster as far as the polaron crossover

“transitions” are therefore associated with horlzpntal lines iNis concerned may be valid also in the presence of magnetic
the N-J; plane. If we introduce phonon fluctuations, the ki-

netic enerav depends uponalso before the crossover. and interaction, we compare our results to more realistic models
: gy dep up Ver, {or manganites. There are not indeed so many solutions of

the boundary between the magnetic states acquires a fini Re double exchange model in the presence-ph coupling.

slope, that becomes larger and larger by increagpgt. In particular, to the best of our knowledge, there are no phase

This behavior can be easily seen comparing Fig. 3 witbr4 . . .
Fig. 5 with 6. The case of the classical spin variables, wherdliagrams studies of the Holstein-double-exchange model.

the magnetization is a continuous variable, can be unde,Studies of more realistic JT double-exchange model, keeping

stood in similar terms. The crossover between the FE and th8to account the full tridimensional structure and the orbital
CA phase in fact closely follows the curve obtained usingdegrees of freedom,. are instead a\'/ailab'le,' but mo'st of them
Eq. (4). are forced to consider the classical limit for either the

As discussed previously, the phonon fluctuations alway®honons or the core spins, due to the large local Hilbert
favor FE phases with respect to AF and CA phases, as it cagpace->02720
be seen comparing the phase diagramsdgft=0.1 with Among the various studies we want to draw the attention
the corresponding witl,/t=4 (at the same value of). In of the reader to Refs. 15 and 26, in which phase diagrams of,
we increase the quantum fluctuations of the phonons, by inrespectively,x=0 and x=0.5 Lg_,CaMnO;, in agree-
creasing the phonon frequeney, the retardation effects are ment with experimental findings are reported. A common
decreased, so that the localization of the electrons is madeature of the above works is the presence of a transition at
more difficult. An enhanced mobility of the electron results small values ofJ; and intermediate. from an itinerant FE
in an enhanced stability of the FE phases due to the doublghase to a FE phase with significant lattice distortions, la-
exchange mechanism. beled as JT phase in Ref. 15, and orbitally ordered state in
Ref. 26. This transition represents the natural counterpart of
the polaron crossover within the FE phase that we find in our
model, as it can be seen by direct comparison with all our

In this section we discuss the relationship between th@hase diagrams. Despite the density of carriers is different in
two-site model and larger systems. Some peculiarities of théhe two studies, the-ph coupling for which this transition
two-site system must be addressed in order to properly coneccurs is very similar. In the same references it is also found
pare our findings with those of larger systems. We noticehat finite-size effects are not so important for the description
that, in the absence of magnetic interactioftdolstein  of this transition, thus confirming that the physics underlying
mode), the lattice deformations obtained within the presentthe polaron crossover is essentially local.
model (Fig. 1) are similar to those of an half-filled baRdl. Other analogies between phases diagram of Refs. 15 and
We can therefore compare the polaron crossover obtaine2b6 and Fig. 7 can be noticed. In all the phase diagrams,
through the procedure outlined in Sec. Il A with a spinlessincreasingl,, the FE phase is replaced by some other mag-
fermion system withx=1/2 or, in the presence of magnetic netic ordering(“non-FE” phases. In our model the ferro-
interaction, with the case of one polaron every two sitesmagnet is simply replaced by CA or AF phases, while in the
However the spectral functiorisee Appendix Aare similar  more realistic models, more complicated phases involving
to those obtained for a single polaron in an infinite sizeorbital degrees of freedom are stabilizéde CE phase for
lattice!’ x=0.5 and theA-type antiferromagnet fox=0). Nonethe-

We emphasize that the capability of the two-site system tdess, the shape of the curves separating the FE phase to the
capture the physics of polaron crossover is not accidental arfthon-FE” phases looks very similar in all the systems, de-
can be easily rationalized. This is essentially due to the exspite the different nature of the “non-FE” phase in the dif-
treme short-range character of the polaronic state. In thiferent models. We emphasize that our simple model is not
spirit we expect the results of our calculations to be someable to account for the different orbital and magnetic order-
how related to a dynamical mean field theory, where theéngs found by experiments, while the more realistic JT cou-
local quantum fluctuations are exactly taken into accountpling correctly reproduces the experimentally observed
while the spatial correlations are frozéhSimilarly to the  phases.

