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Diluted quantum antiferromagnets: Spin excitations and long-range order

A. L. Chernyshev;" Y. C. Cher? and A. H. Castro Netb’
1Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
°Department of Physics, University of California, Riverside, California 92521
3Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 24 July 2001; published 11 February 2002

We have studied the static and dynamic magnetic properties of two-dimeng&ibaland quasi-two-
dimensional, spir8, quantum Heisenberg antiferromagnets diluted with spinless vacancies. Using spin-wave
theory and thel-matrix approximation we have calculated the staggered magnetiZdt{@riT), the neutron
scattering dynamical structure factStk,w), the 2D magnetic correlation leng#{x,T) and, for the quasi-

(2D) case, the Nel temperaturd (x). We find that in two dimensions a hydrodynamic description of exci-
tations in terms of spin waves breaks down at wavelengtger than [/a~e™*, x being the impurity
concentration ana the lattice spacing. We find signatures of localization associated with the Iscahel
interpret this scale as the localization length of magnons. The spectral function for moméat&>| "1
consists of two distinct partsi) a damped quasiparticle peak at an enecgh= w> w,, with abnormal
dampingl’,~x cok, wherewo~col ~2, ¢, is the bare spin-wave velocity; arid) a non-Lorentian localization

peak atw~ wq. Fork=1"1 these two structures merge, and the spectrum becomes incoherent. The density of
states acquires a constant term, and exhibits an anomalous peak.gf associated with low-energy localized
excitations. These anomalies lead to a substantial enhancement of the magnetic speciiig laabow
temperatures. Although the dynamical properties are significantly modified, we sho thatis not the

lower critical dimension for this problem. We find that at smathe average staggered magnetization at the
magnetic site isVl (x,0)=S— A —Bx, whereA is the zero-point spin deviation a8 0.21 is independent of

the value ofS; the Neel temperaturely(x)=(1—Asx) Tn(0), whereA,=m7—2/7+B/(S—A) is weakly S
dependent. Our results are in quantitative agreement with recent Monte Carlo simulations and experimental
data forS=1/2, 1, and 5/2. In our approach long-range order persists up to a high concentration of impurities
X which is above the classical percolation threshalek0.41. This result suggests that long-range order is
stable at smalk, and can be lost only around=x, where approximations of our approach become invalid.
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[. INTRODUCTION was thought to be possible, given the large amount of quan-
tum fluctuations in the ground state $f 1/2 system. How-
The discovery of superconducting cuprat@$TC) has ever, only recently were a systematic experimental analysis
motivated an enormous amount of studies in low-of the diluted 2D AF performed in a wide range of
dimensional magnetic systems during the last 15 ykdrs. doping!®-2°Although there were several other experimental
However superconducting materials now form only a sub+ealizations of a 2D QHAF on a square lattice wik 1/2
field in the activity of lowD quantum magnetisrtsee Ref.  (Refs. 21—-23 and S=5/224?° the CuO-based compounds
4). The hope for an insight into the physics of HTC from a are among the few which allow a direct probe via elastic and
study of magnetically related system has attracted much ataelastic neutron scattering. At the same time, quantum
tention to the properties of diluted two-dimensional, quan-Monte Carlo(MC) studies provided highly reliable simula-
tum Hersenberg antiferromagne@HAF’s).>~2" One such tions of large lattices at low temperatuf@$® These works
system, LaCu, ,Zn(Mg),O, (LCO), a quasi-2D,S=1/2,  indicated that, in fact, no QCP point exists belay, and
QHAF diluted with spinless vacancies, has been a subject ahat at percolation threshold the phase transition is character-
great interest because of the possibility of quantum criticalzed by classical exponent&?’
points (QCP’9 in its phase diagram. Earlier experimental Note that theoretical studies of diluted spin systems at-
datal’ while demonstrating that LCO shows a much strongettracted much attention some 30 years ago in the context of
stability against doping in comparison with the mobile-hole-magnetism in diluted magnetic alloys.3* Most of these
doped compound La ,Sr,CuQ,, indicated the existence of a studies focused on largg<classical Heisenberg or Ising
QCP atx=x.~0.2, well below the classical percolation systems. The traditional view of the effect of local disorder
threshold. This finding was in sharp contrast with classicabn the spectrum of an ordered 3D antiferromagnet is that at
magnetic systems where dilution leads to a breaking of théong wavelengths théorm of the spectrum is not modified.
magnetic bonds, and long-range ordeRO) is lost only at  The only effects are the reduction of hydrodynamic param-
the percolation threshold,, a characteristic value of the eters(spin stiffness, spin-wave velocity, eth. and a weak
dilution fraction x at which the last infinite cluster of con- damping. Conventional arguments for this ability of the
nected spins disappears. For a 2D square Iar)t'1‘5:<=:-,0.41.28 long-wavelength spectrum to withstand perturbations on a
The existence of such a QCP below the percolation thresholbcal scale often appeal to the Goldstone theoteaithough
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its applicability to systems without translational invariancevolve a single impurity. This approximation gives results that
requires the additional assumption that the microscopic dego beyond a simple linear expansionxnalthough not all
tails are virtually averaged on short distances. As a result thhigher-order contributions i are taken into account. This
low-energy excitations are weakly damped spin waves whickapproach is valid as long as single-impurity scattering is the
belong to a so-called “infinite cluster,” and they are well dominant one. We recover the results of Refs. 30 and 37 at
defined up to the percolation threshdfdThis effective res- k=11, that is, the spin-wave spectrum acquires a nonlinear
toration of the translational invariance involves spin-wavelogarithmic contributions, () «x kIn|w| with an abnormal
propagation on randomly directed paths with some Euclideagamping I',ox k. This means that an effective spin-wave
distancel.” which can be converted to a “true” distante  velocity c(x) is not well defined. However, we show that
Thus the V\gave vector preserves its meaning at longhere is no instability of the system toward a disordered
wavelengths® In three dimensions these arguments workphase, as conjectured previously. Static properties such as
very well, and are assumed to demonstrate a “general p””s'taggered magnetization and théeNeéemperature do not
ciple.” t{)ossess anomalies, in contrast with the dynamic properties. It

Th(_ere is growing evi'dence that, in two Qimensions, Suct]g interesting to note that the spin-wave stiffngsgx)
logic is not always valid. In the 2D case it was found by ~ B . ) )
Harris and Kirkpatricke® and more recently in Ref. 37, usin _C(X).XL(X) Is also well deﬂ_ngq, since the anomalous

p ; y ; g

a perturbativelinear inx) approach, that the spin-wave self- terms in the transverse susceptibiljy (x) and inc(x) can-
energy at long wavelengths acquires a nonhydrodynami€€! €ach other. _ _
contribution which explicitly violates the Lorentz invariance  YVe show that a diluted 2D AF provides an example Pf a
of the clean systenta feature anticipated by Chakravarty SyStém where the arguments f% the spectrum to be “pro-
etal. in Ref. 1). Recently, similar results were obtained in tected” at long wavelengths faff:**We have found that the
random-phase-approximation studies of a diluted 2D HubsPectrum of a 2D AF at long wavelengths is overdamped at
bard modeP Some of these studies concluded tBat 2 is  arbitrary concentrations of spinless impurities. More explic-
the lower critical dimension for this type of disord8r’ itly, the spectrum ceases to contain a quasiparticle peak of
implying an instability of the long-range order to an infini- @ny kind beyond a certain length scale. The actual spin ex-
tesimal doping in the Imry-Ma sens&However, as we men- citations, instead of being described as ballistic, may be in-
tioned above, MC results show that the order is preserved ufgrpreted as diffusive spin modes. The reason for this is the
to x=X,, in contradiction with these conclusions. We will Influence of scattering centers on the long-wavelength exci-
show that the conjecture of the instability is an artifact of atation, which is not vanishing in two dimensions because of
perturbative expansion, and is avoided when the divergerihie small phase space. This leads to the absence of an effec-
series of diagrams is summed. However, the resulting modiive self-averaging of the system to a translationally invariant
fication of the excitation spectrum is very unusual, and lead§edium with renormalized parameters, as would be the case
to a number of observable anomalies. in three dimensions. Instead, the scattering leads to a length

Technically, our approach is similar to one of Brenig andscalel/a~e™* beyond which the influence of impurities on
Kampf® who studied the problem of excitation spectrum in the spectrum is dominant. We associate this length scale with
diluted 2D QAF’s using spin-wave ariématrix formalisms. ~ the localization length of spin excitations.
However, while the authors of Ref. 15 notes unusually broad We show that the dynamical structure fac&(k, ), for
peaks in the spectrum, thesumed “normal” 3D type of a~>k>1"1, consists of three partsve use units such that
the spectrum renormalization, that is, a softening of théi=kg=1): (i) a broadened quasiparticle peak at an energy
sound velocity and a recovery of the spectrum at long wavew=Cok (1+ 2xIn(ka)/w), where co=2\2SJa is the bare
length. The derivative of the spin-wave velocity withob-  spin-wave velocity,] is the antiferromagnetic exchange con-
tained numerically in Ref. 15 using this assumption, is rathestant, and the width is given by ,=x cok; (ii)) a non-
large, d[ c(x)/cy]/dx~ — 3, which supported earlier experi- Lorentian localization peak aé= wy~ Col ~1 and(ii) a flat
mental expectations of a QCP &t x,. A recent work by background of states betweer=cok andw= wg. Thus, be-
two of us using a nonlineas model allied to classical per- sides the lack of Lorentz invariance, for evdeystate some
colation theory® gave a similar result. Another study in Ref. weight is spread from high energies- cyk to low energies
40 used a generalizations of tlwe model with parameters down tow~ wo.** Fork=<|"1 the quasiparticle and localiza-
modified according to MC data, and suggested a simpléion peaks inS(k,») merge into a broad incoherent peak that
renormalization of spin stiffness,(x) and spin-wave veloc- disperses in momentum space.
ity c(x) as the only effect of impurities. We will show that ~ The anomalies in the dynamical structure factor are re-
these results are not correct because of the existence of lfected in the magnon density of statééw). In a clean 2D
calized spin excitations which are not taken into account iPAF, N(w) = w. With dopingN(w) acquires a constant contri-
these works. bution from the localized stateN(w)>xw+const X at w

In this work we study the problem of impurities in 2D > wg, has a peak ab~ wq of height~1/x, and vanishes as
QHAF’s within a linear spin-wave theory, usingTamatrix N« 1/(xIn|w|)? for @< wq. This behavior oN(w) is reminis-
approach combined with a configurational average over theent of the problem of localization of Dirac fermions in 2D
random positions of impurities. We solve the single-impurityd-wave superconductdfsin the case of “strong” disorder
problem exactly. The spin-wave Green’s function is evalu-(unitary scatterejs Another interesting similarity between
ated by summing all multiple-scattering diagrams that in-that problem and an impure 2D AF is that disorder may lead
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to very different physical consequences depending on ittration and small enough anisotropies and inter planar cou-
“class.” As noted in Ref. 37 and also in Ref. 45 in another pling may be required to observe directly some of the dy-
context, one obtains drastically different results if the spin ofnamical effects we predict in this work. ' .

an impurity is equal to the spin of the host material, and only We calculate the static magnetic properties and find a
bond strengths around an impurity) are modified. The guantitative agreement with both MC simulations and ex-
renormalization of the spectrum in this case does not contaiRéfimental data. We show that B0 the staggered magne-
any anomalous terms, namelg(w)~Xxcyk and T,  tization (averaged over the magnetic sfgsis g|v2en by
~X Cok3aZ. According to the terminology of 2D Dirac fer- M(X,0)~S—A—=Bx for x<1; the factor A=2,v{~0.2
mions, this problem falls into the class of a “weak” disorder. stands for the contribution of the zero-point fluctuations of
In the case of spinless impurities the similarity to “strong” the Spins, an@=0.21 isSindependent in our approach. We

unitary scattering centers is evident, since no spin degrees §fd that Ty(x)/Ty(0)=1—Asx for x<1, where As=m
freedom exist at the impurity site. —2/77.1L B/(S—A). is a weak function ofS. This I!near ex-
From the density of stateN(w) we calculate the mag- Pansion result givesh; =~3.2 andA5,2:2.§, Wh'ch work
netic specific heat, which for a clean 2D system at low tem?huelzteli;v:gruzgsngilgz Vraelgjlg;giﬁf' bl(izsll'g;ergsé'{]g;:gt
. 2 . L =VU.
peratures isCy(0,T)=T“. We predict a strong deviation x,(5/2)=0.38, both belowk, , which means tha (x) ver-

from this behavior due to localized states. We find that thée . ) .
- ) o ) susx curve should be concave, in contrast with the 2D Ising
specific heat acquires a quasilinear correcti®@y,(x,T)

