PHYSICAL REVIEW B, VOLUME 65, 104303

Second-generation wave-function thermostat foab initio molecular dynamics
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A rigorous two-thermostat formulation fab initio molecular dynamics using the fictitious Lagrangian
approach is presented. It integrates the concepts of mass renormalization and temperature control for the wave
functions. The new thermostat adapts to the instantaneous kinetic energy of the nuclei and thus minimizes its
influence on the dynamics. Deviations from the canonical ensemble, which are possible in the previous
two-thermostat formulation, are avoided. The method uses a model for the effective mass of the wave func-
tions, which is open to systematic improvement.
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[. INTRODUCTION tions. The optimum temperature for the wave-function dy-
namics, which is required so that the wave functions can
Ab initio molecular dynamics, also called the Car- follow the nuclei adiabatically, has been discussed edtlier.
Parrinello method, allows to study the dynamical and finite- However, the previous two-thermostat formulation has
temperature behavior of molecules, surfaces and solids witthree deficiencies.
forces from highly accurate first-principles density- (1) For systems consisting of parts that are only in weak
functional simulationg:® This approach has revolutionized thermal contact, the thermostats do not guarantee that the
the way electronic structure calculations are done to datecanonical ensemble is correctly sampled. The heat transfer
Two main variants of this approach have established thenfrom the nuclei to the wave functions is larger for some
selves. The original approach of Car and Parriffelises a atoms than for others, which may result in different effective
fictitious Lagrangian to deduce a dynamical equation of motemperatures for different parts of the system.
tion for the wave functions, while the so-called “exact” (2) The target kinetic energy for the wave-function dy-
Born-Oppenheimer dynamitsperforms self-consistency namics is constant over time and is determined according to
loops for each set of atomic positions. the target temperature of the atoms. For small systems the
The underlying idea of the fictitious Lagrangian approachfluctuations in the atomic kinetic energy can be sizable. In
is to treat the electronic wave functions as dynamical fieldshat case the wave-function thermostat will heat the wave
that obey a Newton-type equation of motion. If the temperafunctions when the atomic kinetic energy is low and cool
ture attributed to the motion of the wave functions is suffi-more than necessary if the atoms have a high kinetic energy.
ciently low, the wave functions propagate close to the Born-This has an adverse effect on the nuclear trajectories.
Oppenheimer surfacdi.e., the instantaneous electronic  (3) The goal of the wave-function thermostat is to keep
ground statg Thus, the electronic wave functions can bethe wave functions cold. The thermostat, however, induces
propagated with relatively minor computational effort while fluctuations in the wave-function kinetic energy and thus in-
the nuclei are moving. Self-consistency loops for each stefroduces undesired heating sequences.
of the trajectory are avoided. In this paper, | analyze the trajectories of the nuclei and
A difficulty arises from the requirement that the wave propose a formulation of the two-thermostat method, which
functions should remain sufficiently close to the Born-overcomes these deficiencies. The proposed method links the
Oppenheimer surface so that physically correct forces on thiarget temperature for the electronic wave-functions directly
nuclei are produced. This implies that the wave functiondo the instantaneous motion of the atoms. Thus the wave
must remain “cold,” while at the same time the nuclei are atfunction thermostat adapts to the temperature fluctuations of
a relatively high physical temperature. Hened initio  the nuclei, and minimizes its influence on the atomic trajec-
molecular-dynamics simulations are in principle nonequilib-tories. Second, the indirect influence of the wave-function
rium simulations. thermostat on the atomic trajectories is compensated using
In most cases, the heat transfer between the electronic araah additional, opposing friction term in the equations of mo-
the atomic subsystems is sufficiently slow as a result of theion for the atoms.
separation between electronic and nuclear frequency A detailed numerical analysis of the errors in the forces
spectra. For long simulations, however, one has to bear inresulting from the deviations from the Born-Oppenheimer
mind that the nuclear and electronic variables will eventu-surface and due to the previous two-thermostat formulation
ally, even though very slowly, approach thermal equilibrium,has been performet.
where the wave functions deviate from the Born- In Sec. Il, the previous two-thermostat formulation is re-
Oppenheimer surface and the forces acting on the atoms astated, which allows me to introduce my notation. In Sec. lll,
nonphysical. In order to rigorously maintain a stable simula-effective equations of motion for the nuclei under the influ-
tion, two thermostafs’ are introduced. One thermostat ence of the wave function dynamics are derived. Section IV
keeps the nuclei at their physical temperature and the otheliscusses a potential thermodynamical instability in the pre-
one adsorbs the additional heat transfer to the wave funcrious two-thermostat formulation of Car-Parrinello dynam-
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ics. Section V describes the two-thermostat formulation. Anwave functions. In the entire paper Hartree atomic units (
approximate scheme for deriving the parameters of the=e=m.,=4mwey=1) are used. The present formulation of
theory and technicalities of the present implementation ar¢éhe thermostat differs from Hoover’s: the thermostat variable
given in Sec. VI. Test calculations are presented in Sec. Vllused by Hoover corresponds to ttime derivativesof the
thermostat variablegg and x4 used here. This choice has

