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Momentum-distribution spectroscopy using deep inelastic neutron scattering
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We show that deep inelastic neutron scattering from hydrégeather light nuclei can be used to measure
a spectrum of anharmonic contributions to the target atom momentum distribution with high and known
accuracy. The method is applied here to determine the momentum distribution of the hydrogen in the hydrogen
bonded system KH{D, (potassium binoxalajewhere 23 anharmonic coefficients are obtained at better than
the 20 level. The momentum distribution is obtained to an accuracy of better than few percent at all significant
values of momentum.
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[. INTRODUCTION gen bond in which the proton is located at four sites in the

unit cell that are related by reflection symmetry, and hence

The measurement of proton momentum distributions byare equivalent for our purposes, as their momentum distribu-
neutron scattering is analogous to the measurement of eleions are identical. Bonds such as this play a central role in
tron momentum distributions by Compton scattetinflight ~ biological systems. It is the anharmonicity of these hydrogen
and measurement of nucleon form factors by deep inelastigonds, amongst other things, that determines the configura-

electron scattering The method is known as neutron comp- tional changes of complex biological molecules that are es-

(DINS). All three techniques rely upon the fact that if the are most difficult to calculate accurately. While the measure-

momentum transferred from the incident to target particle ign€nts we describe cannot provide this information in com-

sufficiently large, the impulse approximatidihd) can be plex_ biological molecules, due to the presence of many in-

used to interpret the data. In the IA, momentum &imktic ~ €quivalent hydrogens, they can provide a database of direct

energy are conserved. From a measurement of the momeRl€asurements of anharmonicity on simpler systems, with

tum and energy change of the neutron, the momentum of thRonds of a variety of strengths, and in a variety of environ-

target nucleus before the collision can be determined. ments. Theoretical calculations and models can be tested and
Because of the requirement of high momentum transfer€fined on these systems and then used in more complex

DINS measurements have only become practical since thgtuations. _ _

construction of intense accelerator based neutron sources, 1 n€ experimental instrument is the EVS spectrometer at

which have allowed inelastic neutron scattering measurel>!S. The work presented here by no means represents the

ments with energy transfers in the eV regbfihere have I|m|.ts of resolutpn qf the instrument, but rather the first ex-

been a few pioneering studies on anisotropic systems at eReriments of this kind. Upgrades are planned in the near

energy transfefs®but the analysis has been limited to fitting fgture that will significantly increase flux and counting effi-

Gaussians to the observed data, or more generally fitting th@€ncy-

data with model containing a few parameters, as was done

for measurements on molecular hydro@eWe show here II. THEORY OF MEASUREMENT

that an entire spectrum of anharmonic coefficients can be ) ) o

measured without recourse to any model, in addition to the The theoretlc_al ba5|s of neu'gron_Compton scattering is the

widths of an anisotropic Gaussian, thus describing an arbimpulse approximatior{lA), which is exact when tge mo-

trary anisotropic and anharmonic momentum distribution inmentum transfer and energy transfer are infiffite” The

great detail, and providing a sensitive new local probe of thd1eutron scattering functio§(q, »), is related to the momen-

environment of the protons. The possibility of doing this for tum distributionn(p) in the impulse approximation limit by

isotropic systems was first suggested by Reiter and Silver. the relation

That possibility, for more general systems, is now a reality. " "

We demonstrate this by measuring the momentum distribu- - - s oAl o N

tion for KHC,0, where we obtain 24 anharmonic coeffi- S(q"”)zaf n(p)s(y—p-q)dp= EJ(q,y), @

cients whose size varies by nearly two orders of magnitude,

with at least 2-3 confidence levels for all but one. This wherey=(M/q)(w—g%/2M), M is the mass of the target

system was chosen because it contains an-O-8 hydro-  particle,q=|q|, andgq=q/q.
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DINS measurements on protons have a particularly pi':pi/ﬁgi (6)
simple interpretation, as the interaction of protons with other
atoms can usually be accurately accounted*fdfin terms ~ with n(p) defined as in Eq.(5), defining R'(p’)
of a single particle potential and hence by a proton wave=R[p(p’)], and

function’ From elementary quantum mechanicép) is re- -

lated to the Fourier transform of the proton wave function e e P -,
via n'(p’)=-—>R(p") )
ar
. 1 R we have
n(p)—mj ‘\If(r)exmp-r)dr (2
and a DINS measurement ofp) can be used to determine J(d,y)=f n'(p")é(y—p’-q")dp’, (8)

