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Momentum-distribution spectroscopy using deep inelastic neutron scattering
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We show that deep inelastic neutron scattering from hydrogen~or other light nuclei! can be used to measure
a spectrum of anharmonic contributions to the target atom momentum distribution with high and known
accuracy. The method is applied here to determine the momentum distribution of the hydrogen in the hydrogen
bonded system KHC2O4 ~potassium binoxalate!, where 23 anharmonic coefficients are obtained at better than
the 2s level. The momentum distribution is obtained to an accuracy of better than few percent at all significant
values of momentum.
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I. INTRODUCTION

The measurement of proton momentum distributions
neutron scattering is analogous to the measurement of e
tron momentum distributions by Compton scattering1 of light
and measurement of nucleon form factors by deep inela
electron scattering.2 The method is known as neutron com
ton scattering~NCS! or deep inelastic neutron scatterin
~DINS!. All three techniques rely upon the fact that if th
momentum transferred from the incident to target particle
sufficiently large, the impulse approximation~IA ! can be
used to interpret the data. In the IA, momentum andkinetic
energy are conserved. From a measurement of the mom
tum and energy change of the neutron, the momentum of
target nucleus before the collision can be determined.

Because of the requirement of high momentum trans
DINS measurements have only become practical since
construction of intense accelerator based neutron sou
which have allowed inelastic neutron scattering measu
ments with energy transfers in the eV region.3 There have
been a few pioneering studies on anisotropic systems a
energy transfers4–8 but the analysis has been limited to fittin
Gaussians to the observed data, or more generally fitting
data with model containing a few parameters, as was d
for measurements on molecular hydrogen.9 We show here
that an entire spectrum of anharmonic coefficients can
measured without recourse to any model, in addition to
widths of an anisotropic Gaussian, thus describing an a
trary anisotropic and anharmonic momentum distribution
great detail, and providing a sensitive new local probe of
environment of the protons. The possibility of doing this f
isotropic systems was first suggested by Reiter and Silv10

That possibility, for more general systems, is now a real
We demonstrate this by measuring the momentum distr
tion for KHC2O4 where we obtain 24 anharmonic coef
cients whose size varies by nearly two orders of magnitu
with at least 2-3s confidence levels for all but one. Thi
system was chosen because it contains an O-H•••O hydro-
0163-1829/2002/65~10!/104305~9!/$20.00 65 1043
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gen bond in which the proton is located at four sites in
unit cell that are related by reflection symmetry, and hen
are equivalent for our purposes, as their momentum distr
tions are identical. Bonds such as this play a central role
biological systems. It is the anharmonicity of these hydrog
bonds, amongst other things, that determines the config
tional changes of complex biological molecules that are
sential for their functions, and it is these anharmonicities t
are most difficult to calculate accurately. While the measu
ments we describe cannot provide this information in co
plex biological molecules, due to the presence of many
equivalent hydrogens, they can provide a database of d
measurements of anharmonicity on simpler systems, w
bonds of a variety of strengths, and in a variety of enviro
ments. Theoretical calculations and models can be tested
refined on these systems and then used in more com
situations.

The experimental instrument is the EVS spectromete
ISIS. The work presented here by no means represents
limits of resolution of the instrument, but rather the first e
periments of this kind. Upgrades are planned in the n
future that will significantly increase flux and counting ef
ciency.

II. THEORY OF MEASUREMENT

The theoretical basis of neutron Compton scattering is
impulse approximation~IA !, which is exact when the mo
mentum transfer and energy transfer are infinite.11–13 The
neutron scattering functionS(qW ,v), is related to the momen
tum distributionn(pW ) in the impulse approximation limit by
the relation

S~qW ,v!5
M

q E n~pW !d~y2pW •q̂!dpW 5
M

q
J~ q̂,y!, ~1!

where y5(M /q)(v2q2/2M ), M is the mass of the targe
particle,q5uqW u, andq̂5qW /q.
©2002 The American Physical Society05-1
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DINS measurements on protons have a particula
simple interpretation, as the interaction of protons with ot
atoms can usually be accurately accounted for14–16 in terms
of a single particle potential and hence by a proton wa
function.17 From elementary quantum mechanics,n(pW ) is re-
lated to the Fourier transform of the proton wave functi
via

n~pW !5
1

~2p!3)
U E UC~r !exp~ ipW •rW !drWU2

~2!

and a DINS measurement ofn(pW ) can be used to determin
the wave function in a way analogous to the determination
real space structure from a diffraction pattern. Ifn(pW ) is
known, and if the proton is in a site with reflection symm
try, so that the wave function can be assumed real, the
principle both the proton wave function and the exact fo
of the potential energy well in which the proton sits can
directly reconstructed.10 With an asymmetric site such as p
tassium binoxalate, the phase information that is lost by t
ing the absolute value of the momentum wave function
irrecoverable, and we will not be able to reconstruct the
tential directly. Then(pW ) obtained can, of course, be used
check any model potential.

