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Diluted quantum antiferromagnets: Spin excitations and long-range order
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We have studied the static and dynamic magnetic properties of two-dimensional~2D! and quasi-two-
dimensional, spin-S, quantum Heisenberg antiferromagnets diluted with spinless vacancies. Using spin-wave
theory and theT-matrix approximation we have calculated the staggered magnetizationM (x,T), the neutron
scattering dynamical structure factorS(k,v), the 2D magnetic correlation lengthj(x,T) and, for the quasi-
~2D! case, the Ne´el temperatureTN(x). We find that in two dimensions a hydrodynamic description of exci-
tations in terms of spin waves breaks down at wavelengthslarger than l /a;ep/4x, x being the impurity
concentration anda the lattice spacing. We find signatures of localization associated with the scalel, and
interpret this scale as the localization length of magnons. The spectral function for momentaa21@k@ l 21

consists of two distinct parts:~i! a damped quasiparticle peak at an energyc0k*v@v0, with abnormal
dampingGk;x c0k, wherev0;c0l 21, c0 is the bare spin-wave velocity; and~ii ! a non-Lorentian localization
peak atv;v0. For k& l 21 these two structures merge, and the spectrum becomes incoherent. The density of
states acquires a constant term, and exhibits an anomalous peak atv;v0 associated with low-energy localized
excitations. These anomalies lead to a substantial enhancement of the magnetic specific heatCM at low
temperatures. Although the dynamical properties are significantly modified, we show thatD52 is not the
lower critical dimension for this problem. We find that at smallx the average staggered magnetization at the
magnetic site isM (x,0).S2D2Bx, whereD is the zero-point spin deviation andB.0.21 is independent of
the value ofS; the Néel temperatureTN(x).(12As x) TN(0), whereAs5p22/p1B/(S2D) is weaklyS
dependent. Our results are in quantitative agreement with recent Monte Carlo simulations and experimental
data forS51/2, 1, and 5/2. In our approach long-range order persists up to a high concentration of impurities
xc which is above the classical percolation thresholdxp'0.41. This result suggests that long-range order is
stable at smallx, and can be lost only aroundx.xp where approximations of our approach become invalid.

DOI: 10.1103/PhysRevB.65.104407 PACS number~s!: 75.10.Jm, 75.10.Nr, 75.40.Gb
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I. INTRODUCTION

The discovery of superconducting cuprates~HTC! has
motivated an enormous amount of studies in lo
dimensional magnetic systems during the last 15 years1–3

However superconducting materials now form only a s
field in the activity of low-D quantum magnetism~see Ref.
4!. The hope for an insight into the physics of HTC from
study of magnetically related system has attracted much
tention to the properties of diluted two-dimensional, qua
tum Hersenberg antiferromagnets~QHAF’s!.5–27 One such
system, La2Cu12xZn(Mg)xO4 ~LCO!, a quasi-2D,S51/2,
QHAF diluted with spinless vacancies, has been a subjec
great interest because of the possibility of quantum crit
points ~QCP’s! in its phase diagram. Earlier experiment
data,17 while demonstrating that LCO shows a much stron
stability against doping in comparison with the mobile-ho
doped compound La22xSrxCuO4, indicated the existence of
QCP at x5xc'0.2, well below the classical percolatio
threshold. This finding was in sharp contrast with classi
magnetic systems where dilution leads to a breaking of
magnetic bonds, and long-range order~LRO! is lost only at
the percolation thresholdxp , a characteristic value of th
dilution fraction x at which the last infinite cluster of con
nected spins disappears. For a 2D square lattice,xp'0.41.28

The existence of such a QCP below the percolation thres
0163-1829/2002/65~10!/104407~23!/$20.00 65 1044
-

-

t-
-

of
l

l
r
-

l
e

ld

was thought to be possible, given the large amount of qu
tum fluctuations in the ground state ofS51/2 system. How-
ever, only recently were a systematic experimental anal
of the diluted 2D AF performed in a wide range o
doping.18–20Although there were several other experimen
realizations of a 2D QHAF on a square lattice withS51/2
~Refs. 21–23! and S55/2,24,29 the CuO-based compound
are among the few which allow a direct probe via elastic a
inelastic neutron scattering. At the same time, quant
Monte Carlo~MC! studies provided highly reliable simula
tions of large lattices at low temperatures.25,26 These works
indicated that, in fact, no QCP point exists belowxp , and
that at percolation threshold the phase transition is charac
ized by classical exponents.26,27

Note that theoretical studies of diluted spin systems
tracted much attention some 30 years ago in the contex
magnetism in diluted magnetic alloys.30–33 Most of these
studies focused on large-S ~classical! Heisenberg or Ising
systems. The traditional view of the effect of local disord
on the spectrum of an ordered 3D antiferromagnet is tha
long wavelengths theform of the spectrum is not modified
The only effects are the reduction of hydrodynamic para
eters~spin stiffness, spin-wave velocity, etc.34! and a weak
damping. Conventional arguments for this ability of th
long-wavelength spectrum to withstand perturbations o
local scale often appeal to the Goldstone theorem,35 although
©2002 The American Physical Society07-1
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its applicability to systems without translational invarian
requires the additional assumption that the microscopic
tails are virtually averaged on short distances. As a result
low-energy excitations are weakly damped spin waves wh
belong to a so-called ‘‘infinite cluster,’’ and they are we
defined up to the percolation threshold.35 This effective res-
toration of the translational invariance involves spin-wa
propagation on randomly directed paths with some Euclid
distanceL8 which can be converted to a ‘‘true’’ distanceL.
Thus the wave vector preserves its meaning at lo
wavelengths.36 In three dimensions these arguments wo
very well, and are assumed to demonstrate a ‘‘general p
ciple.’’

There is growing evidence that, in two dimensions, su
logic is not always valid. In the 2D case it was found
Harris and Kirkpatrick,30 and more recently in Ref. 37, usin
a perturbative~linear inx) approach, that the spin-wave se
energy at long wavelengths acquires a nonhydrodyna
contribution which explicitly violates the Lorentz invarianc
of the clean system~a feature anticipated by Chakravar
et al. in Ref. 1!. Recently, similar results were obtained
random-phase-approximation studies of a diluted 2D H
bard model.5 Some of these studies concluded thatD52 is
the lower critical dimension for this type of disorder,30,37

implying an instability of the long-range order to an infin
tesimal doping in the Imry-Ma sense.38 However, as we men
tioned above, MC results show that the order is preserved
to x5xp , in contradiction with these conclusions. We w
show that the conjecture of the instability is an artifact o
perturbative expansion, and is avoided when the diverg
series of diagrams is summed. However, the resulting m
fication of the excitation spectrum is very unusual, and le
to a number of observable anomalies.

Technically, our approach is similar to one of Brenig a
Kampf,15 who studied the problem of excitation spectrum
diluted 2D QAF’s using spin-wave andT-matrix formalisms.
However, while the authors of Ref. 15 notes unusually bro
peaks in the spectrum, theyassumeda ‘‘normal’’ 3D type of
the spectrum renormalization, that is, a softening of
sound velocity and a recovery of the spectrum at long wa
length. The derivative of the spin-wave velocity withx, ob-
tained numerically in Ref. 15 using this assumption, is rat
large,d@c(x)/c0#/dx'23, which supported earlier exper
mental expectations of a QCP atx,xp . A recent work by
two of us using a nonlinears model allied to classical per
colation theory39 gave a similar result. Another study in Re
40 used a generalizations of thes model with parameters
modified according to MC data, and suggested a sim
renormalization of spin stiffnessrs(x) and spin-wave veloc-
ity c(x) as the only effect of impurities. We will show tha
these results are not correct because of the existence o
calized spin excitations which are not taken into accoun
these works.

In this work we study the problem of impurities in 2
QHAF’s within a linear spin-wave theory, using aT-matrix
approach combined with a configurational average over
random positions of impurities. We solve the single-impur
problem exactly. The spin-wave Green’s function is eva
ated by summing all multiple-scattering diagrams that
10440
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volve a single impurity. This approximation gives results th
go beyond a simple linear expansion inx, although not all
higher-order contributions inx are taken into account. Thi
approach is valid as long as single-impurity scattering is
dominant one. We recover the results of Refs. 30 and 3
k@ l 21, that is, the spin-wave spectrum acquires a nonlin
logarithmic contributionSk(v)}x k lnuvu with an abnormal
damping Gk}x k. This means that an effective spin-wav
velocity c(x) is not well defined. However, we show tha
there is no instability of the system toward a disorder
phase, as conjectured previously. Static properties suc
staggered magnetization and the Ne´el temperature do no
possess anomalies, in contrast with the dynamic propertie
is interesting to note that the spin-wave stiffnessrs(x)
5c(x)2x'(x) is also well defined, since the anomalo
terms in the transverse susceptibilityx'(x) and inc(x) can-
cel each other.

We show that a diluted 2D AF provides an example o
system where the arguments for the spectrum to be ‘‘p
tected’’ at long wavelengths fail.41,42We have found that the
spectrum of a 2D AF at long wavelengths is overdamped
arbitrary concentrations of spinless impurities. More expl
itly, the spectrum ceases to contain a quasiparticle pea
any kind beyond a certain length scale. The actual spin
citations, instead of being described as ballistic, may be
terpreted as diffusive spin modes. The reason for this is
influence of scattering centers on the long-wavelength e
tation, which is not vanishing in two dimensions because
the small phase space. This leads to the absence of an e
tive self-averaging of the system to a translationally invari
medium with renormalized parameters, as would be the c
in three dimensions. Instead, the scattering leads to a le
scalel /a;ep/4x beyond which the influence of impurities o
the spectrum is dominant. We associate this length scale
the localization length of spin excitations.

We show that the dynamical structure factorS(k,v), for
a21@k@ l 21, consists of three parts~we use units such tha
\5kB51): ~i! a broadened quasiparticle peak at an ene
v.c0k (112xln(ka)/p), where c052A2SJa is the bare
spin-wave velocity,J is the antiferromagnetic exchange co
stant, and the width is given byGk.x c0k; ~ii ! a non-
Lorentian localization peak atv5v0;c0l 21, and~iii ! a flat
background of states betweenv5c0k andv5v0. Thus, be-
sides the lack of Lorentz invariance, for everyk state some
weight is spread from high energiesv;c0k to low energies
down tov;v0.43 For k& l 21 the quasiparticle and localiza
tion peaks inS(k,v) merge into a broad incoherent peak th
disperses in momentum space.

The anomalies in the dynamical structure factor are
flected in the magnon density of statesN(v). In a clean 2D
AF, N(v)}v. With dopingN(v) acquires a constant contr
bution from the localized statesN(v)}v1const x at v
@v0, has a peak atv'v0 of height;1/x, and vanishes as
N}1/(xlnuvu)2 for v!v0. This behavior ofN(v) is reminis-
cent of the problem of localization of Dirac fermions in 2
d-wave superconductors44 in the case of ‘‘strong’’ disorder
~unitary scatterers!. Another interesting similarity betwee
that problem and an impure 2D AF is that disorder may le
7-2
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DILUTED QUANTUM ANTIFERROMAGNETS: SPIN . . . PHYSICAL REVIEW B65 104407
to very different physical consequences depending on
‘‘class.’’ As noted in Ref. 37 and also in Ref. 45 in anoth
context, one obtains drastically different results if the spin
an impurity is equal to the spin of the host material, and o
bond strengths around an impurity~J! are modified. The
renormalization of the spectrum in this case does not con
any anomalous terms, namely,Sk(v);x c0k and Gk
;x c0k3a2. According to the terminology of 2D Dirac fer
mions, this problem falls into the class of a ‘‘weak’’ disorde
In the case of spinless impurities the similarity to ‘‘strong
unitary scattering centers is evident, since no spin degree
freedom exist at the impurity site.

From the density of statesN(v) we calculate the mag
netic specific heat, which for a clean 2D system at low te
peratures isCM(0,T)}T2. We predict a strong deviation
from this behavior due to localized states. We find that
specific heat acquires a quasilinear correctiondCM(x,T)
5b(x)T/( ln2uT/v0u1p2/4) which is roughly }xT at T
@v0 . Observation of such a behavior can provide a sim
test of our theory. We remark that in our approach the c
tribution of the finite~decoupled! clusters is not taken into
account, since the whole system is considered as a sin
ordered, infinite cluster. However, finite clusters of sizeL
have a gap in their spectrum of orderJ/L, and thus become
important in the low-T region only atx close to percolation
threshold whereL can be large. Another source of simila
high-energy corrections is due to the resonant states (v res
;J), around impurities whose energy may go down w
doping.46 At lower temperaturesT&AJ'J, whereJ' is the
interplane exchange constant, a crossover to a 3D beha
should be seen. Thus, forx not too close toxp , we expect a
large temperature window where the predicted anoma
2D behavior ofCM in the infinite cluster is dominant and ca
be observed.