Il. EQUATIONS OF MOTION WITH TWO the advantage that the thermostats obey second-order differ-
THERMOSTATS ential equations just as the nuclear position and the wave
functions.

Let me first describe my notation. The electrons are de- Egyen though the equations of motion given above cannot
scribed by one-particle wave functiojs,,). The wave func-  pe derived from a Lagrangian formalism, they have a con-
tions |V,) are related by a linear transformatid¥,)  served energy
=T|¥,) to the variational parametef¥ ). Often the varia-
tional parameters are vectors and the transformation is de-
fined by a basis sefy,) in the form [V )= |x )Wk - Ec=> (U my| T, )+ > EMiR-2+ E[|¥,).R]

Here, | have in mind the projector-augmented waRAW) n T2 !

method!® where the variational parameters are themselves 1 1

fields, namely, the so-called pseudo wave functiohs. The + = QuX3 + 2Eyin Xy + = Qrxa+ gksTxg.  (2)
pseudo wave functions are expanded in a basis set, a detalil 2 ' 2

that does not concern here. The pseudo wave functions of the

PAW method are conceptionally identical to the wave func-The first two terms are the kinetic energies of wave functions
tions of the pseudopotential formalism. and nuclei, the third is the potential energy, i.e., the density-

In the ab initio molecular-dynamics method with the pre- functional total energy. The remaining terms are kinetic and
vious two-thermostat formulation, the following coupled sys-potential energies of the two thermostats for wave functions

tem of equations of motion is solved. and nuclei.
_ Simulations with the two thermostats reach a stationary
me| ¥ Y=—H|T )+ > O|F HA - —my|V )Xy, state in which the wave-function thermostat variakjeex-
vl Vo) Vo) Zn: [Wim A= M [ W)X hibits an approximately constant drift to larger values, which

freezes out the deviations from the Born-Oppenheimer ap-
MR =F— MiRikR, proximation. As a consequence of energy conservatitre
atom thermostat variable decreases at an average rate

QuXy=2

; <\I’;}n|mll'|¢'n>_Ekin,0>v -
(XR)=— 1&6@)' (©)

. 1 . 1
QRXRZZ(Z EMiRiZ_ EngT)' (1) EngT

If E[R,|¥)] |5_ the_ Kcihn.-Sham_ total energy functlonf |, the which restores the energy absorbed by the wave-function
pseudo HamiltonianH is defined such thadE/d(W¥ | thermostat.

=H|¥,) and the forces; are the partial derivatives of the
Kohn-Sham total-energy functional with respect to the

atomic positions. The pseudo-overlap operdibeTTT is ll. EFFECTIVE EQUATIONS OF MOTION FOR THE
obtained from the transformation between the true wave NUCLEI
functions| W) and the pseudo wave functiop). The over- In order to understand the motion of the nuclei with the

lap between two wave functions {& | ¥,y =(¥,|O|¥ ).  wave functions and thermostats tied to them, let me derive
The Lagrange parameters introduced to keep the wave funeffective equations of motions for the nuclei. It is useful to
tions orthogonal are denoted As, ,. The mass of the wave consider the atoms as quasiparticles, each of which consists
functions ismy, . In practice, an operator diagonal in a plane-of a nucleus and a wave-function cloud, i.e. the distortion of
wave representation is used. The nuclear masses are denotad surrounding electron gas. Just as an electron distorts a
asM;, wherei is the index of the corresponding ato@, surrounding crystal lattice to form a polaron, here a nucleus
andQg are the “masses” of the thermostat variablesand  distorts the electron gas to form a quasiparticle called an
Xg for wave functions and nuclei, respectively. These masseatom. The distortion of the electron gas and its wave func-
determine the reponse time and the dominant frequency afons, will be called wave function cloud. The effective equa-
the thermostatsy is the number of nuclear degrees of free-tions of motion are obtained from the equations of motion in
dom andkg is the Boltzmann constank,;, o is a parameter Eq. (1) by constraining the wave functions to be identical to
that determines the target kinetic energy of the wave functhe exact Born-Oppenheimer wave function. The details of
tions in the simulations. Its value is chosen according to arthe derivation are given in Appendix A. Here, only the result
estimate of the Born-Oppenheimer kinetic energy of thds shown,
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If the thermal average of the Born-Oppenheimer wave-