- 2 ) . magnets for whichTy(x) is a more traditional convex
=BO)T/(INT/wg| +7*4) which is roughly =xT at T o6l guch an anomalous curvature of the ordering tem-

>w. Observation of such a behavior can provide a simpl&,q a1 re was also observed in many different magnetic sys-
test of our theory. We remark that in our approach the CONtams composed dfelectron moments such as U and €e.
tribution of the finite(decoupled clusters is not taken into We show that in our approach for larger valuesxdk(x)
account, since the whole system is considered as a singlﬁ1deed bends inward, and tends to saturate close, FcWe

ﬁrdered, |nf|_n|teh c_Iuster. Howe\f/er, dg?_'te c:jus:]ers bOf slze interpret this behavior as due to localization effects which
have a gap in their spect_rum otor » and thus €COME  tand to reduce the role of quantum fluctuations in the de-
important in the low¥ region only atx close to percolation ¢ tion of the long-range order

threshold wherel can be large. Another source of similar ~ \ye have calculated the 2D magnetic correlation length
high-energy corrections is due to the resonant stai€ss(  +(x T), to describe the paramagnetic phase of the system
~J), a:g)und impurities whose energy may go down withhqye the Nel temperature. We used a modified spin-wave
doping.™ At lower temperatured < V3,3, where, is the ‘theory formalism of Takahasf?,and calculated(x,T) nu-
interplane exchange constant, a crossover to a 3D behavigferically. The correlation length is suppressed in comparison
should be seen. Thus, famot too close to,, we expecta yith the pure case, and also shows some deviation from a
large temperature window where the predicted anomalou§imp|eezwps(x)n behavior at largex.
2D behavior ofCy, in the infinite cluster is dominantand can  Tpis paper is organized as follows: we describe the model
be observed. ] _and introduce the formalism in Sec. II. In Sec. Il we present
We also consider the effects of small interplane couplingesyits for the dynamic properties. In Sec. IV, the static prop-
73p=J,/2] and small anisotropy gaps on our conclusionsgties and long-range order and discussed; Section V con-
for dynamical properties of a strictly 2D isotropic AF dis- tains our conclusions. A few appendixes are included with

cussed above. It is evident that as long as these additiongktajis of the calculations. Some of the results presented here
energy scales are small in comparison witthere will be an  \yere briefly reported in our previous papér.

energy range *w/Js>\r (7= Teff @Cccumulating the total

effect of the gaps and 3D couplino which j[he nonlinearity . Il. FORMALISM

of the spectrum and an abnormal damping of the 2D spin

waves should be observable. A more delicate question is if The systems discussed in this paper are modeled by the
the localization part of the spectrum and truly overdampedsite-diluted quantum Heisenberg antiferromagnet
long-wavelength excitations can be seen in the presence of

gaps or 3D coupling. The point is that the disorder induced _ AN c.Q

scalewg~Je” ™ can be hindered by these additional terms, H <|ZJ> i PPy S-Sy, @
which cut off the log singularity. Therefore, a range of con-
centrations &x<x*~In"Y(1/r) can be found where the
long-wavelength quasiparticles are still well defined deep i
the 3D region of thek space ka<./7), similar to the
quasi-1D problent! For LCO materials7~10"* gives x*
~0.1-0.2. Above concentratioff (and atx<x,), localiza-
tion and overdamped peaks should be observable sigce
> /7, and all the low-energy excitations become incoherent.
Our order of magnitude estimation for the largest value of
which can allow such observatiofirom the conditionx* We begin with Hamiltoniaril) which is split into the pure
<Xp) is 7~0.01. Therefore, a rather high impurity concen- host and impurity parts,

wherep;=1 (0) if the R; site is occupiedunoccupied by
the spinS. We focus on the problem of tetragonal or square
r]attices with in-plane,J, and out-of-plane,J, , nearest-
neighbor exchange constants;) denotes a summation over
bonds. In the systems of interelst-J, (for instance, in LCO
J~1500 K andJ, ~10 4J).

A. Spin-wave approximation
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bi=u BT+U a_y,
H=H0+Himp=<i2j> Ji,-ss,-—% J5S-S:s () kTP TRk

with
where | runs over the impurity sites and is a nearest- 2 2 _ -
neighbor unity vector. Then, in the linear spin-wave approxi- Uemvi=1, 20i= = nd o, (12)
mation, = =
U= [ Yot @y b — sgN5 Yo~ Wk
S=S-ala, S'=2S3, S =254, (¥ k 20, UK YN 20,
szz _ sy b]-Tb,- , S;: \/2—qu s = \/2_8q , where the bare spin-wave frequency is
for spins inA (i) andB (j) sublattices, the quadratic part of k= \/7’%— J’E- (13)
given by lattice by letting7— 0 in Eqs.(4)—(13). In what follows all
energies are expressed in units(df=4SJ.
Ho=4S3>, [ yo(afay+blby) + yi(atbl (+b_,ay)], After the Bogolyubov transformation the Hamiltonian
k @ Equations(4) and(7) are given by(in the units ofQ})
where in-plane and out-of-plane coordination numbers are Ho= >, wnlafar+BiBY, (14)
z=4 andz, =2, respectively, and we define K
HENE TR ®) Himp=— 3 @CORAT A, (15

with 7=J, /2], y,= (cosk,+cosk,)/2, andyj = cosk,. From Lk

now on the in-plane and out-of-plane momenta are in unitdVhere the two-component vectors are
of the correspondent inverse lattice constants. The impurity

parts of Hamiltonian(2) on a tetragonal lattice are A= . Al=lal, B_4l, (16)

Ay
Bl
Hinp=—S > J dala+bl, sby, stabl, s+aby sl and 2x2 scattering potential matriceB, . are obtained
leA.s from Egs.(9) and(10) using Eq.(11). For the sake of further
6) use of theT-matrix formalism, it is convenient to decompose
HB —HA (acsh) f[he scattering potentia[s into orthogonal compor)ents. accord-
mp tmp ' ing to the symmetry with respect to the scattering site. The
with J; 5=J (J,) for 6=e, e, (e,). After Fourier transfor- ~symmetry of the tetragonal lattice B3,,, which is a group
mation it is more convenient to write the impurity Hamil- of order 16 and has ten irreducible representations. Since the
tonian in 2< 2 matrix notations, impurity potentials[Egs. (9 and 10] connect only nearest-
neighbor sites, only five components of the scattering poten-
tials in irreducible representations Df,, are nonzero. They

o i(k—k"HR AT/ A
Himp 48‘1%, € AV A @) correspond to the irreducible representatiéng, Byg, Bag,
w andE,. These nonzero components are thewave, the in-
where planep,, py, andd waves, and the out-of-plane, wave
a (for details see Appendix A
R o ) . . . i
Ac=| o |, Al:[alv b ], ®) Thus, the scattering potential for the impurity in the sub
b, lattice A
with scattering potentials fdrin the sublatticeA, - -
o Vﬁ\,ﬁ% Ve, (17)
~ A Yo Yk i
Vk'k,=( -~ - ) : (9 where the scattering channels are-s,py,py,d,p,. In each
Yk Y-k’ channel the scattering potentials can be written as a direct
and forl in the sublatticeB: product of the column and row vectors. Thevave part is
Yew Vee =lsd@(sol+ rls (s, (19
~B Y-k Yk '
kak’:( N N ) ’ (10 where
Yk’ Yo
The pure host HamiltoniafEq. (4)] is diagonalized using (sl =[uctviye, vt uend,
Bogolyubov transformations and
a=UaytogBly, (11) (skl=lutvivic, vt Uericl,
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the in-planep-wave part is \./ \/ \/}\// W

Voo o=pi) o (pid”). (19

where
s (o o1 \\/=\/ \/‘/ W

(a)

the d-wave part is

Ve =ldoe(del, (20) ——— = - 4 e + W
where = = gz 4+ —EW—=

(dl= Lo, ul, (b) - = <<\§/>> , ~—H-= <<\§(>>

FIG. 1. () T-matrix single-impurity scattering seri¢ls) Dyson-
Belyaev diagram series for the diagor@t?, and off-diagonalG*?,
Green’s functions. The self-energi&s? (circle) and 32 (squarg
and the out-of-plan@,-wave contribution is are the configurational averagesTdf and T2 components of th&

matrix, respectively.

with

¥k = (cosk,—cosk,)/2,

V:E,Z— PR @ Py, (21 B. T-matrix. Single-impurity scattering
where We are interested in the Green’s function of Hamiltonian
(14) modified by random impurity potential&qgs.(15)]. The
(p?| = sink,f v, u J/N2. Green’s function is a 2 matrix defined in a standard way,
Gii(t)=—i(T t 0

For the impurity inB sublattice ka, Vf"lf,(w—w). (Tla( D (O]),

In what follows we consider the 2Dr=0) or quasi-2D . G&Z(t): —{(T[a(t) B_k(0) 1),
(7<1) limit of the problem. It can be shown that the contri- (24)
bution of the out-of-plane terms & andp,-wave scattering G(t)= —i<T[ﬁ‘:k(t)al’£(o)]>,
potentials which explicitly depend on as well as the one of
the majority of ther-dependent terms originating from the G = —|<T[,8k(t),8k(0 1,

quasi-2D form ofuy, vy, and wy [Egs.(12) and (13)], is
negligible in the quasi-2D cade-O(7), see Appendix B
This allows one to simplify the scattering problem further by
neglecting thest andp, components in the above equations.
Moreover, the solution for the 2D problem can be applied N

directly to the quasi-2D case, since the formal expressions Tk’,lIL(’( = kk’ 2 Vlk “’)Tq (o), (25

are identical in both cases. The only important difference

concerns the logarithmically divergent terms, which in awith 1=A(B); partial waves are restricted to in-plane
quasi-2D system acquire a low-energy cutoff provided by the=s,p,,d harmonics according to the above discussion, and
implicit dependence of scattering potenti&l®)—(22) on 7 ég(w) is the 2x 2 bare Green’s function:
throughw, . This simply means that, for the quasi-2D case in

the limit <1, one can restrict oneself by considering purely 1

where brackets also |mply a configurational average over the
impurity sites.
The T-matrix equation for Hamiltonial5) is given by

0,1 _ 022
2D scattering including the three-dimensionality only on the Gq (o) Gq - w) 0—wgti0’ (26)
level of the spin-wave dispersion in certain terms. Thus in 01 02
the following we use Gg'iw)=Gg*(w)=0.
“As The diagrammatic equivalent of ER5) is shown in Fig.
Vl:\k’: |si) @ (sk 1(a). T-matrix equationg25) with potentials(19)—(22), can
(22 be readily solved:
with (Sk|=a)k[uk, _Uk]'
, o o Tel(@)=VhT (o), (27)
The rest of this section is devoted to the 2D limit of the
problem and, unless specified otherwise, we use T k,(w) VB (—w)
Y= 7= (cosk, +cosk,)/2, where the frequency-dependent parts are given by
(23 1 (1+w)p(w)
Yo=1, w=v\1—»2. My(w)=— (28)

l1-w(l+w)p(w)’
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" (o) 2 AV =As)@(Asy],
w)=—— y
’ 1+ o+ (1) 0?*p(0) ~ py(©)] with
_ 1 (Asi|=[ux, v, (3D
L) = T T wpata)” o5\ chs
A k"k,ZAVQ'k,{UHU}. Evidently, p and d waves are not
with affected by the projection. Within our approach, after some
algebra in the limitH ,— o, one obtains a modified@-matrix
1 (v5)? solution (for the case of an arbitrayl, see Appendix D)
p0)=2 ———, pi0)=2 . (29
PO P @ T (@) =V T(0)+ATES (w), (32

