
PHYSICAL REVIEW B, VOLUME 65, 104303
Second-generation wave-function thermostat forab initio molecular dynamics
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A rigorous two-thermostat formulation forab initio molecular dynamics using the fictitious Lagrangian
approach is presented. It integrates the concepts of mass renormalization and temperature control for the wave
functions. The new thermostat adapts to the instantaneous kinetic energy of the nuclei and thus minimizes its
influence on the dynamics. Deviations from the canonical ensemble, which are possible in the previous
two-thermostat formulation, are avoided. The method uses a model for the effective mass of the wave func-
tions, which is open to systematic improvement.
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I. INTRODUCTION

Ab initio molecular dynamics,1 also called the Car-
Parrinello method, allows to study the dynamical and fini
temperature behavior of molecules, surfaces and solids
forces from highly accurate first-principles densit
functional simulations.2,3 This approach has revolutionize
the way electronic structure calculations are done to d
Two main variants of this approach have established th
selves. The original approach of Car and Parrinello1 uses a
fictitious Lagrangian to deduce a dynamical equation of m
tion for the wave functions, while the so-called ‘‘exac
Born-Oppenheimer dynamics4 performs self-consistenc
loops for each set of atomic positions.

The underlying idea of the fictitious Lagrangian approa
is to treat the electronic wave functions as dynamical fie
that obey a Newton-type equation of motion. If the tempe
ture attributed to the motion of the wave functions is su
ciently low, the wave functions propagate close to the Bo
Oppenheimer surface~i.e., the instantaneous electron
ground state!. Thus, the electronic wave functions can
propagated with relatively minor computational effort wh
the nuclei are moving. Self-consistency loops for each s
of the trajectory are avoided.

A difficulty arises from the requirement that the wa
functions should remain sufficiently close to the Bor
Oppenheimer surface so that physically correct forces on
nuclei are produced. This implies that the wave functio
must remain ‘‘cold,’’ while at the same time the nuclei are
a relatively high physical temperature. Henceab initio
molecular-dynamics simulations are in principle nonequil
rium simulations.

In most cases, the heat transfer between the electronic
the atomic subsystems is sufficiently slow as a result of
separation between electronic and nuclear freque
spectra.5 For long simulations, however, one has to bear
mind that the nuclear and electronic variables will even
ally, even though very slowly, approach thermal equilibriu
where the wave functions deviate from the Bor
Oppenheimer surface and the forces acting on the atoms
nonphysical. In order to rigorously maintain a stable simu
tion, two thermostats6,7 are introduced.8 One thermostat
keeps the nuclei at their physical temperature and the o
one adsorbs the additional heat transfer to the wave fu
0163-1829/2002/65~10!/104303~9!/$20.00 65 1043
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tions. The optimum temperature for the wave-function d
namics, which is required so that the wave functions c
follow the nuclei adiabatically, has been discussed earlie8

However, the previous two-thermostat formulation h
three deficiencies.

~1! For systems consisting of parts that are only in we
thermal contact, the thermostats do not guarantee that
canonical ensemble is correctly sampled. The heat tran
from the nuclei to the wave functions is larger for som
atoms than for others, which may result in different effecti
temperatures for different parts of the system.

~2! The target kinetic energy for the wave-function d
namics is constant over time and is determined accordin
the target temperature of the atoms. For small systems
fluctuations in the atomic kinetic energy can be sizable.
that case the wave-function thermostat will heat the wa
functions when the atomic kinetic energy is low and co
more than necessary if the atoms have a high kinetic ene
This has an adverse effect on the nuclear trajectories.

~3! The goal of the wave-function thermostat is to ke
the wave functions cold. The thermostat, however, indu
fluctuations in the wave-function kinetic energy and thus
troduces undesired heating sequences.

In this paper, I analyze the trajectories of the nuclei a
propose a formulation of the two-thermostat method, wh
overcomes these deficiencies. The proposed method links
target temperature for the electronic wave-functions direc
to the instantaneous motion of the atoms. Thus the w
function thermostat adapts to the temperature fluctuation
the nuclei, and minimizes its influence on the atomic traj
tories. Second, the indirect influence of the wave-funct
thermostat on the atomic trajectories is compensated u
an additional, opposing friction term in the equations of m
tion for the atoms.

A detailed numerical analysis of the errors in the forc
resulting from the deviations from the Born-Oppenheim
surface and due to the previous two-thermostat formula
has been performed.9

In Sec. II, the previous two-thermostat formulation is r
stated, which allows me to introduce my notation. In Sec.
effective equations of motion for the nuclei under the infl
ence of the wave function dynamics are derived. Section
discusses a potential thermodynamical instability in the p
vious two-thermostat formulation of Car-Parrinello dynam
©2002 The American Physical Society03-1
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ics. Section V describes the two-thermostat formulation.
approximate scheme for deriving the parameters of
theory and technicalities of the present implementation
given in Sec. VI. Test calculations are presented in Sec.

