
PHYSICAL REVIEW B, VOLUME 65, 104201
Coherent motion in the interaction model of cold glasses
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We have studied the collective phenomena of multicomponent glasses at ultralow temperatures by taking
into account the proper interaction between tunneling centers. We have considered both double- and triple- well
potentials with different types of interactions. We show that a phase with coherent motion appears for a range
of parameters when the path of tunneling is coursed by an interaction of theXY type, while the usual Ising-like
interaction does not lead to the expected collective phenomena. In the phase of coherent motion, the dipole
moment and the low-energy levels oscillate with a frequency proportional to the number of tunneling centers
in the system. Simultaneous level crossing occurs between the ground and first excited states. The effects of
long-range interactions and also of random couplings have been also studied for a one- and two-dimensional
array of tunneling centers. We find that long-range interactions do not affect the coherent motion, while a wide
distribution of random couplings destroys the collective effects.
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I. INTRODUCTION

At low temperatures glasses exhibit surprising pheno
ena, which are interesting both from a theoretical as wel
from an experimental point of view. These properties ha
been attributed to the low-lying excitations which appear
almost all amorphous and disordered solids.1 The most
simple and successful model to explain many properties
glasses is the tunneling model~TM!.2,3 In this model the
excitations are described phenomenologically as a tunne
system. One may consider a double-well potential to b
tunneling system where an entity~an atom, group of
atoms, . . . ) tunnels between the wells. At low temperatur
only the lowest-lying state of each well is relevant, so t
model is effectively described by a two-dimensional Hilb
space where the basis kets represent the ground states o
of the well. Using the Pauli matrices, the Hamiltonian of
isolated two-level system~TLS! is given by

H05
1

2
~Dsz1D0sx!. ~1!

The eigenstatesu1& andu2& of sz refer to the particle being
in the right~R! and left~L! well, respectively~see Fig. 1!. D
is the asymmetry energy andD0 is the tunneling matrix ele-
ment. The analogy ofH0 with a spin-1/2 particle in a mag
netic field can be used to explain the dynamics of TLS’s
glasses. The interactions with acoustic and electric fields
usually treated as weak perturbations which enables the
model to explain successfully many of the anomalous th
mal, acoustic, and dielectirc properties of glasses.

Although the isolated TLS model works very well i
many cases, there are some phenomena which can no
described only by isolated TLS’s.4 In these cases it is ex
pected that the interactions between the TLS’s will reso
the problem.5,6 As an example, one may consider the effe
of interactions in the two-level tunneling defect crysta
KCL:Li. 7 In this system the density of defect ions (Li1) is a
tunable parameter. At low density, the distance of tunne
0163-1829/2002/65~10!/104201~9!/$20.00 65 1042
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centers is fairly large, so the interaction does not affect
behavior of the isolated TLS’s. Upon increasing the dens
dipole-dipole interactions between the TLS’s become imp
tant and drive the system into a glassy state.8

Recently experiments on multicomponent glasses sh
novel phenomena at ultralow temperatures.9 By decreasing
the temperature down to 5 mK the dielectric constante re-
sponds linearly to a small magnetic field of the order
10 mT. In general, glasses are properly assumed to be lin
dielectrics, so thate depends quadratically on the electr
magnetic field.10 Although the dependence on the magne
field may come from nonlinear effects, the observed m
netic field dependence ofe in multicomponent glasses a
very low temperatures is completely different in nature fro
the magnetoeffect in nonlinear dielectrics9 and can not be
derived from thermodynamics by assuming glasses as sim
magnetizable dielectrics.

The first theoretical approach addressing this beha

FIG. 1. A double-well potential in three-dimensional space. T
wells are marked by L and R which are separated by a barrier.
tunneling may happen through this barrier via path 1 or 2. T
position of a charged particle in the potential defines the dip
momentP. The projection ofP onto thex-y plane is described by
the angleu measured from thex axis.
©2002 The American Physical Society01-1
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ABDOLLAH LANGARI PHYSICAL REVIEW B 65 104201
considered the Aharanov-Bohm effect upon a charged
ticle in a three-dimensional~3D! double-well potential.11 In
this approach, as explained briefly in the next section,
effect of magnetic field enters in the form of a flu
dependent hopping parameter in the standard TLS. Then
isolated TLS of Eq.~1! is studied withD0[D0(f). To fit the
experimental electric permittivity data~Fig. 3 in Ref. 11! the
charge entity in the TLS should beQ'105ueu, whereueu is
the magnitude of the electron charge. The large value ofQ is
explained by assumingcoherent motionof the charged par-
ticles in all of the TLS’s on a mesoscopic scale. The coher
motion takes place when the interactions between the TL
become important at ultralow temperatures. In this phase
may treat the motion of all of the TLS’s in terms of a sing
TLS with a chargeQ which is equal to the sum of all of th
charges. Although this model effectively describes the m
netic field dependence of the electric permittivity, the type
interaction which may lead to coherent motion over the m
soscopic size of TLS remained open.