We note here that the second term in thiwave I'g(w) is

proportional top(w) at w<1, where the latter appears natu- ?E'E,(w)zﬁff,rs(_ w) +A’|’Evks,(w),

rally from the summation in Fig.(d) as the result of a com- ’ ' '

bination of G™(w) andG}*q ) in the internal part of the  where f)k"sk, is given, as before, by Eq(18) and the

diagrams. When the summation overin Eq. (29) is re-  frequency-dependent part is now free from the zero-

stricted to two dimensiong(w) is a logarithmic function at frequency pole

low energies. In the following we show that this contribution

to the swave scattering is solely responsible for all the (1+ w)p(w)

anomalies in the spectrum of a 2D AF. Interestingly, a similar I's(w)= I—w(ltw)p(w)’ (33

logarithmic term in the self-energy of the 2D Dirac fermions

in the problem of disorder im-wave superconductors re- Comparing this expression with E(28), one may note that

quires a summation of the specific subset of diagréimis.  the “physical” term is left unchanged after the projection.

our case, while one needs to sum infinite series of diagram&\dditional terms in solutior(32) are also regular:

no special selection or inclusion of the multiple-impurity R

scattering processes is necessary. Since the single-particle ATQ‘E,(w)=—wlAsk)®<Ask,|+|sk)®<Askr|

density of states and the sensitivity of the results to the type

of disorder in both problems are similar, establishing a de- +|As) ® (sl (34

tailed correspondence between these two problems is an im-. 2B

portant question. Integrals in ER9) can be taken analyti- W'EhA|Sk> from Eq.(22) and|Asy) from Eq. (31); T (@)

cally and, in a 2D case, are expressed through the complete Ty x (— @){u—uv}, as before. Thus, projectiaB0) allows

elliptic integrals® (see Appendix © one to remove the unphysical divergency @t0 which
The first term in theswave scatteringEq. (28)] repre-  would otherwise affect the true low-energy physics of the

sents a singular zero-frequency mode which is independemiroblem.

of the dimension of the problem, and originates from oscil-

lations of the fictitious spin degrees of freedom at the impu- C. Green’s function

rity site which are decoupled from the AF matrix. Roughly

speaking, when the spins are quantized as in(8g.andS’

at the impurity site is set to zero, there is sni]}ao left from

S§. Thus, in the spin-wave approximation, it gives rise to an R R

swave zero-frequency mode. This problem has been noted Ek(w)=2 EM,k(w), (35

since the earliest works on the diluted magnets which used m

the sp_in-wave theord? and also more recently in the cor_1text with w-wave contributions

of a diluted AF(Refs. 7,15,37,45 and 53for an extensive

discussion, see Ref. B7Since these states are unphysical S _ A, +B,u

and are unrelated to the low-energy physics of the AF, they 2@ =X [T (@) + Ticjo (@) (36)

have to be projected out. One of the projection schemes in-

volves a non-Hermitian potential which was designed to pre

serve the simplest factorized form of tisavave scattering

potential®’ We use another, physically more transparent

scheme which introduces a fictitious magnetic fields at the isyk(w)zxﬂ)k

impurity sites(similar to Refs. 15 and 45

The averaging over random distribution of impurities
readily transforms th& matrix into spin-wave self-energies,

For the 2D case the contributions of the partial waves to
the self-energies are

I %\ I(0)+TI'(- )
1 2

<wk 0 )Fs(w)_rs(_w)
+ e —

AH=H,>, a’a=H, >, ei(k*k’)R'vzlEAf)k'sk,ﬂk/ , 0 —wy 2
I LKk’ '
(30) 2 0 1 0
) . . — —Xw , (37
where corrections to thewave scattering potential are 0 2 0 -1
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. O 1 v\ Ty () +Ty(—w) [~ 0\Ty(w)—Ty(—w)

$ (@) = X l_(z’)_i) (_yk 1k) pl@ 2p( o +< (()Uk wk) plw 2p( w | 38
—\2

o _ Yk 1 = wn|le(0)+T4(-w) (o 0|T'yw)-Ty(-w)

el L e e N e e IR

It is interesting to observe that “on-shellat w = wy) “projected” 'Al'i’k,(w) from Egs.(32)—(34) and “nonprojected” expres-
sions[Eq. (27), and(28)] yield identicalX  \(wy).

Summation of the Dyson-Belyaev diagrammatic series for the Green’s functions shown inljigwith self-energies
defined in Eqs(35)—(39), gives

Gul) (_w_wk_ziz(w) s ) : @0
w)= ,
‘ 3i(w) 0= 0= 21(0) | [0~ o= 2 0) ][~ 0 0 2 0) ] - [2id 0)]?
|
where 324 0) =3¢~ w). A detailed consideration of the 1 (1
properties of spectral functions Cu(T)= FJ do N(w)»?[ng(w)*+ng(w)], (45
0
Al (@)=~ ~Im &} 41
k(@)=——ImGy(w), (41 wherew andT are in units ofQ},=4SJ

. ] ] The static properties of the system, such as the staggered
will be given in Sec. lll. _ _ magnetization in the ordered phase, theeNemperature,

We investigate the neutron-scattering dynamical structurgng the 2D correlation length in the paramagnetic phase, are
factor S(k, w), calculated from the spin-wave expression of the averaged

. on-site magnetic moment,
Sk, w)= f dt&“(Si(1)S£4(0)), 42

1
Al BT D S N SN t ot
which is directly related to the spin Green’s functions. The|<3>|_S 2 ; (wk 1) ; wk[<akak> il Bi) 1,

standard derivation of the single-magnon contribution to the (46)
transverse component of the dynamical structure factor
S*7(k,w) atT=0 gives where bosonic averages can be expressed through spectral
functions(41) as
57 (k) = 7 S(Uyct v AT ) + A% 0) +2A% )], D
(43
where the kinematic ¢-independent form factor (uy (alak>=J7 do ng(w)AR (@), (47)

+v)?=(1—y)/w, is proportional tok close to the

“nuclear” reciprocal-lattice poinK =0, and is~ 1/ close to

the “magnetic” Q=(m,) point. It thus enhances the signal P % 1

close to the AF ordering vector, and suppresses it close to the (axBi)= f_xdw Ng(@) Ag(w),

zone center. Note that the diagonal parts of the Green’s func-

tion are symmetric and off-diagonal parts are asymmetric . . . . . . o

with respect to the transformatioh—k+Q (since G'2 which implicitly depend on the impurity concentrati@nin-

~3 andE&in _2&2)' Therefore, the sum of the spectral de)I(nRtr?;aQSjseIg(rj rertlzrseeg;( ressigAs), and(47) provide us

gqfr;ctions.in rt]he bracke.ts in 5@43)|is, generall}y f]pegk.il?g’. with the concentrpation ang tempera,ture depepndence of the
ifferent in the magnetic and nuclear parts of the Brillouin N

zone. AtT>0, expressioni43) is modified by the factof1 averaged staggered magnetizatibt(x, T). The same ex-

Y S - pressions, with the conditiof&")(x,T) =0, define the mean-
arorglggﬁg{igglherens(w)_[e 1]7"is the Bose distribu- field equation on the N& temperature as a function rf In

; . . : ... _both cases, whem# 0 the 3D form of the spin-wave disper-
The density of states associated with magnetic exmtatlongion is to be used in Eq46). In the paramagnetic phase

is straightforwardly related to the magnon Green’s functlon(T>TN) Eq. (46) should be modified byy,— 7y, and w,

[Ea. (40, and is given by —1- nzyzk. Then, in the framework of the modified spin-
wave theory? equation (S?)(x,T,7)=0 is a constraint

N(w)=; [Af(w)+ A w)]. (44 which represents a self-consistent equation on the gap
J1— 2. This, in turn, defines the 2D correlation lengtjp
The magnetic specific heat is then given by as a function ok andT.

104407-7



A. L. CHERNYSHEV, Y. C. CHEN, AND A. H. CASTRO NETO PHYSICAL REVIEW B5 104407

1. DYNAMIC AND THERMODYNAMIC PROPERTIES part of the spectrum is dominated by thédhterm at low

In this section we consider in detail the structure of thel'eduencies, and the brackets vanish at some wave vector

spectral functions of the Green’s functi¢kq. (40)], Fig. I
1(b), with self-energies given by Eq&35)—(39). We calcu- K "~ exp(mr/2x). (52
late the dynamical structure factdi(k,«), the spin-wave pgecayse of this one can naively suggest a vanishing of
density of statesl(w), and the lowT magnetic specific heat the spectrurdl and an instability of the ground state toward
Cw(T). We consider the long-wavelength, low-energy limit some new phase. Such an instability is, of course, just a
of the problem, and obtain analytical results for low-energysignature of the breakdown of the perturbation theory. One
S(k, @) and N(») and low-temperatur€y, (T). We recall  has to sum up all the “dangerous” terms using the Belyaev-
here that all wave vectors are in units of inverse lattice SPacpyson equatiofFig. 1(b)] and Eq.(40), and analyze spectral
ing 1/a, and all energies are in units 6¥;=4SJ. functiong41).

We consider the low-energy form of the Green’s functions  Tpe low-energy, long-wavelength forms of the Green’s

first. Att> low energiesw, <1, self-energies37)—(39) are  fynction[Eq. (40)], with self-energies from Eq48), are
given by

E&l(w)=ka[p(a))+2— 2] — Xw + O ww?p?), G&l(w)ZGﬁz — W)= E):_ wk2(1+X[p(w)+2—7T/2]) ,
(48) o~ wi(1+x[2p(w)+4-7])
S ) =xoyl p(w) + /2] + O ww?p®), (53
with
Glg( )~_ X?’kwk[p(w)+77/2]
p(w)=(2/m)In|w/4| -1, kel 02— w21+ x[2p(w)+4—7])

which includes contributions frors- and p-wave scattering; - ) ] ]
the d-wave part is of higher orderf=0(w{) and w, Wherew=w(1l+x), andp(w) is defined in Eq(48). -

~k/\/2. The importance of the projection of the unphysical The diagonal spectral function in the same limit can be
states can be demonstrated one more time by a comparisgfen Written as
of the above expressions with the “unprojectedi=0)

form of the self-energy, Xw( @+ wy)?

1
Ad(w)=—

= : 4
T [0?~ wga(w)]*+(2xwp)? 59

Eil(w)Zka[p(w)— 77/2]+Xcoﬁ/w+0(wkw2p3),
(49 where we make use of imaginary part of the self-energies
which possesses as=0 singularity. Notably the “physical” being In¥}/(w)=—xwy, and introduce a “stretching fac-
part of the expression containing the logarithm is not relatedor”
to the unphysical states, and remains intact under the projec-
tion. As noted before, “on shell,b=w,, self-energie$48)
and (49) coincide®” The off-diagonal®, ;4 ) is the same in

both cases. It is also useful to note that the first-order Borr:i_h t which this fact ishes defi the disord
approximation of the scattering problem would give very. € energy at which this factor vanishes defines the disorder-

different results: induced energy scale

EilBom(w) = — 2Xwy, E&Z,Born(w) =0, (50) wo’veXF( _ l) ' (56)

a(w)=1+X wld

+4—’7T). (55

—In
ar

4x
with the imaginary part of the self-energy beirgd (xkw?).