II. EQUATIONS OF MOTION WITH TWO
THERMOSTATS

Let me first describe my notation. The electrons are
scribed by one-particle wave functionsuCn&. The wave func-
tions uCn& are related by a linear transformationuCn&
5TuC̃n& to the variational parametersuC̃n&. Often the varia-
tional parameters are vectors and the transformation is
fined by a basis setuxk& in the form uCn&5(kuxk&C̃k,n .
Here, I have in mind the projector-augmented wave~PAW!
method,10 where the variational parameters are themsel
fields, namely, the so-called pseudo wave functionsuC̃&. The
pseudo wave functions are expanded in a basis set, a d
that does not concern here. The pseudo wave functions o
PAW method are conceptionally identical to the wave fun
tions of the pseudopotential formalism.

In the ab initio molecular-dynamics method with the pr
vious two-thermostat formulation, the following coupled sy
tem of equations of motion is solved.

mCuC̈̃n&52H̃uC̃n&1(
m

ÕuC̃m&Lm,n2mCuĊ̃n&ẋC ,

MiR̈i5Fi2MiṘi ẋR ,

QCẍC52S (
n

^Ċ̃numCuĊ̃n&2Ekin,0D ,

QRẍR52S (
i

1

2
MiṘi

22
1

2
gkBTD . ~1!

If E@R,uC&] is the Kohn-Sham total energy functional, th
pseudo HamiltonianH̃ is defined such thatdE/d^C̃nu
5H̃uC̃n& and the forcesFi are the partial derivatives of th
Kohn-Sham total-energy functional with respect to t
atomic positions. The pseudo-overlap operatorÕ5T†T is
obtained from the transformation between the true w
functionsuC& and the pseudo wave functionsuC̃&. The over-
lap between two wave functions is^CnuCm&5^C̃nuÕuC̃m&.
The Lagrange parameters introduced to keep the wave f
tions orthogonal are denoted asLm,n . The mass of the wave
functions ismC . In practice, an operator diagonal in a plan
wave representation is used. The nuclear masses are de
asMi , wherei is the index of the corresponding atom.QC

andQE are the ‘‘masses’’ of the thermostat variablesxC and
xR for wave functions and nuclei, respectively. These mas
determine the reponse time and the dominant frequenc
the thermostats.g is the number of nuclear degrees of fre
dom andkB is the Boltzmann constant.Ekin,0 is a parameter
that determines the target kinetic energy of the wave fu
tions in the simulations. Its value is chosen according to
estimate of the Born-Oppenheimer kinetic energy of
10430
n
e
re
I.

-

e-

s

tail
he
-

-

e

c-

-
ted

es
of

-
n
e

wave functions. In the entire paper Hartree atomic units\
5e5me54pe051) are used. The present formulation
the thermostat differs from Hoover’s: the thermostat varia
used by Hoover corresponds to thetime derivativesof the
thermostat variablesxR and xC used here. This choice ha
the advantage that the thermostats obey second-order d
ential equations just as the nuclear position and the w
functions.

Even though the equations of motion given above can
be derived from a Lagrangian formalism, they have a c
served energy

Ec5(
n

^Ċ̃numCuĊ̃n&1(
i

1

2
MiṘi

21E@ uCn&,Ri ]

1
1

2
QCẋC

2 12Ekin,0xC1
1

2
QRẋR

21gkBTxR . ~2!

The first two terms are the kinetic energies of wave functio
and nuclei, the third is the potential energy, i.e., the dens
functional total energy. The remaining terms are kinetic a
potential energies of the two thermostats for wave functio
and nuclei.

Simulations with the two thermostats reach a station
state in which the wave-function thermostat variablexC ex-
hibits an approximately constant drift to larger values, wh
freezes out the deviations from the Born-Oppenheimer
proximation. As a consequence of energy conservation11 the
atom thermostat variable decreases at an average rate

^ẋR&52
Ekin0

1

2
gkBT

^ẋC&, ~3!

which restores the energy absorbed by the wave-func
thermostat.