Our goal in this paper is to explain in a more quantitat
way the collective effect of TLS’s in the presence of a ma
netic field by taking into account the interactions of t
TLS’s. In this approach we introduce the magnetic field
the flux-dependent hopping elements, while the interac
term traces the path of the tunneling process. The cohe

FIG. 2. ~a! Dipole moment per site,~b! ground state and firs
excited state energy vs the magnetic flux ratio forN54 interacting
TLS’s, Eq. ~5!. The tunneling centers are considered to be o
one-dimensional lattice. Data are shown for three different samp
numbers 100, 1000, and 10 000. It is obvious that the data conv
to the average value in the case of 10 000 samplings. Neither
dipole moment nor the energy levels show any oscillations sig
ing coherent motion.
10420
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motion of the particles is simulated by probing the relati
motion of each coupled TLS. We suppose that our mode
the original interacting model of the effective TLS contai
ing the renormalized parameters introduced in Ref. 11.
will study the effects of long-range~LR! interactions and
also of random couplings using our model in order to just
our contention that it represents the collective phenome
of cold glasses properly.

The outline of this paper is as follows: In the next secti
we will briefly explain the effective model of TLS’s in which
the magnetic field is included as a flux-dependent tunne
matrix element. In Sec. III the double- and triple-well mode
are studied in the presence of an Ising-like interaction.
introduce theXY-like interaction in Sec. IV. In this model, i
is possible to trace the tunneling path in each TLS and he
to simulate the coherent motion. We will study the effect
long-range interactions and random couplings on the beh
ior of our model in different subsections. In these studies
have used an exact diagonalization method to obtain
physical quantities from our model restricted to one- or tw
dimensional lattices. We finally present our conclusions
Sec. V.

II. EFFECTIVE MODEL OF TLS

We start first by explaining the effective model of an is
lated TLS.11 The basic idea in this approach is to consider
Aharanov-Bohm effect upon a charged particle in a tw
dimensional double-well potential. The real-space repres
tation of the potential might look similar to a Mexician ha
as shown in Fig. 1. In this figure the solid lines defines
potential with two minima separated by a finite barrier. T
two minima are labeled L and R. A particle with chargeQ
bounded in this potential may tunnel from one well~L! to the
other one~R! along the different paths labeled 1 and 2, co
responding to clockwise and anticlockwise rotations, resp
tively. Without loss of generality we assume that each p
covers half a circle (p radians!. Now we introduce a mag-
netic field B parallel to thez axis to our model. Within the
two-level approximation, Eq.~1!, the magnetic field affects
the parameters of our model. If tunneling occurs throu
path 1 ~L to R!, the wave function of the particle is influ
enced by the factoreipf/f0, wheref is the total flux passing
through a closed tunneling path,f0 is the flux quantum de-
fined byf05h/uQu, andh is Planck’s constant. On the othe
hand, tunneling through path number 2~L to R! adds the
factor e2 ipf/f0 to the wave function. Since the tunnelin
through both paths occurs with equal probability, the tunn
ing matrix elementt between L and R is equal to the sum
the hopping through path 1 and 2 which is

t~f!5D0~eipf/f01e2 ipf/f0!/25D0cos~pf/f0!. ~2!

The factor 1/2 arises from the equal probability of the pa
in which the total path probability is conserved to be uni
Then, replacing the tunneling matrix elementD0 in Eq. ~1!
by t(f), the Hamiltonian of an isolated TLS in the presen
of a magnetic field becomes
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COHERENT MOTION IN THE INTERACTION MODEL OF . . . PHYSICAL REVIEW B 65 104201
H0~f!5
1

2 S D t~f!

t~f! 2D
D . ~3!

The next steps to calculate the physical quantities are sim
to those for the standard isolated TLS’s.2,3 To do so, one
simply replaceD0 by t(f) in all of the equations.

According to Ref. 11, the electric permittivitye depends
on temperature as well as magnetic flux through the mini
tunneling splittingtmin(f). The maximum value of the reso
nant part ofe, e res , is obtained when the lower cutoff of th
excitationtmin(f) vanishes. This is important when the tem
perature is lowered since the relaxational part ofe becomes
negligible. Thus the maximum value ofe occurs attmin(f)
50 or, equivalently, atf5f0/2. By introducing the experi-
mental values ofB50.1 T ~see Fig. 3 in Ref. 11! and the
typical radiusr'2310210 m of a tunneling center one ca
obtain agreement with the experimental data, if one furt
assumesf0'1025h/ueu. In other words, using the definitio
f05h/Q, we arrive atQ'105ueu. The chargeQ is suggested
to be the effective charge ofN'105 electrons in TLS’s
which tunnel coherently. The coherent tunneling could ar
from the interactions between the TLS’s which are import
in the low-temperature regime.