One can see that along with the “normal” softening and below which the spectrum is overdamped.
weak damping the fulll-matrix consideration gives a non- A more detailed analysis of E@54) gives the following
linear dispersion term and a dampiﬁgkuwkzx which is  picture. At wave vectors much larger thag (v, wg), that
only parametrically small with respect to the bare spectrumis, at wavelengths shorter than a characteristic lerigth
A perturbative “on-shell” pole equation gives ~e™* the spectral function has three distinct regionsin
- First is a vicinity of a quasiparticle peak~ wy,
wk+ i Y= wk+2|j('l(0)k),
(51 2wy 2Xw§

1, 2%
A= 522 (2wl 57

~ 2X
W= 0y 1—X(77/2—1)+?|n w4 |,

where the spectrum has a regular Lorentzian form with a
pole atw, and a widthy, given by the perturbative result

which already show that the spin-wave velocity in the effec-lEQ. (51)]. Second, in an intermediate range of energigs
tive medium is not well defined since the brackets in Eqs<w<w,, where the “stretching factor” is not too close to
(51) depend ork. Moreover, the renormalization of the real zero,

Y= T Xy,
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1 x 1 1 x I _ ]
Ad(w)~——————~——const, (58 x=0.1
T Wk a(w) +4xs T Wk 0.0 All((D)
one can approximate(w) by a constant since its depen- K
dence orw is weak in this range. One can see that the spec- 0.2 k >> (”0

tral function in this region is independent ef, and corre-

sponds to an almost flat, shallow &) background of states. = 4 _
Third, in the vicinity of a “localization peak’w~ w, -
Y]
" 1 1 0.6 .
Ak (a))%ﬂx—wk at w=wg, (59)
0.8 .
m 1 r g
AN w)~— — at w<wg, - ) ™
(@)= 16 5, xIn?| o] ° hor | St |
the spectral function rises sharply from the shallow back- 00 02 04 o/z8J 06 08 10

ground states-x [Eqg. (58)] to a peak of the height- 1/x, e
and then vanishes in a singular fashionwaapproaches zero. FIG. 2. The spectral functiody () for the wave vectork
. . . . . =0.1,0.3,0.5,0.7, and 1.0, at wy along the (1,1) directiok is
Note that this peak is non-Lorentzian, and its positien ( . ; h )
L in units of 1A. The dash-dotted line is the bare spin-wave energy,
= o) IS mde_pendent of the value & . . and the arrows pointing down are the positions of the original
Thus, ,bes'des the lack of the Lorentz invariance of theb‘-function peaks. The dashed line is the renormalized spin-wave
quasiparticle part of the spectrum of E&1), everyk mode dispersion[Eq. (51)], and the arrows pointing up show the actual
redistributes some of its We'ghf from the energysi 10 @ positions of the peaks for selected wave vect8id(w) for eachk
flat background of states betweep andwg and to a peak at is normalized to fit the picture.
o= wy. Such a behavior is similar to other problems of lin- _ o L o
early dispersive excitations in the presence of disorder in twd®m hydrodynamics: while “quasiparticle” excitation can
dimensions, and should be interpreted as the signature & found, it does not disperse linearly wkhand its damp-
localization** Then the characteristic length ing is neither hydrodynamp nor quasiparticlelike. More im-
portantly, abovea characteristic wavelengthno hydrody-
o namic description of excitations is possible. Low-frequency
I~exp<& (60) modes do exist in some form, but they cannot be classified in
terms of an effective wave vector; thus the long-wavelength
is to be understood as a localization length of the spin waveBropagation is entirely diffusive.
in our problem. In addition, the spectra & w, are not exhausted by the
The truly intriguing question is what happens at wave-duasiparticle peak. They also consist of a background of lo-
lengths of order ofl and beyond. In our approach foar  Calized states and the localization peak described in &g5.
<=1, the quasiparticle and localization peaks merge into &nd(59).
broad incoherent peak that disperses in momentum space. The spectral functio’A(w) obtained from “full” ex-
One can see that &t~ wy,<|~*, factora(w) is negative and pressions for the Green's functiofEq. (40)] and self-
the “pole” in Eq. (54) becomes purely imaginary. However, energies(35—(39) without taking the low-energy limit is
sincea(w) is w dependent this peak is non-Lorentzian, andshown in Figs. 2—4 for a number of wave vectors along the
thus cannot be associated with a “simple” diffusive mode.(1,1) direction of the Brillouin zone for a representative
Thus we observe an overdamped, non-Lorentzian diffuse lik¢alue of the impurity concentration=0.1. The purpose of
excitation with a characteristic width of the orderof and  these pictures is to demonstrate the features we discussed
a peak position roughly ab=<w, . We have to remark here using the long-wavelength form &f.'(»). The amplitude of
that the nature of states at the wavelength above the locagachA(w) curve is normalized to fit the picture, and there-
ization length might be beyond the ability of our approach,fore the relative heights of the curves bear no meaning.
and a proper description of them may require a different,These figures also show the bare spin-wave en&tgghed-
nonperturbative type of study. dotted ling, with arrows pointing down showing the posi-
Thus the structure of the spectral function we discusgions of “unperturbed” s-function peaks. The dashed line
above demonstrates an unusual, nonhydrodynamic type ebrresponds to a perturbative renormalized spin-wave disper-
behavior of the spin-excitation spectrum of a diluted 2D AF.sion [Eq. (51)], while arrows pointing up show the actual
The strong influence of disorder in the low-energy excita-positions of the peaks for selected wave vectors. The figures
tions in two dimensions results in the failure of the averagingshow the spectral function within the different rangeskof
procedure, which effectively restores translational invari-relative towg, k> wq, k= wg, andk= w,, respectively. The
ance, to recover the long-wavelength excitation spectrum dftter can be calculated using E6), which giveswg(x
this effective medium. Already at energies much larger than=0.1)~10"3.
the disorder-induced scale~k> w,, one finds a departure Figure 2 shows the spectral functmﬁl(w) for wave
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at largerk. The low-energy localization peak and the back-
ground are already noticeable in Fig. 2 despite the high-
energy scale.

Figure 3 shows the spectral functight(w) for wave
vectors k=0.005, 0.01, and 0.02, with the smallest wave
vector being of the order ofvy. One can clearly see the
features we discussed in Eq57)—(59): the broadened qua-
siparticle peak, the localization peak, and the states between
them. The quasiparticle peak continue to follow a renormal-
ized spin-wave dispersidiEqg. (51)]. As k decreases, all the
mentioned structures merge.

Figure 4 shows the spectral functioki(w) for wave
vectorsk=0.0001, 0.0005, and 0.001; all are smaller than
wp. As we discussed above, the quasiparticle and localization
0.02 \T\ peaks merge, and give a broad, overdamped, non-Lorentzian

L . . i

R N T W B diffusive peak. In other words, one may not represent the
0.00

x=0.1
11
Al'()

=

.00

k(1,1)

<o

.01

0.01 0.02 Green’s function in this region as a sum of coherent and
o/zSJ . - coh incoh :
incoherent contributionS," (w) + G,'*"(w); it seems that
FIG. 3. The spectral functiomﬁl(w). for wave vectorsk  only the second part survives. The peak position deviates
=0.005, 0.01, and 0.02 along the (1,1) directikr;0.005 is of the  from the perturbative renormalized spin-wave dispersion
order of wg. The dash-dotted line, the dashed line, and the arrowsEq. (51)], and thus indicates the region where the perturba-
are as in Fig. 2Ai(w) for eachk is normalized to fit the picture. tion theory breaks down.
_ The off-diagonal spectral functioh&z(w) should possess
vectorsk=0.1,0.3,0.5, 0.7, and 1.0 along the (1,1) direc-features similar to the one of the diagonal spectral function.

tion [k is in units of 14, so that the corner of the Brillouin e low-energy, long-wavelength form @ﬁz(w) is given
zone is @, ) ]. One can see that the quasiparticle peak fol-by

lows the renormalized spin-wave dispersj@u. (51)] at low

k very closely. At higher values df a higher-energy sub- 2 _~2

band develops, and the spectrum evolves into the “camel’- A(w)= L ~X7kwk[wk b(x)~ 7] ' (61)

like structure discussed extensively in Ref. 15. The origin of T [w?— wia(w)]?+ (2xw?)?

this high-energy structure is in the presence of a high-energy

resonance statase.=J) around an impuritf® which is un-  Where b(x)=[1-2x(7~2)]. Note thatAy*(w) is not a

related to the low-energy physics of the system. Since oupositively defined function; it changes sign as a function of

low-energy consideration does not take this high-energy feaw at w=w,\b(x)/(1+x). Another important difference

ture into account, the position of the lower peak in this strucfrom Ail(w) is thatA}4 w) is odd under the transformation

ture deviates from the long-wavelength disperdigg. (51)] k—k+Q, and thus has opposite sign in the first and second
magnetic Brillouin zones.

A detailed analysis oA w) in different regions ofw,
x=0.1 i and o shows that in the vicinity of a quasiparticle peak
. i 12 s . .
11 A (w) has an additional smallness of orden comparison
0.0000 RO Ak (®) 1 with Alw), butitis of the same order in the “intermediate”
— N (w<wy) and low-energy regions, where it can be approxi-
- v k< Wy - mated as
1x 1
A w)~= AL (62

0.0005

with the behavior above, at, and below the localization peak
identical to the one oAl w) [Egs.(58) and (59)].

Figure 5 gives an example of the structure of the off-
diagonal spectral functioAﬁz(w), obtained from Eqs(40)
and (35)—(39) without taking the low-energy limit for wave

0.0010
T

w/zS8J

'0.601 ' vectorsk=0.1,0.3,0.5,0.7, and 1.0. Features discussed in
the preceding paragraphs—such as changes of the sign, the
FIG. 4. The spectral functio’A}’(w) for wave vectorsk  low-energy localization peak, and background states—are
=0.0001, 0.0005, and 0.001, alfw, along the (1,1) direction. clearly seen in this spectral function.
The dash-dotted line, the dashed line, and the arrows are as in Fig. The transverse component of the neutron-scattering dy-
2. Af{w) for eachk is normalized to fit the picture. namical structure factof * ~(k,w) is directly related to the
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B ] 1.0 T———
I x=0.1 ] |
12
0.0 7'\/\ Ak () - 0.8
0.2L k>>a, 0.6-
= 04 | S
— -
C" ’ \ 0.4+
=
0.6 |
L 0.24
081 1 - B
0.0~ ‘ ‘ : ‘ :
r T 0.0 0.5 1.0 1.5 2.0 2:5 3.0
1.0 k
1 L | L 1 L | L 1 L
0.0 0.2 04 o/zsy %0 0.8 1.0 FIG. 7. The intensity map ofSA (), in thek-w plane fork

from (0,0) to (r,7) in the(1,1) direction, and fromw=0 to w=1 for
FIG. 5. The spectral functionAi¥w) for wave vectors x=0.25.
k=0.1,0.3,0.5,0.7, and 1.0, a# w, along the(1,1) direction.
Ai¥(w) for eachk is normalized to fit the picture. we show below, the sum of the spectral functions entering
S*7(k,w) is “less anomalous” close tk=Q than atk—0.

linear combination of the magnon spectral functiédy o), -tl)—rhoa}atdlz,n teh de gﬁadlsgizglecrlgezaﬁoorrlit:gaflse(f:gru? d;fh»%bn:r:g]a”y

22 _all 12, ;
Acw)[=A(~ )], andA'(w), as given by Eq(43). It k—Q, while the low-energy localization features are sup-
therefore must contain all the features of the spectral func- . L _
. : . ressed in the vicinity of due to cancellation between the
tions we discuss here. Figure 6 shows an example of out.

result forS ™~ (k,w) vs w atk=0.1, that is, in the “nuclear” dlag?]r;alcgrrl]d sorlrf(;\(jivlag)c()nl?(l:itclonglsl:i)#tlophsé low-enerav. lona-
Brillouin zone, forx=0.05. The long dashed arrow shows - plcttly g . 913{ 9
the initial position of thes-functional peak. Since: w, are Wi’g'e”gthzxq‘z“ of th_e sug] of spectral functiopy ()
very small in this case, the localization peak is seen as d Ak (@) +2A ()] given by

single spike atw=0, but the flat background of states is

clearly visible below the quasiparticle peak. A(w)= > AM(w)= Xy
However, the actual observation of anomalous features of aB=12 T
the spectra can be complicated for two reasons. First, the ~ 5 )
structure factor contains a kinematic form factor which en- @ (1= 70 + 0i(1+ ) = 22Xy (7—-2)
hances the spectral function combination=%/wy close to [0?— wia(w)]?+ (2xw?)? '
k=Q, and suppresses it by w,/2 close tok=0. Second, as 63
10 that, aside from the kinematic form factor, the dynamical
ol x=0.05 ] structure factor should be different in the fikgt—0) mag-
L k=0.1(1,1)- netic Brillouin zone,
8_ —
[ 1 1 Axw?
7k . Al(w)~ = — : . (69
a4 ] T [07- wfa(w) P+ (2x0d)?
) sk _ and the secondk(— Q) magnetic Brillouin zone
I ] 3
W 4r 7 AE( ) 1 4kaa)2 65
L T w)~ — —(—< 3
3 ) T [P ofa(e) P+ (2x0p)?
2r ] due to the asymmetry oA}{w) to k—k+Q. One can see
1+ . that around the quasiparticle peak=w, these expressions
'\.J . | \\ . ] are identical, and are simply equal to the diagonal spectral

0.15 0.20 function[Eq. (57)]; however but at lower energies far-Q,
the localization features are suppressed by the factor
FIG. 6. Transverse component of the neutron-scattering dynamiOf .
cal structure factorS*~(k,w), k=0.1, andx=0.05. The long- This asymmetry is demonstrated in Fig. 7, which shows
dashed arrow shows the initial position of thdunctional peak. the intensity map ofS™ ™ (K,w) - o, /(1—y)= wSA%(w),

0.00 005 _ <7010
o/zSJ
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that is, the structure factor divided by the kinematic form
factor, in thek—w plane across the Brillouin zone in the
(1,1) direction fromk=0 to k=(,7), for x=0.25. The
higher intensity corresponds to the higher value of the func-
tion. One can clearly see all the features of the spectrum
described in this section: the resonance and its splitting from— 0
the dispersive mode at high energies, the low-energy dampe.= ™
spin-wave mode in both the center and the corner of th
Brillouin zone, and the asymmetric background of localized
states with the low-energy peak at the bottom. The nonlin-
earity of the quasiparticle mode also seems to be quite vis:
ible, though the actual detection of it or of the abnormal
k-dependence of the damping can be a challenging experi
mental problem.