We also consider the effects of small interplane coupl
t3D5J'/2J and small anisotropy gaps on our conclusio
for dynamical properties of a strictly 2D isotropic AF di
cussed above. It is evident that as long as these additi
energy scales are small in comparison withJ, there will be an
energy range 1@v/J@At (t5te f f accumulating the tota
effect of the gaps and 3D coupling! in which the nonlinearity
of the spectrum and an abnormal damping of the 2D s
waves should be observable. A more delicate question
the localization part of the spectrum and truly overdamp
long-wavelength excitations can be seen in the presenc
gaps or 3D coupling. The point is that the disorder induc
scalev0;Je2p/4x can be hindered by these additional term
which cut off the log singularity. Therefore, a range of co
centrations 0,x,x* ; ln21(1/t) can be found where the
long-wavelength quasiparticles are still well defined deep
the 3D region of thek space (ka!At), similar to the
quasi-1D problem.47 For LCO materials,t;1024 gives x*
;0.1–0.2. Above concentrationx* ~and atx,xp), localiza-
tion and overdamped peaks should be observable sincev0

.At, and all the low-energy excitations become incohere
Our order of magnitude estimation for the largest value ot
which can allow such observation~from the conditionx*
,xp) is t;0.01. Therefore, a rather high impurity conce
10440
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tration and small enough anisotropies and inter planar c
pling may be required to observe directly some of the d
namical effects we predict in this work.

We calculate the static magnetic properties and find
quantitative agreement with both MC simulations and e
perimental data. We show that atT50 the staggered magne
tization ~averaged over the magnetic sites48! is given by
M (x,0)'S2D2Bx for x!1; the factor D5(kvk

2'0.2
stands for the contribution of the zero-point fluctuations
the spins, andB.0.21 isS independent in our approach. W
find that TN(x)/TN(0).12As x for x!1, where As5p
22/p1B/(S2D) is a weak function ofS. This linear ex-
pansion result givesA1/2.3.2 andA5/2.2.6, which work
quite well up to a high value ofx;0.25. It is interesting that
the linear expansion results point toxc(1/2).0.31 and
xc(5/2).0.38, both belowxp , which means thatTN(x) ver-
susx curve should be concave, in contrast with the 2D Isi
magnets for whichTN(x) is a more traditional convex
curve.17 Such an anomalous curvature of the ordering te
perature was also observed in many different magnetic
tems composed off-electron moments such as U and Ce49

We show that in our approach for larger values ofxTN(x)
indeed bends inward, and tends to saturate close toxp . We
interpret this behavior as due to localization effects wh
tend to reduce the role of quantum fluctuations in the
struction of the long-range order.

We have calculated the 2D magnetic correlation len
j(x,T), to describe the paramagnetic phase of the sys
above the Ne´el temperature. We used a modified spin-wa
theory formalism of Takahashi,50 and calculatedj(x,T) nu-
merically. The correlation length is suppressed in compari
with the pure case, and also shows some deviation fro
simplee2prs(x)/T behavior at largerx.

This paper is organized as follows: we describe the mo
and introduce the formalism in Sec. II. In Sec. III we prese
results for the dynamic properties. In Sec. IV, the static pr
erties and long-range order and discussed; Section V c
tains our conclusions. A few appendixes are included w
details of the calculations. Some of the results presented
were briefly reported in our previous paper.51

II. FORMALISM

The systems discussed in this paper are modeled by
site-diluted quantum Heisenberg antiferromagnet

H5(̂
i j &

Ji j pi pj Si•Sj , ~1!

wherepi51 (0) if the Ri site is occupied~unoccupied! by
the spinS. We focus on the problem of tetragonal or squa
lattices with in-plane,J, and out-of-plane,J' , nearest-
neighbor exchange constants;^ i j & denotes a summation ove
bonds. In the systems of interestJ@J' ~for instance, in LCO
J'1500 K andJ';1024J).

A. Spin-wave approximation

We begin with Hamiltonian~1! which is split into the pure
host and impurity parts,
7-3
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H5H01Himp5(̂
i j &

Ji j Si•Sj2(
l ,d

Jl ,d Sl•Sl 1d , ~2!

where l runs over the impurity sites andd is a nearest-
neighbor unity vector. Then, in the linear spin-wave appro
mation,

Si
z5S2ai

†ai , Si
1.A2Sai , Si

2.A2Sai
† , ~3!

Sj
z52S1bj

†bj , Sj
1.A2Sbj

† , Sj
2.A2Sbj ,

for spins inA ~i! andB ~j! sublattices, the quadratic part o
the pure host HamiltonianH0 for the tetragonal lattice is
given by

H054SJ(
k

@ ĝ0~ak
†ak1bk

†bk!1ĝk~ak
†b2k

† 1b2kak!#,

~4!

where in-plane and out-of-plane coordination numbers
z54 andz'52, respectively, and we define

ĝk5gk1tgk
' , ~5!

with t5J'/2J, gk5(coskx1cosky)/2, andgk
'5coskz. From

now on the in-plane and out-of-plane momenta are in u
of the correspondent inverse lattice constants. The impu
parts of Hamiltonian~2! on a tetragonal lattice are

H imp
A 52S (

l PA,d
Jl ,d@al

†al1bl 1d
† bl 1d1al

†bl 1d
† 1albl 1d#,

~6!

H imp
B 5H imp

A ~a↔b!,

with Jl ,d5J (J') for d5ex ,ey (ez). After Fourier transfor-
mation it is more convenient to write the impurity Ham
tonian in 232 matrix notations,

Himp524SJ(
l ,k,k8

ei (k2k8)Rl Âk
†V̂k,k8

l Âk8 , ~7!

where

Âk5F ak

b2k
† G , Âk

†5@ak
† , b2k#, ~8!

with scattering potentials forl in the sublatticeA,

V̂k,k8
A

5S ĝ0 ĝk8

ĝk ĝk2k8
D , ~9!

and for l in the sublatticeB:

V̂k,k8
B

5S ĝk2k8 ĝk

ĝk8 ĝ0
D . ~10!

The pure host Hamiltonian@Eq. ~4!# is diagonalized using
Bogolyubov transformations

ak5ukak1vkb2k
† , ~11!
10440
-
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ty

bk
†5ukbk

†1vka2k ,

with

uk
22vk

251, 2ukvk52ĝk /vk , ~12!

uk5Aĝ01vk

2vk
, vk52sgnĝkAĝ02vk

2vk
,

where the bare spin-wave frequency is

vk5Aĝ0
22ĝk

2. ~13!

The problem can be reduced to the problem in a 2D squ
lattice by lettingt→0 in Eqs.~4!–~13!. In what follows all
energies are expressed in units ofV054SJ.

After the Bogolyubov transformation the Hamiltonia
Equations~4! and ~7! are given by~in the units ofV0)

H05(
k

vk~ak
†ak1bk

†bk!, ~14!

Himp52 (
l ,k,k8

ei (k2k8)RlÂk
†V̂k,k8

l Âk8 , ~15!

where the two-component vectors are

Âk5F ak

b2k
† G , Âk

†5@ak
† , b2k#, ~16!

and 232 scattering potential matricesV̂k,k8 are obtained
from Eqs.~9! and~10! using Eq.~11!. For the sake of further
use of theT-matrix formalism, it is convenient to decompos
the scattering potentials into orthogonal components acc
ing to the symmetry with respect to the scattering site. T
symmetry of the tetragonal lattice isD4h , which is a group
of order 16 and has ten irreducible representations. Since
impurity potentials@Eqs. ~9 and 10!# connect only nearest
neighbor sites, only five components of the scattering pot
tials in irreducible representations ofD4h are nonzero. They
correspond to the irreducible representationsA1g , B1g , B2g ,
andEu . These nonzero components are thes wave, the in-
plane px , py , and d waves, and the out-of-planepz wave
~for details see Appendix A!.

Thus, the scattering potential for the impurity in the su
lattice A

V̂k,k8
A

5(
m

V̂k,k8
A,m , ~17!

where the scattering channels arem5s,px ,py ,d,pz . In each
channel the scattering potentials can be written as a di
product of the column and row vectors. Thes-wave part is

V̂k,k8
A,s

5usk& ^ ^sk8u1tusk
'& ^ ^sk8

' u, ~18!

where

^sku5@uk1vkgk , vk1ukgk#,

and

^sk
'u5@uk1vkgk

' , vk1ukgk
'#,
7-4
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the in-planep-wave part is

V̂
k,k8

A,px(y)5upk
x(y)& ^ ^pk8

x(y)u, ~19!

where

^pk
x(y)u5sinkx(y)@vk , uk#/A2,

the d-wave part is

V̂k,k8
A,d

5udk& ^ ^dk8u, ~20!

where

^dku5gk
2@vk , uk#,

with

gk
25~coskx2cosky!/2,

and the out-of-planepz-wave contribution is

V̂
k,k8

A,pz5tupk
z& ^ ^pk8

z u, ~21!

where

^pk
zu5sinkz@vk , uk#/A2.

For the impurity inB sublattice,V̂k,k8
B,m [V̂k,k8

A,m (u↔v).
In what follows we consider the 2D~t50! or quasi-2D

~t!1! limit of the problem. It can be shown that the cont
bution of the out-of-plane terms ins- andpz-wave scattering
potentials which explicitly depend ont, as well as the one o
the majority of thet-dependent terms originating from th
quasi-2D form ofuk , vk , and vk @Eqs. ~12! and ~13!#, is
negligible in the quasi-2D case@;O(t), see Appendix B#.
This allows one to simplify the scattering problem further
neglecting thes' andpz components in the above equation
Moreover, the solution for the 2D problem can be appl
directly to the quasi-2D case, since the formal expressi
are identical in both cases. The only important differen
concerns the logarithmically divergent terms, which in
quasi-2D system acquire a low-energy cutoff provided by
implicit dependence of scattering potentials~19!–~22! on t
throughvk . This simply means that, for the quasi-2D case
the limit t!1, one can restrict oneself by considering pure
2D scattering including the three-dimensionality only on t
level of the spin-wave dispersion in certain terms. Thus
the following we use

V̂k,k8
A,s

5usk& ^ ^sk8u,
~22!

with ^sku5vk@uk , 2vk#.

The rest of this section is devoted to the 2D limit of t
problem and, unless specified otherwise, we use

ĝk5gk5~coskx1cosky!/2,
~23!

ĝ051, vk5A12gk
2.
10440
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B. T-matrix. Single-impurity scattering

We are interested in the Green’s function of Hamiltoni
~14! modified by random impurity potentials@Eqs.~15!#. The
Green’s function is a 232 matrix defined in a standard way

Gk
11~ t !52 i ^T@ak~ t !ak

†~0!#&,

Gk
12~ t !52 i ^T@ak~ t !b2k~0!#&,

~24!
Gk

21~ t !52 i ^T@b2k
† ~ t !ak

†~0!#&,

Gk
22~ t !52 i ^T@bk

†~ t !bk~0!#&,

where brackets also imply a configurational average over
impurity sites.

The T-matrix equation for Hamiltonian~15! is given by

T̂k,k8
l ,m

~v!52V̂k,k8
l ,m

2(
q

V̂k,q
l ,mĜq

0~v!T̂q,k8
l ,m

~v!, ~25!

with l 5A(B); partial waves are restricted to in-planem
5s,ps ,d harmonics according to the above discussion, a
Ĝq

0(v) is the 232 bare Green’s function:

Gq
0,11~v!5Gq

0,22~2v!5
1

v2vq1 i0
, ~26!

Gq
0,12~v!5Gq

0,21~v!50.

The diagrammatic equivalent of Eq.~25! is shown in Fig.
1~a!. T-matrix equations~25! with potentials~19!–~22!, can
be readily solved:

T̂k,k8
A,m

~v!5V̂k,k8
A,m Gm~v!, ~27!

T̂k,k8
B,m

~v!5V̂k,k8
B,m Gm~2v!,

where the frequency-dependent parts are given by

Gs~v!5
1

v
1

~11v!r~v!

12v~11v!r~v!
, ~28!