If we consider coherent motion with the above-mention
characteristics, we expect to observe an oscillation wit
frequency proportional toN in the ground-state energy and
some other physical quantity of the interacting model. Thi
simply understood by consideringf05h/(Nueu) and substi-
tuting it in the energy eigenvalues of Eq.~3!, leading to

6 1
2 AD21D0

2cos2(Npf/f0̃), wheref 0̃5h/ueu. We will show
in the next sections that a special form of the interactions
produce such evidence for coherent motion with the sp
fied property.

III. INTERACTION MODELS

In this section we consider an ensemble of TLS’s. Ea
tunneling center is placed onto a lattice site. The on-
Hamiltonian is the same as Eq.~3!, where 2D is the energy
difference between the well bottoms. The tunneling cen
~sites! interact throughHint . The Hamiltonian of the lattice
is then of the following form:

H5(
i 51

N

H0
i ~f!1Hint . ~4!

The coupling between sites (Hint) arises from electric
dipole-dipole interactions. The magnetic dipole-dipole int
actions, which are set up by the persistent currents of
tunneling centers, are negligible. Typically the magnetic
teraction is of order 10212 smaller than the electric dipole
dipole interaction for a tunneling system, assuming the a
age distance between tunneling centers is 1028 m.

We first consider the following form for the electri
dipole-dipole interaction:

Hint5(
i , j

Ji , js i
zs j

z , ~5!
10420
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whereJi , j;1/ur i2r j u3 is the coupling of dipole moments. A
distribution forJi , j simulates different orientations of dipol
moments. We have considered a one-dimensional arra
sites and diagonalized the Hamiltonian exactly to find
low-energy spectrum. First we considered a model in wh
all couplings are fixed to a specified value. We did not o
serve any level crossing between the ground and first exc
states.

In the next step, the coupling constants were chosen
dom from a distribution function. The distribution functionf
for D andD0 is the same as in the standard model of TLS
wheref (D)5 f 0 and f (D0);1/D0. Since we consider a one
dimensional array with equal spacing,f (r )51/N, the cou-
pling of dipole moments will have the following distribution

f ~J!5J0J24/3, J1,J,J2

f ~D,D0!5
f 0

D0
, H 0,D,Dmax,

D0min,D0,D0max,
~6!

where f 0 and J0 are normalization factors.J1 is the mini-
mum strength of coupling where two dipoles are very
from each other at the order of system size (L), J1;1/L3,
and J2 is the maximum coupling arises from two neare
neighbor dipoles separated by a lattice spacing (a), J2
;1/a3. A system ofN54 sites is studied with random cou
plings which are chosen from Eq.~6!. Typical values for the
parameters areDmax50.5 K, 0.001 K,D0,1 K, and
0.01 K,J,1 K. We have computed the energy levels a
the dipole moment of the model for 10 000 samples. Data
plotted in Fig. 2. We have only computed the data for
,f/f0,0.5, since the data are symmetric aroundf/f0
50.5, similar to an even function.12

We consider an external electric fieldE in thez direction.
Then the electric field interacts with the dipole moment
the TLS’s viaHE52PW tot•EW 52EPz, which is added to the
Hamiltonian. The dipole moment of the system can be
tained fromPtot52^0u]H/]Eu0&5^0u( is i

zu0&, where u0&
is the ground state. The dipole moments vary by a few p
cent upon changing the flux ratio~magnetic field!, Fig. 2~a!,
and do not show any oscillations. In Fig. 2~b!, the ground-
and first-excited-state energies do not cross each other w
the flux ratio is changed; moreover, they do not show a
oscillations. We have also considered another domain of
parameters, long-range interactions resembling a th
dimensional system, and a distribution of dipole couplin
which allows both positive and negative values. In all cas
similar results were obtained, which are not presented h
We conclude that the TLS’s with Ising-like interactions
form of Eq. ~5! do not show any coherent motion.

It has been argued that it is not possible to observe co
ent motion in a double-well potential, since a particle tunn
ing through either path 1 or 2 from one well arises at
unique point which is the other well.13,14The tunneling entity
may tunnel either coherently or randomly to reach the fi
configuration in a system of interacting TLS’s. One way
overcome this problem is to introduce a three-well poten
~3WP!.15 We have performed similar computations using
interacting 3WP model.16 We have studied both fixed an
1-3
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ABDOLLAH LANGARI PHYSICAL REVIEW B 65 104201
random values of the parameters. We did not observe
oscillations in the dipole moment to indicate collective ph
nomena. The same conclusion is then obtained that the 3
model with thez-component dipole-dipole interactions do
not show evidence for coherent motion.