; [Miéi,j'l'Ki,j]hj:Fi_MiRiXR_; Ki,jRjXq/ function kinetic energy,
10K
LRk 1. . 1 K, K,
I ( R 2 R )RR" 2 (RKR)=5kaT| 2 147+ 2, M_} ©

(4)
is chosen foiE,, o, one obtains
Ki is the effective-mass tensor as function of the nuclear

positions

~ Ep)r=———
oW BO Enlr gat0e Us M OgaicA M
R, | ) 9

1 Kii 1 K,I}

v

a{I‘,BO
=23 (G
I

where|WE°) are the Born-Oppenheimer wave functions.
Let me discuss this equation:

wheregg=g—da, is the number of degrees of freedom in
the subsysterB, which together with subsysteAmakes up
the complete system.

The nuclei obtain an effective madd;s; ;+K; ;. The Hence, the effect of the thermostats can be described as a
atoms appear to be heavier than the nuclei alone, because theat flow from one system to the other, with a heat-transport
wave functions also need to be accelerated, whenever thmefficient
nuclei accelerate. This effect has been realized b&fdfe
and corrections are in common use today.

The third term on the right-hand side of Eg) is related A= — M
to the friction imposed by the wave-function thermostat on Ta—Ts
the wave functions. As the thermostat removes kinetic en-
er : 9n%8 | - Kii
gy from the wave functions, the atoms are also cooled =— KgX L . (10
down. In particular, for two loosely coupled subsystems, Oat+0s V| Qs ih M Oa icA |V|

where one subsystem has a different average effective wave-

function mass than the other, a drift of the thermostat variNote that\, is negative. Thermal equilibrium is only reached

ables cools one subsystem at the cost of the other. This mayhen total heat-transport coefficient among subsystems is

cause deviations from the canonical ensemble as discussedpasitive. This clearly shows that there is a thermodynamical

more detail in the following section. instability when the physical thermal coupling is smaller
The last term in Eq(4) describes the effect of the changes (in absolute valugsthan the implicit coupling via the

of the effective mass as the atoms are moving around. Thighermostats.

term will not be discussed in more detail, because in this The conditions for this thermodynamic instability are that

paper an approximation with the effective masses, indeperfd) the drift in the wave-function thermostat is sufficiently

dent of the atomic positions will be employed, where thisrapid, (2) K; ; /M is very different for the atoms of one sub-

term vanishes. system as compared to the other, d8ithe thermal cou-
pling between the systems is sufficiently small, so that the
IV. DEVIATIONS FROM THE CANONICAL ENSEMBLE effect of the thermostats is appreciable compared to the

physical thermal coupling. While these conditions rarely cor-

Here, the deviations from the canonical ensemble menroborate, already the fluctuations, which result from a nearby

tioned above are investigated. The rate of energy changestability, can render the results of a simulation inaccurate.
of a subsysterm imposed by the thermostats is according to

Eq. (4)
a V. EQUATIONS OF MOTION WITH CONTROLLED HEAT

o o BACK FEEDING

=2 MR xg— 2 K;RiRXy. (6) .
icA ijeA To cure the problems of the two-thermostat formulation,
. - S terms are added to the equations of motion that compensate
Assuming that subsysted is in thermallegunllbngm_ A ihe effect of the finite effective mass of the wave functions in
temperatureT,, the thermal average dRR; is (RIRj)r  the downfolded equations of motion for the atoms. | proceed
=8 jkgTa/M;. Furthermore, the drifts of the two- jth the assumption that the effective mass tensor of the
thermostat variables are related by E8)."° Thus, Eq.(6)  wave functions is known. Later, | will discuss an approxi-
can be transformed to mate expression to be used in practice.
| propose a new set of equations of motion, which is the