The density of states of spin excitations can be easily
calculated using Eq%44) and(40). We recall that for a pure FIG. 8. Density of state®(w) vs w for x=0 (pure system,
2D system with a linear spectrum of excitations, the low-dashed curyex=0.1, andx=0.2 (dotted and solid curvésDotted

energy density of states is a linear functioneofand, in our  curves show the long-wavelength resdEq. (69)] with C,
case, =4/7%2 The solid curves show the result of numerical integration
using the full Green’s functiofEq. (40)].

1.2}

04l

%

(66)

N(w)= P function (54). The solid curves are the result of a numerical

. . integration using the “full” Green’s functionEq. (40)].
Evidently, low-energy localized states should strongly aﬁeCWhile the overall agreement of these curves is very good,

N(w), and one reaqny finds gnomalous corrfactmns_at th‘?here is a significant discrepancy at low energies which has
level of a perturbative analysis of the Green's function. Ify following origin. In the long-wavelength limit we re-

one uses the fulll-matrix form of the self-energy but ex- garded the localization peak ai=w, as nondispersive,

pands the Green’s function i whereas, at largek, close to the magnetic Brillouin-zone
boundary, it disperses down t@~w§~e*”’2’<< wq. This

G w)=G’M )+ G2 w) 3 0)GP M w), (67)
) 3 .) < ) < it k_l( can also be noted in Fig. 7. As a result of such a dispersion,
one immediately obtains a constant correction the peak in the density of states at is spread to lower
energies. Technically, there is a term in the denominator of
2 N . __ 2 2 4 . -
N(w)=—w+xC+O(xw In|w|), (68  the Green's function~Xx“p(w)“w, negligible at lowk,
T

which leads to such a behavior. Since this term is of the order

which also implies a finite density of statesat0. Amore  Of x> and our approach does not take all such terms into
sensible result can be obtained without using@xpansion ~account, we have no certainty of whether this is a spurious

from the long-wavelength expression for the spectral funcf€ature or not. As we show below, this discrepancy does not
tion Aﬁl(w) [Eq. (54)] affect any of our conclusions.

In this context it is interesting to note that the constant
term in the density of states, which is a prominent feature of
all three “full,” long-wavelength, and perturbative results, is
directly related to the flat background of states below the
wherea(w) is the same “stretching factor[Eq. (55)] we  quasiparticle peak in the spectral function. The localization-
used in Eqgs.(54), (58), and (61)—(65). At w>wq, a(w)  peak feature of the spectral function is responsible for the
~const, and we are back to the previous result given byeak inN(w) at low w.
x-expansion perturbation theoffeqg. (68)]. At w~wq the The calculation of the magnetic contribution to the spe-
density of states has a peak of heighl/x whose origin is  cific heat, using results fd¥(w) and Eq.(45), is straightfor-
evident: low-energy nondispersive localized states contributevard. For the pure systengy(T)~T?, because of two di-
to it altogether. Atw<w, the density of states vanishes as mensionality. The anomalous density of states results in a
N 1/(x In|w])?. Such a strong dependence of the result omuasilinear correction to this. Using the long-wavelength ex-
the degree of approximation is reminiscent of the disputeression for the density of states, for such a correction we
over N(w) for certain types of disorder in 2D systems with obtain
linear excitation spectr&;®2where different approaches re-

N(w)=%w+xC1/[a(w)2+ 4x%]+ O(x win|w|), (69

sult in drastically different answers for the low-energy part of
the density of states.

Figure 8 shows results for the density of statesxerO
(pure system, dashed cujy&=0.1, andx=0.2. The dotted
curves showN(w) given by Eq.(69) with C;=4/7>2, which

A(X) T
X In?| T/ wq| + w24’

SCu(T)~ (70)

whereA(X) is a weak function ok. At T>wq (T is also in

is obtained from a long-wavelength expression for spectralinits of 1) this gives
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concentration is considered in Sec. IV. The effect of the 3D
coupling in the dynamic properties, briefly mentioned above
in the context of the specific heat, is as follows. The energy
scale introduced by the interplane coupling=J,/2J is
w3D=\/4_T, as seen from Eqg5) and (13); therefore it is

0.20

CO'IS rather small for the realistic systems of inter¢str LCO,
M w3p=0.01 in the units of the magnon bandwidtkVe show
0.10 in Appendix B that the 3D corrections to the 2D scattering
are given byO(rIn 7), which is truly negligible 10 * for
LCO). Therefore, the only appreciable correction to the dy-
0.05 namic properties from 3D coupling is the low-energy cutoff
. of the logarithmic terms in the self-energy @t wsp . As
0,00 B . ) , we describe in Appendix E
T . W .
FIG. 9. Cy(T) vs T for a spin-1/2 system fok=0 (dashed p3p(@)= Wln 16 ! T,\/; at w<wgp; (72

curve, x=0.1, andx=0.2 (dotted and solid curvesDotted curves

show the long-wavelength results, and solid curves the result ofnhat is, below the 3D energy scale the real part is a constant

numerical integration using the full Green’s functideg. (40)]. The_ and the imaginary part has an extra powewoin compari-

dashed sector shaws the 3D crossover temperature region ggn with the pure 2D form op(w). p(w) remains essen-

=\3J, for 3, =10"%. tially two dimensional atw>w3p. Evidently, this proves
that the 3D coupling has little or no effect on the properties

OoCn(T)~xTXconst. (71)  of the spectral functions, dynamical structure factor, or den-

sity of states atv> wsp .

Figure 9 shows our results for the magnetic specific heat However, the 3D coupling does affect some of the local-
of a spin-1/2 system(§,=2J) vs T for x=0 (dashed curve ization features in the following way. Below the 3D energy
x=0.1, andx=0.2. Dotted curves are results from the long- scale the “stretching factorfEq. (55)] saturates at the value
wavelength expression foM(w), and solid curves are from a(wsp), and the imaginary part of the self-energy acquires
numerical integration using Eq&40) and (45). One can see an extra power ob. In other words, it should be understood
that the results are very close, and point to the same behaas a competition between disorder-induced and 3D energy
ior. The dashed sector shows the temperature redion scales. Therefore, there are two regions.dfirst, whenx is
</33, where the crossover to 3D behaviarhich provides small enough, &x<x*~1/n7!, so thata(wsp)>0. In
higher powers ofl to Cy) should occur. We use the value this region the well-defined spin waves can be found deep in
J, =10"4J, characteristic for the cuprates. the lowk, low-o region K,w<wgzp), similar to the

Realistically, this picture should overlap with the phononduasi-1D probleni! Concentrationx* is defined from the
contribution to the specific heat. One would expect phonongquality of the energy scales ™= /7 which givesx*
to remain essentially three dimensional even in layered ma=1/In 7 *. The localization peak in the spectral function at
terials with characteristit® contributions to the specific heat w~wy~Je” ™ in the loww, k>w region, will be re-
at low temperatures, and thus be negligible in comparisomlaced by
with T? andxT terms. However, in the case of cuprates the

phonon Debye energy is of the order of 400°¥which is 1 %0 1
significantly lower than 2=3000 K. This causes the pho- AP p)~—— ——— at w<wgp, (73
non part ofC(T) deviate from theT® behavior at about 20 T Wk a(wsp)

K, that is around the 3D crossover temperature for a mag- . ) )
netic subsystem. Because of the much lower Debye energy/hich smoothly vanishes as goes to zero instead of show-
the specific heat in cuprates is dominated by the phonoH'9 & peak. However, the nonlinearity of the spectrum, the
part> Therefore, in order to observe the anomalous quasi@Pnormal damping of the quasiparticles, and the flat back-
linear contribution of the localized states@{T), one needs ground of the localized states belowy are all in the 2D
to use the “reference” material=0, and subtrac€,_,(T)  region ofk—w space @>w3p), and will remain intact.
from the results for the systems wig1>0 (we assume that ~ The second region ig=x* where a(wzp)<0. In this
impurities do not introduce dramatic changes in the low-region the pole at lovk and loww becomes pure imaginary
energy phonon spectraAnother route is to find a quasi-2D as in the 2D case, and the localization peak for kow-
system with a much lower value df (of the order or less k> w reappear above the 3D scale. Above the concentration
than Debye energy for phononahich would allow a direct  x* all the low-energy excitations are incoherent, because the
observation of theT anomaly from localized states. 2D disorder-induced energy scalg (localization lengthl)

The finite value of the interplane coupling, together withis larger(shortej than the 3D energy scale;n (length scale
the small anisotropy gaps, leads to a finite value of the ord/\/7) so the spin waves lose their coherence before they can
dering temperatur@ \, whose dependence on the impurity propagate in three dimensions. A self-consistent calculation
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is required to determine accurately the valuexbfand the 0 dw
details of the 3D to 2D crossover. Our estimation gix&s SM(X)=— 2, J w_[Aé],-k(w)_ VAR @)1, (79
~0.1-0.2 forr~10"%. Kk

Thus we find that a 3D coupling for the realistic materialswhere the spectral functions are zero outside of the magnon
will modify the 2D density of states, structure factor, andpandw?>1. Since the perturbative resfiqg. (51)] suggests
specific heat only at the energié¢emperatures w<wsp  the instability at small wave vectors, long-wavelength ex-
=0.01, and at impurity concentratiors:x* =0.1-0.2. The  pressions for the spectral functions can be used for our analy-
estimated value of the 3D coupling which would makex*  sis. From the form of the spectral functions in E¢$) and
larger than the percolation thresholdzig~0.01. (61) one can readily see that the integral oveis always

The consideration given above also applies to the case @inite. The integration ovek is two dimensional, but has a
small anisotropies, introducing gaps in the spectrum with gactor of 14 in the integrand. From our expression of the
modified 7= 7.ty accumulating the total effect of the gaps spectral functions in the intermediate and localization peak
and 3D coupling. It should be noted that the incoherencenergy range$Egs. (58), (59), and(62)], one may suggest
comes from the averaging procedure which converts the dishat there is another &j, in the integrand which would lead
sipation of momentum into the dissipation of the energy:o the logarithmic divergency. However, these expression are
Therefore, the overdamped excitations should be understoqshtained by neglecting? in comparison withw? , and thus
to be diffusive. It is interesting that it requires 2D “strong” are valid only atw,> . At lower k the convergence of the
disorder to restrict the number of Euclidean paths for spinntegral is restored. To show this more explicitly, one can use
waves and to bregk down_ the description of the problem inpe x-expanded form of the Green’s functiggq. (67)] for
terms of an effective medium. AR\ (), and an equivalent expression Bk (w):