the wave function in a way analogous to the determination of

real space structure from a diffraction pattern.nfip) is  Where g/ =q;\20;. The right-hand side of Eq(8) is no
known, and if the proton is in a site with reflection symme-longer a radon transform, singg is not a unit vector. How-
try, so that the wave function can be assumed real, then iaver, definingy’ =y/|q’| we obtain

principle both the proton wave function and the exact form

of the potential energy well in which the proton sits can be _ _ 1 . Ve Ay, Lo
directly reconstructed With an asymmetric site such as po- J(3:¥)= G| n'(p")d(y’—p’-a’)dp :|ﬁ’| Iy,
tassium binoxalate, the phase information that is lost by tak- 9)

ing the absolute value of the momentum wave function is

irrecoverable, and we will not be able to reconstruct the powhereJ’(q’,y’) is the radon transform of the isotropim

tential directly. Then(p) obtained can, of course, be used to its Gaussian componeriiut anharmonic distribution’ (p’).

check any model potential. If q is specified as a unit vector in the usual spherical coor-
While the original formulation of the inversion problét dinates, then

is complete as it stands, it is useful for the systems we will

be dealing with to take into account the anisotropy of the  |G'|= V2{[ o1Sin( 6)cog ¢) 12+ [ o,sin( ) sin( ) ]2

system explicitly. The fundamental result that allows for a N2

simple inversion of the Radon transford{q,y) to obtain +[oscod 6)]7F (10

n(p) makes use of a basis of Hermite polynomials andgor procedure is to expantl (§',y’) in hermite polynomi-

spherical harmonics in which the transform is diagonal. Thagﬂs, as in Eq(3), and least squares fit the da{g, w), using

is_, a single _term in the s_eries fgw((q,y) corresponds to a Egs.(1),(9),(10), to obtain the parameters ,a, . n'(p’)
single term in the expansion of(p). can then be reconstructed as in E4), and we thus obtain

If we expressJ(,y) in this basis as n(p) as in Eq.(5) with R(B)=R’[p’(F)]. That this is a
2 practical procedure will be demonstrated below.
~ e ~
J(q,y)=—= an mH Y 3
@y)=— 2 anaHana )Y@ G 1 MEASUREMENTS
thenn(p) is given in the related basis of Laguerre polyno- The measurements were performed on the electron volt
mials as spectromete(EVS),'8 a time-of -flight instrument at the 1SIS
neutron source. On EVS the final state energy of the scat-
o P tered neutron is fixed by a resonance filter difference

np)=—5 > 22"'ni(=1)"a, mp'Ly M Ap?)Yim(p),  technique-? i this technique, a foil, gold in this case, with a
T nlm sharp nuclear resonance, is alternately inserted and removed
(49 from the scattered beam. The two signals are subtracted,
N A . . . leaving only those neutrons that have final state energies
wherep andq are unit vectors. Clearly, since the expansions .. . . S :
S within the resonance width remaining in the signal.
are complete, a distribution of the form : X
The final neutron velocity and energy are relatedHy

=mv§/2 where m is the neutron mass. The energy of the

- -2/20-2
n(5)=H e P R(p) (5) incident neutron is determined from a measurement of the
i (2moy)Y? neutron time of flight via the equation
with the o significantly different from each other, could be Lo L,
expanded in this form, but even R(p) were 1, it would t= P 11

require a large number of terms in the series. To avoid this,

we show that the anisotropy may be taken into account by aheret is the measured time of flight,, andL, are the

change of variables, so that the coefficieats , represent lengths of the incident and the scattered flight paths of the

genuinely anharmonic contributions. neutron, andvy and v, are the speeds of the incident and
Introducing the new variables scattered neutrons. Then
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SCAN IN Y SPACE. M= 1.0079E+Q0 E1= 4.9080E+03 TABLE I. The resolution widths are the Lorentzian HWHM for
(RL) and the Gaussian standard deviation for other parameters
(RG). The momentum g and energy transfatrthe scattering angles
35° and 55° are also given

o
N [T T L L L

Angle  Rg(A™Y) RU(A™Y q(A™") » (eV)

35° 0.61 1.08 34.1 241
55° 0.55 0.55 48.8 4.92

certainties inLy arise primarily from the finite depth of the
neutron moderator, those I, and 6 from the finite sample
=) and detector sizes and thosetifrom jitter in the detector
L20 -10 0 10 20 electronics. All resolution components can be determined by
MOMENTUM NORMAL TO BEAM (INV ANG) calibration measurements and all except the_ energy compo-
nent can be approximated by Gaussians, without significant
FIG. 1. Scan pattern in momentum space for eight detectors agrror. A 0.015 mm thick gold foil provided a Lorentzian en-
fixed angles as the time of flight is varieB1 is the resonance ergy resolution function aE;=4908 meV, with a peak