IV. RELEVANCE OF THE TWO-SITE SYSTEM
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V. CONCLUSIONS

U= (A2)

In this work the two-site double exchange model for an
electron coupled with phonons is solved exactly for an ex-
tremely wide range of parameters and physical regimes. Foing the property
S=1/2 andS=0 we give an analytical exact solution for
arbitrary e-ph coupling and phonon frequency. F&# 3/2
the solution is obtained through standard numerical tech-
nigues. The availability of these solutions allows us to study
the effect of both phonon and spin quantum fluctuations, and/
of their mutual interplay. ~

This study, though limited to the extreme small size of the ~ Hu(t) 0
two-site cluster, is shown to be a good description of larger Hy= 0 Hu(—1) '
systems, since the relevant physics involves local and short- H
ranged quantities. One of our main results is a completg are
characterization of the effect of the double exchange and of
an antiferromagnetic coupling between thg spins on the
small polaron crossover. In this regard, we give an analytical

estimate fo_r.the cro§soyer coupling, given. b= g*/wot In each block we have a purely phononic Hamiltontdp
=1, wheret is the kinetic energy renormalized by the mag- (+t). The eigenvalues and eigenvectors can be determined

netic effects. _ _ _ _ by continued fraction solution for the resolvent betwéeih
From a complementary point of view, we considered '”and|n) phonon states

detail the effect of the-ph interaction on the magnetic prop-

erties of the system. In this case, we give an analytical con-

dition for the magnetic “transitions” in the presence of a G (w)=<m
m,n

i 1 (_)aa)
V2l -1 (o)

(—)%atah(-)"e=—(atah (A3

e obtain forH,=UH_ U !

(A4)

Au(=t) =wea'a—g(a+ahTt(-)2a (A

finite N, given by Eq.(10). This relation can be simplified in
the limitt— 0, where there is no retardation effect. The com-
parison between the general case and the atomic limit allowdsing
us to quantitatively describe the role of retardation in stabi-
lizing AF (or CA) phases. 1 1 1

A comparison of the realisti&=3/2 case with the classi- wo—H o-— Ho + w—Hg H w—H (A7)
cal spin cas&=o shows that this latter approximation does
not reproduce some qualitative features of the phase diggith H,=wya’aTt(—)* 2 andH,=—g(a+a') we get the
gram. A proper study of the manganites should therefore takg,c\rsion
into account the quantum nature of the core spins.

—_— n>. (AB)

G,in(w) = 5m,nG§(w— Nwg)
ACKNOWLEDGMENTS

We acknowledge useful discussions with D. Feinberg and -g>, Go (@—Nwo)Xp pGpn(®), (A8)
C. Castellano. P

whereX,, ,=(n|a+a’|p). This tridiagonal recursion can be
solved for the diagonal elements through a continued frac-
tion solutiorf®

In this appendix we sketch the solution through a contin-
ued fraction expansion of the two-site Holstein model. A
continued fraction solution has been already reported in the
literature® for a related model in the field of quantum optics.
Here we derive the continued fraction expansion for eigenwhere
values and eigenvectors of the two-site Holstein model using
a different method. ng?
The Holstein model for an electron on two sites can be 3, =
written in a pseudospin representation in terms of the Pauli _ (n—1)g?
matrices Wt woFt= (n—2)g?
w+ 2w0i t— 2
Hy=wola'a—go,(a+a’)—toy, (A1) - 9 i
w+nwy+(F)Mt
wherel is the unity matrix. The Hamiltonian can be diago- ot ( )(Alo)
nalized in the electron subspace using a transformation intro-
duced in Ref. 8 and

APPENDIX A: THE EXACT SOLUTION
OF THE TWO-SITE HOLSTEIN MODEL

G;f’n(w)Z

®—NwyFt—3 o= aps (A9)
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APPENDIX B: THE EXACT SOLUTION

(n+1)g?
Sem= . OF THE TWO-SITE HOLSTEIN DOUBLE-EXCHANGE
_ (n+2)g? MODEL FOR S=1/2
w—wo+t— (n+3)g?
w—2wy*rt— = 9 Let us start form the casg=0. We choose the following
o~ Nwg+t—-- basis set labeling the states according to the total Sgin

(A11) =S+s whereSis the spin of the M§" ion ands that of the
. . e, electron. We have two states in ti8=3/2 sector|A)
';teizr?ﬁgggpde;ﬁl;lérg ;Ze Green function of the two-site Hol-_ Y1) [AY=[11)] 1) and six states in the=1/2 sec-
tOTﬂUg?F)IﬂU)I'T->>,|ETT’T>T;|IUTT>>I|-T>>, HIT%TI%TI>IT->,IE’>
. T = 1 D)= 1-)|D"Yy= 1), where
Gi j(@)=~i(0|Tci(t)c{(0)[0) (A12) [T (JU)) represent an ugdown) spin state for the core
spins and 1) (||)) are the same for the, electrons. The
Hamiltonian is invariant for flipping of all the spins so these
are all the states we need. The sta®sand|D) have a FE
character while the statd8) and |C) have AF character.
The S=3/2 subspace, spanned by the combination§Aof
and|A’), decouples from the other states even in the pres-
ence ofe-ph phonon interaction.