While the original formulation of the inversion problem10

is complete as it stands, it is useful for the systems we
be dealing with to take into account the anisotropy of
system explicitly. The fundamental result that allows for
simple inversion of the Radon transformJ(q̂,y) to obtain
n(pW ) makes use of a basis of Hermite polynomials a
spherical harmonics in which the transform is diagonal. T
is, a single term in the series forJ(q̂,y) corresponds to a
single term in the expansion ofn(pW ).

If we expressJ(q̂,y) in this basis as

J~ q̂,y!5
e2y2

p1/2 (
n,l ,m

an,l ,mH2n1 l~y!Ylm~ q̂! ~3!

then n(pW ) is given in the related basis of Laguerre polyn
mials as

n~pW !5
e2p2

p3/2 (
n,l ,m

22n1 ln! ~21!nan,l ,mplLn
l 11/2~p2!Ylm~ p̂!,

~4!

wherep̂ andq̂ are unit vectors. Clearly, since the expansio
are complete, a distribution of the form

n~pW !5)
i

e2pi
2/2s i

2

~2ps i !
1/2

R~pW ! ~5!

with the s i significantly different from each other, could b
expanded in this form, but even ifR(pW ) were 1, it would
require a large number of terms in the series. To avoid t
we show that the anisotropy may be taken into account b
change of variables, so that the coefficientsan,l ,m represent
genuinely anharmonic contributions.

Introducing the new variables
10430
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pi85pi /A2s i ~6!

with n(pW ) defined as in Eq. ~5!, defining R8(pW 8)
5R@pW (pW 8)#, and

n8~pW 8!5
e2p82

p3/2
R8~pW 8! ~7!

we have

J~qW ,y!5E n8~pW 8!d~y2pW 8•qW 8!dpW 8, ~8!

where qi85qiA2s i . The right-hand side of Eq.~8! is no
longer a radon transform, sinceqW 8 is not a unit vector. How-
ever, definingy85y/uqW 8u we obtain

J~qW ,y!5
1

uqW 8u
E n8~pW 8!d~y82pW 8•q̂8!dpW 85

1

uqW 8u
J8~ q̂8,y8!,

~9!

whereJ8(q̂8,y8) is the radon transform of the isotropic~in
its Gaussian component! but anharmonic distributionn8(pW 8).
If q̂ is specified as a unit vector in the usual spherical co
dinates, then

uqW 8u5A2$@s1sin~u!cos~f!#21@s2sin~u!sin~f!#2

1@s3cos~u!#2%1/2. ~10!

Our procedure is to expandJ8(q̂8,y8) in hermite polynomi-
als, as in Eq.~3!, and least squares fit the data,S(qW ,v), using
Eqs.~1!,~9!,~10!, to obtain the parameterss i ,an,l ,m . n8(pW 8)
can then be reconstructed as in Eq.~4!, and we thus obtain
n(pW ) as in Eq. ~5! with R(pW )5R8@pW 8(pW )#. That this is a
practical procedure will be demonstrated below.

III. MEASUREMENTS

The measurements were performed on the electron
spectrometer~EVS!,18 a time-of -flight instrument at the ISIS
neutron source. On EVS the final state energy of the s
tered neutron is fixed by a resonance filter differen
technique.19 In this technique, a foil, gold in this case, with
sharp nuclear resonance, is alternately inserted and rem
from the scattered beam. The two signals are subtrac
leaving only those neutrons that have final state ener
within the resonance width remaining in the signal.

The final neutron velocity and energy are related byE1

5mn1
2/2 where m is the neutron mass. The energy of

incident neutron is determined from a measurement of
neutron time of flight via the equation

t5
L0

n0
1

L1

n1
, ~11!

where t is the measured time of flight,L0 and L1 are the
lengths of the incident and the scattered flight paths of
neutron, andn0 and n1 are the speeds of the incident an
scattered neutrons. Then
5-2
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\v5m~n0
22n1

2!/2 ~12!

and

\q5m~n0
21n1

222n1n0cosu!1/2, ~13!