IV. STATIC PROPERTIES Gl 0)=Gl* )3 0)GI M w). (76)
Static properties such as the average staggered magnedince all>’s are linear inx, this provides an expression for

zationM(x,T), the Neel temperaturd y(x), and the 2D cor-  the term linear inx in staggered magnetization:
relation length&(T,x) are considered in this section. The

average on-site magnetic momeiitq. (46)] for randomly 0 do [IMSL (w)
diluted AF’s with averaging over magnetic sitdd (X) 6M(x)sz=—E f —
=3i|S/Ny,, (see Ref. 48 can be expressed through the k' J-1T0k| (0= o)
integral of the spectral function&q. (41)] as
g P i£9. (41 +'Yk|m2é?k(w) S v ReS A wy) 7
M(x,T)=S—A—6M(x,T), (74) 0’ — 02 202

» Ng(w)dw In the long-wavelength limit this gives
MxT) =3 [ P AL ()= A )],

SM(x)=xB X > fld ! + !
X)=Xb=— [0]
T % Jo (0+wp)?  w’—wp

where A=Ekvﬁz0.1966 is the zero-point spin deviation,
ng(w)=[e*T—1]"1 is the Bose distribution function, and
subscriptR denotes “retarded.” Note that one should not X 1
expect this formula to be valid at a large doping lexelose + - ; w_k
to x,, since our approach neglects decoupled clusters and
interactions of impurities. However, at not too lang¢hese  where the strongest divergency of the integrand ksikand
effects should be negligible, and one would expect #Z4)  all integrals are convergent.
to be adequate. We would also like to note here that our Numerical integration of the expression in E@7), with-
definition of M(x,T) is physically equivalent to the out the long-wavelength approximation, gives the suppres-
“gquantum-mechanical factor” of the averaged staggeredsion rate of the staggered magnetizatMifx) =M (0)—Bx
magnetization, the definition used in a recent Monte Carlovith B=0.2098). For S=1/2 this gives the slope of the
study?® In other words, the “classical{“geometrical’) ef-  normalized staggered magnetizatiorM (x)/M(0)=1
fect of dilution on magnetization, which simply accounts for —Bx/(S—A)=1-0.691(5X. It is interesting to note that
the decrease of the magnetic substance, is multiplicativhe second Born approximation of the impurity scattering
to the quantum effects, and is not taken into account irgives a three times smaller raBg,,,=0.0725, showing the
Eq. (74). necessity for a fullT-matrix treatment of the problem. The
First we address the question of the presence of expliciéstimation ofB, given in Ref. 37 using the Z2/approximation
divergences in integral equatidid4), which would point to  for an expression similar to our Eq77), provides even
the instability of the long-range order discussed in Refs. 3GmallerB,,=1/z2=0.0625 showing yet another inadequacy
and 37. At T=0, ng(w)=-60(—w), and the impurity- of that work.
induced quantum reduction of the magnetization, which can We have also performed a numerical integration in Eq.
be interpreted as a result of the “condensation of magnons,(75) for an impurity-induced reduction of the staggered mag-
is given by netization withoutx expansion. This yields the results pre-

Wy

il w14

In , (79
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1. - - - - 11 in order to emphasize the agreement with the MC data for

- i S=1/2 (circles andS=1 (squares which show only weak

RPN S dependences.

% > It is worth mentioning here that discrete static quantities,

S el ] zero-point spin deviations at the neighboring sites around

impurities in an AF, were studied using spin-wave theory and

Green’s-function methods, since the 196&efs. 57 with

the most recent results obtained in Refs. 7 and 53. Quite

remarkably, these resuttswere found to be in very good

o NQR, M. Corti er al., (95) 1 agreement with the recent Monte Carlo studies of aD

e MC, S=1/2,K. Kato et al., (00) i =1/2 Heisenberg model with impuritigRef. 9. Note that

T ?l/llgorﬁt’ §=1/2, A. W. Sandvik, (01) while Refs. 53 and 57 focused on discrete quantities, our

: Iy : | : | : | results concern averaged quantities.
095 0.1 0.2 03 0.4 At T>0, Eq.(74) for the staggered magnetic moment can
X be rewritten, separating the quantum={0), and thermal
(T-dependentparts,

= o
(=N o0
I T

HeH
7
/
!/
7
9/
/
| |

o
=~
T
I

M(x)/M(0)

o
(W]
I
e
=

FIG. 10. Average staggered magnetizatioxv®ur results from
Eg.(75) (solid line), Monte Carlo datdopen circles; Ref. 25 NQR M(x,T)=S—A—M(x)— sMT(x,T), (79
data(filled circles; Ref. 56, and the fit of Monte Carlo data from

Ref. 26 are shown. Ng(w)dw

1
SMT(x,T)=> f w—[Aﬁl(wHAﬁ? )
sented in Fig. 10 foilS=1/2 (solid line). Monte Carlo data Ko K
from Ref. 25(filled circles, and nuclear quadrupole reso- _27kAﬁ2(w)],

nance (NQR) data (open circles from Ref. 56, are also ) ] )
shown. Note that the original Monte Carlo data of Ref. 25WheresM(x) is the zero-temperature part given in Eg5)

are normalized by the total number of sites, while both NQR&Nd we used evident symmetries of the spectral functions
and our results are averaged over the magnetic sites only. ith respect tow— — o and thamng(w) = —1—ng(— w).

order to extract the same quantity from the Monte Carlo data, For a true 2D system at=0 andT>0 thermal fluctua-

we divided them by the classical probability to find a spin-tion destroy the LRO which manifests itself as a log diver-

occupied site within the infinite clust8t.A recent Monte ~ 9ency of the thermal correction to the magnetization,

Carlo study Ref. 26 provided an analytical expression for the 1ng(w)do

fit of the “quantum-mechanical factor” in the magnetization SMT(OT)=>, f 2 Sw— o) (80)
[see the comment after E(/.4)] which we plot in Fig. 10 as k Jo ok

well (dashed ling One can see a very good agreement of our

results with numerical data up to high concentrations. The 23 TTdw

oxidation of the crystals can be the reason of a faster de- T)o @

crease oM (x) in NQR data. ] )
The absolute value of impurity-induced quantum fluctua-Where ng(@)=T/w at T<w. The 3D coupling provides a

tions SM(x) is independent ofS in the linear spin-wave Cut Off to this divergency in a quasi-2D problem, which
approximation similar to the quantum reductionSfy zero- ~ Yi€lds a finite value of the thermal correction:

point fluctuationsA. We plot our results fodM (x) in Fig. 5 1 5
SMT(0,T z—f ng(w)dw=—TIn|—|. (81
0.25 . : . : . . . : ( ) ) @ B( ) T \/E‘ ( )
e MC, S=12 1 In addition, a finite value of the ¢ temperature, whose
0.20-| o MC, S=1 o - mean-field value can be found from the conditib{0,T)
— theory ] =0=S—A—6MT(0,T), gives
— . —
30.15 L m(S-A)
2 ° TN =I—_1<1; (82
o 0.10F ° 4 nr
° | in units of 4SJ. Ty vanishes wher—0.
0.05- i One would expect that the thermal part of the staggered
) Xp magnetization for a diluted system may possess other diver-
i l 1 gences, stronger than the simple logor the pure system.
L | L | L | L | i i i i i i
O.ngo o1 03 03 o In fact, this suggestion is quite natural, since the spectrum is

not linear, therefore, the nonlinear corrections must show

themselves. Indeed, since the correction to the spectrum is
FIG. 11. The absolute value @M (x) from Eq.(75) (line) and  dw,~Xwy In|w| [Eq.(51)], one immediately suggests that the

Monte Carlo data Ref. 25, f&8=1/2 (circles andS=1 (squares thermal part of the magnetization should acquire a term

X
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Nfo

Injw|dw

~XTIn?|w|. (83)

However, we show that such anomalous terms from diagona

and off-diagonal spectral functions cancel each other. As

result, there is no signature of any divergency in this quantity

caused by the anomalies of the spectrum.

Using thex-expanded form for Green'’s functiof&7) and
(76) in the long-wavelength approximation, one finds the di-
agonal part

1
M, T) =2 —(afay)T
k Wk

jl—nB(w)dw [ 7O(w— wy)
0 T Wy

-3

k

% 1_(9R§k(wk) B 2ka
dwy wz—wi
zfl doo| 1—x| 2p' (@)= =412
=] na(@)dw| 1-x| 2" (@)= 5 +1= ]|,
(84)
and the off-diagonal part
Yk
Mg, T)==2 ~(aipl)
k Wk
ng(w)do
= = Slw—
; fo o X¥i) (0~ wy)
, aw Zwk
X pP (wk)+ E +rwi
2X (1 T
=—| ng(w)dw 2p’(w)+5+l (85)
0

of the temperature-dependedt "(x,T), where we kept

only O(Injw|) and O(1) terms in the integrandp’(w)

=Rep(w), integration by parts was used M/ and the,

superscripfl in the averages means the thermal part.
The total result is

SMT(x,T)= SMT(0,T), (86)

3
1+x| 77— —
a
which shows that the thermal correction is enhanced by im
purities, but that there is no new divergency associated wit
them in this quantity. The suppression rate of theNem-
perature can be readily obtained from the condition
M(X,T)=0=S—A—-6M(x)—SM(x,T) using Eq. (86

which gives
Tn(X) N 2 B 8
To(0) 1TAXELEX oot gy ) 8D

PHYSICAL REVIEW B5 104407

¢ WUSR, P. Carretta et al., (97)

o %, M. Hucker et al., (99)
m  ESR, S. Clarke et al., (92)
0.8 — theory, linear term
E@ --- theory, numerical integration
Z.0.6F .
~ S=1/2
~~
Vi
< 04r n
N
HZ
O~~~
0.2 T~ n
~ Xp
| | | ]\L
0'9).0 0.1 0.2 0.3 0.4 0.5
X

FIG. 12. T\(Xx)/Ty(0) vsx for S=1/2. Shown are the results of
numerical integration in Eq74) (dashed ling the analytical linear-
x slope (1-A,x) [Eq. (87)] (solid line), ©SR (diamond$?* and
magnetic susceptibilitycircles'® data for Zn-doped LCO, and ESR
(squarep (Ref. 22 of Zn-doped copper formate tetrahydrate
Cup—xZn(Mg)x(HCO,) - HL0.

rates point tox.(1/2)=0.31 andx.(5/2)=0.38, both below

Xp, SO that one may suggest that in order to have a phase
transition at the classical percolation threshold the

Tn(X)/Tn(0) curves should have a rather unusual concave
form.

It is interesting to compare our result for the decline rate
of Ty(x) [Eq. (87)] to the results of different approaches to
the same problem and to the results for similar models. A
naive mean-field treatment of the impurity effects as a simple
renormalization of magnetic coupling givelg(x)/Ty(0)
=1-—x. The application of our formalism to the Ising limit
of the 2D problem givesTy(x)/Ty(0)=1—A'x with A'
=1.37 (see Appendix Fwhich is very close to the random-
phase-approximatiofRPA) answerAp,=1.33, and below
the exact answen),..~1.57% For 2D Ising magnets,
Tn(X) vs, x has a more traditional convex forthThe pre-
vious result for the suppression rateTqf for a 2D Heisen-
berg model® is Ty(x)/Ty(0)=1— X, which was obtained
using the Green function technique and spin-wave theory in
approximations very similar to ours. However, Ref. 59
missed—2/m, and neglected &terms.

We have also performed a numerical integration in Eq.
(74) and solved an implicit equatioM (x,Ty) =0 on Ty(x)
numerically. This procedure requires a finite 3D coupling,
and the use of a quasi-2D form of the spectral functions.

ince the integration involves an additional dimension and
the 3D region is quite narrow, the convergence of the result
as a function of the number &f andw points at smalk can
be an issue. We plot our numerical results Toi(x)/Ty(0)
for the case o6=1/2 in Fig. 12, together with the analytical
slope[Eq. (87)] with A;;»,=3.2 and experimental data. Ex-
perimental data are obtained by muon spin rotatip8R)
(Ref. 21 and magnetic susceptibility measureméhtef
LCO systems and by electron spin resonafE8R (Ref.