Exino 1 K, i main result of this paper,

(Ea)r=0aKsTa(Xy) 9keT/2 On 4 M. (7)

whereg andg, are the number of degrees of freedom of the q, =— AT+ DT IA- —m (1‘, X
total system and subsystefn vl Vo) Vo) % W imd A=y ¥ )Xo
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stat adapts to the instantaneous kinetic energy of the nuclei

> (M ;—K; DR=Fi—=M;RXg+ > K RiXy and acts only on the deviations of the wave functions from
. . the Born-Oppenheimer surface. The wave-function thermo-
K 1K) - - stat would remain inactive for Born-Oppenheimer wave

+2 ~—5r |RiRe functions

i,j 5Rk 2 (9R| "

(4) The wave-function thermostat shuts down in an
- - 1 . energy-conserving fashion when it would otherwise heat the
E (\I’n|mq,|‘lfn>—z EKi‘jRi RJ} wave functions. This is discussed in the following.

" b Despite the more complex equations of motion the con-
1 1 served energy has one term less. There is no potential-energy

QR;'(RZZ( 2 _MiRiZ_ —ngT>. (11)  term related to the wave functions, which has important im-
r 2 2 plications. The thermostat variable oscillates repeatedly be-

. Sl . . tween cooling and heating the wave functions. Heating the

The step functioné(x) in the equation of motion for the wave functions is not desirable, as one would like to keep

wave-function thermostat will be discussed in detail bGIOW'them at their lowest temperature compatible with the dynam-
Even if the step function is removed, these equations create.a

stable and energy-conserving dynamics. Its role is to shut the™"

. ; A better strategy is to couple the wave-function thermo-
thermostat down for those periods of time where the thermoétat 10 the svstem onlv when cooling is required. This can be
stat would otherwise heat the wave functions. y y 9 q '

. done in an energy-conserving way, since the contribution of
The system of equationd) has a conserved energy the wave-function thermostat to the conserved energy van-
1 . - - ishes whenevex,, vanishes. Thus, the equation of motion
Ec=+2, EMiRi2+ E[|V )R]+ (W,/my|P,) for the wave-function thermostat in E€L1) has been modi-
' " fied by introducing a step functiof(xy). 6(x) is the Heavi-
1 .1 .1 ., side step function defined ag(x=0)=1, #(0)=%, and
- % 5 KijRiRj+ 5 Quxy+ 5 QrXr+ GkaTXg. 6(x<0)=0. The discretization of the equation of motion for
’ the wave-function thermostat including the step function is
(12) not straightforward. This equation means the following. The

The second line of Eq12) is the kinetic energy of théree thermostat dyn_amic_s is _switched on with zero velocity when
motion of the wave functions representing deviations fromN€ Wave-function kinetic energy grows larger than the tar-

QuXy = 26(Xy)

the Born-Oppenheimer surface. get. xy grows and transfers energy from the wave-function
The new system of equations of motion differs in four dynamics into the nuclear subsystem until the velocity of the
points from the ones used previously. thermostat variable vanishes again. At this point, the wave-

(1) The nuclear mass is reduced by the effective wavefunction kinetic energy is below its target. Instead of allow-
function mass, so that the effective mass of atoms, name|y;]g the thermostat to heat the system, the thermostat variable
the sum of the reduced mass of the nuclei and mass of théy is instead kept constant, implying that the thermostat is
wave-function cloud add up to the true nuclear mass. Thigffectively switched off. If the equation of motion is solved

correction has been previously Sugge&é&and is a com- continuously, the velocity of the thermostat vanishes exactly,
mon practice in state-of-the-aab initio molecular-dynamics when the thermostat shuts down. The velocity will remain

simulations. zero, until the wave function kinetic energy grows above its
(2) A friction force EjKi,j.Rj)'(\Il acting on the atoms has t@rget and thus does not affect the dynamics for that period

been added. This term is controlled by the wave-functiorPf ime. The thermostat switches on again, when the kinetic
thermostat and opposes the drag from the wave-function§N€rgy grows above the target. Thus the trajectories proceed
which themselves are slowed down by the wave functionVithout any perturbation, as long the wave-function kinetic

thermostat. The rate of energy added to or removed from thEN€rdy remains below its target value. In a discretized equa-
tion of motion the velocity of the thermostat must be explic-

physical system by the wave-function thermostat is, : ) .
< - L itly reset to zero, whenever it would otherwise turn negative.