whereu is the scattering angle. From these equationsv and
qW can be determined for a given time of flightt if the instru-
mental parametersL0 ,L1 , u, andE1 are known. Hence from
the count rate at a given timet, J(q̂,y) can be determined
On EVS the detectors are situated in the horizontal plane
henceqW is always horizontal. By orienting the sample with
chosen crystal axis vertical, it is possible to measureJ(q̂,y)
for qW in whichever plane, relative to the sample, one choos
A time of flight scan at a particular angle for a given detec
does not correspond, however, to a particular direction oqW .
There is significant curvature of this scan through the pro
momentum space since the direction ofqW varies significantly
over the data region. Time of flight spectra for eight adjac
detectors at angles between 35° and 55° scan through
atomic momentum space of the proton as illustrated in F
1. A complete scan over the proton momentum space is c
structed by combining a number of data sets, taken with
sample rotated about the vertical axis by appropriately c
sen angles.

The reported measurements were made using two b
of 8 Li6 doped glass scintillator detectors which were sy
metrically placed on each side of the incident beam at s
tering angles between 35° and 55°. For DINS studies
protons it is necessary to site the detectors at forward s
tering angles since the hydrogen scattering cross sectio
strongly anisotropic at eV incident energies, with no ba
scattering. This restriction is a kinematic consequence of
closeness of the mass of the neutron and the hydrogen
and does not apply to heavier atoms.

The resolution function of the instrument is determined
the uncertainties in the measured values of the time of fl
t and the distribution ofL0 ,L1 ,u, andE1 values allowed by
the instrumental geometry and analyzer foil resolution. U

FIG. 1. Scan pattern in momentum space for eight detector
fixed angles as the time of flight is varied.E1 is the resonance
energy of the gold foil used in the filter.
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certainties inL0 arise primarily from the finite depth of the
neutron moderator, those inL1 andu from the finite sample
and detector sizes and those int from jitter in the detector
electronics. All resolution components can be determined
calibration measurements and all except the energy com
nent can be approximated by Gaussians, without signific
error. A 0.015 mm thick gold foil provided a Lorentzian e
ergy resolution function atE154908 meV, with a peak
HWHM of 136 meV. The Gaussian and Lorentzian reso
tion components in momentum spacey are listed in Table I
for two angles representative of the range of angles e
ployed. The resolution is dominated by the energy com
nent which varies strongly with scattering angle. The seco
most important contribution comes from the angular reso
tion of the spectrometer and is independent of angle. T
momentum and energy transfers at the center of the hy
gen response peak are also listed for the different angle

The raw data contains signals from all the atoms in
scattering sample and from the cryostat background. Fo
nately the cross section for hydrogen is much greater t
that of other elements and the proton signal is well separa
from that due to other masses. The contribution from
components other than hydrogen is subtracted by fittin
sum of Gaussians convoluted with the instrument resolu
function to the data and subtracting off the fitted contributi
to other peaks. There is also a small contribution to the d
from a second gold resonance at 60 eV which can be see
100 msec and this is also fitted and subtracted from the d
The data for each scan was converted into a distribution
the momentum space of the crystal as described above~see
Fig. 2!. The data has been corrected for sample attenua
but still contains errors due to small deviations from t
impulse approximation which are present at the finite m
mentum transfers of the measurement. These tend to in
duce small asymmetries into the data set for a particular
rection, thereby removing the exact inversion symmetry
the Compton profile about the recoil energy~the maximum
of the profile!. It has been shown by Sears20 that most of
these effects are removed by symmetrization of the d
about the recoil energy. There are, however, second o
corrections that have even symmetry. The experiments
will describe are precise enough to be sensitive to both s
of corrections. There is in principle additional information
these corrections that could be used to obtain informa
about an asymmetric potential. Our procedure is to fit
leading impulse approximation corrections~see Appendix B!
along with the coefficients described above, to avoid a

at

TABLE I. The resolution widths are the Lorentzian HWHM fo
~RL! and the Gaussian standard deviation for other parame
~RG!. The momentum q and energy transfer~at the scattering angle
35° and 55° are also given!.

Angle RG(Å21) RL(Å21) q(Å21) v ~eV!

35° 0.61 1.08 34.1 2.41
55° 0.55 0.55 48.8 4.92
5-3
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contamination of the coefficients describing the moment
distribution, but we make no use of the additional inform
tion here.