We thus conclude that other interaction forms must
present in the model in order to lead to coherent moti
Actually, Ising-like interactions do not depend upon the re
tive motion of the particles in different tunneling centers b
cause there is no information regarding the tunneling p
present in the Hamiltonian. These interactions only dep
upon the final configuration of the system and are not abl
trace the relative motion of different entities. To overcom
this difficulty, we will introduce an interaction in the nex
section which depends uponuu i2u j u, whereu i is the angle
defined in Fig. 1. In this case, the interaction contains inf
mation regarding the paths of motion and, more precis
regarding the relative motion of different tunneling entitie
We will show that a phase with coherent motion appears
N coupled TLS’s. Surprisingly, this occurs over a range
parameters, in agreement with the observed experime
data.

IV. MODIFIED INTERACTION HAMILTONIAN

A. One-dimensional model

In the last section we studied various forms of the int
action that might enable us to represent the coherent mo

FIG. 3. ~a! Dipole moment per site.~b! Ground- and first-
excited-state energies vs the magnetic flux ratio withN510 inter-
acting TLS’s from Eq.~9!. The inset in~b! is the difference (E1

2E0) of the first-excited- and ground-state energies, which ill
trate more clearly the level crossings. There are ten points of l
crossings, and exactly at these points a sharp change in the d
moment appears. We have treated a one-dimensional array of
neling centers with the parametersD50.2, D053, andJi , j5J51.
10420
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as a collective phenomenon. The coherent motion in the c
text of a tunneling model is a phase in which all of th
particles in each potential contribute to the overall tunnel
process coherently. The classical picture of such a phas
the simultaneous motion of all of the particles in the sa
direction, i.e., clockwise or anticlockwise on a circular pa
To identify such a motion for a particle in the potential
Fig. 1, we define an angleu which is measured from thex
axis by the projection of the dipole moment onto thexy
plane. When a particle tunnels from one well to the oth
one, the projected vector traces a semicircular path. In
picture the important quantity is the relative angleuu i2u j u
between pairs of particles in different tunneling cente
Since the magnitude of this difference is meaningful mod
2p, we may define cos(uui2uju) as being proportional to the
interaction term. Then in the classical picture the interact
Hamiltonian would be

Hint
c 5(

i , j
Ji , jcos~ uu i2u j u!, ~7!

whereJi , j defines the strength of the interaction. To arrive
the quantum picture, which is important at low temperatur
we consider the dipole moment of the particle as an oper
acting on thei th site. If we define the projection of the dipol
moment onto thexy plane aspW',i5s i

xx̂1s i
yŷ, then the co-

sine term is proportional to the inner product of the projec
vectors, cos(uui2uju)}pW',i•pW',j . By using the Pauli matrices
the quantum version of Eq.~7! is written in the following
form:

Hint
q 5(

i , j
Ji , j~s i

xs j
x1s i

ys j
y!. ~8!

Then, the total Hamiltonian of interacting system is

Ht5(
i 51

N

H0
i ~f!1(

i , j
Ji , j~s i

xs j
x1s i

ys j
y!. ~9!

Before starting to study the properties ofHt , we would like
to mention the most important difference between Eqs.~5!
and~8!. The Hamiltonian of Eq.~5! has discreteZ2 symme-
try whereas Eq.~8! has continuous U(1) symmetry. More
over, we are now able to trace the tunneling path using
continuous symmetry and to define the phase of cohe
motion.

We will first study the properties ofHt using constant
parameters, and then we shall consider the effects of ran
couplings subject to a parameter distribution function.

Let us consider a one-dimensional array of tunneling c
ters with the total Hamiltonian defined byHt . We shall ex-
amine two quantities, the dipole moment, the induced dip
moment, as we have defined it earlier, and the two lowe
lying energy levels. In Fig. 3 we have plotted the dipo
moment per site and the first two energy levels ofN510
interacting TLS’s. The following couplings have been us
to observe the present behavior:D50.2, D053, and Ji , j
5J51. The dipole moment is induced by the external ele
tric field when this effect is allowed due to the asymmetry

-
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COHERENT MOTION IN THE INTERACTION MODEL OF . . . PHYSICAL REVIEW B 65 104201
the height of the wells,DÞ0. Thus the amplitude of the
dipole moment is proportional toD, which is small. More-
over, we observedN oscillations in the dipole moment
which is the signature of coherent motion. Exactly at t
position of a sharp change in the dipole moment, a le
crossing between the first two low-lying states occurs, as
been plotted in Fig. 3~b!.