[Zo(Wq|my| Vo)== jKi jRiR;Ixy . This energy transfer is " To summarize, the thermostat resets the kinetic energy to
proportional to the deviation of the wave functions from theg |ower value if the wave functions become too hot, while
Born-Oppenheimer surface. Hence the thermostat acts onlyansfering the energy into the nuclear dynamics. Note that
on thefree oscillations of the wave functions. even when the wave-function thermostat is on, the atomic

(3) The estimate;3; |K; ;RiR; for the instantaneous trajectories are affected only if the effective-mass tensor is
Born-Oppenheimer kinetic energy has been introduced intinaccurate. Hence the thermostat can operate more strongly
the feedback equations for the wave-function thermostat inbefore affecting the atomic dynamics.
stead of a constant target energy used previously. This modi- The thermostat variable of the atom thermostat does not
fication was necessary in order to obtain a conserved energgxperience any longer a steady drift in the present formula-
Besides restoring energy conservation, this term has anoth#@on. This can be deduced from the conserved-energy expres-
beneficial role, which is most important for systems with sion as follows. A drift of the thermostat variables is possible
large kinetic-energy fluctuations. The wave-function thermo4n principle, because a fixed translation of a thermostat vari-
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able does not affect the dynamics and is, therefore, not ob- _ _

servable. The time-averaged driftxf vanishes, because the Kij=—22 (T, |Vimy V| T,). (13
potential energy of the atom thermostat is the only term in "

the conserved energy that depends on the thermostat vari- |t can be shown that in this approximatie  is diagonal
able. All other terms in the conserved energy are observablg,, each atom with three identical matrix elements on its

and, therefore, stationary. main diagonal. For symmetry reasons, the acceleration of an

A drift of the wave-function thermostat variable does notisotropic atom is parallel to the force, that B=\R with

affect the conserved energy. Hence, a drifkgfis possible. some parametex. Hence, the acceleration is an eigenvector

This drift counterbalances the heat flow from the nuclei to ) .. . :
the wave functions but does not add to the conserved energ)f the effective-mass tensob(s; ; + K; j)R;=AR; . Sincex

In the remainder of this section, | will discuss a possible!S independent of the direction of the applied foréehas
dynamical instability and how it can be avoided. The Born-thrée identical eigenvalues. Therefokg,; has the form of a
Oppenheimer kinetic energy enters with a negative signunity matrix times a constant and the identit; ;
which may point to a possible instability of the wave func- = b}J%TrK holds.
tions, when the bare mass tensor with elemeWltss Thus one can obtain a more simple form of our model
—Kj j does not turn not to be positive definite. A particle effective mass as,
with negative mass accelerates in the opposite direction of
the forces, and runs away from a minimum. The condition
for the bare mass tensor to be positive definite poses a strict
upper bound on the wave-function masg .

In practice one needs to be even more restrictive. There is In the special case of G-independent mas$,the weight
an internal excitation of the quasiparticle “atom,” where the of the wave-function cloud is directly related to the kinetic
nucleus oscillates with high frequency about the waveenergy of the pseudo wave functions, as reported previusly,
function cloud. This mode can be identified clearly when the
wave functions are frozen and only the bare nuclei are al- _4Amy ~

Kij—T@,j; <\1fn

2 - -
Ki,j:§5i,j; <‘I'n|_2i Vimy Vi| W ). (14

1 2
lowed to move. If the bare mass of the nuclei is small, these B EV
oscillations may have high frequency that require a small
time step in the discretization. While this mode falls into the A G-dependent wave-function mass, usually a mass-
class of deviations from the Born-Oppenheimer surface, théensor diagonal in reciprocal space with elements depending
thermostat does not cure the problem since the wavesn the reciprocal space vector of the augmented plane waves,
function kinetic energy is smaller than its targetis nowadays common practice. It allows to control the rapid
13, K RiR;. To avoid that problem | suggest to oscillations of plane waves with large wave vectdrand
keep the wave-function mass,, sufficiently small, so that @avoids instabilities that occur otherwise when the basis set is

«Tfn> . (15)

K <iM,. increased. There are several choices forGhgependence of
’ the wave-function mass. | use an expression for the effective
mass

VI. IMPLEMENTATION mq,(G,G’)=m?I,(1+cGz)5G,G,. (16)

A. The model of an infinitely dilute gas . . .
y g In order to obtain the effective-mass tensor, | determine the

~ The new equations of motion require an analytic exprespseudo wave functions of the atom and transform them into
sion that approximates the effective-mass tensor. As a start,d space via a Bessel transform. Then | evaluate

adopt the model of an infinitely dilute gas of atoms, which

has been used in the context of the previous wave-function oo )

thermostat and mass renormalization. The model of an infi- A:; fnf dGG*V,(G)|?, 17
nitely dilute gas assumes that the Born-Oppenheimer wave

functions can be divided into purely atomic contributions,

and that those are identical to the wave functions of the cor- B=, fnf dGGHT,(G)|?, (18
responding isolated atoms. n