IV. FITTING PROCEDURES

Equations~3!,~4! hold quite generally for radon transform
pairs, but physical requirements in the present context
strict the allowed coefficients. SinceJ(qW ,y) is an even func-
tion of y, l is restricted to even values, and sinceJ(qW ,y) is
real, thean,l ,m for 6m must be equal. As described in Ap
pendix B, the corrections to the impulse approximation
clude both odd terms iny, which are of orderqc /q, and even
terms, of order (qc /q)2, whereqc52s̄/\ and s̄ is an aver-
age of the momentum widths.10 It has a value of approxi-
mately 1/8 at the center of the proton response line for
data we will present. The second order corrections are
large but they are measurable, and we will include them
our fitting of the data. These are distinguishable from
even terms in the momentum distribution because of th
explicit q dependence, and the fact thatq varies with the time
of flight in the scans.

For potassium binoxalate, data was taken for three
pendicular planes oriented parallel to the crystal axes
procedure followed was to perform a simultaneous fit to
6316335288 separate time of flight spectra to an expa
sion of the form given in Appendix B, Eq.~B1!, with
J8(q̂8,y8) defined as in Eq.~9!, convoluted with the instru-
ment resolution function.

The data sets as they are presently obtained in the E
spectrometer at ISIS, are obtained one plane at a time~see
discussion of experimental apparatus!. That is qW varies
within a plane, and a range ofy values is taken such tha
J(qW ,y) is negligible outside this range. There is a very hi
density of points, which for the purposes of the present d
cussion we can take to be continuous. The question t
arises, ‘‘how many planes of data are needed to determi
specified number of coefficients, and at what angles to e

FIG. 2. The sum of data from eight detectors at scattering an
between 38° and 55° is shown as the dotted line. The data
subtraction of the contribution from atoms with higher masses
the 60 eV resonance data is shown as the full line. The total dat
for a single plane consisted of 6 spectra as shown in Fig. 1 rot
around the vertical axis by 23° from each other.
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other should they be?’’ We can see the point of the ques
by considering first a single plane and looking at the fit to
leading anharmonic coefficient. From Eq.~3! we see that
there are six independent coefficients multiplyingH4, i.e.,
the coefficients of (Y00,Y20,Y22,Y40,Y42,Y44). Let us say
that our coordinate system is chosen so that the plane m
sured is treated as an xz plane. Then in terms of the vari
u there are only three independent Fourier coefficients
can be present in the data for the coefficients ofH4, i.e., the
coefficients of @1,cos(2u),cos(4u), for instance#. Therefore
three of the coefficients are not independent. The comp
set of coefficients cannot be determined by the data. Thi
of course due to the fact that there is no information as to
behavior ofJ(qW ,y) for nonzero azimuthal anglesf in the
data, so we should not expect the fitting procedure to prov
it. The data provides a complete description ofJ(qW ,y) only if
this function is rotationally invariant about the z axis. Act
ally, what is required is only thatJ8(q̂8,y8) be rotationally
invariant, since the fit is done in the primed coordinate s
tem. If this is the case, then all coefficients ofYlm with
nonzero values ofm must be zero. We see that there are on
three remaining possibly nonzero coefficients, which can
be determined. For higher order terms as well, keeping o
the coefficients withm50 provides all the independen
terms needed to fit the data, and the resulting fit, of cours
rotationally symmetric about thez axis.

If the data is not known to be rotationally symmetri
additional planes of data must be taken to determine e
these lowest order coefficients. In general, whenever we
another plane of data, we might expect to obtain three m
independent measurements of the coefficients ofH4, four
independent measurements of the coefficients ofH6, and in
general,k11 measurements of the coefficients ofH2k . (k
11 being the number of independent Fourier component
the data for that value ofk.! Since the number ofan,l ,m that
are to be determined for 2n1 l 52k is (k12)(k11)/2, it
appears that (k12)/2 planes are needed to measure all co
ficients up toH2k . The angles between the planes must
chosen, however, so that the measurements are really i
pendent. For instance, ifk52, it would appear that two
planes would suffice, but if they are chosen as thexz andyz
planes, they do not provide independent measurements o
coefficients. This may be seen by observing that the sum
the data from the two planes gives three independent Fou
coefficients to determine four independentan,l ,m , the coeffi-
cients of (Y00,Y20,Y40,Y44), since the coefficients ofY22
andY42 cannot affect this sum. The difference of the data
the two planes gives three equations for the two coefficie
of Y22 and Y42. A better choice for the planes would bef
50 andf5p/4, which would allow the determination of a
the coefficients. If there is some symmetry in the proble
one may be able to use perpendicular planes if the symm
axis is chosen appropriately with respect to the common a
of the two scattering planes. For instance, if there is tetr
onal symmetry present, and the symmetry axis is chosen
pendicular to the common axis, one can obtain all the
lowed coefficients up tok54. One can show that thre
perpendicular planes do in fact suffice to determine the
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efficients up tok54 in the general case, without any sym
metry to reduce the number of allowed coefficients. Inclu
ing the threes i , a three plane measurement allows
coefficients to be measured if there is no redundancy du
the choice of planes, as we have described above. We
that only the leading corrections to the impulse approxim
tion, as described in Appendix B, are significant in the da
There are in addition, therefore, nine coefficients neede
describe the final state corrections. The coefficients desc
ing these corrections contain additional information, for t
case of an asymmetric potential well, beyond that contai
in the momentum distribution. We shall not attempt to u
that information here to reconstruct the potential, and w
not report these coefficients. All of these coefficients m
also be obtained with a three plane measurement. The
that we have about 70 000 data points to fit makes it poss
to determine the coefficients with high accuracy.