To show the level crossings more clearly, we have sho
the difference between the first-excited-state energyE1 and
the ground-state energyE0 in the inset of Fig. 3~b!. These
observations confirm that the model introduced in Ref.
can be the effective model for the interacting system defi
in Eq. ~9!. In this sense, the oscillations in the dipole mome
or the number of level crossings between the first two lo
lying states represent the number of tunneling entities wh
move coherently. Therefore, the Hamiltonian of Eq.~9! de-
scribes a system ofN interacting TLS’s in the coherent mo
tion phase. In the following, we will discuss the range
parameters over which this phase is observed. The spec
couplings are in accordance with the low-temperature
gime, where the collective phenomena of cold glasses
been observed. By changing the parameters, the phase
appear at higher or lower temperatures.

When N is increased, the difference between the ene
levels and the distance between two level crossing points
both reduced. Then, the level crossing occurs for two st
which are nearly degenerate. In this case, the states are
lar to each other, and their dipole moments differ on
slightly, so we do not observe a pronounced discontinuity
the thermodynamic limit, these two states become dege
ate. Thus we would like to stress that the phenomena
have predicted are mesoscopic effects which occurs for fi
N and not in the thermodynamic limitN→`. This is surpris-
ingly in agreement with the effective theory of TLS’s,11 in
which the number of interacting TLS’s is assumed to
;105.

The other feature which supports the notion that the
served phenomena are mesoscopic is the even and od
pendence of the dipole moments.14 The result for an odd
value of N ~511! is plotted in Fig. 4. The main differenc
between even and oddN appears in the form of the oscilla
tions in the dipole moment. For the even-N case, at the lo-
cations of each level crossing, the ground state changes
one state to another, leading to a discontinuity in the dip
moment. The case of odd-N values is different. Hence th
oscillations arise from a smooth change inPtot /N. In par-
ticular, the oscillations arise from the beat frequencies of
nearly degenerate ground and first excited states, without
level crossing. By changing the magnetic flux ratio t
ground and first excited states switch positions, due to
alternation in their relative energy differences. Each time
ground state comes close to first excited state, a peak in
dipole moment occurs.

The origin of this different behavior for even and oddN is
related to the different types of degeneracies of the gro
state at the magnetic flux ratio where the levels cross
evenN and beat for oddN. The degeneracy is twofold an
can be labeled by the eigenvalues of a parity. Suppose inHt
we setD50, the symmetric TLS or in the absence of exte
10420
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nal electric field. Then the HamiltonianHt(D50) is invari-
ant under the parity operationP( ẑ)52 ẑ, which defines the
Z2 symmetry. Then each eigenstate of the Hamiltonian w
be an eigenstate ofP. SinceP25I, the identity operation,
the eigenvalues ofP are11 or 21. When the electric field
is turned on,DÞ0, theZ2 symmetry is broken and we ex
pect it to remove the degeneracy at the level crossing po
Actually, this is true for oddN, for which the degeneracy is
removed by an electric field as, in the linear stark effe
there is no level crossing and the dipole moment chan
continuously. This means the first two low-lying eigensta
of the Hamiltonian with oddN have differentZ2 parity,
whereas they have the same parity for evenN. The degen-
eracy still remains at a level crossing for evenN and leads to
discontinuous changes in the dipole moment. Thus
should search for another symmetry which might be resp
sible for the degeneracy present for evenN. We define the
mirror image of a one-dimensional array about its center
V( i )5N2 i 11 wherei is the site label andN is the length
of array. AgainV25I, which defines the eigenvaluesv1(2)
511(21), respectively. SinceV commutes withHt , all
eigenstates of the Hamiltonian are also eigenstates ofV.
Thus, we conclude that the first two low-lying eigenstates
the even-N Hamiltonian have differentV parity.

Now we discuss the range of parameters which gives
phase with coherent motion. The main coupling constant
our model areD0 andJ. Since the value ofD corresponds to
the asymmetry of the wells, it is considered to be mu
smaller than the other parameters. At largeD value, the en-
ergy difference of the two wells is too high to allow tunne
ing, so some of the particles will be frozen in the lowest w
of their own tunneling center and do not contribute to t
coherent motion. Then the probability of having all particl
moving coherently will be reduced. This can be shown

FIG. 4. Dipole moment per site vs the magnetic flux ratio f
odd-size (N511) interacting TLS’s. The coupling constants of th
one-dimensional Hamiltonian areD50.2, D053, andJi , j5J51.
1-5
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ABDOLLAH LANGARI PHYSICAL REVIEW B 65 104201
computing the dipole moment for different values ofD. In
Fig. 5, we plotted the dipole moment of a one-dimensio
array of N516 TLS’s with different asymmetries,D50.05
in part ~a! and D50.2 in part~b!. We observe 16 peaks i
Fig. 5~a!, but this number is reduced to 15 in Fig. 5~b!, which
shows that only 15 of the tunneling centers are effectiv
moving coherently. With increasingD, this number de-
creases.