FIG. 1. ~a! T-matrix single-impurity scattering series~b! Dyson-
Belyaev diagram series for the diagonal,G11, and off-diagonal,G12,
Green’s functions. The self-energiesS11 ~circle! and S12 ~square!
are the configurational averages ofT11 andT12 components of theT
matrix, respectively.
7-5
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Gp~v!52
2

11v1~12v!@v2r~v!2rd~v!#
,

Gd~v!52
1

11~12v!rd~v!
,

with

r~v!5(
p

1

v22vp
2

, rd~v!5(
p

~gp
2!2

v22vp
2

. ~29!

We note here that the second term in thiss wave Gs(v) is
proportional tor(v) at v!1, where the latter appears nat
rally from the summation in Fig. 1~a! as the result of a com
bination ofGq

0,11(v) andGq
0,22(v) in the internal part of the

diagrams. When the summation overp in Eq. ~29! is re-
stricted to two dimensionsr(v) is a logarithmic function at
low energies. In the following we show that this contributio
to the s-wave scattering is solely responsible for all t
anomalies in the spectrum of a 2D AF. Interestingly, a sim
logarithmic term in the self-energy of the 2D Dirac fermio
in the problem of disorder ind-wave superconductors re
quires a summation of the specific subset of diagrams.52 In
our case, while one needs to sum infinite series of diagra
no special selection or inclusion of the multiple-impuri
scattering processes is necessary. Since the single-pa
density of states and the sensitivity of the results to the t
of disorder in both problems are similar, establishing a
tailed correspondence between these two problems is an
portant question. Integrals in Eq.~29! can be taken analyti
cally and, in a 2D case, are expressed through the comp
elliptic integrals15 ~see Appendix C!.

The first term in thes-wave scattering@Eq. ~28!# repre-
sents a singular zero-frequency mode which is indepen
of the dimension of the problem, and originates from os
lations of the fictitious spin degrees of freedom at the im
rity site which are decoupled from the AF matrix. Rough
speaking, when the spins are quantized as in Eq.~3!, andS8
at the impurity site is set to zero, there is stilla0

†a0 left from
S0

z . Thus, in the spin-wave approximation, it gives rise to
s-wave zero-frequency mode. This problem has been no
since the earliest works on the diluted magnets which u
the spin-wave theory,31 and also more recently in the conte
of a diluted AF~Refs. 7,15,37,45 and 53! ~for an extensive
discussion, see Ref. 37!. Since these states are unphysic
and are unrelated to the low-energy physics of the AF, t
have to be projected out. One of the projection schemes
volves a non-Hermitian potential which was designed to p
serve the simplest factorized form of thes-wave scattering
potential.37 We use another, physically more transpare
scheme which introduces a fictitious magnetic fields at
impurity sites~similar to Refs. 15 and 45!,

DH5Hz(
l

al
†al⇒Hz (

l ,k,k8
ei (k2k8)RlÂk

†DV̂k,k8
l ,s Âk8 ,

~30!

where corrections to thes-wave scattering potential are
10440
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DV̂k,k8
A,s

5uDsk& ^ ^Dsk8u,

with

^Dsku5@uk , vk#, ~31!

DV̂k,k8
B,s

5DV̂k,k8
A,s $u↔v%. Evidently, p and d waves are not

affected by the projection. Within our approach, after so
algebra in the limitHz→`, one obtains a modifiedT-matrix
solution ~for the case of an arbitraryHz see Appendix D!,

T̂k,k8
A,s

~v!5V̂k,k8
A,s Gs~v!1DT̂k,k8

A,s
~v!, ~32!

T̂k,k8
B,s

~v!5V̂k,k8
B,s Gs~2v!1DT̂k,k8

B,s
~v!,

where V̂k,k8
l ,s is given, as before, by Eq.~18! and the

frequency-dependent part is now free from the ze
frequency pole

Gs~v!5
~11v!r~v!

12v~11v!r~v!
. ~33!

Comparing this expression with Eq.~28!, one may note that
the ‘‘physical’’ term is left unchanged after the projectio
Additional terms in solution~32! are also regular:

DT̂k,k8
A,s

~v!52vuDsk& ^ ^Dsk8u1usk& ^ ^Dsk8u

1uDsk& ^ ^sk8u, ~34!

with usk& from Eq. ~22! and uDsk& from Eq. ~31!; T̂k,k8
B,s (v)

5T̂k,k8
A,s (2v)$u↔v%, as before. Thus, projection~30! allows

one to remove the unphysical divergency atv50 which
would otherwise affect the true low-energy physics of t
problem.

C. Green’s function

The averaging over random distribution of impuritie
readily transforms theT matrix into spin-wave self-energies

Ŝk~v!5(
m

Ŝm,k~v!, ~35!

with m-wave contributions

Ŝm,k~v!5xdk2k8@ T̂k,k8
A,m

~v!1T̂k,k8
B,m

~v!#. ~36!

For the 2D case the contributions of the partial waves
the self-energies are

Ŝs,k~v!5xvkF S 1 gk

gk 1 DGs~v!1Gs~2v!

2

1S vk 0

0 2vk
DGs~v!2Gs~2v!

2

2S 2 0

0 2D G2xvS 1 0

0 21D , ~37!
7-6
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Ŝp,k~v!5xvkF12S gk
2

vk
D 2GF S 1 2gk

2gk 1 DGp~v!1Gp~2v!

2
1S 2vk 0

0 vk
DGp~v!2Gp~2v!

2 G , ~38!

Ŝd,k~v!5xvkS gk
2

vk
D 2F S 1 2gk

2gk 1 DGd~v!1Gd~2v!

2
1S 2vk 0

0 vk
DGd~v!2Gd~2v!

2 G . ~39!

It is interesting to observe that ‘‘on-shell’’~at v5vk) ‘‘projected’’ T̂k,k8
s (v) from Eqs.~32!–~34! and ‘‘nonprojected’’ expres-

sions@Eq. ~27!, and~28!# yield identicalSs,k(vk).
Summation of the Dyson-Belyaev diagrammatic series for the Green’s functions shown in Fig. 1~b!, with self-energies

defined in Eqs.~35!–~39!, gives

Ĝk~v!5S 2v2vk2Sk
22~v! Sk

12~v!

Sk
21~v! v2vk2Sk

11~v!
D 1

@v2vk2Sk
11~v!#@2v2vk2Sk

22~v!#2@Sk
12~v!#2

, ~40!
tu
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gap
where Sk
22(v)5Sk

11(2v). A detailed consideration of the
properties of spectral functions

Ak
i j ~v!52

1

p
Im Ĝk

i j ~v!, ~41!

will be given in Sec. III.
We investigate the neutron-scattering dynamical struc

factor S(k,v),

S ab~k,v!5E
2`

`

dt eivt^Sk
a~ t !S2k

b ~0!&, ~42!

which is directly related to the spin Green’s functions. T
standard derivation of the single-magnon contribution to
transverse component of the dynamical structure fa
S 12(k,v) at T50 gives

S 12~k,v!5p S~uk1vk!2@Ak
11~v!1Ak

22~v!12Ak
12~v!#,

~43!

where the kinematic (v-independent! form factor (uk
1vk)

25(12gk)/vk is proportional to k close to the
‘‘nuclear’’ reciprocal-lattice pointK50, and is;1/k close to
the ‘‘magnetic’’ Q5~p,p! point. It thus enhances the sign
close to the AF ordering vector, and suppresses it close to
zone center. Note that the diagonal parts of the Green’s fu
tion are symmetric and off-diagonal parts are asymme
with respect to the transformationk→k1Q ~since G12

;S12 andSk1Q
12 52Sk

12). Therefore, the sum of the spectr
functions in the brackets in Eq.~43! is, generally speaking
different in the magnetic and nuclear parts of the Brillou
zone. AtT.0, expression~43! is modified by the factor@1
1nB(v)#, wherenB(v)5@ev/T21#21 is the Bose distribu-
tion function.

The density of states associated with magnetic excitat
is straightforwardly related to the magnon Green’s funct
@Eq. ~40!#, and is given by

N~v!5(
k

@Ak
11~v!1Ak

22~v!#. ~44!

The magnetic specific heat is then given by
10440
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CM~T!5
1

T2E0

1

dv N~v!v2 @nB~v!21nB~v!#, ~45!

wherev andT are in units ofV054SJ.
The static properties of the system, such as the stagg

magnetization in the ordered phase, the Ne`el temperature,
and the 2D correlation length in the paramagnetic phase,
calculated from the spin-wave expression of the avera
on-site magnetic moment,

u^Si
z&u5S2

1

2 (
k

S 1

vk
21D2(

k

1

vk
@^ak

†ak&2gk^ak
†bk

†&#,

~46!

where bosonic averages can be expressed through spe
functions~41! as

^ak
†ak&5E

2`

`

dv nB~v!AR,k
11 ~v!, ~47!

^ak
†bk

†&5E
2`

`

dv nB~v! AR,k
12 ~v!,

which implicitly depend on the impurity concentrationx; in-
dex R stands for retarded.

In the ordered phase expressions~46!, and~47! provide us
with the concentration and temperature dependence of
averaged staggered magnetizationM (x,T). The same ex-
pressions, with the condition̂Sz&(x,T)50, define the mean-
field equation on the Ne´el temperature as a function ofx. In
both cases, whenTÞ0 the 3D form of the spin-wave disper
sion is to be used in Eq.~46!. In the paramagnetic phas
(T.TN) Eq. ~46! should be modified bygk→hgk and vk

→A12h2gk
2. Then, in the framework of the modified spin

wave theory,50 equation ^Si
z&(x,T,h)50 is a constraint

which represents a self-consistent equation on the
A12h2. This, in turn, defines the 2D correlation lengthj2D
as a function ofx andT.
7-7
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III. DYNAMIC AND THERMODYNAMIC PROPERTIES

In this section we consider in detail the structure of t
spectral functions of the Green’s function@Eq. ~40!#, Fig.
1~b!, with self-energies given by Eqs.~35!–~39!. We calcu-
late the dynamical structure factorS(k,v), the spin-wave
density of statesN(v), and the low-T magnetic specific hea
CM(T). We consider the long-wavelength, low-energy lim
of the problem, and obtain analytical results for low-ene
S(k,v) and N(v) and low-temperatureCM(T). We recall
here that all wave vectors are in units of inverse lattice sp
ing 1/a, and all energies are in units ofV054SJ.

We consider the low-energy form of the Green’s functio
first. At low energiesv,vk!1, self-energies~37!–~39! are
given by

Sk
11~v!5xvk@r~v!122p/2#2xv1O~vkv

2r3!,
~48!

Sk
12~v!5xvkgk@r~v!1p/2#1O~vkv

2r3!,

with

r~v!.~2/p!lnuv/4u2 i ,

which includes contributions froms- andp-wave scattering;
the d-wave part is of higher order,Sd.O(vk

3) and vk

.k/A2. The importance of the projection of the unphysic
states can be demonstrated one more time by a compa
of the above expressions with the ‘‘unprojected’’ (Hz50)
form of the self-energy,

Sk
11~v!5xvk@r~v!2p/2#1xvk

2/v1O~vkv
2r3!,

~49!

which possesses anv50 singularity. Notably the ‘‘physical’’
part of the expression containing the logarithm is not rela
to the unphysical states, and remains intact under the pro
tion. As noted before, ‘‘on shell,’’v5vk , self-energies~48!
and ~49! coincide.37 The off-diagonalSk

12(v) is the same in
both cases. It is also useful to note that the first-order B
approximation of the scattering problem would give ve
different results;

Sk
11,Born~v!522xvk , Sk

12,Born~v!50, ~50!

with the imaginary part of the self-energy being;O(xkv2).
One can see that along with the ‘‘normal’’ softening a

weak damping the fullT-matrix consideration gives a non
linear dispersion term and a dampingug̃ku/vk.x which is
only parametrically small with respect to the bare spectru
A perturbative ‘‘on-shell’’ pole equation gives

ṽk1 i g̃k5vk1Sk
11~vk!,

~51!

ṽk5vkS 12x~p/221!1
2x

p
lnUvk/4U D ,

g̃k52xvk ,

which already show that the spin-wave velocity in the effe
tive medium is not well defined since the brackets in E
~51! depend onk. Moreover, the renormalization of the re
10440
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part of the spectrum is dominated by the lnuvu term at low
frequencies, and the brackets vanish at some wave vect

kc
21;exp~p/2x!. ~52!