V. MEASUREMENT ERRORS

The uncertainty in the measurement ofn(pW ) at some point
pW is due to the uncertainty in the measured coefficients.
noting an arbitrary coefficient byr i , we have

dn~pW !5(
i

dn~pW !

dr i
dr i . ~14!

The fitting program, after a minimum is obtained with som
set of coefficients, calculates the correlation mat
^dr idr j&.

21 Hence, the variance in the momentum distrib
tion is

^dn~pW !2&5(
i , j

dn~pW !

dr i

dn~pW !

dr j
^dr idr j&. ~15!

There are, of course, potential systematic errors that co
enter the measurement, such as multiple scattering effect
an error in determining the resolution function. The form
must be handled with good experimental design, and
small, can be corrected for. We have done measuremen
samples whose thickness differed by a factor of 2, with
significant differences in the observed scattering. Multi
scattering effects would also lead to asymmetries inJ(q̂,y)
that are not observed. The resolution function, in so far a
is due to uncertainties in the geometric aspects of the ins
ment, such as the widths of detectors or the uncertainty in
length of the scattering path, is well known. The shape of
nuclear resonance used in detection, in this case that of g
is taken to be Lorentzian, which is an approximation. It
also the case, that the resolution varies somewhat with
time of flight, an effect that we neglect by choosing the re
lution function over the entire measured momentum distri
tion to be that at the recoil energy, i.e., the center of the li
This systematic error is the largest one that we are aware
and is being reduced by the development of more soph
cated software and the overall reduction of the resolut
width using double difference techniques and cooled foils
the present measurement, the resolution width is betwee
and 25 % of the width of the distribution measured. We kn
10430
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from simulations that these systematic errors are subs
tially smaller than the larger coefficients we measure,
may effect the smaller ones.

A further source of error not contained in the estimate
Eq. ~15! is the truncation of the series used to fit the da
which in this case includes only terms up to 2n1 l 58. To
get an idea of the seriousness of this approximation, an
test the fitting procedures and software, we have gener
synthetic data from a known momentum distribution th
corresponds to an asymmetric double well, and convolve
with the assumed instrumental resolution function. The d
was then analyzed by the means described above, and
extractedn(pW ) compared with the input. The inputn(pW ) cor-
responded to a spatial wave function consisting of two d
placed Gaussians with the same variance and a rela
weight r 50.5. The explicit form is

n~px ,py ,pz!5
@11r 212r cos~2pza!#

~11r 212re22a2sz
2
!

)
i

e2pi
2/2s i

2

~2ps i !
1/2

,

~16!

wheresx54.6,sy54.0,sz56.0, anda50.15 in units of in-
verse angstroms and angstroms, respectively. This form
similar to the actual form of the data we will analyze. Th
coordinate system z axis was chosen to be identical with
crystalz axis. The comparison is shown in Figs. 3 and 4. T
extractedn(pW ) is plotted with a dotted line, the inputn(pW )
above with a solid line. As may be seen from the figure, th
is essentially no error due to the truncation of the the exp
sion. Of course, an input with more variation might requ
including higher order terms in the expansion, and he
taking more planes of data. The actual data we have obta
for Potassium Binoxalate has less variation than the sim
tion and the truncation error will be negligible. In the oth
directions, the fit is rigorously Gaussian, since all coe
cients withmÞ0 were zero. We note that the measuredsz
parameter was 4.47, not 6.0. It is simply a scale parame
The overall momentum distribution has physical sign

FIG. 3. Comparison of inputn(pW ), given by Eq.~16! with re-
construction ofn(pW ) using fitting procedure. Thez coordinate axis
is chosen to be the double well axis.
5-5
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cance, the individual parameters may not. In fact, we h
gotten the same degree of fit with the crystalz axis aligned
along the coordinatey axis. In this case, all the coefficien
are nonzero, but the resultantn(pW ) is nearly identical to the
one displayed above.