III. EFFECTIVE EQUATIONS OF MOTION FOR THE
NUCLEI

In order to understand the motion of the nuclei with t
wave functions and thermostats tied to them, let me de
effective equations of motions for the nuclei. It is useful
consider the atoms as quasiparticles, each of which con
of a nucleus and a wave-function cloud, i.e. the distortion
the surrounding electron gas. Just as an electron disto
surrounding crystal lattice to form a polaron, here a nucle
distorts the electron gas to form a quasiparticle called
atom. The distortion of the electron gas and its wave fu
tions, will be called wave function cloud. The effective equ
tions of motion are obtained from the equations of motion
Eq. ~1! by constraining the wave functions to be identical
the exact Born-Oppenheimer wave function. The details
the derivation are given in Appendix A. Here, only the res
is shown,
3-2
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(
j

@Mid i , j1Ki , j #R̈j5Fi2MiṘi ẋR2(
j

Ki , j Ṙj ẋC

2(
j ,k

S ]Ki , j

]Rk
2

1

2

]K j ,k

]Ri
D Ṙj Ṙk .

~4!

Ki , j is the effective-mass tensor as function of the nucl
positions

Ki , j52(
n

K ]C̃n
BO

]Ri
UmCU]C̃n

BO

]Rj
L , ~5!

whereuC̃n
BO& are the Born-Oppenheimer wave functions.

Let me discuss this equation:

The nuclei obtain an effective massMid i , j1Ki , j . The
atoms appear to be heavier than the nuclei alone, becaus
wave functions also need to be accelerated, whenever
nuclei accelerate. This effect has been realized before12,10

and corrections are in common use today.
The third term on the right-hand side of Eq.~4! is related

to the friction imposed by the wave-function thermostat
the wave functions. As the thermostat removes kinetic
ergy from the wave functions, the atoms are also coo
down. In particular, for two loosely coupled subsystem
where one subsystem has a different average effective w
function mass than the other, a drift of the thermostat v
ables cools one subsystem at the cost of the other. This
cause deviations from the canonical ensemble as discuss
more detail in the following section.

The last term in Eq.~4! describes the effect of the chang
of the effective mass as the atoms are moving around. T
term will not be discussed in more detail, because in t
paper an approximation with the effective masses, indep
dent of the atomic positions will be employed, where th
term vanishes.

IV. DEVIATIONS FROM THE CANONICAL ENSEMBLE

Here, the deviations from the canonical ensemble m
tioned above are investigated. The rate of energy cha
of a subsystemA imposed by the thermostats is according
Eq. ~4!

ĖA52(
i PA

MiṘi
2ẋR2 (

i , j PA
Ki , jRi̇ Ṙj ẋC. ~6!

Assuming that subsystemA is in thermal equilibrium at a
temperatureTA , the thermal average ofṘiRj̇ is ^ṘiRj̇&T
5d i , j kBTA /Mi . Furthermore, the drifts of the two
thermostat variables are related by Eq.~3!.13 Thus, Eq.~6!
can be transformed to

^ĖA&T5gAkBTA^ ẋC&F Ekin,0

gkBT/2
2

1

gA
(
i PA

Ki ,i

M i
G , ~7!

whereg andgA are the number of degrees of freedom of t
total system and subsystemA.
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If the thermal average of the Born-Oppenheimer wa
function kinetic energy,

(
i , j

1

2
^ṘiKi , j Ṙj&5

1

2
kBTF (

i PA

Ki ,i

M i
1(

i PB

Ki ,i

M i
G , ~8!

is chosen forEkin,0 , one obtains

^ĖA&T5
gAgB

gA1gB
kBTAẋCF 1

gB
(
i PB

Ki ,i

M i
2

1

gA
(
i PA

Ki ,i

M i
G ,

~9!

wheregB5g2gA, is the number of degrees of freedom
the subsystemB, which together with subsystemA makes up
the complete system.

Hence, the effect of the thermostats can be described
heat flow from one system to the other, with a heat-transp
coefficient

lx52
^ĖA&T2^ĖB&T

TA2TB

52
gAgB

gA1gB
kBẋCF 1

gB
(
i PB

Ki ,i

M i
2

1

gA
(
i PA

Ki ,i

M i
G . ~10!

Note thatlx is negative. Thermal equilibrium is only reache
when total heat-transport coefficient among subsystem
positive. This clearly shows that there is a thermodynam
instability when the physical thermal coupling is small
~in absolute values! than the implicit coupling via the
thermostats.

The conditions for this thermodynamic instability are th
~1! the drift in the wave-function thermostat is sufficient
rapid, ~2! Ki ,i /Mi is very different for the atoms of one sub
system as compared to the other, and~3! the thermal cou-
pling between the systems is sufficiently small, so that
effect of the thermostats is appreciable compared to
physical thermal coupling. While these conditions rarely c
roborate, already the fluctuations, which result from a nea
instability, can render the results of a simulation inaccura

V. EQUATIONS OF MOTION WITH CONTROLLED HEAT
BACK FEEDING

To cure the problems of the two-thermostat formulatio
terms are added to the equations of motion that compen
the effect of the finite effective mass of the wave functions
the downfolded equations of motion for the atoms. I proce
with the assumption that the effective mass tensor of
wave functions is known. Later, I will discuss an approx
mate expression to be used in practice.