Because of this one can naively suggest a vanishing
the spectrum37 and an instability of the ground state towa
some new phase. Such an instability is, of course, jus
signature of the breakdown of the perturbation theory. O
has to sum up all the ‘‘dangerous’’ terms using the Belya
Dyson equation@Fig. 1~b!# and Eq.~40!, and analyze spectra
functions~41!.

The low-energy, long-wavelength forms of the Green
function @Eq. ~40!#, with self-energies from Eq.~48!, are

Gk
11~v!5Gk

22~2v!.
ṽ1vk„11x@r~v!122p/2#…

ṽ22vk
2
„11x@2r~v!142p#…

,

~53!

Gk
12~v!.2

xgkvk@r~v!1p/2#

ṽ22vk
2
„11x@2r~v!142p#…

,

whereṽ5v(11x), andr(v) is defined in Eq.~48!.
The diagonal spectral function in the same limit can

then written as

Ak
11~v!.

1

p

xvk~ṽ1vk!2

@ṽ22vk
2a~v!#21~2xvk

2!2
, ~54!

where we make use of imaginary part of the self-energ
being ImSk

i j (v).2xvk , and introduce a ‘‘stretching fac
tor’’

a~v!511xS 4

p
lnUv/4U142p D . ~55!

The energy at which this factor vanishes defines the disor
induced energy scale

v0;expS 2
p

4xD , ~56!

below which the spectrum is overdamped.
A more detailed analysis of Eq.~54! gives the following

picture. At wave vectors much larger thanv0 (vk@v0), that
is, at wavelengths shorter than a characteristic lengtl
;ep/4x, the spectral function has three distinct regions inv.
First is a vicinity of a quasiparticle peak,v'ṽk ,

Ak
11~v!'

2vk

p

2xvk
2

~v22ṽk
2!21~2xvk

2!2
, ~57!

where the spectrum has a regular Lorentzian form with
pole at ṽk and a widthg̃k given by the perturbative resu
@Eq. ~51!#. Second, in an intermediate range of energiesv0

,v!ṽk , where the ‘‘stretching factor’’ is not too close t
zero,
7-8
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Ak
11~v!'

1

p

x

vk

1

a~v!214x2
'

1

p

x

vk
const, ~58!

one can approximatea(v) by a constant since its depen
dence onv is weak in this range. One can see that the sp
tral function in this region is independent ofv, and corre-
sponds to an almost flat, shallow (;x) background of states
Third, in the vicinity of a ‘‘localization peak’’v'v0,

Ak
11~v!'

1

4p

1

xvk
at v5v0 , ~59!

Ak
11~v!'

p

16

1

vk

1

x ln2uvu
at v!v0 ,

the spectral function rises sharply from the shallow ba
ground states;x @Eq. ~58!# to a peak of the height;1/x,
and then vanishes in a singular fashion asv approaches zero
Note that this peak is non-Lorentzian, and its positionv
5v0) is independent of the value ofk.

Thus, besides the lack of the Lorentz invariance of
quasiparticle part of the spectrum of Eq.~51!, everyk mode
redistributes some of its weight from the energy;vk to a
flat background of states betweenṽk andv0 and to a peak a
v5v0. Such a behavior is similar to other problems of li
early dispersive excitations in the presence of disorder in
dimensions, and should be interpreted as the signatur
localization.44,54 Then the characteristic length

l;expS p

4xD ~60!

is to be understood as a localization length of the spin wa
in our problem.

The truly intriguing question is what happens at wav
lengths of order ofl and beyond. In our approach fork
& l 21, the quasiparticle and localization peaks merge int
broad incoherent peak that disperses in momentum sp
One can see that atk;v0, l 21, factora(v) is negative and
the ‘‘pole’’ in Eq. ~54! becomes purely imaginary. Howeve
sincea(v) is v dependent this peak is non-Lorentzian, a
thus cannot be associated with a ‘‘simple’’ diffusive mod
Thus we observe an overdamped, non-Lorentzian diffuse
excitation with a characteristic width of the order ofvk and
a peak position roughly atv&vk . We have to remark here
that the nature of states at the wavelength above the lo
ization length might be beyond the ability of our approac
and a proper description of them may require a differe
nonperturbative type of study.

Thus the structure of the spectral function we disc
above demonstrates an unusual, nonhydrodynamic typ
behavior of the spin-excitation spectrum of a diluted 2D A
The strong influence of disorder in the low-energy exci
tions in two dimensions results in the failure of the averag
procedure, which effectively restores translational inva
ance, to recover the long-wavelength excitation spectrum
this effective medium. Already at energies much larger th
the disorder-induced scalev;k@v0, one finds a departure
10440
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from hydrodynamics: while ‘‘quasiparticle’’ excitation ca
be found, it does not disperse linearly withk, and its damp-
ing is neither hydrodynamic nor quasiparticlelike. More im
portantly, abovea characteristic wavelengthl no hydrody-
namic description of excitations is possible. Low-frequen
modes do exist in some form, but they cannot be classifie
terms of an effective wave vector; thus the long-wavelen
propagation is entirely diffusive.

In addition, the spectra atk@v0 are not exhausted by th
quasiparticle peak. They also consist of a background of
calized states and the localization peak described in Eqs.~58!
and ~59!.

The spectral functionAk
11(v) obtained from ‘‘full’’ ex-

pressions for the Green’s function@Eq. ~40!# and self-
energies~35!–~39! without taking the low-energy limit is
shown in Figs. 2–4 for a number of wave vectors along
(1,1) direction of the Brillouin zone for a representativ
value of the impurity concentrationx50.1. The purpose of
these pictures is to demonstrate the features we discu
using the long-wavelength form ofAk

11(v). The amplitude of
eachAk(v) curve is normalized to fit the picture, and ther
fore the relative heights of the curves bear no meani
These figures also show the bare spin-wave energy~dashed-
dotted line!, with arrows pointing down showing the pos
tions of ‘‘unperturbed’’d-function peaks. The dashed lin
corresponds to a perturbative renormalized spin-wave dis
sion @Eq. ~51!#, while arrows pointing up show the actua
positions of the peaks for selected wave vectors. The figu
show the spectral function within the different ranges ofk
relative tov0 , k@v0 , k*v0, andk&v0, respectively. The
latter can be calculated using Eq.~56!, which givesv0(x
50.1);1023.

Figure 2 shows the spectral functionAk
11(v) for wave

FIG. 2. The spectral functionAk
11(v) for the wave vectorsk

50.1, 0.3, 0.5, 0.7, and 1.0, all@v0 along the (1,1) directionk is
in units of 1/a. The dash-dotted line is the bare spin-wave ener
and the arrows pointing down are the positions of the origi
d-function peaks. The dashed line is the renormalized spin-w
dispersion@Eq. ~51!#, and the arrows pointing up show the actu
positions of the peaks for selected wave vectors.Ak

11(v) for eachk
is normalized to fit the picture.
7-9



c

o

-
el’

o
rg

o
fe
uc

k-
gh-

ve
e
-
een
al-

an
tion
zian
the
nd

tes
ion
ba-

on.

of

n
nd

k

’’
xi-

ak

ff-

in
, the
are

dy-

w
.

F

A. L. CHERNYSHEV, Y. C. CHEN, AND A. H. CASTRO NETO PHYSICAL REVIEW B65 104407
vectorsk50.1, 0.3, 0.5, 0.7, and 1.0 along the (1,1) dire
tion @k is in units of 1/a, so that the corner of the Brillouin
zone is (p,p)#. One can see that the quasiparticle peak f
lows the renormalized spin-wave dispersion@Eq. ~51!# at low
k very closely. At higher values ofk a higher-energy sub
band develops, and the spectrum evolves into the ‘‘cam
like structure discussed extensively in Ref. 15. The origin
this high-energy structure is in the presence of a high-ene
resonance state (v res.J) around an impurity,46 which is un-
related to the low-energy physics of the system. Since
low-energy consideration does not take this high-energy
ture into account, the position of the lower peak in this str
ture deviates from the long-wavelength dispersion@Eq. ~51!#

FIG. 3. The spectral functionAk
11(v) for wave vectorsk

50.005, 0.01, and 0.02 along the (1,1) direction;k50.005 is of the
order ofv0. The dash-dotted line, the dashed line, and the arro
are as in Fig. 2.Ak

11(v) for eachk is normalized to fit the picture

FIG. 4. The spectral functionAk
11(v) for wave vectorsk

50.0001, 0.0005, and 0.001, all,v0, along the (1,1) direction.
The dash-dotted line, the dashed line, and the arrows are as in
2. Ak

11(v) for eachk is normalized to fit the picture.
10440
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at largerk. The low-energy localization peak and the bac
ground are already noticeable in Fig. 2 despite the hi
energy scale.

Figure 3 shows the spectral functionAk
11(v) for wave

vectors k50.005, 0.01, and 0.02, with the smallest wa
vector being of the order ofv0. One can clearly see th
features we discussed in Eqs.~57!–~59!: the broadened qua
siparticle peak, the localization peak, and the states betw
them. The quasiparticle peak continue to follow a renorm
ized spin-wave dispersion@Eq. ~51!#. As k decreases, all the
mentioned structures merge.

Figure 4 shows the spectral functionAk
11(v) for wave

vectorsk50.0001, 0.0005, and 0.001; all are smaller th
v0. As we discussed above, the quasiparticle and localiza
peaks merge, and give a broad, overdamped, non-Lorent
diffusive peak. In other words, one may not represent
Green’s function in this region as a sum of coherent a
incoherent contributionsGk

coh(v)1Gk
incoh(v); it seems that

only the second part survives. The peak position devia
from the perturbative renormalized spin-wave dispers
@Eq. ~51!#, and thus indicates the region where the pertur
tion theory breaks down.

The off-diagonal spectral functionAk
12(v) should possess

features similar to the one of the diagonal spectral functi
The low-energy, long-wavelength form ofAk

12(v) is given
by

Ak
12~v!.

1

p

xgkvk@vk
2 b~x!2ṽ2#

@ṽ22vk
2a~v!#21~2xvk

2!2
, ~61!

where b(x)5@122x(p22)#. Note that Ak
12(v) is not a

positively defined function; it changes sign as a function
v at v5vkAb(x)/(11x). Another important difference
from Ak

11(v) is thatAk
12(v) is odd under the transformatio

k→k1Q, and thus has opposite sign in the first and seco
magnetic Brillouin zones.

A detailed analysis ofAk
12(v) in different regions ofvk

and v shows that in the vicinity of a quasiparticle pea
Ak

12(v) has an additional smallness of orderx in comparison
with Ak

11(v), but it is of the same order in the ‘‘intermediate
(v,vk) and low-energy regions, where it can be appro
mated as

Ak
12~v!'

1

p

xgk

vk

1

a~v!214x2
, ~62!

with the behavior above, at, and below the localization pe
identical to the one ofAk

11(v) @Eqs.~58! and ~59!#.
Figure 5 gives an example of the structure of the o

diagonal spectral functionAk
12(v), obtained from Eqs.~40!

and ~35!–~39! without taking the low-energy limit for wave
vectorsk50.1, 0.3, 0.5, 0.7, and 1.0. Features discussed
the preceding paragraphs—such as changes of the sign
low-energy localization peak, and background states—
clearly seen in this spectral function.

The transverse component of the neutron-scattering
namical structure factorS 12(k,v) is directly related to the

s

ig.
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DILUTED QUANTUM ANTIFERROMAGNETS: SPIN . . . PHYSICAL REVIEW B65 104407
linear combination of the magnon spectral functionsAk
11(v),

Ak
22(v)@5Ak

11(2v)#, and Ak
12(v), as given by Eq.~43!. It

therefore must contain all the features of the spectral fu
tions we discuss here. Figure 6 shows an example of
result forS 12(k,v) vs v at k50.1, that is, in the ‘‘nuclear’’
Brillouin zone, for x50.05. The long dashed arrow show
the initial position of thed-functional peak. Since6v0 are
very small in this case, the localization peak is seen a
single spike atv50, but the flat background of states
clearly visible below the quasiparticle peak.

However, the actual observation of anomalous feature
the spectra can be complicated for two reasons. First,
structure factor contains a kinematic form factor which e
hances the spectral function combination by.2/vk close to
k5Q, and suppresses it by.vk/2 close tok50. Second, as

FIG. 5. The spectral functionAk
12(v) for wave vectors

k50.1, 0.3, 0.5, 0.7, and 1.0, all@v0 along the ~1,1! direction.
Ak

12(v) for eachk is normalized to fit the picture.