A final source of systematic error involves the possibil
of finding a false minimum with the fitting procedure. Wit
such a large number of parameters, there is the possib
that the program will home in on a local minimum and m
the true minimum. We are using straightforward gradie
methods for the search, which would have difficulty with
very rugged chi-squared landscape. We do not appear to
such a landscape for these problems, and certainly not fo
s i , or the largest anharmonic coefficients, whose values
pear to be quite robust with regards to different paths to
minimum. This possibility is reduced by using a fitting pr
cedure in which the anharmonic coefficients, for fixed valu
of the nonlinear fitting parameters such as thes i , are deter-
mined uniquely by linear algebra.21 This is possible becaus
chi-squared, when one keeps the nonlinear parameters
and varies only the coefficients in the series expansion,
quadratic form in these coefficients. That is

x25x0
222S ir iBi1S i , jAi , jr ir j , ~17!

where ther i denote a generic coefficientan,l ,m , the vectorBW

is determined by the data, and the matrixĀ determined en-
tirely by the properties of the instrument. The error mat
defined above is given by the inverse ofĀ, and can also be
obtained by linear algebra, without the need to vary the
rameters of the fit.

The nonlinear parameters are then varied, the chi-sq
minimized with fixed anharmonic coefficients, and the p
cess repeated until it converges. Thes i then serve as scal
factors for the final fit. This procedure also has the advant
that the eigenvalues of the matrixĀ provide a means o
eliminating the linear combinations of anharmonic terms
which the instrument is least sensitive, that is, those co
sponding to eigenvectors with the smallest eigenvalues.21 It
is also the case, that the eigenvectors are combinations o
fitting functions that are uncorrelated, so that one can eli
nate them if there is insufficient signal in the data for a p

FIG. 4. Data fitted by method described above. The data
composite of data points in a 10° wedge about thez axis.
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ticular eigenvector to be significant, without affecting th
quality of the fit with the remaining vectors.

Finally, n(pW ) must be positive, and a spurious fit th
leads to significant negative values can be rejected. We
lieve there are no problems of false minimums with the
we will present.

VI. RESULTS FOR POTASSIUM BINOXALATE

Potassium binoxalate KHC2O4, is a hydrogen bonded sys
tem in which the hydrogen sits in an asymmetric positi
between two oxygen atoms.22 The crystal is monoclinic. We
will choose a primitive cell for which the bond axis, that
the line joining the two oxygen atoms, is essentially align
with thec axis of the crystal.23 We choose this axis for thez
axis of our coordinate system. Three planes of data w
taken at right angles to each other, with 69 632 data point
all. One of these is thebc plane, where theb axis is the
unique axis, and the other two are thea* b and a* c plane,
where thea* axis is perpendicular to thebc plane. These
were fit with the methods described above to give the m
mentum distribution. The measurements were done at 1
and hence there are no significant finite temperature cor
tions to the ground state momentum distribution due to
cited states.

Note that the coordinate system used to describe the
mentum distribution need not have the symmetry of the cr
tal. The local symmetry of the site is only a twofold rotatio
We show the values of the fitted coefficients in Tables II a
III, along with the r.m.s. uncertainty in their values. In ord
to better normalize the coefficients, so that small coefficie
correspond to small effects inn(pW ), we presentan,l ,m8
5an,l ,m22n1 ln!( 21)n. The rms uncertainty in the coeffi
cient is included only to give some sense of the significa
of the individual parameters. The error inn(pW ) is given by
Eq. ~14! and includes the effect of the correlations betwe
coefficients, whereas the figures cited in the table are o
the diagonal elements of the correlation matrix. It can
seen, that many of the measured coefficients have been
termined at the 2–3s level of confidence, some at muc
higher levels, and only one at a 1s level. Coefficients that
are set to zero in the fitting procedure were found to ha
values smaller than their variance by at least a factor o
and setting them to zero did not significantly change
minimum value of chi-square. The goodness of fit to
sample of the data is shown in Fig. 4, where we have co
pared the fitted prediction, convolved with the instrumen
resolution, and the data, for the cumulative sum of data i

a

TABLE II. The scale parameterss i and the best fit Gaussia

variances̄ i in each of the three directions.

Harmonic coefficients

i s i s̄ i

x 5.438 4.017
y 5.757 4.732
z 7.474 5.548
5-6
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10° wedge along the hydrogen bond direction.
The measured momentum distribution along the bond

perpendicular to it are shown in Figs. 5 and 6. Note that
anisotropy is considerably larger, at nearly all momenta, t
the uncertainty in the measurement, for both directions.