The rationale for the model of an infinitely dilute gas is \ynich are combined with the chosen parameters for the

that the most rapid variations of the wave function occuryaye-function mass to the effective-mass tensor of the wave
near the nucleus, and are little affected by the bonding envig,ctions

ronment. Thus, already the isolated atom will capture most

of the relevant contributions. One can envisage better ap- 2

proximations for the effective mass of the wave functions, Ki,j=5i,j§m9p(Ai+CBi)- (19
which depend explicitly on the atomic positions, and which

may be derived from a tight-binding-like description. The variablesf,, are the occupation numbers of the one-

| insert the atomic wave function into the expressionparticle states. Typical values fdk and B; are given in
given in Eq.(5) for the effective-mass tensor of a given atom Table I. Note, that these values depend on the choice of
and obtain pseudo wave functions and are not transferable. They are
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TABLE I. CoefficientsA and B for Eq. (19) for different ele-  This expression introduces errors of the forces of orfer

ments and their values relative to the nuclear masses. These valuggich is consistent with the overall accuracy of the Verlet
are not transferable. algorithm.

The step function for the thermostat is implemented by

Atom A B 10A/M) 10%(B/M) resettingxy to zero for the propagation of wave function and
H 0.830 2.830 4.518 15.403 nuclear positions, whenever it has a negative value other-
He 3.505 17.128 4.803 23.475 wise, and by setting.y(t—nA)=x(t), whenever the veloc-

C 5.837 22.292 2.666 10.181 ity X¢(t) would become negative during the propagation of
o] 14.569 86.109 4.995 29.525 the thermostat variable.

F 20.304 143.785 5.863 41.518

Si 3.327 6.320 0.650 1.234 VIl. TESTS

Cl 12.821 41.841 1.984 6.474

Fe 10.950 71.366 1.075 7.010 In order to test stability and accuracy of the method, |
RU 17.606 95.952 0.956 5.208 investigated two systems. A simulation of carbon monoxide
Os 16.874 86.002 0.848 4.320 shall illustrate how the thermostats adapt to large fluctuations

of the nuclear kinetic energy. This test case allows also a test
of the accuracy. Iron has been used as example for a metal
listed here solely to provide the reader with a feeling of theBnd shows the stability of the trajectories against frequent
order of magnitudes involved. band crossings.

The effective wave-function mass must be substantially The simulations described in the following have been per-
smaller than the nuclear masses, iny(A+cB)<M, in formgd with  the  Perdew-Burke-Ernzerhof de_nS|ty
order to obtain a stable dynamics. If this requirement is viofunctional:®*' The plane-wave cutoff for the wave functions
lated the reduced mass of the atom is negative, and atonfts been set at 30 Ry and the one for the density at 60 Ry. A
accelerate in the opposite direction of the force acting ofime step ofA=10 a.u=0.12 fs has been used together
them. with a G-independent wave-function mass of 1660 The
frequency of the thermostat for the nuclei has been chosen to
10 THz, which is unusually large. The frequency of the
wave-function thermostat has been set to 100 THz.

B. Discretized equations of motion

All equations of motion are implemented using the Verlet
2?30322”;6 r'?r? equation of motion for a general coordinate A Carbon Monoxide
The unit cell size is a 13 A fcc unit cell. The electrostatic
mx=F —mxf, (20)  interaction between periodic images has been subtratted.
1Xs+1Xp+1xd projector set has been used, that is one
wheref is a friction coefficient, which may be constant or projector for every relevant set of angular momentum quan-
imposed by a thermostat. The thermostateates a canoni- tum numbers. The one-center density has been expanded into
cal ensemble by tuning the friction via=x with time. spherical harmonics up to angular momentuny'ef2. Pa-
The equations of motion discretized with a time step rameterA=>5.87 for carbon and 15.42 for oxygen have been
are obtained by rep|acing derivatives by the differen_used, resulting in an effective mass of the wave-function
tial quotientsk=[x(t+A) —x(t—A)]/(2A)+O(A?) and X cloud amounts to 17% and 35% of the physical nuclear mass