FIG. 6. Transverse component of the neutron-scattering dyna
cal structure factorS 12(k,v), k50.1, andx50.05. The long-
dashed arrow shows the initial position of thed-functional peak.
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we show below, the sum of the spectral functions enter
S 12(k,v) is ‘‘less anomalous’’ close tok5Q than atk→0.
That is, the quasiparticle part of the spectrum is abnorm
broadened and disperses nonlinearly for bothk→0 and
k→Q, while the low-energy localization features are su
pressed in the vicinity ofQ due to cancellation between th
diagonal and off-diagonal contributions.

One can show explicitly using the low-energy, lon
wavelength limit of the sum of spectral functions@Ak

11(v)
1Ak

22(v)12Ak
12(v)# given by

Ak
S~v![ (

ab51,2
Ak

ab~v!.
2xvk

p

3
ṽ2~12gk!1vk

2~11gk!22xgkvk
2~p22!

@ṽ22vk
2a~v!#21~2xvk

2!2
,

~63!

that, aside from the kinematic form factor, the dynamic
structure factor should be different in the first~k→0! mag-
netic Brillouin zone,

Ak
S~v!'

1

p

4xvk
3

@ṽ22vk
2a~v!#21~2xvk

2!2
, ~64!

and the second (k→Q) magnetic Brillouin zone

Ak
S~v!'

1

p

4xvkṽ
2

@ṽ22vk
2a~v!#21~2xvk

2!2
, ~65!

due to the asymmetry ofAk
12(v) to k→k1Q. One can see

that around the quasiparticle peakv.vk these expression
are identical, and are simply equal to the diagonal spec
function @Eq. ~57!#; however but at lower energies fork;Q,
the localization features are suppressed by the fa
of v2.

This asymmetry is demonstrated in Fig. 7, which sho
the intensity map ofS 12(k,v)•vk /(12gk)5pSAk

S(v),

i-

FIG. 7. The intensity map ofpSAk
S(v), in thek-v plane fork

from ~0,0! to ~p,p! in the~1,1! direction, and fromv50 to v51 for
x50.25.
7-11
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that is, the structure factor divided by the kinematic fo
factor, in thek2v plane across the Brillouin zone in th
(1,1) direction fromk50 to k5(p,p), for x50.25. The
higher intensity corresponds to the higher value of the fu
tion. One can clearly see all the features of the spect
described in this section: the resonance and its splitting f
the dispersive mode at high energies, the low-energy dam
spin-wave mode in both the center and the corner of
Brillouin zone, and the asymmetric background of localiz
states with the low-energy peak at the bottom. The non
earity of the quasiparticle mode also seems to be quite
ible, though the actual detection of it or of the abnorm
k-dependence of the damping can be a challenging exp
mental problem.

The density of states of spin excitations can be ea
calculated using Eqs.~44! and~40!. We recall that for a pure
2D system with a linear spectrum of excitations, the lo
energy density of states is a linear function ofv and, in our
case,

N~v!5
2

p
v. ~66!

Evidently, low-energy localized states should strongly aff
N(v), and one readily finds anomalous corrections at
level of a perturbative analysis of the Green’s function.
one uses the fullT-matrix form of the self-energy but ex
pands the Green’s function inx,

Gk
11~v!.Gk

0,11~v!1Gk
0,11~v!Sk

11~v!Gk
0,11~v!, ~67!

one immediately obtains a constant correction

N~v!5
2

p
v1xC1O~xv lnuvu!, ~68!

which also implies a finite density of states atv50. A more
sensible result can be obtained without using anx expansion
from the long-wavelength expression for the spectral fu
tion Ak

11(v) @Eq. ~54!#,

N~v!5
2

p
v1xC1 /@a~v!214x2#1O~x v lnuvu!, ~69!

where a(v) is the same ‘‘stretching factor’’@Eq. ~55!# we
used in Eqs.~54!, ~58!, and ~61!–~65!. At v@v0 , a(v)
'const, and we are back to the previous result given
x-expansion perturbation theory@Eq. ~68!#. At v'v0 the
density of states has a peak of height;1/x whose origin is
evident: low-energy nondispersive localized states contrib
to it altogether. Atv!v0 the density of states vanishes
N}1/(x lnuvu)2. Such a strong dependence of the result
the degree of approximation is reminiscent of the disp
over N(v) for certain types of disorder in 2D systems wi
linear excitation spectra,44,52 where different approaches re
sult in drastically different answers for the low-energy part
the density of states.

Figure 8 shows results for the density of states forx50
~pure system, dashed curve!, x50.1, andx50.2. The dotted
curves showN(v) given by Eq.~69! with C154/p3/2, which
is obtained from a long-wavelength expression for spec
10440
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function ~54!. The solid curves are the result of a numeric
integration using the ‘‘full’’ Green’s function@Eq. ~40!#.
While the overall agreement of these curves is very go
there is a significant discrepancy at low energies which
the following origin. In the long-wavelength limit we re
garded the localization peak atv5v0 as nondispersive
whereas, at largerk, close to the magnetic Brillouin-zon
boundary, it disperses down tov;v0

2;e2p/2x!v0. This
can also be noted in Fig. 7. As a result of such a dispers
the peak in the density of states atv0 is spread to lower
energies. Technically, there is a term in the denominato
the Green’s function;x2r(v)2vk

4 , negligible at low k,
which leads to such a behavior. Since this term is of the or
of x2 and our approach does not take all such terms i
account, we have no certainty of whether this is a spuri
feature or not. As we show below, this discrepancy does
affect any of our conclusions.

In this context it is interesting to note that the consta
term in the density of states, which is a prominent feature
all three ‘‘full,’’ long-wavelength, and perturbative results,
directly related to the flat background of states below
quasiparticle peak in the spectral function. The localizatio
peak feature of the spectral function is responsible for
peak inN(v) at low v.

The calculation of the magnetic contribution to the sp
cific heat, using results forN(v) and Eq.~45!, is straightfor-
ward. For the pure system,CM(T);T2, because of two di-
mensionality. The anomalous density of states results i
quasilinear correction to this. Using the long-wavelength
pression for the density of states, for such a correction
obtain

dCM~T!'
A~x!

x

T

ln2uT/v0u1p2/4
, ~70!

whereA(x) is a weak function ofx. At T@v0 (T is also in
units of V0) this gives

FIG. 8. Density of statesN(v) vs v for x50 ~pure system,
dashed curve!, x50.1, andx50.2 ~dotted and solid curves!. Dotted
curves show the long-wavelength result@Eq. ~69!# with C1

54/p3/2. The solid curves show the result of numerical integrati
using the full Green’s function@Eq. ~40!#.
7-12
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dCM~T!'xT3const. ~71!

Figure 9 shows our results for the magnetic specific h
of a spin-1/2 system (V052J) vs T for x50 ~dashed curve!,
x50.1, andx50.2. Dotted curves are results from the lon
wavelength expression forN(v), and solid curves are from
numerical integration using Eqs.~40! and ~45!. One can see
that the results are very close, and point to the same be
ior. The dashed sector shows the temperature regioT
&AJJ' where the crossover to 3D behavior~which provides
higher powers ofT to CM) should occur. We use the valu
J'51024J, characteristic for the cuprates.

Realistically, this picture should overlap with the phon
contribution to the specific heat. One would expect phon
to remain essentially three dimensional even in layered
terials with characteristicT3 contributions to the specific hea
at low temperatures, and thus be negligible in compari
with T2 andxT terms. However, in the case of cuprates t
phonon Debye energy is of the order of 400 K,55 which is
significantly lower than 2J.3000 K. This causes the pho
non part ofC(T) deviate from theT3 behavior at about 20
K, that is around the 3D crossover temperature for a m
netic subsystem. Because of the much lower Debye ene
the specific heat in cuprates is dominated by the pho
part.55 Therefore, in order to observe the anomalous qu
linear contribution of the localized states toC(T), one needs
to use the ‘‘reference’’ materialx50, and subtractCx50(T)
from the results for the systems withx.0 ~we assume tha
impurities do not introduce dramatic changes in the lo
energy phonon spectra!. Another route is to find a quasi-2D
system with a much lower value ofJ ~of the order or less
than Debye energy for phonons! which would allow a direct
observation of thexT anomaly from localized states.

The finite value of the interplane coupling, together w
the small anisotropy gaps, leads to a finite value of the
dering temperatureTN whose dependence on the impuri

FIG. 9. CM(T) vs T for a spin-1/2 system forx50 ~dashed
curve!, x50.1, andx50.2 ~dotted and solid curves!. Dotted curves
show the long-wavelength results, and solid curves the resu
numerical integration using the full Green’s function@Eq. ~40!#. The
dashed sector shows the 3D crossover temperature regioT
<AJJ' for J'51024J.
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concentration is considered in Sec. IV. The effect of the
coupling in the dynamic properties, briefly mentioned abo
in the context of the specific heat, is as follows. The ene
scale introduced by the interplane couplingt5J'/2J is
v3D5A4t, as seen from Eqs.~5! and ~13!; therefore it is
rather small for the realistic systems of interest~for LCO,
v3D.0.01 in the units of the magnon bandwidth!. We show
in Appendix B that the 3D corrections to the 2D scatteri
are given byO(t ln t), which is truly negligible (;1024 for
LCO!. Therefore, the only appreciable correction to the d
namic properties from 3D coupling is the low-energy cuto
of the logarithmic terms in the self-energy atv5v3D . As
we describe in Appendix E

r3D~v!.
1

p
lnU t

16U2 i
v

pAt
at v!v3D ; ~72!

that is, below the 3D energy scale the real part is a cons
and the imaginary part has an extra power ofv in compari-
son with the pure 2D form ofr(v). r(v) remains essen
tially two dimensional atv.v3D . Evidently, this proves
that the 3D coupling has little or no effect on the propert
of the spectral functions, dynamical structure factor, or d
sity of states atv.v3D .

However, the 3D coupling does affect some of the loc
ization features in the following way. Below the 3D energ
scale the ‘‘stretching factor’’@Eq. ~55!# saturates at the valu
a(v3D), and the imaginary part of the self-energy acquir
an extra power ofv. In other words, it should be understoo
as a competition between disorder-induced and 3D ene
scales. Therefore, there are two regions ofx. First, whenx is
small enough, 0,x&x* ;1/lnt21, so thata(v3D).0. In
this region the well-defined spin waves can be found dee
the low-k, low-v region (k,v!v3D), similar to the
quasi-1D problem.47 Concentrationx* is defined from the
equality of the energy scalese2p/4x5At which gives x*
;1/lnt21. The localization peak in the spectral function
v;v0;Je2p/4x in the low-v, k@v region, will be re-
placed by

Ak
3D,11~v!'

1

p

xv

vk

1

a~v3D!2
at v!v3D , ~73!

which smoothly vanishes asv goes to zero instead of show
ing a peak. However, the nonlinearity of the spectrum,
abnormal damping of the quasiparticles, and the flat ba
ground of the localized states belowṽk are all in the 2D
region ofk2v space (v.v3D), and will remain intact.

The second region isx*x* where a(v3D),0. In this
region the pole at lowk and lowv becomes pure imaginar
as in the 2D case, and the localization peak for low-v,
k@v reappear above the 3D scale. Above the concentra
x* all the low-energy excitations are incoherent, because
2D disorder-induced energy scalev0 ~localization lengthl )
is larger~shorter! than the 3D energy scalev3D ~length scale
1/At) so the spin waves lose their coherence before they
propagate in three dimensions. A self-consistent calcula

of
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is required to determine accurately the value ofx* and the
details of the 3D to 2D crossover. Our estimation givesx*
;0.1–0.2 fort;1024.

Thus we find that a 3D coupling for the realistic materia
will modify the 2D density of states, structure factor, a
specific heat only at the energies~temperatures! v,v3D
.0.01, and at impurity concentrationsx,x* .0.120.2. The
estimated value of the 3D couplingtc which would makex*
larger than the percolation threshold istc;0.01.

The consideration given above also applies to the cas
small anisotropies, introducing gaps in the spectrum wit
modified t5te f f accumulating the total effect of the gap
and 3D coupling. It should be noted that the incohere
comes from the averaging procedure which converts the
sipation of momentum into the dissipation of the ener
Therefore, the overdamped excitations should be unders
to be diffusive. It is interesting that it requires 2D ‘‘strong
disorder to restrict the number of Euclidean paths for s
waves and to break down the description of the problem
terms of an effective medium.