I propose a new set of equations of motion, which is t
main result of this paper,

mCuC̈̃n&52H̃uC̃n&1(
m

ÕuC̃m&Lm,n2mCuĊ̃n&ẋC ,
3-3
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(
j

~Mid i , j2Ki , j !R̈j5Fi2MiṘi ẋR1(
j

Ki , j Ṙj ẋC

1(
i , j

S ]Ki , j

]Rk
2

1

2

]K j ,k

]Ri
DRj̇Rk̇,

QCẍC52u~ ẋC!F(
n

^Ċ̃numCuĊ̃n&2(
i , j

1

2
Ki , j Ṙi Ṙj G

QRẍR52S (
i

1

2
MiṘi

22
1

2
gkBTD . ~11!

The step functionu( ẋ) in the equation of motion for the
wave-function thermostat will be discussed in detail belo
Even if the step function is removed, these equations crea
stable and energy-conserving dynamics. Its role is to shut
thermostat down for those periods of time where the therm
stat would otherwise heat the wave functions.

The system of equations~11! has a conserved energy

Ec51(
i

1

2
MiṘi

21E@ uCn&,Ri ] 1(
n

^Ċ̃numCuĊ̃n&

2(
i , j

1

2
Ki , j Ṙi Ṙj1

1

2
QCẋC

2 1
1

2
QRẋR

21gkBTxR .

~12!

The second line of Eq.~12! is the kinetic energy of thefree
motion of the wave functions representing deviations fr
the Born-Oppenheimer surface.

The new system of equations of motion differs in fo
points from the ones used previously.

~1! The nuclear mass is reduced by the effective wa
function mass, so that the effective mass of atoms, nam
the sum of the reduced mass of the nuclei and mass of
wave-function cloud add up to the true nuclear mass. T
correction has been previously suggested12,10 and is a com-
mon practice in state-of-the-artab initio molecular-dynamics
simulations.

~2! A friction force ( jKi , j Ṙj ẋC acting on the atoms ha
been added. This term is controlled by the wave-funct
thermostat and opposes the drag from the wave-functi
which themselves are slowed down by the wave funct
thermostat. The rate of energy added to or removed from
physical system by the wave-function thermostat

@(n^Ċ̃numcuĊ̃n&2( i , jKi , j Ṙi Ṙj # ẋC . This energy transfer is
proportional to the deviation of the wave functions from t
Born-Oppenheimer surface. Hence the thermostat acts
on thefree oscillations of the wave functions.

~3! The estimate 1
2 ( i , jKi , j Ṙi Ṙj for the instantaneous

Born-Oppenheimer kinetic energy has been introduced
the feedback equations for the wave-function thermostat
stead of a constant target energy used previously. This m
fication was necessary in order to obtain a conserved ene
Besides restoring energy conservation, this term has ano
beneficial role, which is most important for systems w
large kinetic-energy fluctuations. The wave-function therm
10430
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stat adapts to the instantaneous kinetic energy of the nu
and acts only on the deviations of the wave functions fr
the Born-Oppenheimer surface. The wave-function therm
stat would remain inactive for Born-Oppenheimer wa
functions.

~4! The wave-function thermostat shuts down in
energy-conserving fashion when it would otherwise heat
wave functions. This is discussed in the following.

Despite the more complex equations of motion the c
served energy has one term less. There is no potential-en
term related to the wave functions, which has important i
plications. The thermostat variable oscillates repeatedly
tween cooling and heating the wave functions. Heating
wave functions is not desirable, as one would like to ke
them at their lowest temperature compatible with the dyna
ics.

A better strategy is to couple the wave-function therm
stat to the system only when cooling is required. This can
done in an energy-conserving way, since the contribution
the wave-function thermostat to the conserved energy v
ishes wheneverẋC vanishes. Thus, the equation of motio
for the wave-function thermostat in Eq.~11! has been modi-
fied by introducing a step functionu( ẋC). u(x) is the Heavi-
side step function defined asu(x>0)51, u(0)5 1

