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We have studied the collective phenomena of multicomponent glasses at ultralow temperatures by taking
into account the proper interaction between tunneling centers. We have considered both double- and triple- well
potentials with different types of interactions. We show that a phase with coherent motion appears for a range
of parameters when the path of tunneling is coursed by an interaction ¥ffigpe, while the usual Ising-like
interaction does not lead to the expected collective phenomena. In the phase of coherent motion, the dipole
moment and the low-energy levels oscillate with a frequency proportional to the number of tunneling centers
in the system. Simultaneous level crossing occurs between the ground and first excited states. The effects of
long-range interactions and also of random couplings have been also studied for a one- and two-dimensional
array of tunneling centers. We find that long-range interactions do not affect the coherent motion, while a wide
distribution of random couplings destroys the collective effects.
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[. INTRODUCTION centers is fairly large, so the interaction does not affect the
behavior of the isolated TLS’s. Upon increasing the density,

At low temperatures glasses exhibit surprising phenomgyin e dinole interactions between the TLS's become impor-
ena, which are interesting both from a theoretical as well ag;t and drive the system into a glassy sfate.

from an experimental point of view. These properties have Recently experiments on multicomponent glasses show
been attributed to the low-lying excitations which appear inygye| phenomena at ultralow temperatuteBy decreasing
almost all amorphous and disordered sofidhe most the temperature down to 5 mK the dielectric constame-
simple and successful model to explain many properties ofponds linearly to a small magnetic field of the order of
glasses is the tunneling modérM).>® In this model the 10 4T. In general, glasses are properly assumed to be linear
excitations are described phenomenologically as a tunnelingielectrics, so that depends quadratically on the electro-
system. One may consider a double-well potential to be anagnetic field® Although the dependence on the magnetic
tunneling system where an entitfan atom, group of field may come from nonlinear effects, the observed mag-
atoms, . . .) tunnels between the wells. At low temperaturesnetic field dependence of in multicomponent glasses at
only the lowest-lying state of each well is relevant, so thevery low temperatures is completely different in nature from
model is effectively described by a two-dimensional Hilbertthe magnetoeffect in nonlinear dielectficand can not be
space where the basis kets represent the ground states of eagtived from thermodynamics by assuming glasses as simple
of the well. Using the Pauli matrices, the Hamiltonian of anmagnetizable dielectrics.

isolated two-level systeriTLS) is given by The first theoretical approach addressing this behavior

Az

1
HOZE(AO'Z+A00'X). (1)

The eigenstatelst ) and|—) of o refer to the particle being

in the right(R) and left(L) well, respectively(see Fig. L A

is the asymmetry energy ar is the tunneling matrix ele-
ment. The analogy df, with a spin-1/2 particle in a mag-
netic field can be used to explain the dynamics of TLS’s in
glasses. The interactions with acoustic and electric fields are
usually treated as weak perturbations which enables the TLS
model to explain successfully many of the anomalous ther-
mal, acoustic, and dielectirc properties of glasses.

Although the isolated TLS model works very well in
many cases, there are some phenomena which can not be
described only by isolated TLS'sIn these cases itis e~ FIG. 1. A double-well potential in three-dimensional space. The
pected that the interactions between the TLS’s will resolvyelis are marked by L and R which are separated by a barrier. The
the problent:®As an example, one may consider the effectsynneling may happen through this barrier via path 1 or 2. The
of interactions in the two-level tunneling defect crystals,position of a charged particle in the potential defines the dipole
KCL:Li.” In this system the density of defect ions (liisa  momentP. The projection of® onto thex-y plane is described by
tunable parameter. At low density, the distance of tunnelinghe angled measured from tha axis.
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motion of the particles is simulated by probing the relative

@ motion of each coupled TLS. We suppose that our model is
0.82 - ] the original interacting model of the effective TLS contain-
Z o8} ] ing the renormalized parameters introduced in Ref. 11. We
A~ o8 No. of Sampling v will study the effects of long-rangéLR) interactions and

also of random couplings using our model in order to justify
_ our contention that it represents the collective phenomenon
of cold glasses properly.