So by considering a small value forD;1/N for a meso-
scopic size~N! system, the ratio of the other two paramete
(l5D0 /J) controls the behavior of the system. If we fixJ
51, thenD0 is the tunable parameter. We have found tw
different phases in our model. Whenl,l1 the number of
level crossings is less thanN. In this phase, just some of th
tunneling centers contribute to the coherent motion, and
very small values ofl the tunneling probability is negligible
and, consequently, there is no coherent motion. This oc
when the interaction coupling~J! is very strong and cause
the system to be frozen into a ground state which is o
defined by the interaction term. In the other phase, whel
.l1, the model showsN level crossings between the fir
two low-lying levels and consequently the dipole mome
oscillates with a frequency proportional toN. This phase
corresponds to coherent motion. By increasingl, the model
behaves similar to that for independent TLS’s, sinceD0 is the
strongest parameter in the Hamiltonian, and hence the in
action term becomes negligible. Practically the coherent m
tion phase becomes observable in the range of param

FIG. 5. The dependence of dipole moment per site on the as
metry parameter vs magnetic flux ratio ofN516 interacting TLS’s.
~a! All TLS’s contribute to the coherent motion, whereD50.05.~b!
The effective number of TLS’s in coherent motion is reduced to
whenD50.2. The other coupling constants areD053 andJi , j5J
51.
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l1,l,l2. We have found that for the one-dimension
model, l1(1D)53, and for a two-dimensional lattice, it i
l1(2D).6. So we assumel1(3D);10 for a three-
dimensional model. If we choose a typical value ofD0
51 K, then the strength of the dipole-dipole interaction (J)
would have to beJ5100 mK in order to observe a collec
tive phenomenon. This estimated value ofJ obtained from
our model is surprisingly in agreement with the expec
value of the dipole-dipole interaction, assuming the aver
distance between two tunneling centers isR51028 m and
the average dipole moment of each TLS isP52ueu
310210 m.

B. Two-dimensional model

In this subsection we present the results of our calcu
tions for the dipole moment of the Hamiltonian defined
Eq. ~9! on a two-dimensional square lattice. We only cons
ered the nearest-neighbor~NN! interaction. The coupling
constants are fixed to the valuesD50.2, D056, and Ji , j
5J51. The dipole moment per site on the finite 2D mode
plotted in Fig. 6 for lattice sizes ofN5333, 433, 434,
and 435. The expected oscillations in the dipole mome
are observed in all cases. The oscillations are more appa
for the smallerN ~59, 12! cases. As we discussed previous
by increasingN the difference between the energy levels
decreased, and consequently the magnitude of the osc
tions in the dipole moment is reduced. Moreover, we s

-

5

FIG. 6. Dipole moment per site for the two-dimensional mod
vs the magnetic flux ratio. The lattice sizes are~a! N59, ~b! N
512, ~c! N516, and ~d! N520. The coupling constants areD
50.2, D056, andJi , j5J51, where the interaction is only betwee
nearest neighbors.
1-6
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COHERENT MOTION IN THE INTERACTION MODEL OF . . . PHYSICAL REVIEW B 65 104201
distinguish the different types of oscillations for odd a
even system sizes, which is clear by comparing Figs. 6~a!
and 6~b! for N59 and 12, respectively. In the case of oddN,
the oscillations do not lead to a discontinuity in the dipo
moment, whereas it is discontinuous for evenN. Our data for
the two-dimensional system confirm that the proposed mo
is able to obtain a coherent motion in higher dimensio
This will be justified by considering long-range interactio
in the next subsection.

C. Long-range interactions

We now consider the effect of including LR interactio
in our model. Since we are attempting to describe a gla
system, the positions of the TLS’s are not limited to the si
on a regular lattice. Hence, each tunneling center may h
many neighbors. In this respect, we have studied long-ra
interactions in both one- and two-dimensional models.
have calculated the dipole moment and the low-energy s
trum in order to compare them with the results for NN inte
actions studied in the last two subsections.