In Figs. 7~a!, 7~b! we have plotted only the anisotropy i
the momentum distribution, that is, the difference betwe
the measured distribution and a best fitting Gaussian wh
parameters are given in Table II, and denoted bys ī . Note
that in Fig. 7~a!, which is the anharmonicity in the plan
perpendicular to the direction of the hydrogen bond, the d
are not rotationally invariant about thez axis, and that thex
and y axes are not quite equivalent. There is no reason
symmetry for these axes to be equivalent, but if the hydro
bond were isolated in space, so that the hydrogen felt o
the adjoining oxygen ions, the scattering in thex-y plane

TABLE III. The anharmonic fitting coefficients and their var
ances as measured.

Anharmonic coefficients

n l m an,l ,m8 dan,l ,m8

1 0 0 21.0148 0.0100
0 2 0 20.1257 0.0072
0 2 2 20.0350 0.0104
2 0 0 0.0487 0.0074
1 2 0 20.0365 0.0057
1 2 2 0.1117 0.0163
0 4 0 0.0147 0.0131
0 4 2 0.0364 0.0125
0 4 4 0.0000 0.0000
3 0 0 20.1134 0.0045
2 2 0 0.0099 0.0018
2 2 2 20.0436 0.0049
1 4 0 20.0195 0.0053
1 4 2 0.0359 0.0100
1 4 4 20.0315 0.0040
0 6 0 0.0140 0.0024
0 6 2 0.0000 0.0000
0 6 4 20.0856 0.0079
0 6 6 0.0000 0.0000
4 0 0 20.0025 0.0010
3 2 0 0.0076 0.0005
3 2 2 20.0038 0.0012
2 4 0 0.0033 0.0010
2 4 2 0.0069 0.0019
2 4 4 0.0000 0.0000
1 6 0 20.0042 0.0004
1 6 2 0.0000 0.0000
1 6 4 20.0063 0.0017
1 6 6 0.0000 0.0000
0 8 0 0.0015 0.0006
0 8 2 0.0016 0.0008
0 8 4 0.0032 0.0008
0 8 6 0.0000 0.0000
0 8 8 20.0139 0.0030
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would be rotationally invariant. The deviations from rot
tional invariance are due to the effect of surrounding ato
on the bond. We see from the preceding three figures, tha
measurements are easily sensitive enough to detect th
fects of the environment on the hydrogen bond, even wh
as in this case, the anharmonicity is small for all momen
The coefficients that were measured are given in Table
and III.

Note that there are 24 anharmonic coefficients that
measurable, 23 of which are at the 2s level at least, many of
which are far more significant.

FIG. 5. Momentum distribution for potassium binoxalate pe
pendicular to the hydrogen bond. The momentum is in units of Å21.
The errors are calculated as in Eq.~15! for the parameters that ar
significant in Table III. The lower curve is the anharmonic comp
nent defined as the difference between the measured distribu
and the best fitting three dimensional Gaussian distribution.

FIG. 6. Momentum distribution for potassium binoxalate alo
the hydrogen bond. The momentum is in units of Å21. The errors
are calculated as in Eq.~15! for the parameters that are significa
in Table III. The lower curve is the anharmonic component defin
as the difference between the measured distribution and the
fitting three-dimensional Gaussian distribution.
5-7
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FIG. 7. Anharmonic contribu-
tion to the momentum distribution
for potassium binoxalate for mo
menta in the planes shown. Th
momentum is in units of Å21. The
bond axis is thez axis. Note the
lack of rotational invariance abou
the z axis in ~a!, which is due to
the effect of the surrounding ion
on the motion of the proton in the
bond.
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VII. CONCLUSIONS

We have shown how the method of analysis of DINS d
suggested in Ref. 10 can be extended to anisotropic mom
tum distributions, and have applied this method to an an
sis of the hydrogen bond in potassium binoxalate. The res
demonstrate that DINS, as it is implemented now at ISIS
capable of detailed, model independent, measurement o
momentum distribution for hydrogen, and by extensio
other light atoms. These measurements required about
days of beam time for each plane, and are the first s
measurements to be analyzed in this way. The count r
can easily be improved by a factor of ten by adding m
detectors, and the resolution can be, and is scheduled to
significantly improved. The data can be analyzed in less t
a day. The DINS technique thus provides a practical me
of accessing precise information about the anharmonicity
local potentials and can provide a check of any theoret
calculation of these potentials at a level of accuracy and
tail that has not been possible previously. The sensitivity
this distribution to the local environment make it a sensit
new probe of the physical and electronic surroundings of
proton.
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APPENDIX A: SEPARABLE DISTRIBUTIONS

The distribution used for the simulations described her
a special case of a general separable distribution

n~pW !5)
i

ni~pi !. ~A1!