The outline of this paper is as follows: In the next section
. we will briefly explain the effective model of TLS'’s in which
the magnetic field is included as a flux-dependent tunneling
05 matrix element. In Sec. Il the double- and triple-well models
are studied in the presence of an Ising-like interaction. We
introduce theXY-like interaction in Sec. IV. In this model, it
is possible to trace the tunneling path in each TLS and hence
to simulate the coherent motion. We will study the effect of
long-range interactions and random couplings on the behav-
ior of our model in different subsections. In these studies we
have used an exact diagonalization method to obtain the
physical quantities from our model restricted to one- or two-
dimensional lattices. We finally present our conclusions in
Sec. V.
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FIG. 2. (a) Dipole moment per site(b) ground state and first We Staﬁ first by explaining the effective model of an iso-
excited state energy vs the magnetic flux ratioNor 4 interacting ~ 1ated TLS:” The basic idea in this approach is to consider the
TLS’s, Eq. (5). The tunneling centers are considered to be on gharanov-Bohm effect upon a charged particle in a two-
one-dimensional lattice. Data are shown for three different samplinglimensional double-well potential. The real-space represen-
numbers 100, 1000, and 10 000. It is obvious that the data converd@tion of the potential might look similar to a Mexician hat,
to the average value in the case of 10000 samplings. Neither thas shown in Fig. 1. In this figure the solid lines defines a
dipole moment nor the energy levels show any oscillations signalpotential with two minima separated by a finite barrier. The
ing coherent motion. two minima are labeled L and R. A particle with char@e

bounded in this potential may tunnel from one w¢l) to the
considered the Aharanov-Bohm effect upon a charged paother one(R) along the different paths labeled 1 and 2, cor-
ticle in a three-dimensionaBD) double-well potential! In responding to clockwise and anticlockwise rotations, respec-
this approach, as explained briefly in the next section, theively. Without loss of generality we assume that each path
effect of magnetic field enters in the form of a flux- covers half a circle £ radiang. Now we introduce a mag-
dependent hopping parameter in the standard TLS. Then theetic field B parallel to thez axis to our model. Within the
isolated TLS of Eq(1) is studied withAg=Ay(¢). To fitthe  two-level approximation, E¢(1), the magnetic field affects
experimental electric permittivity daté&ig. 3 in Ref. 1) the  the parameters of our model. If tunneling occurs through
charge entity in the TLS should l@~10°|e|, where|e| is  path 1(L to R), the wave function of the particle is influ-
the magnitude of the electron charge. The large valu® isf  enced by the factog' " %o, where is the total flux passing
explained by assumingoherent motiorof the charged par- through a closed tunneling pati, is the flux quantum de-
ticles in all of the TLS’s on a mesoscopic scale. The coherenfined by ¢,="h/|Q|, andh is Planck’s constant. On the other
motion takes place when the interactions between the TLS’hand, tunneling through path number(R2 to R) adds the
become important at ultralow temperatures. In this phase onfactor e "% %0 to the wave function. Since the tunneling
may treat the motion of all of the TLS’s in terms of a single through both paths occurs with equal probability, the tunnel-
TLS with a chargeQ which is equal to the sum of all of the ing matrix element between L and R is equal to the sum of
charges. Although this model effectively describes the magthe hopping through path 1 and 2 which is
netic field dependence of the electric permittivity, the type of
interaction which may lead to coherent motion over the me-
soscopic size of TLS remained open.

Our goal in this paper is to explain in a more quantitative
way the collective effect of TLS’s in the presence of a mag-The factor 1/2 arises from the equal probability of the paths
netic field by taking into account the interactions of thein which the total path probability is conserved to be unity.
TLS's. In this approach we introduce the magnetic field inThen, replacing the tunneling matrix elemexy in Eq. (1)
the flux-dependent hopping elements, while the interactiomy t(¢), the Hamiltonian of an isolated TLS in the presence
term traces the path of the tunneling process. The coherenf a magnetic field becomes

t(p)=Aq(e' ™ b0+ e 17 P0)[2= A cog mPl Pg). (2)
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A t(e) whereJ; ;~1/[r;—r;|? is the coupling of dipole moments. A
t(h) —A ©) distribution forJ; ; simulates different orientations of dipole
¢ moments. We have considered a one-dimensional array of

The next steps to calculate the physical quantities are simila#ites and diagonalized the Hamiltonian exactly to find its
to those for the standard isolated TL3%To do so, one low-energy spectrum. First we considered a model in which
simply replaceA, by t(¢) in all of the equations. all couplings are fixed to a specified value. We did not ob-

According to Ref. 11, the electric permittivity depends ~ Serve any level crossing between the ground and first excited
on temperature as well as magnetic flux through the minima$tates.