can be expressed as

1
Giw)= E[G&o(wHGa,o(w)],

1
Giiw)= E[Gao(w)—Gao(w)], (A13) If we consider the symmetric and antisymmetric combi-
nations

thereforeva0 are thek-space propagators whose poles deter- 1
mines the bonding and antibonding eigenvaluesigf. The |[A%)y=—=(|A)£]|A")),
residues of the lowest energy pole Gﬁn determine the V2
square of the projection of the phonon ground state on the
|m) statebrﬁ. Let us write Eq(A11) for n=0 in a recursive B*)= i(|B)+|B’>)
fashion 2 * ,

sE_ Pe’ (A14) |C*)= i(|C>+|C’>)

P w—pwo-i—(I)pt—E;,il, \E ,

whereX ] is the continued fraction of EqA1l) therefore Lo 1 ,
the equation which gives the eigenvalue of the two-site Hol- D)= E(|D>i|D PR (B1)

stein model is
in the absence of the-ph interaction the symmetric and

w+t—37=0. (A15)  antisymmetric sectors are decoupled so that the part of the
Hamiltonian matrix which pertains to Hund and antiferro-

By linearizing this recursion around ttmeth solutionE,, magnetic interactions consists of three blocks:

of Eq. (A15) letting z, = 9%, /JE,, we get 33y
- 0
2 ’ (B2)
+ + pg H3/2: _ ' B
2y =(2p:1— 1) — —. (A16) 0 Ji—Jy it
Em—Ppwo+(F)Pt=27,, 4
Finally the coefficienb,, is given by J+dy 9
- -t 0
4 2
1
b= . AL7 J1 J17Ju Jn
n~ Vi1, (AL7) Hize=| -t -=5— -3 | ®3
The (quantum probability distribution function for the dis- 0 _ ‘]_H JitJy —t
placement operator can be determined using the harmonic 2 4
oscillator wave functions’s(X) as the last blockH,, - can be obtained from E4B3) by the

substitutiont— —t. The e-ph matrix elements couple the
+ R+t ~+t POt -R-C-D-
P(X)= b )*b* + (b=)* b= TW* (X)W (X). subspaces A*,B™,C D+ ) and A",B",C,D7). The
(X) mE,n[( m)™ Dn (B "By TW (X)W (X) subspace spanned HA=) can be diagonalized indepen-
(A18) dently having the same eigenvalues and eigenvectors of a
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two-site Holstein mode{see Appendix A The Hamiltonian 1 [1+(_)aTa]1 [— 1+(_)aTa]1
matrix in theS,,, can be written U==

. (B5)

2\ [~14 ()1 [1+(-)"

Hipt +wola’a —gl(a’+a)
2= (B4)

—gl(a'+a) Hyp +wela’a)’ -
i _ i ) _ i Using the property given in Eq(A3) we get for Hy),
Herel is the 3 3 unit matrix. We can diagonalizd ,,, in =UH,,U!

the phonon space by means of the unitary transformation

_ [lweata—g(a'+a)]1+Hi,—t(—)22A 0
12~ N " at atar | (B6)
0 [wea'a+g(a’+a)]1+H{,+t(—)% %A
|
where we have spIiHl,z,izHi‘}zitA in the atomic {=0) AR Jy t )
part and in the hopping dependent term Bie- =72 73" %" (B9)
0 10 By replacingtﬂt(—)aTa we are left with a purely phononic
A=[1 0 O (B7) Hamiltonian in the FE/AF sector
0 0 1 _ J
at . . AfE=woa'a—g(al+a)— 7 —t(—)2'a+ 7,
and Hj, can be obtained from EqB4) with t=0. The 4 4
Hamiltonian Eq(B6) can be diagonalized in each spin sector (B10)
by an independent transformation which diagonalides - 3 ¢ 3
for a given phonon number. The diagonalization gives six A =wiata—g(aT+a)— H_ —(— )aTa_ by
eigenvaluesE,, .. (n) for each phonon number. For=0 4 2 2
andJ,>t,J; the lowest of them are (B1D)
The comparison between the energies of the FE and
EFE _ _ ‘]_H_ 4 ﬂ (B8) the AF phases leads to the conditi¢®) for the magnetic
Y2~ 4 4’ “transition.”
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