MOMENTUM PARALLEL TO BEAM (INV ANG)

energy of the gold foil used in the filter. HWHM of 136 meV. The Gaussian and Lorentzian resolu-
y tion components in momentum spagare listed in Table |

ho=m(v5—v1)/2 (12 for two angles representative of the range of angles em-

and ployed. The resolution is dominated by the energy compo-

nent which varies strongly with scattering angle. The second
hq=m(v3+v2—2v,voc0s6)*? (13  most important contribution comes from the angular resolu-

tion of the spectrometer and is independent of angle. The
whered is the scattering angle. From these equatio@nd ~ momentum and energy transfers at the center of the hydro-
g can be determined for a given time of flighff the instru-  gen response peak are also listed for the different angles.
mental parametetsy, L, 6, andE; are known. Hence from  The raw data contains signals from all the atoms in the
the count rate at a given tinte J(q,y) can be determined. gscattering sample and from the cryostat background. Fortu-
On EV§. the detector; are S|tuated_|n t_he horizontal plane anﬁately the cross section for hydrogen is much greater than
henceq is always _horlzo_ntal. _B_y orienting the samplg With @ that of other elements and the proton signal is well separated
chosen crystal axis vertical, it is possible to measl(@y) from that due to other masses. The contribution from all

for g in whichever plane, relative to the sample, one Choose%omponents other than hydrogen is subtracted by fitting a

Atime of flight scan at a particular angle for agiven c_ieEectorsum of Gaussians convoluted with the instrument resolution
does not correspond, however, to a particular directiog.of

There is significant curvature of this scan through the protor];uncuon to the data and subtracting off the fitted contribution

) SRS 2 fo other peaks. There is also a small contribution to the data
momentum space since the directiongofaries significantly

over the data region. Time of flight spectra for eight <';1djacenIr0(r)n a secong gg]c_)ld_ reslon?_ncz at 20 e;)/ wh|cr(; ?an bi szen at
detectors at angles between 35° and 55° scan through tHe© /#SE€C and this s also fitted and subtracted from the data.

atomic momentum space of the proton as illustrated in FigT e data for each scan was converted into a distribution in

1. A complete scan over the proton momentum space is coril® momentum space of the crystal as described atsee

structed by combining a number of data sets, taken with th&19- 2 The data has been corrected for sample attenuation,
sample rotated about the vertical axis by appropriately chobut still contains errors due to small deviations from the
sen angles. impulse approximation which are present at the finite mo-
The reported measurements were made using two bankgentum transfers of the measurement. These tend to intro-
of 8 Li® doped glass scintillator detectors which were sym-duce small asymmetries into the data set for a particular di-
metrically placed on each side of the incident beam at scatection, thereby removing the exact inversion symmetry of
tering angles between 35° and 55°. For DINS studies ofhe Compton profile about the recoil ener@iie maximum
protons it is necessary to site the detectors at forward scabf the profild. It has been shown by Se&tghat most of
tering angles since the hydrogen scattering cross section these effects are removed by symmetrization of the data
strongly anisotropic at eV incident energies, with no backabout the recoil energy. There are, however, second order
scattering. This restriction is a kinematic consequence of theorrections that have even symmetry. The experiments we
closeness of the mass of the neutron and the hydrogen atowill describe are precise enough to be sensitive to both sorts
and does not apply to heavier atoms. of corrections. There is in principle additional information in
The resolution function of the instrument is determined bythese corrections that could be used to obtain information
the uncertainties in the measured values of the time of flighbout an asymmetric potential. Our procedure is to fit the
t and the distribution of,L,, 6, andE; values allowed by leading impulse approximation correctiofsee Appendix B
the instrumental geometry and analyzer foil resolution. Un-along with the coefficients described above, to avoid any
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Time of Flight Data other should they be?” We can see the point of the question
3x1073 . T by considering first a single plane and looking at the fit to the
leading anharmonic coefficient. From E) we see that
there are six independent coefficients multiplyiHg, i.e.,
the coefficients of Y9, Y20, Y22,Y40,Y42,Yas). Let us say
i that our coordinate system is chosen so that the plane mea-
10-3L _ sured is treated as an xz plane. Then in terms of the variable

f 0 there are only three independent Fourier coefficients that

21072 .

counts

can be present in the data for the coefficient$lgf i.e., the

0 - . coefficients of[1,cos(%),cos(4), for instancé Therefore
. . three of the coefficients are not independent. The complete
200 400 set of coefficients cannot be determined by the data. This is
Time of Flight (u sec) of course due to the fact that there is no information as to the