If we represent
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ni~pi !5
e2pi

2/2s i
2

~2ps i !
1/2 (

n
ai ,nHnS pi

A2s i
D , ~A2!

make use of the fact that

E eiqx2x2
Hn~x!dx5p1/2e2q2/4~ iq !n, ~A3!

and represent the delta function in the definition of the rad
transform by its Fourier transform, it is straightforward
show that the radon transform ofn(pW ) in the isotropic coor-
dinate system defined in the text is given by

J8~ q̂8,y8!5
e2y82

p1/2 (
nj

F)
i

ai ,njS qi8

q8
D njGHn11n21n3

~y8!.

~A4!

For the case we have used as a simulation, in which
distribution is anharmonic only in thez direction, the result
simplifies to

J8~ q̂8,y8!5
e2y82

p1/2 (
n

a3,n@cos~u8!n#Hn~y8!. ~A5!

In this case, the coefficients in the expansion ofJ8(q̂8,y8) in
the form given by Eq.~3! are not all independent. There
only one independent coefficient in the set ofan,l ,0 for each
value of 2n1 l .

APPENDIX B: FINAL STATE CORRECTIONS

We give here the extension of the results of Sears12 on the
final state corrections to the impulse approximation to
case of anisotropic momentum distributions. The derivat
is straightfroward, and need not be given here. The vectoqW 8
is defined here asqi85A2qis i . The leading terms in 1/q and
in the number of spatial derivatives taken are
5-8



tia

pl

lf
ul

m
d

mon-
-

at

c-
the

/
can
n of
n-

n,
set
m

en-
e
he
a-
the
on

MOMENTUM-DISTRIBUTION SPECTROSCOPY USING . . . PHYSICAL REVIEW B65 104305
S~qW ,v!5
M

q8
H J8~ q̂8,y8!

2(
i , j

qiqj K d2V

dxidxj
L d3J8~ q̂8,y8!

d3y8

\M

12q83

1(
i , j

qiqj K dV

dxi

dV

dxj
L d4J8~ q̂8,y8!

d4y8

M2

24q84

1 (
i , j ,k,l

qiqjqkqlFAi , j ,k,l

d5J8~ q̂8,y8!

d5y8

1

5!q85

1Si , j ,k,l

d6J8~ q̂8,y8!

d6y8

1

6!q86 G J . ~B1!

The tensorsSi , j ,k,l andAi , j ,k,l can be expressed12 in terms
of averages of combinations of derivatives of the poten
and products of the momenta. Since we will make no use
the explicit form of these tensors, and they are quite com
cated, we will not give these expressions here.

In principle, for symmetric potentials, the potential itse
is determined by the momentum distribution, so one co
determine the averages appearing in Eq.~B1! by an iterative
process, and there would be no additional parameters to
However, in the present case where the potential is asym
ric, or more generally, where the final state effects inclu
many-particle corrections, one must fit these averages
well. SinceS(qW ,v) is even inq, the quadratic terms inq can
So

t,

ed

10430
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be represented as a sum of the three even spherical har
ics up to l 52. The quartic terms can similiarly be repre
sented by the six even spherical harmonics up tol 54. The
inclusion of these terms in the fit is simplified by the fact th

d

dy
e2y2

Hn~y!52e2y2
Hn11~y! ~B2!

so that, for instance, the leading correction term in Eq.~B1!
consists of a series with the same coefficients as in Eq.~3!,
but with H2n1 l(y) replaced byH2n1 l 13(y). The fitted terms
from the final state corrections provide the possibility of a
cess to some information on the antisymmetric part of
potential.

The appearence of even Hermite polynomials in the 1q2

final state correction raises the question of whether they
be separated from the even polynomials in the expansio
J8(q̂8,y8). This would not be possible for data taken at co
stantq, but for the time of flight data, where the value ofq
varies significantly for each individual time of flight sca
the functional form of the the two sets of terms on the data
is quite different, and they can be readily distinguished fro
each other.

Since we will make no use of the averages of the pot
tial, we will not try to extract them from the data. And, sinc
our data is not very strongly anharmonic, we will keep in t
expansion of Eq.~B3! the terms that correspond to deriv
tives of the leading Gaussian term only, and that only for
first two corrections to the leading impulse approximati
term. That is terms of the formH3(y)/q andH4(y)/q2 with
the appropriate angular dependent factors.
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