In a one-dimensional array of long-range interacti
TLS’s, the indicesi andj run over all lattice points. Since th
interactions originate from dipole-dipole couplings, t
strength of the interaction between sitesi and j should be
equal toJi , j5J/(r i , j

3 ). We have plotted the resulting dipol
moment per site for an array of sizeN511 in Fig. 7~a!. In
this plot, we have presented data for both NN and LR in
actions. The nearest-neighbor coupling strength is take
be J51 in both cases. There is no qualitative change in
behavior of the dipole moment versus the magnetic flux
tio. This is due to the ordering in the coherent motion pha
Suppose that (i , j ) and (j ,k) are two NN sites. If the system
is in the coherent motion phase, the relative angles betw
NN sites is constant,uu i2u j u5ci j , uu j2uku5cjk . By turn-
ing on the LR interaction between (i ,k), the constraintuu i
2uku5cik is imposed on the system, consistent with the p
vious system configuration, as seen by noting thatcik[ci j
1cjk . Thus, adding LR interactions does not destroy
coherent motion. Moreover, the oscillations are more p
nounced in the case of LR interactions, and also the dista
between two peaks becomes approximately equally spa
Then we observe more clearly the oscillations in the dip
moment with a frequency proportional to the lattice siz
When we consider LR interactions to all neighbors in t
lattice, the system resembles a three-dimensional one, s
each site has many neighbors. This adds for the suppo
the notion that this model may describe three-dimensio
coherent motion.

In Fig. 6~b! we present our results for a similar situatio
for a two-dimensional lattice. The lattice size isN5433
512, where a TLS exists at each lattice point. For simplic
we have only considered the next nearest-neighbor~NNN!
interactions, using it to represent a long-range interact
since it does not change the generality. In this case, the
coupling is J151 and the NNN coupling isJ250.125,
which are supposed to behave as 1/r 3. As discussed for the
1D case, there are no qualitative changes in the results
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comparison with the NN results, the oscillations in the dipo
moment are observed to be clearer and more equally spa

D. Random couplings

So far, we have studied the Hamiltonian defined in Eq.~9!
for one- and two-dimensional lattices with NN and LR inte
actions. In all of these cases we have considered a deter
istic model, in which all of the couplings were constant a
homogeneous for all lattice points. Since we are attemp
to describe a phenomena in a glassy media, we expec
have a distribution of coupling constants.

The first model is to take the same distribution that h
been used to treat noninteracting TLS’s of Eq.~6!. For a
one-dimensional array of TLS’s interacting via Eq.~8! we
have calculated the dipole moment and the first two lo
lying energy levels of a system withN54 where the ranges
of parameters are 0,D,0.2, 0.05,D0,3, and 0.05,J
,1. We have calculated the average values for 10 0
samples. The general behavior is the same as Fig. 2.
dipole moment does not demonstrate any oscillations,
instead shows monotonic behavior over the domain mo
Moreover, the first two energy levels exhibit neither a lev
crossing nor a level frequency beating. This calculation ve
fies that the model with this type of distribution functio
does not describe coherent motion. We note that the typ

FIG. 7. The effect of long-range~LR! interactions on the dipole
moment per site for one- and two-dimensional lattices vs the m
netic flux ratio.~a! The 1D lattice size isN511 and the coupling
constants areD50.2, D056, and Ji , j5J51 for NN, and Ji , j

51/(r i , j
3 ) for LR interactions.~b! The 2D model is a 433512

square lattice whereD50.2, D055, and J151 for NN and J2

50.125 for next-NN interactions, the latter representing a lo
range interaction.
1-7
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distribution function f (D,D0) defined in Eq.~6! follows
from the assumption that the TLS’s in glasses are consid
to be isolated. Thus we argue that for interacting TLS’s
distribution function should be modified.

Hence, we choose a Gaussian distribution for the par
eters in our model,

g~x!5
1

ãA2p
e2(x2 x̄)2/2ã2

, ~10!

where x̄[^x& is the average value of the variablex and ã
[A^x2&2^x&2 its width. Now we consider a Gaussian di
tribution for all of the parameters in our model. In Fig. 8~a!,
the dipole moment of a one-dimensional array of TLS’s w
N54 is plotted versus the magnetic flux ratio for four d
ferent values of the parameterg. This parameter defines th
variance of the distribution byã5g x̄. The average values o
parameters areD̄50.2, D 0̄53, andJ̄51. We have computed
the average values of the physical quantities over 10
samples. In this notation,g50 is the deterministic case i
which there is no random variable, leading to very sh
oscillations in the dipole moment. As discussed in the l
sections, the dipole moment behaves discontinuously at