tunneling splittingtin( ). The maximum value of the reso- I the next step, the coupling constants were chosen ran-
nant part ofe, €., is obtained when the lower cutoff of the dom from a distribution function. The distribution functién

excitationt,i,(¢) vanishes. This is important when the tem- for A and4, is the same as in the standard model of TLS's,
perature is lowered since the relaxational paredfecomes Wheref(A)=fo andf(Ao)~1/A,. Since we consider a one-
negligible. Thus the maximum value efoccurs att,,(¢)  dimensional array with equal spacinffr)=1/N, the cou-
—0 or, equivalently, ath= /2. By introducing the experi- pling of dipole moments will have the following distribution:
mental values oB=0.1 T (see Fig. 3 in Ref. J)land the 4 1-4/3

typical radiusr ~2x 1071 m of a tunneling center one can f(D=Jod ™ J1=d<dy
obtain agreement with the experimental data, if one further f O<A<A

assumespo~ 10 °h/|e|. In other words, using the definition f(A,Ag)= 2, maxe (6)
$o=h/Q, we arrive aQ~10°|e|. The charge is suggested A Aomin<Ao<Aomax:

to be the effective charge dfl=10° electrons in TLS'’s

1
Ho(d’)zi

._wherefy and J, are normalization factorsl; is the mini-
$um strength of coupling where two dipoles are very far
Mfrom each other at the order of system sitg,(J;~1/L3,

If we consider coherent motion with the above—mentione(ﬁnd J is the maximum coupling arises from two nearest-
characteristics, we expect to observe an oscillation with ae|ghbor dipoles separated by a lattice spaciag, (J,

frequency proportional tdl in the ground-state energy and in ~ L/a®. A system ofN=4 sites is studied with random cou-
some other physical quantity of the interacting model. This ié)lmgs which are chosen from E(B). Typical values for the

) Jo T . “parameters areAp,,=0.5 K, 0.001 K<A,<1 K, and
S'mply.underStOOd by cor)5|der|ngo—h/(N|e|) and SUbSt' 0.01 K<J<1 K. We have computed the energy levels and
tuting it in the energy eigenvalues of E), leading to he dipol fth del for 10000 les. D

1\/ 2 A2002 = wherc < hilel. We will sh the dipole moment of the model for samples. Data are
*3 VAT + Agcos(Nmdl ), whereo=h|e|. We will show  piotted in Fig. 2. We have only computed the data for 0
in the next sections that a special form of the interactions calk ¢/ ,<0.5, since the data are symmetric arousddp,
produce such evidence for coherent motion with the speci= g 5 similar to an even functioff.
fied property. We consider an external electric fiefdin the z direction.

Then the electric field interacts with the dipole moment of

lll. INTERACTION MODELS the TLS's viaHg= — P,o,- E= — EP?, which is added to the

In this section we consider an ensemble of TLS’s. Eacmz_amiltonian. The dipole moment of the Zsystem can be ob-
tunneling center is placed onto a lattice site. The on-sitddined from Pioi=—(0|dH/JE|0)=(0|2;a7|0), where|0)
Hamiltonian is the same as E(®), where 2\ is the energy 'S the ground state. The dipole moments vary by a few per-
difference between the well bottoms. The tunneling center§€Nt UPON changing the flux ratienagnetic field, Fig. 2a),

(site9 interact throughH;,;. The Hamiltonian of the lattice and QO not S_hOW any oscnle_mons. In Figtb, the ground-
is then of the following form: and first-excited-state energies do not cross each other when

the flux ratio is changed; moreover, they do not show any
N oscillations. We have also considered another domain of the

H=> Hi(¢)+Hin. (4)  parameters, long-range interactions resembling a three-
i=1 dimensional system, and a distribution of dipole couplings

which allows both positive and negative values. In all cases,

The coupling between sitesH{,) arises from electric gjmjjar results were obtained, which are not presented here.
dipole-dipole interactions. The magnetic dipole-dipole interys conclude that the TLS's with Ising-like interactions of

actions, which are set up by the persistent currents of thf‘orm of Eq. (5) do not show any coherent motion.
tunneling centers, are nggligible. Typically the magnetic in- 1 has heen argued that it is not possible to observe coher-
teraction is of order 10" smaller than the electric dipole- gt motion in a double-well potential, since a particle tunnel-
d|pole_ interaction for atunnel!ng system,_agsumlng the aveling through either path 1 or 2 from one well arises at a
age distance between tunneling centers is"1n. _ unique point which is the other we:**The tunneling entity
~We first consider the following form for the electric 3y tunnel either coherently or randomly to reach the final
dipole-dipole interaction: configuration in a system of interacting TLS'’s. One way to
overcome this problem is to introduce a three-well potential
H. tzz 3 ool (5) _(3WP .1.5 We have performed similar cqmputation; using an
it ThEE interacting 3WP modéef We have studied both fixed and