FIG. 2. The sum of data from eight detectors at scattering angIeQGhaW'Or 0fJ(q.y) for nonzero ammuthal angles in the .
between 38° and 55° is shown as the dotted line. The data aﬂéjiata, so we should not expect the fitting procedure to provide

subtraction of the contribution from atoms with higher masses andt- The data provides a complete descriptiord 6, y) only if
the 60 eV resonance data is shown as the full line. The total data séfis function is rotationally invariant about the z axis. Actu-
for a single plane consisted of 6 spectra as shown in Fig. 1 rotatedlly, what is required is only thal’(q’,y’) be rotationally
around the vertical axis by 23° from each other. invariant, since the fit is done in the primed coordinate sys-
tem. If this is the case, then all coefficients ¥f, with
contamination of the coefficients describing the momentunnonzero values aih must be zero. We see that there are only
distribution, but we make no use of the additional informa-three remaining possibly nonzero coefficients, which can all
tion here. be determined. For higher order terms as well, keeping only
the coefficients withm=0 provides all the independent
IV. FITTING PROCEDURES terms needed to fit the data, and the resulting fit, of course, is
rotationally symmetric about theaxis.

Equationg(3),(4) hold quite generally for radon transform  If the data is not known to be rotationally symmetric,
pairs, but physical requirements in the present context readditional planes of data must be taken to determine even
strict the allowed coefficients. Sindgd,y) is an even func-  these lowest order coefficients. In general, whenever we take
tion of y, | is restricted to even values, and sinl@,y) is  another plane of data, we might expect to obtain three more
real, thea, | , for =m must be equal. As described in Ap- independent measurements of the coefficientddgf four
pendix B, the corrections to the impulse approximation in-independent measurements of the coefficientsl gfand in
clude both odd terms ig, which are of ordeq./q, and even general,k+1 measurements of the coefficients lf, . (k
terms, of order §./q)?, Whereqczzg/ﬁ ando is an aver- + 1 being the number of independent Fourier components in
age of the momentum widtH8.1t has a value of approxi- the data for that value df) Since the number dd, | , that
mately 1/8 at the center of the proton response line for th@re to be determined forr2+-1=2k is (k+2)(k+1)/2, it
data we will present. The second order corrections are nappears thatk+2)/2 planes are needed to measure all coef-
large but they are measurable, and we will include them irficients up toH,,. The angles between the planes must be
our fitting of the data. These are distinguishable from thechosen, however, so that the measurements are really inde-
even terms in the momentum distribution because of theipendent. For instance, k=2, it would appear that two
explicit g dependence, and the fact tliptaries with the time  planes would suffice, but if they are chosen asxh@ndyz
of flight in the scans. planes, they do not provide independent measurements of the

For potassium binoxalate, data was taken for three pereoefficients. This may be seen by observing that the sum of
pendicular planes oriented parallel to the crystal axes Théhe data from the two planes gives three independent Fourier
procedure followed was to perform a simultaneous fit to thecoefficients to determine four independent .,, the coeffi-
6X 16X 3=288 separate time of flight spectra to an expan-cients of (Yqg,Y20,Y40,Y44), Since the coefficients of
sion of the form given in Appendix B, EqB1), with  andY,, cannot affect this sum. The difference of the data on
J'(g’,y’) defined as in Eq(9), convoluted with the instru- the two planes gives three equations for the two coefficients
ment resolution function. of Yo, andY,,. A better choice for the planes would lge

The data sets as they are presently obtained in the EVS 0 and¢= /4, which would allow the determination of all
spectrometer at ISIS, are obtained one plane at a (see the coefficients. If there is some symmetry in the problem,
discussion of experimental appargtuhat is g varies one may be able to use perpendicular planes if the symmetry
within a plane, and a range gofvalues is taken such that axis is chosen appropriately with respect to the common axis
J(q,y) is negligible outside this range. There is a very highof the two scattering planes. For instance, if there is tetrag-
density of points, which for the purposes of the present disenal symmetry present, and the symmetry axis is chosen per-
cussion we can take to be continuous. The question thependicular to the common axis, one can obtain all the al-
arises, “how many planes of data are needed to determinelawed coefficients up tdk=4. One can show that three
specified number of coefficients, and at what angles to eacperpendicular planes do in fact suffice to determine the co-
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efficients up tok=4 in the general case, without any sym- Comparison with Simulated Data
metry to reduce the number of allowed coefficients. Includ-
ing the threeo;, a three plane measurement allows 34
coefficients to be measured if there is no redundancy due tc
the choice of planes, as we have described above. We fini o.0s
that only the leading corrections to the impulse approxima-
tion, as described in Appendix B, are significant in the data.
There are in addition, therefore, nine coefficients needed tc
describe the final state corrections. The coefficients describ®
ing these corrections contain additional information, for the g,
case of an asymmetric potential well, beyond that containec