For S=1/2 this givesA;,=3.19645), and forS=5/2 it is  22) of Zn-doped copper formate tetrahydrate, a layered
As,=2.60Q4). It isimportant to note that these suppressionquasi-2D AF. One can see that our linearesults agree very
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1.0%—— o xand C_, K. Takeda er al., (00) perature the 3D coupling is irrelevant, and the spin fluctua-
— theory, linear term tions in the Iaygred AF system are charactenzed by an in-
plane correlation lengthé,p which is exponentially
08 7 diverging with 1T as T—0. The correlation length is
=) S=5/2 1 uniquely determined by =0 properties of the system such
Z.0.6- . as the spin stiffness constamy.

i The correlation length can be derived from the modified
—_ spin-wave theory, as suggested in Ref. 50, by introducing a
3 04r 7 chemical potential for magnons which produces a gap in the
HZ spin-wave dispersion, and then by resolving a constraint

0.2 X (SY=0 which defines the correlation length self-

lp consistently. The result of such calculationscat0 is°
09— o1 0z 03 04 05 c [2mps
X §(M)=57 exp( T ) (88)

FIG. 13. T(x)/Tn(0) vs x for S=5/2. Shown are analytical One should bear in mind, however, that while this approach
linearx results (1-Aspx) [Eq. (87)] (solid line), and results gives the correct exponential behavior&f (T), it provides
of ~magnetic susceptibility and specific-heat data forg prefactor equivalent to the one-loop renormalization-group
Mn; _Zn(Mg, Cd),(HCO,),2(NH;),CO (circles (Ref. 24. result™? This prefactor must be modified according to the

higher-order renormalization group treatm&ht,which

well with the experimental data up to a rather high dopinggive<?
level x~0.25. There is a slight disagreement between our
own numerical and lineax- analytical results at smalk, e c 2mps
which may be connected not only with the numerical accu- (M= 2 4pr+TeXF{ T ) (89)

racy but with the corrections of the orderxTy/J
~x/In 7L Note that the lineax result is free from such This expression shows an excellent agreement with experi-

corrections, since it is obtained in the-0 limit. ments and Monte Carlo datg>®*This discrepancy between
As discussed extensively in Ref. 60, the spin-wave theoryhe results of modified spin-wave theory and the result of a

for layered materials is not really adequateTat Ty due to ~ More exact, nonperturbative, approach, is of the same origin

the lack of kinematic constraints. When it is applied to theas the overestimation ofy by the mean-field solution of

mean-field equatioM (x,Ty) =0 it tends to overestimate the (3.Z>=0-6°

absolute value of the N# temperature, and has some other We generalize the approach of Ref. 50 for the case of an

artifacts such as(T)~Ty—T at T~Ty. This may also AF with impurities, and obtain, for the constraint,

provide an additionak dependence in our numerical values

of Tn(X)/Tn(0). 1 1 .\ 1 PN gt
Figures 13 shows our analytical slope fBg(x)/Ty(0) 573 ; i (7) 1 _; w( 77)[<akak> nd bl
[Eq. (87)] with As,,=2.6 for the case 08=5/2, and experi- (90)

mental data from magnetic susceptibility and specific-heat
measurements of Mn,Zn(Mg,Cd)(HCO,),2(NH,),CO,  Where w(7)=1- 7"y and magnon averages are given
a layeredS=5/2 materiaP. One can see that while the scat- by the integrals of the spectral functioAg'(») andAy(w)
tering of experimental points seem to be smaller than in thérom Egs.(40) and (41) in which the gapped form of the
S=1/2 case the lineax-result fits them very closely up to spin-wave spectrum is used.
x=0.2. The oldeiTy(x)/Ty(0) data for the more traditional ~ We have performed a numerical integration in E80),
S=5/2 material KMn;_,Mg,F, (Ref. 29 showed a large and calculated the correlation lengthé&,p(X,T)
scattering of the data, which allowed an almost any reason= 7%/ y/8(1— 7%) as a function off for several values of.
able fit!’ We fit the results of such a numerical procedure in a wide

It is worth mentioning that the numerical results of our temperature range almost exactly, with the help of the origi-
approach forTy(x) bends inward at larger values gfand  nal Takahashi formulalEq. (88)], with the spin stiffness
show the above-mentioned concave form, which was reps(x) being a free parameter. These fitting values of
cently observed experimentally for LCO compoutfdand  p4(x)/ps(0) vsx closely follow our result fofT(x)/Ty(0)
anticipated in other work& While our approach is certainly dependencgFig. 12]. Such a result can be anticipated from a
not adequate at such high impurity concentrations, and tendsean-field picture of the ordering in layered systems. The
to overestimate the value dfy(x) in comparison with ex- transition occurs when the interplane coupling is strong
periments, it nevertheless points to the same physics. Wenough to stabilize the LRO in comparison with the thermal
interpret this behavior as due to localization effects, whichfluctuations:J, M?(x) %[ x, T(x)]=Ty. If the correlation
tend to reduce the role of quantum and thermal fluctuationfength preserves its exponential form, the dominant part of
in the destruction of the long-range order. the left-hand side comes froef™sX/TnX and one imme-

In the paramagnetic phase above theeN&rdering tem-  diately arrives at
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interesting result of the proximity to the percolation is that, at
X<X, belowTy, the elastic Bragg peak should be accompa-
nied by the Lorentzian whose width &t 0 is solely defined
by the inverse “geometrical Iengtrfgl. One would expect
similar effects to be observed in newly available LCO sys-
tems close tox,.*®
It is not clear, whether localization effects in an infinite
cluster, which we discuss in this work, can manifest them-
selves in the static structure factor or correlation length. Such
contributions, if they exist, may lead to an interesting behav-
ior of the correlation length, different from the simple renor-
malization of spin stiffness. However, in our approach the
potential sources of such anomalous terms appear at higher
o0 20 30 a0 50 orderinx(~x? and, most certainly, do not affect the results
J/T for the experimentally reachable domain of lengts
=200a above which the ordering occurs. At larger concen-
FIG. 14. £(x,T) from Eq. (89), with pg(X)=ps(0)(1—AyX) trations X, such contributions can become important for
from Eq. (87), vs J/T for x=0 (dashed ling x=0.1,x=0.2, and  shorter correlation lengths, but in reality they might be

100}

Ea |

10

x=0.3 (solid lines. screened by similar effects from the decoupled clusters.
Theoretically, it is very intriguing whether such localiza-
ps(X)  Tn(X) tion effects of the infinite cluster can really affect the behav-
= +0O(x/In 77 1). (91 ior of correlation length. We reserve this subject for further

ps(0) ; Tn(0) study.

Therefore, the important conclusions one can make from our
analysis is thati) the correlation length should follow the

x=0 type of behavior Eq(89) with x-dependenps, at least V. CONCLUSIONS
for not too low T and not too highx, and (i) ps(x)/ps(0) We have studied the problem of diluted 2D and quasi-2D
=Ty(x)/Tn(0). quantum Heisenberg antiferromagnets in a tetragonal lattice,

Figure 14 shows a semilog plot &{x,T) given by for-  making use of linear spin-wave theory afdmatrix ap-
mula in Eq.(89) with ps(X) = ps(0)(1—AyX), Az is from  proach. We have shown, contrary to earlier findings, that
Eq. (87), vs J/T for x=0 (dashed ling x=0.1,x=0.2, and D=2 s not the lower critical dimension for this kind of
x=0.3 (solid lineg. An important observation can be made disorder, and that af =0 long-range order persists up to
here. At smallk 2ps is of the order of], and at all reason-  concentrations close to the classical percolation threshold.
able temperatures the dominant behavior is exponential ifhese results are consistent with Monte Carlo simulations in
JIT (straight line in the semilog scaleWhen the spin stiff-  |arge lattice$® In agreement with earlier works on this sub-
ness becomes smalpd<J), there is an additional tempera- ject, which studied the problem in the leading order of the
ture rangeJ>T>ps where the exponential behavior is not dilution fractionx,®>*"we found that the spin-wave spectrum
seen while the prefactor gives the 16§0) behavior of the s strongly modified by disorder. However, contrary to these
log(¢) clearly seen fox=0.3. The experimentally observed works, we have shown that this result dasst imply an
deviation from the simple exponential behavior of the corre-nstability of the system to a paramagnetic phase. Rather, it
lation length&(T,x) vs 1/T'® can be related to this effect.  indicates magnon localization on a length sdalexponen-

At a larger doping level close to the percolation threshold tially large in 1k. We have shown that this length scale ap-
one expects another length-scale to appear. This length scglears explicitly in the dynamic properties such as the dy-
is associated with crossover from translational invariance t¢iamical structure factaf(k,») [Egs.(57)—(65)], which can
self-similarity in the percolative systerfi$.Below x, the  pe measured directly in neutron-scattering experiments, and
“geometrical Iength”geoc|x—xp|"’ separates the regions of the magnon density of state¥(w) [Egs. (68) and (69)]
Euclidean and fractal geometries. Aboxg, where no infi-  which is directly related to the magnetic specific heat equa-
nite clusters are leftfs is the characteristic size of the finite tions(70) and(71). The measurement of such quantities will
clusters. Earlier experimental studies of 2D and 3D Isingprovide a direct test of our theory. Furthermore, we show that
systems (RECoMg; F, and Fe_,Zn,F,)%%® and near- the static properties such as the zero-temperature staggered
Heisenberg systems (RMn,Mg;_,F, and Mn_,ZnF,)  magnetizatiorM (x) [Eq. (74)] and Nel temperaturd y(x)

(Ref. 67 and 68systems, close t®,, demonstrated that the (in the quasi-2D casgedo not show any anomaly associated
static structure facto§(q) contains contributions from both with the spectrum and are finite up to the concentration close
“thermal” and “geometrical” lengths in agreement with the to the classical percolation threshold. These results are in a
theoretical studie¥® The experimental data suggest thatquantitative agreement with the NGR SR ESR? and
these lengths combine in the simplest possible f@gint  magnetic susceptibility measurements in different com-
=& YT)+&5%(x), and that the Lorentzian form of the pounds, as well as with the Monte Carlo d&ta.

structure factor near ordering vector is preserved. Yet another We have shown that the effect of dilution of an AF with
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nonmagnetic impurities is quite strong, because dilutioriWe have also proposed other experiments which can further
completely removes spin degrees of freedom from the imputest the results of our theory. Altogether this provides a self-
rity site; therefore, the spin waves are strongly scatteredconsistent picture of the effects of disorder in low-
Moreover, the low dimensionality of the system significantly dimensional quantum antiferromagnets.
constrains the phase space for scattering, leading to localiza-
tion effects. We have shown that a hydrodynamic description ACKNOWLEDGMENTS
of the problem breaks down for length scales larger than
and that the spin excitations become diffusive instead of bal-
listic. The conventional averaging procedure which is used t
treat disorder does not lead to an effective medium wit
renormalized parameters. Therefore, one needs to use a d
ferent approach for length scales larger tHam problem
which is beyond the scope of this paper.