2 , and
u(x,0)50. The discretization of the equation of motion fo
the wave-function thermostat including the step function
not straightforward. This equation means the following. T
thermostat dynamics is switched on with zero velocity wh
the wave-function kinetic energy grows larger than the t
get. ẋC grows and transfers energy from the wave-functi
dynamics into the nuclear subsystem until the velocity of
thermostat variable vanishes again. At this point, the wa
function kinetic energy is below its target. Instead of allo
ing the thermostat to heat the system, the thermostat vari
xC is instead kept constant, implying that the thermosta
effectively switched off. If the equation of motion is solve
continuously, the velocity of the thermostat vanishes exac
when the thermostat shuts down. The velocity will rema
zero, until the wave function kinetic energy grows above
target, and thus does not affect the dynamics for that pe
of time. The thermostat switches on again, when the kin
energy grows above the target. Thus the trajectories proc
without any perturbation, as long the wave-function kine
energy remains below its target value. In a discretized eq
tion of motion the velocity of the thermostat must be expl
itly reset to zero, whenever it would otherwise turn negati

To summarize, the thermostat resets the kinetic energ
a lower value if the wave functions become too hot, wh
transfering the energy into the nuclear dynamics. Note t
even when the wave-function thermostat is on, the ato
trajectories are affected only if the effective-mass tenso
inaccurate. Hence the thermostat can operate more stro
before affecting the atomic dynamics.

The thermostat variable of the atom thermostat does
experience any longer a steady drift in the present formu
tion. This can be deduced from the conserved-energy exp
sion as follows. A drift of the thermostat variables is possib
in principle, because a fixed translation of a thermostat v
3-4
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able does not affect the dynamics and is, therefore, not
servable. The time-averaged drift ofxR vanishes, because th
potential energy of the atom thermostat is the only term
the conserved energy that depends on the thermostat
able. All other terms in the conserved energy are observ
and, therefore, stationary.

A drift of the wave-function thermostat variable does n
affect the conserved energy. Hence, a drift ofxC is possible.
This drift counterbalances the heat flow from the nuclei
the wave functions but does not add to the conserved ene

In the remainder of this section, I will discuss a possib
dynamical instability and how it can be avoided. The Bo
Oppenheimer kinetic energy enters with a negative s
which may point to a possible instability of the wave fun
tions, when the bare mass tensor with elementsMid i , j
2Ki , j does not turn not to be positive definite. A partic
with negative mass accelerates in the opposite direction
the forces, and runs away from a minimum. The condit
for the bare mass tensor to be positive definite poses a s
upper bound on the wave-function massmC .

In practice one needs to be even more restrictive. Ther
an internal excitation of the quasiparticle ‘‘atom,’’ where th
nucleus oscillates with high frequency about the wa
function cloud. This mode can be identified clearly when
wave functions are frozen and only the bare nuclei are
lowed to move. If the bare mass of the nuclei is small, th
oscillations may have high frequency that require a sm
time step in the discretization. While this mode falls into t
class of deviations from the Born-Oppenheimer surface,
thermostat does not cure the problem since the wa
function kinetic energy is smaller than its targ
1
2 ( i , jKi , j Ṙi Ṙj . To avoid that problem I suggest t
keep the wave-function massmC sufficiently small, so that
Ki ,i,

1
2 Mi .

VI. IMPLEMENTATION

A. The model of an infinitely dilute gas

The new equations of motion require an analytic expr
sion that approximates the effective-mass tensor. As a sta
adopt the model of an infinitely dilute gas of atoms, whi
has been used in the context of the previous wave-func
thermostat and mass renormalization. The model of an
nitely dilute gas assumes that the Born-Oppenheimer w
functions can be divided into purely atomic contribution
and that those are identical to the wave functions of the c
responding isolated atoms.

The rationale for the model of an infinitely dilute gas
that the most rapid variations of the wave function occ
near the nucleus, and are little affected by the bonding e
ronment. Thus, already the isolated atom will capture m
of the relevant contributions. One can envisage better
proximations for the effective mass of the wave functio
which depend explicitly on the atomic positions, and whi
may be derived from a tight-binding-like description.

I insert the atomic wave function into the expressi
given in Eq.~5! for the effective-mass tensor of a given ato
and obtain
10430
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Ki , j522(
n

^C̃nu¹imC¹j uC̃n&. ~13!

It can be shown that in this approximationKi , j is diagonal
for each atom with three identical matrix elements on
main diagonal. For symmetry reasons, the acceleration o
isotropic atom is parallel to the force, that is,F5lR̈ with
some parameterl. Hence, the acceleration is an eigenvec
of the effective-mass tensor (Md i , j1Ki , j )R̈j5lR̈j . Sincel
is independent of the direction of the applied force,K has
three identical eigenvalues. Therefore,Ki , j has the form of a
unity matrix times a constant and the identityKi , j

5d i , j
1
3 Tr K holds.