=[x(t+A)—2x(t) + x(t— A)[/A2+O(A?) as for carbon and oxygen, respectively. Rotations and transla-
’ tions have been frozen out by constraints so that a truely
2 1-a A2 1 one-dimensional system is studied. The simulation has been
X(t+A)= mx(t)— 1Tax(t_A)+ F(t)ﬁ 1ra’ performed at _1000 K. o
21) The experimental value for the CO stretch vibration is

2170 cm 1.!® The experimental bond length is 1.1283R.
wherea=fA/2. Fixed point calculation predict a bond length of 1.138 A and
The choicea=0 yields energy-conserving trajectories & stretch frequency of 2125 crh These deviations are in
anda=1 results in steepest-descent dynamics. Intermediaté'® range of errors expected for the density functional used.
values ofa are the regime of friction dynamics. Slmulat|(l)ns lasting several picoseconds have been
Because the thermostat can be propagated only with th@erformedz. A sequence of 0.3 ps is shown in Fig. 1. The
knowledge of the instantaneous kinetic energy, which in turrfléviation of the wave-function kinetic energy from the Born-
depends on the propagated value of the thermostat, | extrap&@PPenheimer surface is 0.05 times the variation of the
late the thermostat variable for A from the present and the Potential energy and overall smaller than 5 meV. This indi-

previous two-thermostat values, cates that the dilute-atomic-gas model overestimates the ef-
fective masses by about 10%. On the other hand, 90% of the
X(t+A)=4x(t)—6x(t—A) error has been removed.

The reduced mass of atoms with the wave-function cloud
+4x(t—2A)—x(t—3A)+O(A%). (22 is 25% of the true reduced mass, which, without correction,
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FIG. 1. Energies of carbon monoxide versus time in picosec- ) ) ) )
onds. Top, non-Born-Oppenheimer kinetic energy of the wave func- FIG. 2. Energies of austenitécc Iron) in an eight-atom super-
tions in meV/(full line) and total energy in units of 0.1 eldashed ~ Cell versus time in picoseconds. Top, total non-Born-Oppenheimer
line) displaced vertically. Middle, instantaneous “temperature” in kinetic energy of the wave functions in meffull line) and total

kelvin. Bottom, friction imposed by the thermostats in units af 2/ €nergy in units of 0.1 eVdashed Middle, instantaneous “tempera-
for wave functiongfull line) and nuclei(dashed ling ture” in kelvin. Bottom, friction imposed by the thermostats in units

of 2/A for wave functiongfull line) and nuclei(dashed ling

WQUId result in an overestimate of 10% in the frequencieskinetic energy indicates a band crossing. A band crossing
Given the eror in the effective masses one can expect fr(Tr'esults in a randomization of the wave functions as the oc-
8upied state changes its character into that of the formerly
unoccupied state, and would otherwise render the remainder
of the simulation useless. The wave-function thermostat
brings the wave functions back to the Born-Oppenheimer
surface, while the perturbation of the nuclear dynamics dur-

tXlOf (2f/A), which ]LS v?ry sr?allﬂ:ndmatlmlg. that tTIe' hfr?.t ing this rather strong quench is minimized by the opposing
ransfer from wave functions to the nuclei is small in this¢ - acting on the nuclei.

system. The total energy is conserved to within 5 meV/ps
and scales down with the size of the time step.

calculation by 1%, which is in good agreement with the
value of 2148 cm? obtained from averaging vibrational pe-
riods during 5 ps.

The friction measured in units ak/2 remains below 4

VIIl. CONCLUSION

B. Iron In summary, a refined formulation of the two-thermostat
) ) approach forab initio molecular dynamics has been pre-
~As a test of a metallic system | have chosgiron. An gented. The approach aims at controlling only the deviations
eight-atom fcc unit cell has been used. Since oniylt®INt  from the Born-Oppenheimer wave functions. The influence
was included in thek-point sampling, | do not expect the op the Born-Oppenheimer motion of the wave functions and
simulation to be a realistic description of the material. Thethe nyclear motion is minimized by additional forces oppos-
simulation temperature is 1185 K, at the martensitic phasejng the indirect friction of the atoms. Furthermore, the ther-
transformation temperature. The paramétevas about 12% mostat is active only if the wave-function kinetic energy
larger than the_ kinetic energy per atom, in order to accoun@rov\,S beyond its estimated Born-Oppenheimer value. The
for the promotion ofs- to d-electrons as one goes from an tyo-thermostat formulation can be applied to small systems
atom to the solid. The effectlvezmass of the wave functionyity |arge fluctuations of the nuclear kinetic energy and the
per atom is 4.75 amflamu=M (**C)/12], about 9% of the  fictitious Born-Oppenheimer wave-function kinetic energy.
nuclear mass. The atom thermostat had a period of 0.1 ps, The approach rests on an expression for the effective-
and the wave-function thermostat had a period of 0.01 fSmass tensor of the wave functions. A simple formula has
The band gap due to finite-point sampling is typically peen derived from the previously employed model of an in-
about 0.1-0.2 eV. finitely dilute gas. Systematic improvements of effective-