in the momentum distribution. We shall not attempt to use

that information here to reconstruct the potential, and will 0002
not report these coefficients. All of these coefficients may
also be obtained with a three plane measurement. The fac , . , )
that we have about 70 000 data points to fit makes it possible 0 5 lg( i) 1s B 25
to determine the coefficients with high accuracy.

0.01 T T T T T

« « »« fitted n(p) _
input n{p)

0.006 —

FIG. 3. Comparison of inpun(p), given by Eq.(16) with re-
V. MEASUREMENT ERRORS construction ofn(p) using fitting procedure. The coordinate axis
is chosen to be the double well axis.
The uncertainty in the measuremeningp) at some point
p is due to the uncertainty in the measured coefficients. Defrom simulations that these systematic errors are substan-

noting an arbitrary coefficient by;, we have tially smaller than the larger coefficients we measure, but
may effect the smaller ones.

R on(p) A further source of error not contained in the estimate in

5”(9)22i 51 op; - (14 Eq. (15 is the truncation of the series used to fit the data,

which in this case includes only terms up ta21=8. To
The fitting program, after a minimum is obtained with someget an idea of the seriousness of this approximation, and to
set of coefficients, calculates the correlation matrixtest the fitting procedures and software, we have generated
<5Pi5pj>-21 Hence, the variance in the momentum distribu-Synthetic data from a known momentum distribution that
tion is corresponds to an asymmetric double well, and convolved it
with the assumed instrumental resolution function. The data
R sn(p) sn(p) was then analyzed by the means described above, and the
(on(p)2=2, S0 5o \OPidD)). (15  extractech(p) compared with the input. The inpa(p) cor-
i OPi Pi responded to a spatial wave function consisting of two dis-
There are, of course, potential systematic errors that coulflaced Gaussians with the same variance and a relative
enter the measurement, such as multiple scattering effects, $€ightr =0.5. The explicit form is
an error in determining the resolution function. The former

2 2
must be handled with good experimental design, and if _ [1+r%+2r cog2p,a)]y e P’
small, can be corrected for. We have done measurements on N(Px.Py.P) = 2 —2a2g2\ 12!
; . ; (1+r°+2re z) T (2moy)
samples whose thickness differed by a factor of 2, with no (16)

significant differences in the observed scattering. Multiple

scattering effects would also lead to asymmetried(i,y) whereo,=4.60,=4.00,=6.0, anda=0.15 in units of in-
that are not observed. The resolution function, in so far as iverse angstroms and angstroms, respectively. This form is
is due to uncertainties in the geometric aspects of the instrusimilar to the actual form of the data we will analyze. The
ment, such as the widths of detectors or the uncertainty in theoordinate system z axis was chosen to be identical with the
length of the scattering path, is well known. The shape of therystalz axis. The comparison is shown in Figs. 3 and 4. The
nuclear resonance used in detection, in this case that of goléxtractedn(p) is plotted with a dotted line, the input(p)

is taken to be Lorentzian, which is an approximation. It isabove with a solid line. As may be seen from the figure, there
also the case, that the resolution varies somewhat with this essentially no error due to the truncation of the the expan-
time of flight, an effect that we neglect by choosing the reso-sion. Of course, an input with more variation might require
lution function over the entire measured momentum distribuincluding higher order terms in the expansion, and hence
tion to be that at the recoil energy, i.e., the center of the linetaking more planes of data. The actual data we have obtained
This systematic error is the largest one that we are aware ofpr Potassium Binoxalate has less variation than the simula-
and is being reduced by the development of more sophistition and the truncation error will be negligible. In the other
cated software and the overall reduction of the resolutiordirections, the fit is rigorously Gaussian, since all coeffi-
width using double difference techniques and cooled foils. Ircients withm#0 were zero. We note that the measuted

the present measurement, the resolution width is between Iframeter was 4.47, not 6.0. It is simply a scale parameter.
and 25 % of the width of the distribution measured. We knowThe overall momentum distribution has physical signifi-
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TABLE Il. The scale parameters; and the best fit Gaussian
varianceo; in each of the three directions.