Thus one can obtain a more simple form of our mod
effective mass as,

Ki , j5
2

3
d i , j(

n
^C̃nu2(

i
¹imC¹i uC̃n&. ~14!

In the special case of aG-independent mass,14 the weight
of the wave-function cloud is directly related to the kine
energy of the pseudo wave functions, as reported previou8

Ki , j5
4mC

3
d i , j(

n
K C̃nU2 1

2
¹2UC̃nL . ~15!

A G-dependent wave-function mass, usually a ma
tensor diagonal in reciprocal space with elements depen
on the reciprocal space vector of the augmented plane wa
is nowadays common practice. It allows to control the ra
oscillations of plane waves with large wave vectors15 and
avoids instabilities that occur otherwise when the basis se
increased. There are several choices for theG-dependence of
the wave-function mass. I use an expression for the effec
mass

mC~G,G8!5mC
0 ~11cG2!dG,G8 . ~16!

In order to obtain the effective-mass tensor, I determine
pseudo wave functions of the atom and transform them
G space via a Bessel transform. Then I evaluate

A5(
n

f nE dGG2uC̃n~G!u2, ~17!

B5(
n

f nE dGG4uC̃n~G!u2, ~18!

which are combined with the chosen parameters for
wave-function mass to the effective-mass tensor of the w
functions

Ki , j5d i , j

2

3
mC

0 ~Ai1cBi !. ~19!

The variablesf n are the occupation numbers of the on
particle states. Typical values forAi and Bi are given in
Table I. Note, that these values depend on the choice
pseudo wave functions and are not transferable. They
3-5
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listed here solely to provide the reader with a feeling of
order of magnitudes involved.

The effective wave-function mass must be substanti
smaller than the nuclear masses, i.e.,2

3 mC(A1cB),M , in
order to obtain a stable dynamics. If this requirement is v
lated the reduced mass of the atom is negative, and at
accelerate in the opposite direction of the force acting
them.

B. Discretized equations of motion

All equations of motion are implemented using the Ver
algorithm. An equation of motion for a general coordinatex
has the form

mẍ5F2mẋf , ~20!

where f is a friction coefficient, which may be constant
imposed by a thermostat. The thermostatx creates a canoni
cal ensemble by tuning the friction viaf 5 ẋ with time.

The equations of motion discretized with a time stepD
are obtained by replacing derivatives by the differe
tial quotientsẋ5@x(t1D)2x(t2D)#/(2D)1O(D2) and ẍ
5@x(t1D)22x(t)1x(t2D)#/D21O(D2) as,

x~ t1D!5
2

11a
x~ t !2

12a

11a
x~ t2D!1F~ t !

D2

m

1

11a
,

~21!

wherea5 f D/2.
The choicea50 yields energy-conserving trajectorie

anda51 results in steepest-descent dynamics. Intermed
values ofa are the regime of friction dynamics.

Because the thermostat can be propagated only with
knowledge of the instantaneous kinetic energy, which in t
depends on the propagated value of the thermostat, I extr
late the thermostat variable fort1D from the present and th
previous two-thermostat values,

x~ t1D!54x~ t !26x~ t2D!

14x~ t22D!2x~ t23D!1O~D4!. ~22!

TABLE I. CoefficientsA and B for Eq. ~19! for different ele-
ments and their values relative to the nuclear masses. These v
are not transferable.

Atom A B 104(A/M ) 104(B/M )

H 0.830 2.830 4.518 15.403
He 3.505 17.128 4.803 23.475
C 5.837 22.292 2.666 10.181
O 14.569 86.109 4.995 29.525
F 20.304 143.785 5.863 41.518
Si 3.327 6.320 0.650 1.234
Cl 12.821 41.841 1.984 6.474
Fe 10.950 71.366 1.075 7.010
Ru 17.606 95.952 0.956 5.208
Os 16.874 86.002 0.848 4.320
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This expression introduces errors of the forces of orderD2,
which is consistent with the overall accuracy of the Ver
algorithm.

The step function for the thermostat is implemented
resettingẋC to zero for the propagation of wave function an
nuclear positions, whenever it has a negative value ot
wise, and by settingxC(t2nD)5x(t), whenever the veloc-
ity ẋC(t) would become negative during the propagation
the thermostat variable.

VII. TESTS

In order to test stability and accuracy of the method
investigated two systems. A simulation of carbon monox
shall illustrate how the thermostats adapt to large fluctuati
of the nuclear kinetic energy. This test case allows also a
of the accuracy. Iron has been used as example for a m
and shows the stability of the trajectories against frequ
band crossings.