FIG. 8. ~a! Dipole moment per site vs the magnetic flux rat
with Gaussian randomness for anN54 one-dimensional array o

interacting TLS’s. The widthã of the Gaussian distribution satisfie

ã5g x̄, wherex̄ is the average value of the random variable. D
are presented forg50, 0.1, 0.25, 0.5. For small values ofg the
oscillations in the dipole moment are strong and clearly evide
providing evidence for coherent motion. With increasingg, the
model loses its evidence for collective behavior.~b! Ground- and
first-excited-state energies of the model forg50.1 which show the
level frequency beating, a sign of coherent motion.
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level crossing points whenN is even. The total number o
oscillations is 4, with 2 in the regionf/f0P@0,0.5# @Fig.
8~a!# and 2 in thef/f0P@0.5,1# region, which are not pre-
sented to save computation time. Forg50.1, the variance is
equal to 10% of the average value and still the oscillations
the dipole moment are clear, confirming coherent moti
For g50.1 we have also presented the two lowest-ene
levels in Fig. 8~b!, in which the effect of level frequency
beating instead of level crossing can be seen. Since we
cluded random variables in the model, we do not exp
sharp level crossing. But the oscillations with frequency p
portional toN in the energy levels show the dependence
the energy on the number of interacting TLS’s, suggest
collective behavior. If variance is less than or equal to 10
of the average value, we still will observe evidence for c
herent motion. By increasingg, the amplitude of the oscil-
lations is reduced, and forg50.5, there are almost no osci
lations. In other words, a wide distribution of randomne
destroys the collective behavior. Hence, we have shown
the proposed model exhibits coherent motion provided t
the distribution of the coupling constants is sufficiently na
row.

V. CONCLUSION

We have attempted to find an appropriate interaction
tween TLS’s in order to explain the experimental eviden
for collective phenomenon in multicomponent glasses at
tralow temperatures. Our first attempt was to distinguish
features of double-well and triple-well potentials in the pre
ence of Ising-like interactions. The Ising interactions are
tended to simulate thez component of the dipole-dipole in
teractions between two wells when one uses a distributio
exchange couplings to simulate different dipole moment o
entations. Our calculations confirm that none of the two- a
three-well models with Ising-type interactions can provi
evidence for a coherent motion phase. This is true for b
fixed and random couplings. The crucial point arises fro
the symmetry of the interaction. The Ising interaction ha
discrete symmetry, whereas a continuous symmetry is
quired in order to trace the path of the tunneling process
the simulation of coherent motion.

Second, we considered anXY interaction proportional to
the cos(uui2uju), whereu i is the angle of the dipole momen
projected onto thexy plane~see Fig. 1!. Thus the interaction
is sensitive to the relative angle of the dipole moments in t
coupled TLS’s. In the coherent motion phase, the relat
angle of each coupled TLS’s is constant, so the ensembl
TLS’s demonstrates a collective phenomenon in which al
the particles tunnel in the same direction~clockwise or anti-
clockwise!. One may treat at this phenomenon effectively
a single TLS with a charge equal to the sum of the charge
all of the correlated TLS’s. TheXY interaction has a continu
ous U~1! symmetry which properly traces out the path
tunneling and simulates the coherent motion. We have s
ied this model on one- and two-dimensional lattices in wh
the tunneling centers are restricted to the lattice points.
have predicted the coherent motion phase in a range of
pling constants by calculating the dipole moments and

t,
1-8
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COHERENT MOTION IN THE INTERACTION MODEL OF . . . PHYSICAL REVIEW B 65 104201
low-energy levels of the coupled TLS’s. The range of para
eters isl1,D0 /J,l2 wherel1.10 is estimated for a 3D
system. If we consider the typical value forD0.1 K and
assume thatl251000, we obtain 1 mK,J,100 mK. This
is in agreement with the experimental observations at
millikelvin.9

The effects of long-range interactions were studied in
model exhibiting the expected clearly and equally spa
oscillations in the dipole moment. By definition, in the c
herent motion phase the relative angle between cou
TLS’s is constant. Adding LR interactions imposes co
straints between non-nearest neighbors which are effecti
satisfied by imposing a NN constraint. Thus LR interactio
do not destroy the coherent motion phase. Moreover, res
obtained with LR interactions resemble those obtained
higher spatial dimensions, which suggests that our mo
may be relevant for the 3D case as well. The glassy pro
ties of our model were examined by introducing random c
plings. We have found that the form of the random distrib
tion depends upon the interacting or noninteracting mode
we assume the distribution of isolated TLS’s@Eq. ~6!#, for
the interacting model, we will not observe any evidence
the coherent motion phase. Thus we have considere
Gaussian distribution for all of the parameters in our mod
When the width of the Gaussian distribution is narrow,
still observe the oscillations in the dipole moment represe
s
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ing collective behavior. For a wide distribution of paramete
the coherent motion phase is destroyed.

Finally we conclude that theXY-like interactions between
TLS’s, combined with the Aharanov-Bohm effect of th
single-particle Hamiltonian, allow us to construct a succe
ful model exhibiting the important features suggestive of
collective phenomenon of coherent motion in low
temperature glasses. Since we have observed an oscill
versus flux ratio for many excited-state energies, we exp
that finite-temperature calculations show also a similar
havior: namely, oscillations in the dipole moment propo
tional toN. There are still many aspects of the model such
the density of states as well as finite temperatures wh
should be investigated in future studies.
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