_ The results for the simulation of one picosecond is showrass' tensor, which will improve the quality of the simula-
in Fig. 2. The total-energy variation is of order 1 eV. The tjon, can be envisaged.

mean average Kkinetic energy related to the non-Born-
Oppenheimer motion is 3 meV. The total energy drifts with
0.47 meV/ps. The typical energy deviation from the Born-
Oppenheimer surface is 10—15 meV. Part of this work has been performed at the IBM Zurich

Most of the time the thermostat is switched off as theResearch Laboratory. This work has benefited from the col-
kinetic energy remains below the target defined by the effeclaboration within the ESF Program on “Electronic Structure
tive masses. The most pronounced quenching sequence dcalculations for Elucidating the Complex Atomistic Behav-
curs at 0.7 ps. Here the sharp increase of the wave-functioior of Solids and Surfaces.”
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APPENDIX:
DOWNFOLDING THE WAVE-FUNCTION DYNAMICS

Here, the effective equations of motion, Eg), for the

nuclei are derived, which include the forces of the wave

functions acting on the nuclei.
The starting point is the following set of equations:

m\I’|q,n>: _H|{Pn>+§ 6|{i,m>_mll’|:l‘,n>5(llfi

MR, =F,. (A1)
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The constraint forces are inserted in the equation of mo-

tion for the wave functions

mllf|q,n>: _H|@n>+§ 6|{I}m>Am,n_m\lf|q,n>).(\lf_ |(I)n>'

(A7)

With the help of the constraint conditionﬁf(t))

=|¥EOR(t))) and the fact that H|WEO)
=3,0|TEOA , , the auxiliary field® ) are related to the

The wave functions are constrained to remain exactly olBorn-Oppenheimer wave functions via H4\7) as

the Born-Oppenheimer surface,
W (r,t)=TEO(r R(1)). (A2)

The Born-Oppenheimer wave functiods2°(r,R;) are the

ground-state wave function for a given set of atomic posi-

tionsR; .

Because the Born-Oppenheimer wave functions depend
on the nuclear positions, the forces acting on the wave func-

tions translate into additional forces acting on the nuclei

| @)= —my [ F7) = my | ¥30)xy

PWEO\ awEo\ .
:_iz,- M| GRR; RIRj =2 my| e )R
JgwEo\ .
_Ei My a—l:\)l RiX\I'- (A8)

Thus, effective equations of motion for the atoms are ob-

tained. The atoms are now “quasiparticles” consisting of nu-

clei and the wave-function clouds following them.

The constraints are enforced by the method of Lagrang
multipliers: The constraint forces, which describe the effec
of the wave-function cloud, are the derivatives of a “con-
straint energy”

ES=2 (Ty= TR0 D) +(P| T, =T, (A3)

with the auxiliary fields®,, acting as Lagrange parameters.
The resulting constraint forces are

JEC
F\Cw>:_ = :|‘I)n>- (A4)
" V|
JEC
(v =~ —=——=(Pyl, (A5)
" 9|V )
JE® PR PR
== | { =Dy ) +{ Bp[—=—) |
L (9Ri n (9Ri (9Ri
(AB)

The auxiliary fields are inserted into the expression for the
constraint forces acting on the atoms, EA6), and after a

few transformations the additional forces of the wave-
function cloud acting on the atoms are obtained,

BO

=

IR, My (W) + W) xy)

F&=—2,

! n

. . J,BO
+ (PR X (PR DMy | —
IR,
. (9KIYI 1 [?ijk . .
__; KI’IR]_% ( &Rk _E 3R| R]Rk

—; KijRiXy - (A9)

The effective equation of motion given in E¢4) for the

nuclei is obtained by adding the corresponding constraint

forces to the equations of motion for the nuclei.
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