The simulations described in the following have been p
formed with the Perdew-Burke-Ernzerhof dens
functional.16,17The plane-wave cutoff for the wave function
has been set at 30 Ry and the one for the density at 60 R
time step ofD510 a.u.50.12 fs has been used togeth
with a G-independent wave-function mass of 1000me . The
frequency of the thermostat for the nuclei has been chose
10 THz, which is unusually large. The frequency of t
wave-function thermostat has been set to 100 THz.

A. Carbon Monoxide

The unit cell size is a 13 Å fcc unit cell. The electrosta
interaction between periodic images has been subtracted18 A
13s113p113d projector set has been used, that is o
projector for every relevant set of angular momentum qu
tum numbers. The one-center density has been expanded
spherical harmonics up to angular momentum ofl 52. Pa-
rameterA55.87 for carbon and 15.42 for oxygen have be
used, resulting in an effective mass of the wave-funct
cloud amounts to 17% and 35% of the physical nuclear m
for carbon and oxygen, respectively. Rotations and tran
tions have been frozen out by constraints so that a tru
one-dimensional system is studied. The simulation has b
performed at 1000 K.

The experimental value for the CO stretch vibration
2170 cm21.19 The experimental bond length is 1.1283 Å.20

Fixed point calculation predict a bond length of 1.138 Å a
a stretch frequency of 2125 cm21. These deviations are in
the range of errors expected for the density functional us

Simulations lasting several picoseconds have b
performed.21 A sequence of 0.3 ps is shown in Fig. 1. Th
deviation of the wave-function kinetic energy from the Bor
Oppenheimer surface is20.05 times the variation of the
potential energy and overall smaller than 5 meV. This in
cates that the dilute-atomic-gas model overestimates the
fective masses by about 10%. On the other hand, 90% of
error has been removed.

The reduced mass of atoms with the wave-function clo
is 25% of the true reduced mass, which, without correcti

ues
3-6
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would result in an overestimate of 10% in the frequenci
Given the error in the effective masses one can expect
quencies that overestimate the frequency derived from s
calculation by 1%, which is in good agreement with t
value of 2148 cm21 obtained from averaging vibrational pe
riods during 5 ps.

The friction measured in units ofD/2 remains below 4
31023(2/D), which is very small indicating that the hea
transfer from wave functions to the nuclei is small in th
system. The total energy is conserved to within 5 meV
and scales down with the size of the time step.

B. Iron

As a test of a metallic system I have choseng iron. An
eight-atom fcc unit cell has been used. Since only theG point
was included in thek-point sampling, I do not expect th
simulation to be a realistic description of the material. T
simulation temperature is 1185 K, at the martensitic pha
transformation temperature. The parameterA was about 12%
larger than the kinetic energy per atom, in order to acco
for the promotion ofs- to d-electrons as one goes from a
atom to the solid. The effective mass of the wave funct
per atom is 4.75 amu@amu5M (12C)/12#, about 9% of the
nuclear mass. The atom thermostat had a period of 0.1
and the wave-function thermostat had a period of 0.01
The band gap due to finitek-point sampling is typically
about 0.1–0.2 eV.

The results for the simulation of one picosecond is sho
in Fig. 2. The total-energy variation is of order 1 eV. Th
mean average kinetic energy related to the non-Bo
Oppenheimer motion is 3 meV. The total energy drifts w
0.47 meV/ps. The typical energy deviation from the Bo
Oppenheimer surface is 10–15 meV.

Most of the time the thermostat is switched off as t
kinetic energy remains below the target defined by the ef
tive masses. The most pronounced quenching sequenc
curs at 0.7 ps. Here the sharp increase of the wave-func

FIG. 1. Energies of carbon monoxide versus time in picos
onds. Top, non-Born-Oppenheimer kinetic energy of the wave fu
tions in meV~full line! and total energy in units of 0.1 eV~dashed
line! displaced vertically. Middle, instantaneous ‘‘temperature’’
kelvin. Bottom, friction imposed by the thermostats in units of 2D
for wave functions~full line! and nuclei~dashed line!.
10430
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kinetic energy indicates a band crossing. A band cross
results in a randomization of the wave functions as the
cupied state changes its character into that of the form
unoccupied state, and would otherwise render the remain
of the simulation useless. The wave-function thermos
brings the wave functions back to the Born-Oppenheim
surface, while the perturbation of the nuclear dynamics d
ing this rather strong quench is minimized by the oppos
force acting on the nuclei.