In fact, the physics of localization described in our work
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Vajk, G. Vignale, and M. Zhitomirsky. This research was

has similarities to the Anderson localization for noninteract—SUpporteol in part by Oak Ridge National Laboratory, man-
ing electrons in disordered lattices where the statistics of thgged by UT-Battelle, LLC, for the U.S. Department of En-

excitations does not mattét.Note that our problem should ergy under Contract No. DE'ACOS'OOQR22725' and by a
be close to the problem of localization of relativistic bos:ons('\"“”‘AR research grant under the auspices of the U.S. De-

(with chemical potentigle=0) in a random potential. On the partment of Energy.

other hand, that problem is related to the problem of disorder

in Bose-Hubbard model where nonrelativistic bosons withAPPENDIX A: TETRAGONAL LATTICE GROUP THEORY

kinetic energyd interact through the local Coulomb term

U.”* In the latter model the Bose glass phase appears fo

small J at a zero chemical potential, and transition into a

superfluid state is possible whehnis large enough. In our

case superfluidity is npt possible, buF we may conjecture that \A/klvk2:f dflj dr2¢§1(f1)vr1,r2¢k2(fz)

our localized phase is somewhat similar to the Bose glass

phase, and that magnons are trapped in the regions which are R

more ordered than in average. It is not clear, however, if the =f drlf dr2¢’l§1(rl)UiTVr1,,2Ui¢k2(r2),

relativistic nature of the bosons is important for the nature of

localization. (A2)
Furthermore, we find the close similarity of our prob-

lem to the problem of disorder in 20d-wave super- | i : | functi
conductoré*®? The large enhancement of the density of "o SYMMELY, andpy(r) is a plane-wave functiong(r)
=(2m)>%"™", which can be decomposed by projection op-

states at low frequencies in our case, which comes about )

because of the redistribution of spectral weight over the encrators:

tire Brillouin zone, is reminiscent of that problem. davave Iy

superconductors the elementary excitations are nodal quasi- _ (p)

particles, or relativisti¢Dirac) fermions. It is known that for Ai(r) 2 n§=:1 HOn” (A2)

these excitations localization occurs on a length skaléo-

calization length which is an exponential function of the Where

conductancer:1, xe”?0,"? wherea,=€?/h. Since in the di- |1

lute limit one expects the conductance to diverge witthat _'p

is, oc1/x) the localization length has the same type of ¢k(r)5‘p)_5 Z‘l DUl i(r), (A3)

nonanalytical dependence @ras in our case. However, it is

not clear howif possible the two problems map onto each where the set of functionggy (r)P},—; | ,» form a basis

other. A further investigation, beyond the scope of this paperfpf the pth irreducible representation, ahgdis the dimension

can clarify the connection of the diluted antiferromagnetof the pth irreducible representatio®®(U,),, is the diag-

with other similar problems of disorder in low-dimensional onal matrix elements of theth irreducible representation for

systems. the symmetric operatdy; in point groupD 4, whose order is
_In summary, we have presented a comprehensive study gf(=16). We readily project the potential into irreducible

d|Iut§d guantum Heisenberg antlferromagn_ets in 2D an_%presentations Efﬂkl,kfﬁpv(kp),k . where

qguasi-2D systems. We have shown that while the dynamic 1%2

properties possess anomalies associated with magnon local- |

We first resolve the scattering potentil[Egs. (9) and
10)] in r-space by inserting the closure relation

whereU; is any symmetric operator in the group of tetrago-

9 2
ization, the static properties are free from such anomalies. S |_p P11, O,
Thus in low-dimensional systems with disorder, the connec- Vklvkz ngl i,jzzl g2 D (UD)nnD™(Uj)nn
tion between static and dynamic quantities is not straightfor-
ward. We have compared our results to the numerical simu- P i
lations and experimental data with a very good agreement. Xf dk3f AKaAk, Vg kP (A4)
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where TR3(w)

T w1t @)p(0) - D(0)

I'3(w)= % (B4)

i — * _
kika J dréic, (N Ui (). (AS) All three parts of the scattering matrix possess the same “un-

: hysical” 1/w contribution discussed in the text. Application
h | h gy HO PP
Uismg t © tetfragoha syrr]nmetr:y group, _one notesrat at eacof the projection procedurféEgs.(30) and(31)] to this prob-
Ai, «, is @ function. Thus the scattering potentidf, ., |em is beyond of the scope of this appendix.

[Eq. (9)] can be decomposed into channels of irreducible The auxiliary functionD andR; are given by rather cum-
representations. The nonzero orthogonal channelébafere  persome combinations ab,p(w), and two additional inte-

the Bogolyubov transformation grals
Aqq (s wave,
’ (7p)? Yos
Vit =18 ® (8 +Isc )@ (s, (AB) dw)=2 —2—,  Blo)=2 ——5, (BY)
P @ —wp P _(,!)p
E. (in-planep waves, with Sfp,yé, and w, from Egs.(5) and(13). Note that atr
APx(y) — | () X(y) —0a(w)—p(w)/2 and f(w)—0.
Vig ki, [P @ P (A7) The expressions fdd andR; are
By (d wave, D=P—wP,,
Viede, = lde )@ (|, (A8) Ri=p—a+P,, (B6)
andAZu (pZ Wavev Rzza—(w—T)PZ'
Vﬁ;f’§2=|pﬁl>®<pﬁ2|, (A9) Ry=(p+a—P)2+ 7(p— )2+ P,
where (sd=[1%J.(st|= VA1, 1.(pY =[0,1]sink,y,/  Where the following shorthand notations are used:
V2 ,(d|=[0,1]y, and (pf|=rsink]0,1]/\2. A Bogoliu- -
bov transformation yields Eq$18)—(21). P=volpta)—2p, (B7)

_12 2 2
APPENDIX B: 3D T MATRIX Py=vyopa—B°+a—owP—-wpa.
In this appendix we provide the solution of tisevave There is no assumption about the valueroiade in these

T-matrix equation in the tetragonal lattice for the arbitrary formulas. _
relative value of the inter-plane and in-plane exchange inte- At 7<1 ando<1 (w can be still>7) one can show that
gralst=J, /2J. With this solution we demonstrate the small- ~ 2
ness of the 3D corrections to the 2D result in the quasi-2D D=3p/2,  Ri=p"2+p,
case (<1). _ _ 2

After some algebra one can solve thematrix equation Ro=pl2,  Re=O(7p%). (B8)
(25) with the sswave scattering potential from E¢L8) (sub-  In the same limitr<1 andw<1 the w-dependent parts of
lattice A), uy vy, andw, from Egs.(12) and(13), and ob-  the scattering matrix becontere simply omit the unphysical

tain: l/w terms herg
?Qf,(w)=|sk>®<sk,|-rl(w)+|s¢>®(s§,|-Fz(w)+(|sk> I'i(w)=p—1(p*~p),
@ (S| sy @ (sc]) - Ta(@) (B1) Ty(w)=—71+7pl2, (B9)
wherg thgw dependence of the |.n—p!ane scatter_lffgst T4(w)=0(72p?).
term) is given by an expression which is formally similar to
the pure 2D resultEqg. (28)], Recall that in two dimensiond ;(w)=p and I'y(w)
=T'3(w)=0. Since Re~In|w| at w> /7 and Rep~In|4 at
Ty(w)= 1, A+ e)p(e)+Ry(w) B2 ©< V47 the largest relative correction to the 2D terms in the
o l-o(l+o)p(w)+D(w)’ scattering matrix iSO[ 7In(7)]. The same statement can be

with p(w) given by Eq.(29). Note that the integration ovgr ~ Proved for all higher powers ob in Eq. (B2), without as-

in this case is three dimensional. The inter plane scattering €UMiNg thatw<1. _
The conclusion is, once again, thatrat 1 one can safely

2 7Ry(w) ©3) drop all terms explicitly proportional te in Eqgs.(B2)—(B4),

—= . (B3 and thus arrive at the purely 2D expression for the scattering
- + +

© 1-e(ltw)p(w)+D(w) matrix given in Eq.(28). The only modification in the

The w dependence of the cross-term is given by quasi-2D case versus 2D case is the change of the behavior

Fz((l)): -7+
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of p(w) at low w, whose real part saturatesat 47, and wH,
whose imaginary part acquires an extra poweifsee Ap- Polo)==—g—" (D3)
pendix B. z
APPENDIX C: ELLIPTIC INTEGRALS IN3(w)= H ,
7z @

The energy-dependent part of thenatrix equation$28)
and (28) is expressed through the integrals of the Green'svhich yield the answer given in Eqé32)—(34) in the limit
function [Eq. (29)]. These integrals can be evaluated in theH,— <.
case of a 2D system and are given by combinations of com-
plete elliptic integrals of first and second kinds: APPENDIX E: 3D p(e)

1 2 The key ingredient of the low-enerdymatrix scattering
plw)=2> ;- ——K(o)+iK(w)], (C1) s given by the integral of the Green’s function ovep(w)
pro—w, T [Eq. (29)]. Appendix C gives an analytical expression of
o p(w) in the 2D case. In the quasi-2D case the interplane
( ):2 (7p) coupling provides a cutoff in the logarithm, and gives an
Pdl@ P wl— w? extra power ofw in the imaginary part of the integral in the
P

3D energy range. This can be obtained explicitly using 3D
form of the spin-wave dispersidiEq. (13)] o=\ 72— 5.

2
=1+ —{w’K(w')—2E(0")+i[(0?*-2)K(w)

Tw' In the limits J7=J,/2J<1 and w<1 (for arbitrary
wl/\[7), for the real part ofp(w) one obtains
+E(w)]},
wherew' = J1— w? K andE are the complete elliptic inte- R _ EI \/_; 10 2y <.\a
grals of the first and second kinds, respectivély. ep(w)=Inl> (r0?), for w=\4r

In the low-energy limit

2 |o+tJow’—4r
2 =—In———|+ 2 =
()= ZIn|w/a|—i, €2 Rep(w) 77_|n 8 O(r,w%), for w \/4_7,
i (EY)
(0)=1— 4 cy & w> /47 the 3D energy scale is irrelevant, andgRe)
Pd T =2/7 In|wl/4] is back to its 2D form. The imaginary parts of
p(w) is
APPENDIX D: PROJECTION OF UNPHYSICAL STATES
: . . L V(1+7)?— -1 )
After the introduction of a fictitious magnetic field to Im p(w)=— —arcco +0O(w?)
. . . . T T
project out the unphysical on-site mode th@ave scattering
potential (sublatticeA) is given by the sum of two terms 1 w? )
from Egs.(22) and (31): =— ;arcco 1- 27 +0(7°,0°)
f/:’f’,tmalz_|Sk>®<5kr|+HZ|ASK>®<ASkr|, for w< \/E', (EZ)

with
Imp(w)=—1+0(w?), for w=4r.

(s=aduc o (Asd=[ucvd- (O At small <47 deep in the 3D range of energies,
One immediately suggest the form of the solution of theim p(w)= — wlm7is linear inw.
T-matrix equation:
Tf”ks,(w)=|sk)®(sk,|-Fl(w)+|Ask)®(Ask,|-Fz(w) APPENDIX F: Ty(x) FOR THE ISING PROBLEM
In this appendix we apply the formalism of our work to
+([As)@ (s | +[s) @ (As|) - Ts(w). the problem ofTy(x) vs x dependence for the Ising= 1/2
(D2) case. While the spin-wave approximation is much less ad-
equate in the Ising limit than for the pure Heisenberg model,

after some algebra, one finds it is nevertheless a very instructive exercise which gives a
quantitatively correct answer.
I'y(w)= H (1t w)p(w)+1 The quadratic part of the 23=1/2 Ising model in the
[1-w(l+w)p(w)](H,—w)’ spin-wave approximation reads
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H
ﬁ:Ho‘l‘Himp
=> ala,— >, e® KRy ala,,  (F1
k 1k, k'
with
Vickr = Yk—k’ » (F2)

where from the beginning we omit the “unphysical” term
which will result in aw=0 mode. TheT matrix gives the
total result for all scattering channels,

tot w—1
T (w)=— Y-k o378 (F3)
where we used the property
Ep 7k—p7p—k/57k—k//4. (F4)
The self-energy is then given by
S (0)= —x—— F5
(w)= X (F5
The Green'’s function has now two poles:
1 w—3/4
G(w)= (F6)

wo—1 w—3/4+x’

PHYSICAL REVIEW B5 104407

and the spectral function is given by twbpeaks:

Alw)=

[(w—1)+4x5(w—3/4+x)]. (F7)

1+4x

The Neel temperature is defined from the condition

1 ©
<SZ>(TN1X):§_J dwng(w)A(w)=0, (F8
which transforms to
1+4x
5 =ng(1) +4x ng(3/4—x). (F9)

In a pure systemTy(0)/2J=1/In3. At small xTy(X)
=Tn(0)(1—A'x) and, after some algebra, one obtains an
analytical expression foh',

Al

-1
In

2
3

4
= 1.02% =1.37, (F10

4
30n3| 391
which should be compared with the RPA answkp,
=4/3>° and an exact answé,, ..~ 1.57°® One can see that

in spite of the roughness of the approximation of the Ising
spin degrees of freedom by bosons, our approach gives a

good quantitative agreement with other approaches and with
an exact result.
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