IV. STATIC PROPERTIES

Static properties such as the average staggered mag
zationM (x,T), the Néel temperatureTN(x), and the 2D cor-
relation lengthj(T,x) are considered in this section. Th
average on-site magnetic moment@Eq. ~46!# for randomly
diluted AF’s with averaging over magnetic sitesM (x)
5( i uSi

zu/Nm , ~see Ref. 48!, can be expressed through th
integral of the spectral functions@Eq. ~41!# as

M ~x,T!5S2D2dM ~x,T!, ~74!

dM ~x,T!5(
k
E

2`

` nB~v!dv

vk
@AR,k

11 ~v!2gkAR,k
12 ~v!#,

where D5(kvk
2.0.1966 is the zero-point spin deviatio

nB(v)5@ev/T21#21 is the Bose distribution function, an
subscriptR denotes ‘‘retarded.’’ Note that one should n
expect this formula to be valid at a large doping levelx close
to xp , since our approach neglects decoupled clusters
interactions of impurities. However, at not too largex these
effects should be negligible, and one would expect Eq.~74!
to be adequate. We would also like to note here that
definition of M (x,T) is physically equivalent to the
‘‘quantum-mechanical factor’’ of the averaged stagge
magnetization, the definition used in a recent Monte Ca
study.26 In other words, the ‘‘classical’’~‘‘geometrical’’! ef-
fect of dilution on magnetization, which simply accounts f
the decrease of the magnetic substance, is multiplica
to the quantum effects, and is not taken into account
Eq. ~74!.

First we address the question of the presence of exp
divergences in integral equation~74!, which would point to
the instability of the long-range order discussed in Refs.
and 37. At T50, nB(v)52u(2v), and the impurity-
induced quantum reduction of the magnetization, which
be interpreted as a result of the ‘‘condensation of magnon
is given by
10440
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dM ~x!52(
k
E

21

0 dv

vk
@AR,k

11 ~v!2gkAR,k
12 ~v!#, ~75!

where the spectral functions are zero outside of the mag
bandv2.1. Since the perturbative result@Eq. ~51!# suggests
the instability at small wave vectors, long-wavelength e
pressions for the spectral functions can be used for our an
sis. From the form of the spectral functions in Eqs.~54! and
~61! one can readily see that the integral overv is always
finite. The integration overk is two dimensional, but has a
factor of 1/vk in the integrand. From our expression of th
spectral functions in the intermediate and localization pe
energy ranges@Eqs. ~58!, ~59!, and ~62!#, one may sugges
that there is another 1/vk in the integrand which would lead
to the logarithmic divergency. However, these expression
obtained by neglectingv2 in comparison withvk

2 , and thus
are valid only atvk@v. At lower k the convergence of the
integral is restored. To show this more explicitly, one can u
the x-expanded form of the Green’s function@Eq. ~67!# for
AR,k

11 (v), and an equivalent expression forAR,k
12 (v):

Gk
12~v!.Gk

0,22~v!Sk
12~v!Gk

0,11~v!. ~76!

Since allS ’s are linear inx, this provides an expression fo
the term linear inx in staggered magnetization:

dM ~x!.xB52(
k
E

21

0 dv

pvk
F Im SR,k

11 ~v!

~v2vk!2

1
gk Im SR,k

12 ~v!

v22vk
2 G1(

k

gk ReSk
12~vk!

2vk
2

. ~77!

In the long-wavelength limit this gives

dM ~x!.xB.
x

p (
k
E

0

1

dvF 1

~v1vk!2
1

1

v22vk
2G

1
x

p (
k

1

vk
F lnUvk

4 U2p2/4G , ~78!

where the strongest divergency of the integrand is lnkdk and
all integrals are convergent.

Numerical integration of the expression in Eq.~77!, with-
out the long-wavelength approximation, gives the suppr
sion rate of the staggered magnetizationM (x).M (0)2Bx
with B50.209(8). For S51/2 this gives the slope of the
normalized staggered magnetizationM (x)/M (0).1
2Bx/(S2D).120.691(5)x. It is interesting to note tha
the second Born approximation of the impurity scatteri
gives a three times smaller rateBBorn50.0725, showing the
necessity for a fullT-matrix treatment of the problem. Th
estimation ofB, given in Ref. 37 using the 1/z approximation
for an expression similar to our Eq.~77!, provides even
smallerB1/z.1/z250.0625 showing yet another inadequa
of that work.

We have also performed a numerical integration in E
~75! for an impurity-induced reduction of the staggered ma
netization withoutx expansion. This yields the results pr
7-14
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sented in Fig. 10 forS51/2 ~solid line!. Monte Carlo data
from Ref. 25 ~filled circles!, and nuclear quadrupole reso
nance ~NQR! data ~open circles! from Ref. 56, are also
shown. Note that the original Monte Carlo data of Ref.
are normalized by the total number of sites, while both NQ
and our results are averaged over the magnetic sites onl
order to extract the same quantity from the Monte Carlo d
we divided them by the classical probability to find a sp
occupied site within the infinite cluster.48 A recent Monte
Carlo study Ref. 26 provided an analytical expression for
fit of the ‘‘quantum-mechanical factor’’ in the magnetizatio
@see the comment after Eq.~74!# which we plot in Fig. 10 as
well ~dashed line!. One can see a very good agreement of
results with numerical data up to high concentrations. T
oxidation of the crystals can be the reason of a faster
crease ofM (x) in NQR data.

The absolute value of impurity-induced quantum fluctu
tions dM (x) is independent ofS in the linear spin-wave
approximation similar to the quantum reduction ofSby zero-
point fluctuationsD. We plot our results fordM (x) in Fig.

FIG. 10. Average staggered magnetization vsx. Our results from
Eq. ~75! ~solid line!, Monte Carlo data~open circles; Ref. 25!, NQR
data~filled circles; Ref. 56!, and the fit of Monte Carlo data from
Ref. 26 are shown.

FIG. 11. The absolute value ofdM (x) from Eq. ~75! ~line! and
Monte Carlo data Ref. 25, forS51/2 ~circles! andS51 ~squares!.
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11 in order to emphasize the agreement with the MC data
S51/2 ~circles! andS51 ~squares!, which show only weak
S dependences.

It is worth mentioning here that discrete static quantiti
zero-point spin deviations at the neighboring sites arou
impurities in an AF, were studied using spin-wave theory a
Green’s-function methods, since the 1960s~Refs. 57! with
the most recent results obtained in Refs. 7 and 53. Q
remarkably, these results53 were found to be in very good
agreement with the recent Monte Carlo studies of a 2DS
51/2 Heisenberg model with impurities~Ref. 9!. Note that
while Refs. 53 and 57 focused on discrete quantities,
results concern averaged quantities.

At T.0, Eq.~74! for the staggered magnetic moment c
be rewritten, separating the quantum (T50), and thermal
(T-dependent! parts,

M ~x,T!5S2D2dM ~x!2dMT~x,T!, ~79!

dMT~x,T!5(
k
E

0

1nB~v!dv

vk
@Ak

11~v!1Ak
22~v!

22gkAk
12~v!#,

wheredM (x) is the zero-temperature part given in Eq.~75!
and we used evident symmetries of the spectral functi
with respect tov→2v and thatnB(v)5212nB(2v).

For a true 2D system atx50 andT.0 thermal fluctua-
tion destroy the LRO which manifests itself as a log dive
gency of the thermal correction to the magnetization,

dMT~0,T!5(
k
E

0

1nB~v!dv

vk
d~v2vk! ~80!

.
2

pE0

TTdv

v
,

where nB(v).T/v at T!v. The 3D coupling provides a
cut off to this divergency in a quasi-2D problem, whic
yields a finite value of the thermal correction:

dMT~0,T!.
2

pEA4t

T

nB~v!dv.
2

p
T lnU T

A4t
U . ~81!

In addition, a finite value of the Ne´el temperature, whose
mean-field value can be found from the conditionM (0,T)
505S2D2dMT(0,T), gives

TN
MF.

p~S2D!

ln t21
!1; ~82!

in units of 4SJ. TN vanishes whent→0.
One would expect that the thermal part of the stagge

magnetization for a diluted system may possess other di
gences, stronger than the simple log-v for the pure system.
In fact, this suggestion is quite natural, since the spectrum
not linear, therefore, the nonlinear corrections must sh
themselves. Indeed, since the correction to the spectrum
dvk;xvk lnuvu @Eq. ~51!#, one immediately suggests that th
thermal part of the magnetization should acquire a term
7-15
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;xTE lnuvudv

v
;xT ln2uvu. ~83!

However, we show that such anomalous terms from diago
and off-diagonal spectral functions cancel each other. A
result, there is no signature of any divergency in this quan
caused by the anomalies of the spectrum.

Using thex-expanded form for Green’s functions~67! and
~76! in the long-wavelength approximation, one finds the
agonal part

dMd
T~x,T!5(

k

1

vk
^ak

†ak&
T

.(
k
E

0

1nB~v!dv

pvk
H pd~v2vk!

3F12
]ReSk~vk!

]vk
G2

2xvk

v22vk
2J

.
2

pE0

1

nB~v!dvF12xS 2r8~v!2
p

2
112

2

p D G ,
~84!

and the off-diagonal part

dMod
T ~x,T!52(

k

gk

vk
^ak

†bk
†&T

.(
k
E

0

1nB~v!dv

pvk
xgk

2H pd~v2vk!

3Fr8~vk!1
p

2 G1
2vk

v22vk
2J

.
2x

p E
0

1

nB~v!dvF2r8~v!1
p

2
11G ~85!

of the temperature-dependentdMT(x,T), where we kept
only O(lnuvu) and O(1) terms in the integrand.r8(v)
[Rer(v), integration by parts was used indMd

T and the,
superscriptT in the averages means the thermal part.

The total result is

dMT~x,T!.F11xS p2
2

p D GdMT~0,T!, ~86!

which shows that the thermal correction is enhanced by
purities, but that there is no new divergency associated w
them in this quantity. The suppression rate of the Ne´el tem-
perature can be readily obtained from the condit
M (x,T)505S2D2dM (x)2dM (x,T) using Eq. ~86!
which gives

TN~x!

TN~0!
.12Asx512xS p2

2

p
1

B

S2D D . ~87!

For S51/2 this givesA1/253.196(5), and forS55/2 it is
A5/252.600(4). It is important to note that these suppressi
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rates point toxc(1/2).0.31 andxc(5/2).0.38, both below
xp , so that one may suggest that in order to have a ph
transition at the classical percolation threshold t
TN(x)/TN(0) curves should have a rather unusual conc
form.

It is interesting to compare our result for the decline ra
of TN(x) @Eq. ~87!# to the results of different approaches
the same problem and to the results for similar models
naive mean-field treatment of the impurity effects as a sim
renormalization of magnetic coupling givesTN(x)/TN(0)
512x. The application of our formalism to the Ising lim
of the 2D problem givesTN(x)/TN(0)512AIx with AI

.1.37 ~see Appendix F! which is very close to the random
phase-approximation~RPA! answerARPA

I 51.33, and below
the exact answerAexact

I .1.57.58 For 2D Ising magnets,
TN(x) vs, x has a more traditional convex form.17 The pre-
vious result for the suppression rate ofTN for a 2D Heisen-
berg model59 is TN(x)/TN(0)512px, which was obtained
using the Green function technique and spin-wave theor
approximations very similar to ours. However, Ref. 5
missed22/p, and neglected 1/S terms.

We have also performed a numerical integration in E
~74! and solved an implicit equationM (x,TN)50 on TN(x)
numerically. This procedure requires a finite 3D couplin
and the use of a quasi-2D form of the spectral functio
Since the integration involves an additional dimension a
the 3D region is quite narrow, the convergence of the re
as a function of the number ofk, andv points at smallx can
be an issue. We plot our numerical results forTN(x)/TN(0)
for the case ofS51/2 in Fig. 12, together with the analytica
slope @Eq. ~87!# with A1/253.2 and experimental data. Ex
perimental data are obtained by muon spin rotation~mSR!
~Ref. 21! and magnetic susceptibility measurements19 of
LCO systems and by electron spin resonance~ESR! ~Ref.
22! of Zn-doped copper formate tetrahydrate, a laye
quasi-2D AF. One can see that our linear-x results agree very

FIG. 12. TN(x)/TN(0) vsx for S51/2. Shown are the results o
numerical integration in Eq.~74! ~dashed line!, the analytical linear-
x slope (12A1/2 x) @Eq. ~87!# ~solid line!, mSR ~diamonds!,21 and
magnetic susceptibility~circles!19 data for Zn-doped LCO, and ESR
~squares! ~Ref. 22! of Zn-doped copper formate tetrahydra
Cu12xZn(Mg)x(HCO2)•H2O.
7-16
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well with the experimental data up to a rather high dop
level x'0.25. There is a slight disagreement between
own numerical and linear-x analytical results at smallx,
which may be connected not only with the numerical ac
racy but with the corrections of the order;xTN /J
;x/ ln t21. Note that the linear-x result is free from such
corrections, since it is obtained in thet→0 limit.