VIII. CONCLUSION

In summary, a refined formulation of the two-thermos
approach forab initio molecular dynamics has been pr
sented. The approach aims at controlling only the deviati
from the Born-Oppenheimer wave functions. The influen
on the Born-Oppenheimer motion of the wave functions a
the nuclear motion is minimized by additional forces oppo
ing the indirect friction of the atoms. Furthermore, the th
mostat is active only if the wave-function kinetic energ
grows beyond its estimated Born-Oppenheimer value. T
two-thermostat formulation can be applied to small syste
with large fluctuations of the nuclear kinetic energy and
fictitious Born-Oppenheimer wave-function kinetic energy

The approach rests on an expression for the effect
mass tensor of the wave functions. A simple formula h
been derived from the previously employed model of an
finitely dilute gas. Systematic improvements of effectiv
mass tensor, which will improve the quality of the simul
tion, can be envisaged.
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c- FIG. 2. Energies of austenite~fcc Iron! in an eight-atom super-
cell versus time in picoseconds. Top, total non-Born-Oppenhei
kinetic energy of the wave functions in meV~full line! and total
energy in units of 0.1 eV~dashed!. Middle, instantaneous ‘‘tempera
ture’’ in kelvin. Bottom, friction imposed by the thermostats in un
of 2/D for wave functions~full line! and nuclei~dashed line!.
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APPENDIX:
DOWNFOLDING THE WAVE-FUNCTION DYNAMICS

Here, the effective equations of motion, Eq.~4!, for the
nuclei are derived, which include the forces of the wa
functions acting on the nuclei.

The starting point is the following set of equations:

mCuC̈̃n&52H̃uC̃n&1(
m

ÕuC̃m&2mCuĊ̃n&ẋC ,

MR̈i5Fi . ~A1!

The wave functions are constrained to remain exactly
the Born-Oppenheimer surface,

C̃n~r ,t !5C̃n
BO

„r ,R~ t !…. ~A2!

The Born-Oppenheimer wave functionsC̃n
BO(r ,Ri) are the

ground-state wave function for a given set of atomic po
tions Ri .

Because the Born-Oppenheimer wave functions dep
on the nuclear positions, the forces acting on the wave fu
tions translate into additional forces acting on the nuc
Thus, effective equations of motion for the atoms are
tained. The atoms are now ‘‘quasiparticles’’ consisting of n
clei and the wave-function clouds following them.

The constraints are enforced by the method of Lagra
multipliers: The constraint forces, which describe the eff
of the wave-function cloud, are the derivatives of a ‘‘co
straint energy’’

Ec5(
n

~^C̃n2C̃n
BOuFn&1^FnuC̃n2C̃n

BO&!, ~A3!

with the auxiliary fieldsFn acting as Lagrange parameter
The resulting constraint forces are

F uCn&
c 52

]Ec

]^C̃nu
5uFn&, ~A4!

F ^Cnu
c 52

]Ec

]uC̃n&
5^Fnu, ~A5!

FRi

c 52
]Ec

]Ri
5(

n
S K ]C̃n

BO

]Ri
UFnL 1K FnU]C̃n

BO

]Ri
L D .

~A6!
n
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The constraint forces are inserted in the equation of m
tion for the wave functions

mCuC̈̃n&52H̃uC̃n&1(
m

ÕuC̃m&Lm,n2mCuĊ̃n&ẋC2uFn&.

~A7!

With the help of the constraint conditionuC̃(t)&
5uC̃n

BO
„R(t)…& and the fact that H̃uC̃n

BO&
5(mÕuC̃m

BO&Lm,n the auxiliary fieldsuFn& are related to the
Born-Oppenheimer wave functions via Eq.~A7! as

uFn&52mCuC̈n
BO&2mCuĊn

BO& ẋC

52(
i , j

mCU]2Cn
BO

]Ri]Rj
L Ṙi Ṙj2(

i
mCU]Cn

BO

]Ri
L R̈i

2(
i

mCU]Cn
BO

]Ri
L Ṙi ẋC . ~A8!

The auxiliary fields are inserted into the expression for
constraint forces acting on the atoms, Eq.~A6!, and after a
few transformations the additional forces of the wav
function cloud acting on the atoms are obtained,

FRi

c 52(
n

F K ]C̃n
BO

]Ri
UmC~ uC̈̃n

BO&1uĊ̃n
BO& ẋC)

1(^C̈̃n
BOu1 ẋC^Ċ̃n

BOu!mCU]C̃n
BO

]Ri
L G

52(
j

Ki , j R̈j2(
j ,k

S ]Ki , j

]Rk
2

1

2

]K j ,k

]Ri
D Ṙj Ṙk

2(
j

Ki , j Ṙj ẋC . ~A9!

The effective equation of motion given in Eq.~4! for the
nuclei is obtained by adding the corresponding constra
forces to the equations of motion for the nuclei.
en-
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