0.15

0.1 Harmonic coefficients

J(a.y)

i Tj (o
0.05 X 5.438 4.017
y 5.757 4.732
0 z 7.474 5.548
1 1
-20 0 20
Momentum component y paraliel to q(A~") ticular eigenvector to be significant, without affecting the

quality of the fit with the remaining vectors.
FIG. 4. Data fitted by method described above. The data is a Finally, n(p) must be positive, and a spurious fit that
composite of data points in a 10° wedge aboutzfexis. leads to significant negative values can be rejected. We be-
lieve there are no problems of false minimums with the fits
cance, the individual parameters may not. In fact, we haveve will present.
gotten the same degree of fit with the crystadxis aligned
along the coordinatyg axis. In this case, all the coefficients
are nonzero, but the resultam¢p) is nearly identical to the VI. RESULTS FOR POTASSIUM BINOXALATE

one displayed above. _ _ .. Potassium binoxalate KH©,, is a hydrogen bonded sys-

A final source of systematic error involves the possibility tay in which the hydrogen sits in an asymmetric position
of finding a false minimum with the fitting procedure. With pewween two oxygen atoméThe crystal is monoclinic. We
such a large number of parameters, there is the possibilityj| choose a primitive cell for which the bond axis, that is
that the program will home in on a local minimum and misse |ine joining the two oxygen atoms, is essentially aligned
the true minimum. We are using straightforward gradientyith the c axis of the crystaf® We choose this axis for the
methods for the search, which would have difficulty with aaxjs of our coordinate system. Three planes of data were
very rugged chi-squared landscape. We do not appear to haygen at right angles to each other, with 69 632 data points in
such a landscape for these problems, and certainly not for thg; one of these is théc plane, where thé axis is the
o, or the largest anharmonic coefficients, whose values apjnique axis, and the other two are theb anda*c plane,
pear to be quite robust with regards to different paths to thgynere thea* axis is perpendicular to thec plane. These
minimum. This possibility is reduced by using a fitting pro- yere fit with the methods described above to give the mo-
cedure in which the anharmonic coefficients, for fixed valuespentum distribution. The measurements were done at 10 K
of the nonlinear fitting parameters such as e are deter-  ang hence there are no significant finite temperature correc-
mined uniquely by linear algebfa.This is possible because ions to the ground state momentum distribution due to ex-
chi-squared, when one keeps the nonlinear parameters fixegeq states.

and varies only the coefficients in the series expansion, is @ Note that the coordinate system used to describe the mo-

quadratic form in these coefficients. That is mentum distribution need not have the symmetry of the crys-
tal. The local symmetry of the site is only a twofold rotation.
X2=x3-23piBi+3; iApip (177  We show the values of the fitted coefficients in Tables Il and

I, along with the r.m.s. uncertainty in their values. In order
to better normalize the coefficients, so that small coefficients

. . = . correspond to small effects im(p), we presentay |
is determined by the data, and the ma#ixdetermined en- =a,, m22"*'n1(—1)". The rms uncertainty in the coeffi-

tirely by the properties of the instrument. The error matriX cient s included only to give some sense of the significance

defined above is given by the inverseAfand can also be of the individual parameters. The error gp) is given by
obtained by linear algebra, without the need to vary the pagq. (14) and includes the effect of the correlations between
rameters of the fit. coefficients, whereas the figures cited in the table are only
The nonlinear parameters are then varied, the chi-squak@e diagonal elements of the correlation matrix. It can be
minimized with fixed anharmonic Coefﬁcients, and the prO'Seen, that many of the measured coefficients have been de-
cess repeated until it converges. Tiethen serve as scale termined at the 2—3r level of confidence, some at much
faCtorS fOI’ the ﬁnal fit. ThIS procedﬂe aISO haS the advantagﬁigher |eve|S, and 0n|y one at arllevel. Coefficients that
that the eigenvalues of the matrix provide a means of are set to zero in the fitting procedure were found to have
eliminating the linear combinations of anharmonic terms tovalues smaller than their variance by at least a factor of 2,
which the instrument is least sensitive, that is, those correand setting them to zero did not significantly change the
sponding to eigenvectors with the smallest eigenvattidés. minimum value of chi-square. The goodness of fit to a
is also the case, that the eigenvectors are combinations of tkample of the data is shown in Fig. 4, where we have com-
fitting functions that are uncorrelated, so that one can elimipared the fitted prediction, convolved with the instrumental
nate them if there is insufficient signal in the data for a par+esolution, and the data, for the cumulative sum of data in a

where thep; denote a generic coefficieat, | ,, the vectoB
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TABLE Ill. The anharmonic fitting coefficients and their vari-
ances as measured.