As discussed extensively in Ref. 60, the spin-wave the
for layered materials is not really adequate atT;TN due to
the lack of kinematic constraints. When it is applied to t
mean-field equationM (x,TN)50 it tends to overestimate th
absolute value of the Ne´el temperature, and has some oth
artifacts such asM (T);TN2T at T;TN . This may also
provide an additionalx dependence in our numerical valu
of TN(x)/TN(0).

Figures 13 shows our analytical slope forTN(x)/TN(0)
@Eq. ~87!# with A5/252.6 for the case ofS55/2, and experi-
mental data from magnetic susceptibility and specific-h
measurements of Mn12xZn(Mg,Cd)x(HCO2)22(NH2)2CO,
a layeredS55/2 material,24. One can see that while the sca
tering of experimental points seem to be smaller than in
S51/2 case the linear-x result fits them very closely up to
x50.2. The olderTN(x)/TN(0) data for the more traditiona
S55/2 material K2Mn12xMgxF4 ~Ref. 29! showed a large
scattering of the data, which allowed an almost any reas
able fit.17

It is worth mentioning that the numerical results of o
approach forTN(x) bends inward at larger values ofx, and
show the above-mentioned concave form, which was
cently observed experimentally for LCO compounds18 and
anticipated in other works.24 While our approach is certainly
not adequate at such high impurity concentrations, and te
to overestimate the value ofTN(x) in comparison with ex-
periments, it nevertheless points to the same physics.
interpret this behavior as due to localization effects, wh
tend to reduce the role of quantum and thermal fluctuati
in the destruction of the long-range order.

In the paramagnetic phase above the Ne´el ordering tem-

FIG. 13. TN(x)/TN(0) vs x for S55/2. Shown are analytica
linear-x results (12A5/2 x) @Eq. ~87!# ~solid line!, and results
of magnetic susceptibility and specific-heat data
Mn12xZn(Mg,Cd)x(HCO2)22(NH2)2CO ~circles! ~Ref. 24!.
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perature the 3D coupling is irrelevant, and the spin fluct
tions in the layered AF system are characterized by an
plane correlation lengthj2D which is exponentially
diverging with 1/T as T→0. The correlation length is
uniquely determined byT50 properties of the system suc
as the spin stiffness constantrs .

The correlation length can be derived from the modifi
spin-wave theory, as suggested in Ref. 50, by introducin
chemical potential for magnons which produces a gap in
spin-wave dispersion, and then by resolving a constra
^Si

z&50 which defines the correlation length se
consistently. The result of such calculations atx50 is50

j~T!.
c

2T
expS 2prs

T D . ~88!

One should bear in mind, however, that while this approa
gives the correct exponential behavior ofj2D(T), it provides
a prefactor equivalent to the one-loop renormalization-gro
result.1,2 This prefactor must be modified according to t
higher-order renormalization group treatment,61 which
gives62

j~T!.
e

2

c

4prs1T
expS 2prs

T D . ~89!

This expression shows an excellent agreement with exp
ments and Monte Carlo data.3,21,63This discrepancy betwee
the results of modified spin-wave theory and the result o
more exact, nonperturbative, approach, is of the same or
as the overestimation ofTN by the mean-field solution o
^Si

z&50.60

We generalize the approach of Ref. 50 for the case of
AF with impurities, and obtain, for the constraint,

S2
1

2 (
k

S 1

vk~h!
21D5(

k

1

vk~h!
@^ak

†ak&2gk^ak
†bk

†&#,

~90!

where vk(h)5A12h2gk
2 and magnon averages are give

by the integrals of the spectral functionsAk
11(v) andAk

12(v)
from Eqs. ~40! and ~41! in which the gapped form of the
spin-wave spectrum is used.

We have performed a numerical integration in Eq.~90!,
and calculated the correlation lengthj2D(x,T)
5h2/A8(12h2) as a function ofT for several values ofx.
We fit the results of such a numerical procedure in a w
temperature range almost exactly, with the help of the or
nal Takahashi formula,@Eq. ~88!#, with the spin stiffness
rs(x) being a free parameter. These fitting values
rs(x)/rs(0) vs x closely follow our result forTN(x)/TN(0)
dependence@Fig. 12#. Such a result can be anticipated from
mean-field picture of the ordering in layered systems. T
transition occurs when the interplane coupling is stro
enough to stabilize the LRO in comparison with the therm
fluctuations:J'M2(x)j2@x,TN(x)#'TN . If the correlation
length preserves its exponential form, the dominant par
the left-hand side comes frome2prs(x)/TN(x), and one imme-
diately arrives at

r

7-17
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rs~x!

rs~0!
5

TN~x!

TN~0!
1O~x/ ln t21!. ~91!

Therefore, the important conclusions one can make from
analysis is that~i! the correlation length should follow th
x50 type of behavior Eq.~89! with x-dependentrs , at least
for not too low T and not too highx, and ~ii ! rs(x)/rs(0)
.TN(x)/TN(0).

Figure 14 shows a semilog plot ofj(x,T) given by for-
mula in Eq.~89! with rs(x)5rs(0)(12A1/2x),A1/2 is from
Eq. ~87!, vs J/T for x50 ~dashed line!, x50.1, x50.2, and
x50.3 ~solid lines!. An important observation can be mad
here. At smallx 2prs is of the order ofJ, and at all reason-
able temperatures the dominant behavior is exponentia
J/T ~straight line in the semilog scale!. When the spin stiff-
ness becomes small (rs!J), there is an additional tempera
ture rangeJ@T@rs where the exponential behavior is n
seen while the prefactor gives the log(J/T) behavior of the
log(j) clearly seen forx50.3. The experimentally observe
deviation from the simple exponential behavior of the cor
lation lengthj(T,x) vs 1/T18 can be related to this effect.

At a larger doping level close to the percolation thresho
one expects another length-scale to appear. This length s
is associated with crossover from translational invariance
self-similarity in the percolative systems.64 Below xp the
‘‘geometrical length’’jG}ux2xpu2n separates the regions o
Euclidean and fractal geometries. Abovexp , where no infi-
nite clusters are left,jG is the characteristic size of the finit
clusters. Earlier experimental studies of 2D and 3D Is
systems (Rb2CoxMg12xF4 and Fe12xZnxF2)65,66 and near-
Heisenberg systems (Rb2MnxMg12xF4 and Mn12xZnxF2)
~Ref. 67 and 68! systems, close toxp , demonstrated that th
static structure factorS(q) contains contributions from both
‘‘thermal’’ and ‘‘geometrical’’ lengths in agreement with th
theoretical studies.32,69 The experimental data suggest th
these lengths combine in the simplest possible formj21

5j21(T)1jG
21(x), and that the Lorentzian form of th

structure factor near ordering vector is preserved. Yet ano

FIG. 14. j(x,T) from Eq. ~89!, with rs(x)5rs(0)(12A1/2x)
from Eq. ~87!, vs J/T for x50 ~dashed line!, x50.1, x50.2, and
x50.3 ~solid lines!.
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interesting result of the proximity to the percolation is that,
x,xp belowTN , the elastic Bragg peak should be accomp
nied by the Lorentzian whose width atT50 is solely defined
by the inverse ‘‘geometrical length’’jG

21 . One would expect
similar effects to be observed in newly available LCO sy
tems close toxp .18

It is not clear, whether localization effects in an infini
cluster, which we discuss in this work, can manifest the
selves in the static structure factor or correlation length. S
contributions, if they exist, may lead to an interesting beh
ior of the correlation length, different from the simple reno
malization of spin stiffness. However, in our approach t
potential sources of such anomalous terms appear at hi
order inx(;x2) and, most certainly, do not affect the resu
for the experimentally reachable domain of lengthsj
&200a above which the ordering occurs. At larger conce
trations x, such contributions can become important f
shorter correlation lengths, but in reality they might
screened by similar effects from the decoupled clusters.

Theoretically, it is very intriguing whether such localiza
tion effects of the infinite cluster can really affect the beha
ior of correlation length. We reserve this subject for furth
study.

V. CONCLUSIONS

We have studied the problem of diluted 2D and quasi-
quantum Heisenberg antiferromagnets in a tetragonal lat
making use of linear spin-wave theory andT-matrix ap-
proach. We have shown, contrary to earlier findings, t
D52 is not the lower critical dimension for this kind o
disorder, and that atT50 long-range order persists up t
concentrations close to the classical percolation thresh
These results are consistent with Monte Carlo simulation
large lattices.25 In agreement with earlier works on this su
ject, which studied the problem in the leading order of t
dilution fractionx,30,37we found that the spin-wave spectru
is strongly modified by disorder. However, contrary to the
works, we have shown that this result doesnot imply an
instability of the system to a paramagnetic phase. Rathe
indicates magnon localization on a length scalel, exponen-
tially large in 1/x. We have shown that this length scale a
pears explicitly in the dynamic properties such as the
namical structure factorS(k,v) @Eqs.~57!–~65!#, which can
be measured directly in neutron-scattering experiments,
the magnon density of statesN(v) @Eqs. ~68! and ~69!#
which is directly related to the magnetic specific heat eq
tions ~70! and~71!. The measurement of such quantities w
provide a direct test of our theory. Furthermore, we show t
the static properties such as the zero-temperature stagg
magnetizationM (x) @Eq. ~74!# and Néel temperatureTN(x)
~in the quasi-2D case! do not show any anomaly associate
with the spectrum and are finite up to the concentration cl
to the classical percolation threshold. These results are
quantitative agreement with the NQR,56 mSR,20 ESR,22 and
magnetic susceptibility19 measurements in different com
pounds, as well as with the Monte Carlo data.25

We have shown that the effect of dilution of an AF wi
7-18
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nonmagnetic impurities is quite strong, because dilut
completely removes spin degrees of freedom from the im
rity site; therefore, the spin waves are strongly scatte
Moreover, the low dimensionality of the system significan
constrains the phase space for scattering, leading to loca
tion effects. We have shown that a hydrodynamic descrip
of the problem breaks down for length scales larger thal
and that the spin excitations become diffusive instead of
listic. The conventional averaging procedure which is use
treat disorder does not lead to an effective medium w
renormalized parameters. Therefore, one needs to use a
ferent approach for length scales larger thanl, a problem
which is beyond the scope of this paper.

In fact, the physics of localization described in our wo
has similarities to the Anderson localization for nonintera
ing electrons in disordered lattices where the statistics of
excitations does not matter.70 Note that our problem should
be close to the problem of localization of relativistic boso
~with chemical potentialm50) in a random potential. On th
other hand, that problem is related to the problem of disor
in Bose-Hubbard model where nonrelativistic bosons w
kinetic energyJ interact through the local Coulomb term
U.71 In the latter model the Bose glass phase appears
small J at a zero chemical potential, and transition into
superfluid state is possible whenJ is large enough. In our
case superfluidity is not possible, but we may conjecture
our localized phase is somewhat similar to the Bose g
phase, and that magnons are trapped in the regions whic
more ordered than in average. It is not clear, however, if
relativistic nature of the bosons is important for the nature
localization.

Furthermore, we find the close similarity of our pro
lem to the problem of disorder in 2Dd-wave super-
conductors.44,52 The large enhancement of the density
states at low frequencies in our case, which comes ab
because of the redistribution of spectral weight over the
tire Brillouin zone, is reminiscent of that problem. Ind-wave
superconductors the elementary excitations are nodal qu
particles, or relativistic~Dirac! fermions. It is known that for
these excitations localization occurs on a length scalel L ~lo-
calization length! which is an exponential function of th
conductances: l L}es/s0,72 wheres05e2/h. Since in the di-
lute limit one expects the conductance to diverge withx ~that
is, s}1/x) the localization length has the same type
nonanalytical dependence onx as in our case. However, it i
not clear how~if possible! the two problems map onto eac
other. A further investigation, beyond the scope of this pap
can clarify the connection of the diluted antiferromagn
with other similar problems of disorder in low-dimension
systems.

In summary, we have presented a comprehensive stud
diluted quantum Heisenberg antiferromagnets in 2D a
quasi-2D systems. We have shown that while the dyna
properties possess anomalies associated with magnon l
ization, the static properties are free from such anoma
Thus in low-dimensional systems with disorder, the conn
tion between static and dynamic quantities is not straight
ward. We have compared our results to the numerical si
lations and experimental data with a very good agreem
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We have also proposed other experiments which can fur
test the results of our theory. Altogether this provides a s
consistent picture of the effects of disorder in low
dimensional quantum antiferromagnets.
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APPENDIX A: TETRAGONAL LATTICE GROUP THEORY

We first resolve the scattering potentialV̂ @Eqs. ~9! and
~10!# in r -space by inserting the closure relation73

V̂k1 ,k2
5E dr1E dr2fk1

* ~r1!V̂r1 ,r2
fk2

~r2!

5E dr1E dr2fk1
* ~r1!Ui

†V̂r1 ,r2
Uifk2

~r2!,

~A1!

whereUi is any symmetric operator in the group of tetrag
nal symmetry, andfk(r ) is a plane-wave function,fk(r )
5(2p)3/2eik•r, which can be decomposed by projection o
erators:

fk~r !5(
p

(
n51

l p

fk~r !n
(p) , ~A2!

where

fk~r !n
(p)5

l p

g (
i 51

16

D (p)~Ui !nnUifk~r !, ~A3!

where the set of functions,$fk(r )n
(p)%n51, . . . ,l p

, form a basis

of the pth irreducible representation, andl p is the dimension
of the pth irreducible representation;D (p)(Ui)nn is the diag-
onal matrix elements of thepth irreducible representation fo
the symmetric operatorUi in point groupD4h whose order is
g(516). We readily project the potential into irreducib
representations asV̂k1 ,k2

5(pV̂k1 ,k2

(p) , where

V̂k1 ,k2

(p) 5 (
n51

l p

(
i , j 51

g l p
2

g2
D (p)~Ui !nnD

(p)~U j !nn

3E dk3E dk4Ak1 ,k3

i V̂k3 ,k4
Ak4 ,k2

j , ~A4!
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where

Ak1 ,k2

i 5E drfk1
* ~r !Uifk2

~r !. ~A5!

Using the tetragonal symmetry group, one notes that e
Ak1 ,k2

i is a d function. Thus the scattering potentialV̂k1 ,k2

A

@Eq. ~9!# can be decomposed into channels of irreduci
representations. The nonzero orthogonal channels are~before
the Bogolyubov transformation!

A1g (s wave!,

V̂k1 ,k2

A,s 5usk1
& ^ ^sk2

u1usk1

' & ^ ^sk2

' u, ~A6!

Eu ~in-planep waves!,

V̂k1 ,k2

A,px(y)5upk1

x(y)& ^ ^pk2

x(y)u, ~A7!

B1g (d wave!,

V̂k1 ,k2

A,d 5udk1
& ^ ^dk2

u, ~A8!

andA2u (pz wave!,

V̂k1 ,k2

A,pz 5upk1

z & ^ ^pk2

z u, ~A9!

where ^sku5@1,gk#,^sk
'u5At@1,gk

'#,^pk
x(y)u5@0,1#sinkx(y) /

A2,^dku5@0,1#gk
2 and ^pk

zu5At sinkz@0,1#/A2. A Bogoliu-
bov transformation yields Eqs.~18!–~21!.

APPENDIX B: 3D T MATRIX

In this appendix we provide the solution of thes-wave
T-matrix equation in the tetragonal lattice for the arbitra
relative value of the inter-plane and in-plane exchange in
gralst5J'/2J. With this solution we demonstrate the sma
ness of the 3D corrections to the 2D result in the quasi-
case (t!1).

After some algebra one can solve theT-matrix equation
~25! with thes-wave scattering potential from Eq.~18! ~sub-
lattice A), uk ,vk , andvk from Eqs.~12! and ~13!, and ob-
tain:

T̂k,k8
A,s

~v!5usk& ^ ^sk8u•G1~v!1usk
'& ^ ^sk8

' u•G2~v!1~ usk&

^ ^sk8
' u1usk

'& ^ ^sk8u!•G3~v! ~B1!

where thev dependence of the in-plane scattering~first
term! is given by an expression which is formally similar
the pure 2D result@Eq. ~28!#,

G1~v!5
1

v
1

~11v!r~v!1tR1~v!

12v~11v!r~v!1tD~v!
, ~B2!

with r(v) given by Eq.~29!. Note that the integration overp
in this case is three dimensional. The inter plane scatterin

G2~v!52t1
t2

v
2

t2R2~v!

12v~11v!r~v!1tD~v!
. ~B3!

The v dependence of the cross-term is given by
10440
ch

e

e-

D

is

G3~v!5
t

v
1

tR3~v!

12v~11v!r~v!1tD~v!
. ~B4!

All three parts of the scattering matrix possess the same ‘
physical’’ 1/v contribution discussed in the text. Applicatio
of the projection procedure@Eqs.~30! and~31!# to this prob-
lem is beyond of the scope of this appendix.

The auxiliary functionsD andRi are given by rather cum
bersome combinations ofv,r(v), and two additional inte-
grals

a~v!5(
p

~gp
'!2

v22vp
2

, b~v!5(
p

ĝpgp
'

v22vp
2

, ~B5!

with ĝp ,gp
' , andvp from Eqs.~5! and ~13!. Note that att

→0a(v)→r(v)/2 andb(v)→0.
The expressions forD andRi are

D5P2vP2 ,

R15r2a1P2 , ~B6!

R25a2~v2t!P2 ,

R35~r1a2P!/21t~r2a!/21P2 ,

where the following shorthand notations are used:

P5ĝ0~r1a!22b, ~B7!

P25ĝ0
2ra2b21a2vP2v2ra.

There is no assumption about the value oft made in these
formulas.

At t!1 andv!1 (v can be still@t) one can show tha

D.3r/2, R1.r2/21r,

R2.r/2, R35O~tr2!. ~B8!

In the same limitt!1 andv!1 the v-dependent parts o
the scattering matrix become~we simply omit the unphysica
1/v terms here!

G1~v!.r2t~r22r!,

G2~v!.2t1t2r/2, ~B9!

G3~v!5O~t2r2!.

Recall that in two dimensionsG1(v).r and G2(v)
5G3(v)[0. Since Rer; lnuvu at v@At and Rer; lnutu at
v<A4t the largest relative correction to the 2D terms in t
scattering matrix isO@t ln(t)#. The same statement can b
proved for all higher powers ofv in Eq. ~B2!, without as-
suming thatv!1.

The conclusion is, once again, that att!1 one can safely
drop all terms explicitly proportional tot in Eqs.~B2!–~B4!,
and thus arrive at the purely 2D expression for the scatte
matrix given in Eq. ~28!. The only modification in the
quasi-2D case versus 2D case is the change of the beh
7-20
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of r(v) at low v, whose real part saturates atv<A4t, and
whose imaginary part acquires an extra power inv ~see Ap-
pendix E!.

APPENDIX C: ELLIPTIC INTEGRALS

The energy-dependent part of theT-matrix equations~28!
and ~28! is expressed through the integrals of the Gree
function @Eq. ~29!#. These integrals can be evaluated in t
case of a 2D system and are given by combinations of c
plete elliptic integrals of first and second kinds:

r~v!5(
p

1

v22vp
2

52
2

pv8
@K~v8!1 iK ~v!#, ~C1!

rd~v!5(
p

~gp
2!2

v22vp
2

511
2

pv8
$v2K~v8!22E~v8!1 i @~v222!K~v!

1E~v!#%,

wherev85A12v2,K and E are the complete elliptic inte
grals of the first and second kinds, respectively.74

In the low-energy limit

r~v!5
2

p
lnuv/4u2 i , ~C2!

rd~v!512
4

p
. ~C3!

APPENDIX D: PROJECTION OF UNPHYSICAL STATES

After the introduction of a fictitious magnetic field t
project out the unphysical on-site mode thes-wave scattering
potential ~sublatticeA) is given by the sum of two term
from Eqs.~22! and ~31!:

V̂k,k8
A,s,total

52usk& ^ ^sk8u1HzuDsk& ^ ^Dsk8u,

with

^sku5vk@uk ,2vk#, ^Dsku5@uk ,vk#. ~D1!

One immediately suggest the form of the solution of t
T-matrix equation:

T̂k,k8
A,s

~v!5usk& ^ ^sk8u•G1~v!1uDsk& ^ ^Dsk8u•G2~v!

1~ uDsk& ^ ^sk8u1usk& ^ ^Dsk8u!•G3~v!.

~D2!

after some algebra, one finds

G1~v!5
Hz~11v!r~v!11

@12v~11v!r~v!#~Hz2v!
,

10440
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-

G2~v!52
vHz

Hz2v
, ~D3!

G3~v!5
Hz

Hz2v
,

which yield the answer given in Eqs.~32!–~34! in the limit
Hz→`.

APPENDIX E: 3D r„v…

The key ingredient of the low-energyT-matrix scattering
is given by the integral of the Green’s function overk,r(v)
@Eq. ~29!#. Appendix C gives an analytical expression
r(v) in the 2D case. In the quasi-2D case the interpla
coupling provides a cutoff in the logarithm, and gives
extra power ofv in the imaginary part of the integral in th
3D energy range. This can be obtained explicitly using

form of the spin-wave dispersion@Eq. ~13!# vk5Aĝ0
22ĝk

2.
In the limits At5AJ'/2J!1 and v!1 ~for arbitrary

v/At), for the real part ofr(v) one obtains

Rer~v!5
2

p
lnUAt

4
U1O~t,v2!, for v<A4t

Rer~v!5
2

p
lnUv1Av224t

8
U1O~t,v2!, for v>A4t,

~E1!

at v@A4t the 3D energy scale is irrelevant, and Rer(v)
52/p lnuv/4u is back to its 2D form. The imaginary parts o
r(v) is

Im r~v!52
1

p
arccosSA~11t!22v221

t D 1O~v2!

52
1

p
arccosS 12

v2

2t D1O~t2,v2!

for v<A4t, ~E2!

Im r~v!5211O~v2!, for v>A4t.

At small v!A4t deep in the 3D range of energie
Im r(v)52v/pAt is linear inv.

APPENDIX F: TN„X… FOR THE ISING PROBLEM

In this appendix we apply the formalism of our work
the problem ofTN(x) vs x dependence for the IsingS51/2
case. While the spin-wave approximation is much less
equate in the Ising limit than for the pure Heisenberg mod
it is nevertheless a very instructive exercise which give
quantitatively correct answer.

The quadratic part of the 2DS51/2 Ising model in the
spin-wave approximation reads
7-21
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H
2J

5H01Himp

5(
k

ak
†ak2 (

l ,k,k8
ei (k2k8)RlVk,k8ak

†ak8 , ~F1!

with

Vk,k85gk2k8 , ~F2!

where from the beginning we omit the ‘‘unphysical’’ term
which will result in av50 mode. TheT matrix gives the
total result for all scattering channels,

Tk,k8
tot

~v!52gk2k8

v21

v23/4
, ~F3!

where we used the property

(
p

gk2pgp2k8[gk2k8/4. ~F4!

The self-energy is then given by

S~v!52x
v21

v23/4
. ~F5!

The Green’s function has now two poles:

G~v!5
1

v21
•

v23/4

v23/41x
, ~F6!
u

ia

e

e

m

y
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and the spectral function is given by twod peaks:

A~v!5
1

114x
@d~v21!14xd~v23/41x!#. ~F7!

The Néel temperature is defined from the condition

^Sz&~TN ,x!5
1

2
2E

2`

`

dv nB~v!A~v!50, ~F8!

which transforms to

114x

2
5nB~1!14x nB~3/42x!. ~F9!

In a pure systemTN(0)/2J51/ln 3. At small xTN(x)
.TN(0)(12AIx) and, after some algebra, one obtains
analytical expression forAI ,

AI5
4

3

2

ln 3 F 2

33/421
21G.1.025

4

3
.1.37, ~F10!

which should be compared with the RPA answerARPA
I

54/359 and an exact answerAexact
I .1.57.58 One can see tha

in spite of the roughness of the approximation of the Is
spin degrees of freedom by bosons, our approach give
good quantitative agreement with other approaches and
an exact result.
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