0.007

PHYSICAL REVIEW 85 104305

Momentum Distribution Perpendicular to Bond

X Direction

Anharmonic coefficients ks,

0.006 =
n | m ar’mm 5ar/1,|,m —— momentum distribution

0.005 — —-=---error limits —
1 0 0 —1.0148 0.0100 ~=+= anharmonicity
0 2 0 —0.1257 0.0072 0004 .
0 2 2 —0.0350 0.0104 g
2 0 0 0.0487 0.0074 00051~ 7
1 2 0 —0.0365 0.0057 0002 |
1 2 2 0.1117 0.0163
0 4 0 0.0147 0.0131 0001 i
0 4 2 0.0364 0.0125
0 4 4 0.0000 0.0000 Rl TSP RS L e ;
3 0 0 —-0.1134 0.0045 0 5 (A1) 15 20 s

px

2 2 0 0.0099 0.0018
2 2 2 —0.0436 0.0049 FIG. 5. Momentum distribution for potassium binoxalate per-
1 4 0 —0.0195 0.0053 pendicular to the hydrogen bond. The momentum is in units of. A
1 4 2 0.0359 0.0100 The errors are calculated as in E@5) for the parameters that are
1 4 4 ~0.0315 0.0040 significant in Table Ill. The lower curve is the anharmonic compo-
0 6 0 0.0140 0.0024 nent defined as the differ(_ance t_)etween the_ megsu_red _distribution
0 6 > 0.0000 0.0000 and the best fitting three dimensional Gaussian distribution.
0 6 4 —0.0856 0.0079 would be rotationally invariant. The deviations from rota-
0 6 6 0.0000 0.0000 tional invariance are due to the effect of surrounding atoms
4 0 0 —0.0025 0.0010 on the bond. We see from the preceding three figures, that the
3 2 0 0.0076 0.0005 measurements are easily sensitive enough to detect the ef-
3 2 2 —0.0038 0.0012 fects of the environment on the hydrogen bond, even when,
2 4 0 0.0033 0.0010 as in this case, the anharmonicity is small for all momenta.
2 4 2 0.0069 0.0019 The coefficients that were measured are given in Tables I
2 4 4 0.0000 0.0000 and IlI.
1 6 0 —0.0042 0.0004 Note that there are 24 anharmonic coefficients that are
1 6 2 0.0000 0.0000 measurable, 23 of which are at the Bvel at least, many of
1 6 4 —0.0063 0.0017 which are far more significant.
1 6 6 0.0000 0.0000
0 8 0 0.0015 0.0006 Momentum Distribution Along Bond
0 8 2 0.0016 0.0008 0007
0 8 4 0.0032 0.0008
0 8 6 0.0000 0.0000 0.006 _
0 8 8 —0.0139 0.0030

10° wedge along the hydrogen bond direction. _

The measured momentum distribution along the bond ancg
perpendicular to it are shown in Figs. 5 and 6. Note that the
anisotropy is considerably larger, at nearly all momenta, thar
the uncertainty in the measurement, for both directions.

In Figs. 7a), 7(b) we have plotted only the anisotropy in
the momentum distribution, that is, the difference between
the measured distribution and a best fitting Gaussian whosi

parameters are given in Table I, and denoteM/Note
that in Fig. 1a), which is the anharmonicity in the plane

0.005

0.004

0.003

0.002

0.001

—— momentum distribution
--=-=error limity
- —- = anharmonicity

25

perpendicular to the direction of the hydrogen bond, the data FiG. 6. Momentum distribution for potassium binoxalate along
are not rotationally invariant about tlzeaxis, and that th&  the hydrogen bond. The momentum is in units 6f*AThe errors
andy axes are not quite equivalent. There is no reason Ofre calculated as in E415) for the parameters that are significant
symmetry for these axes to be equivalent, but if the hydrogein Table Ill. The lower curve is the anharmonic component defined
bond were isolated in space, so that the hydrogen felt onlgs the difference between the measured distribution and the best
the adjoining oxygen ions, the scattering in theg/ plane fitting three-dimensional Gaussian distribution.
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a) Anharmonicity Perpendicular to Bond b) Anharmonicity in Plane of the Bond

FIG. 7. Anharmonic contribu-
tion to the momentum distribution
for potassium binoxalate for mo-
menta in the planes shown. The
10 momentum is in units of A%, The
bond axis is thez axis. Note the
lack of rotational invariance about
the z axis in (a), which is due to
the effect of the surrounding ions
on the motion of the proton in the
bond.

2x10~* _ : A 2x107*

107

-4

—107*

VII. CONCLUSIONS e—p-2/20'2

We have shown how the method of analysis of DINS data ni(p;) = (2mo )12 > aHn| —=—
suggested in Ref. 10 can be extended to anisotropic momen- : 3
tum distributions, and have applied this method to an analy-
sis of the hydrogen bond in potassium binoxalate. The resultd1ake use of the fact that
demonstrate that DINS, as it is implemented now at ISIS, is
capable of detailed, model independent, measurement of the , 5 2
momentum distribution for hydrogen, and by extension, f e H () dx= 7% 74 (iq)", (A3)
other light atoms. These measurements required about four

days of beam timi for e?ch dpl_aneﬁ_ and are r;[he first sucln g represent the delta function in the definition of the radon
measurements to be analyzed in this way. The count ratgs,nqform by its Fourier transform, it is straightforward to

can easily be improved by a factor of ten by adding mor&y .y that the radon transform ofp) in the isotropic coor-
detectors, and the resolution can be, and is scheduled to b

significantly improved. The data can be analyzed in less thar@,nate system defined in the text is given by
a day. The DINS technique thus provides a practical means

of accessing precise information about the anharmonicity of R ey
local potentials and can provide a check of any theoretical 3'(8'.Y")= —77 >
calculation of these potentials at a level of accuracy and de- & "
tail that has not been possible previously. The sensitivity of

this distribution to the local environment make it a sensitive
new probe of the physical and electronic surroundings of th
proton.

12 ’

d;

nj
H ai,nj(_) ‘|Hn1+n2+n3(y,)-

ql
(A4)

or the case we have used as a simulation, in which the
distribution is anharmonic only in thedirection, the result
simplifies to
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APPENDIX A: SEPARABLE DISTRIBUTIONS value of n+1.

The distribution used for the simulations described here is

a special case of a general separable distribution APPENDIX B: FINAL STATE CORRECTIONS

We give here the extension of the results of S€aa the
final state corrections to the impulse approximation to the
n(5)=H ni(p;). (A1) case of anisotropic momentum distributions. The derivation
‘ is straightfroward, and need not be given here. The vegtor
is defined here ag{ = J2q,0; . The leading terms in fj/and
If we represent in the number of spatial derivatives taken are
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be represented as a sum of the three even spherical harmon-
ics up tol=2. The quartic terms can similiarly be repre-

sented by the six even spherical harmonics up=t@d. The
inclusion of these terms in the fit is simplified by the fact that

M .
S(q,w)=§{J’(q’,y’)

» 52V \ 8%'(q'y’) AM
T Qiq; 5% 0%

; é
' 17 3y& T Ha)= e Hou(y) (B2)
+ aq oV 8V 84'(q'y’) M? so that, for instance, the leading correction term in @B1)
¥ diq; 5X; OX; sy’ 24q’* consists of a series with the same coefficients as in(8q.
but withH,,,,(y) replaced byH,, .. 3(y). The fitted terms
881§y 1 from the final state corrections provide the possibility of ac-
+ qid; k| Aij ki 5 s cess to some information on the antisymmetric part of the
SRS 5%y Slq potential.
LA The appearence of even Hermite polynomials in thgg 1/
sy s°3(@qy) 1 (B1) final state correction raises the question of whether they can
b 58y 6!q'%|] be separated from the even polynomials in the expansion of

J’(q’,y"). This would not be possible for data taken at con-

The tensors ; | andA, ; ,; can be expressétin terms stantq, but for the time of flight data, where the value af
of averages of combinations of derivatives of the potentiavaries significantly for each individual time of flight scan,
and products of the momenta. Since we will make no use ofhe functional form of the the two sets of terms on the dataset
the explicit form of these tensors, and they are quite compliis quite different, and they can be readily distinguished from
cated, we will not give these expressions here. each other.

In principle, for symmetric potentials, the potential itself  Since we will make no use of the averages of the poten-
is determined by the momentum distribution, so one couldial, we will not try to extract them from the data. And, since
determine the averages appearing in (81) by an iterative  our data is not very strongly anharmonic, we will keep in the
process, and there would be no additional parameters to fiexpansion of Eq(B3) the terms that correspond to deriva-
However, in the present case where the potential is asymmetives of the leading Gaussian term only, and that only for the
ric, or more generally, where the final state effects includéfirst two corrections to the leading impulse approximation
many-particle corrections, one must fit these averages aerm. That is terms of the forH3(y)/q andH,(y)/g? with
well. SinceS(q,w) is even ing, the quadratic terms igcan  the appropriate angular dependent factors.
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