from the interactions between the TLS’s which are importa
in the low-temperature regime.
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02 . . . . as a collective phenomenon. The coherent motion in the con-
@ text of a tunneling model is a phase in which all of the
particles in each potential contribute to the overall tunneling
process coherently. The classical picture of such a phase is
f; the simultaneous motion of all of the particles in the same
041 . direction, i.e., clockwise or anticlockwise on a circular path.
To identify such a motion for a particle in the potential of
Fig. 1, we define an anglé which is measured from the
axis by the projection of the dipole moment onto thg
plane. When a patrticle tunnels from one well to the other
h o3 YRS v / one, the prc_)jected vector tr_ace_s a semici_rcular path. In this
' T ' picture the important quantity is the relative angie— 6;|
between pairs of particles in different tunneling centers.
(b) Since the magnitude of this difference is meaningful modulo
21, we may define co&(i—aﬂ) as being proportional to the
. interaction term. Then in the classical picture the interaction
Hamiltonian would be

N=10

-1

E/N

05

0.4
£0.3
% 02
KT 0.1
0

2 Hicnt:iEj Jj jcod|6;— 6j)), (7)

0 02 04 06 08 1 whereJ; ; defines the strength of the interaction. To arrive at
-25 . . . ' the quantum picture, which is important at low temperatures,
0 0.2 04 4 06 0.8 1 . ) .
o we consider the dipole moment of the particle as an operator
FIG. 3. (3 Dipole moment per site(b) Ground- and first- acting on thath site. If we define the projection of the dipole

excited-state energies vs the magnetic flux ratio Wth 10 inter- ~ Moment onto the(y.plane asp, i ofx+ aly, then the co-
acting TLS's from Eq.(9). The inset in(b) is the difference €,  Sine term is proportional to the inner product of the projected

—Ep) of the first-excited- and ground-state energies, which illus-yectors, Cogi'(;i_(g”)ocﬁi’i.ﬁl’j_ By using the Pauli matrices,

trate more clearly the level crossings. There are ten points of levahe quantum version of Ed7) is written in the following
crossings, and exactly at these points a sharp change in the dipojgrm:

moment appears. We have treated a one-dimensional array of tun-
neling centers with the parameteks=0.2, A,=3, andJ; j=J=1.

. HY, => J, j(ofoi+ala)). €)
random values of the parameters. We did not observe any o
oscillations in the dipole moment to indicate collective phe- o i , )
nomena. The same conclusion is then obtained that the 3wp1en, the total Hamiltonian of interacting system is
model with thez-component dipole-dipole interactions does N
not show evidence for coherent motion. _ i X X, Yy

We thus conclude that other interaction forms must be Ht—zl Ho(d’H%) Jij(oiojtaiaf). C)
present in the model in order to lead to coherent motion.
Actually, Ising-like interactions do not depend upon the rela-Before starting to study the propertiestdf, we would like
tive motion of the particles in different tunneling centers be-to mention the most important difference between Egs.
cause there is no information regarding the tunneling pattand(8). The Hamiltonian of Eq(5) has discret&2 symme-
present in the Hamiltonian. These interactions only depenﬂy whereas Eq(8) has continuous U(1) symmetry. More-
upon the final configuration of the system and are not able t@ver, we are now able to trace the tunneling path using the
trace the relative motion of different entities. To overcomecontinuous symmetry and to define the phase of coherent
this difficulty, we will introduce an interaction in the next motion.
section which depends upg#; — 6;[, where; is the angle We will first study the properties ofl; using constant
defined in Fig. 1. In this case, the interaction contains infor-,o .- waters. and then we shall consider the effects of random
mation regarding the paths of motion and, more preciselyy ., jinqs subject to a parameter distribution function.
regarding the relative motion of different tunneling entities. Let us consider a one-dimensional array of tunneling cen-
We will show that a phase with coherent motion appears fo{ers with the total Hamiltonian defined By, . We shall ex-

N led TLS's. isingly, thi 0 " . . .
coupled TLS's. Surprisingly, this occurs over a range o ine two quantities, the dipole moment, the induced dipole

parameters, in agreement with the observed experimentﬁ‘lm ) . .
data. moment, as we have defined it earlier, and the two lowest-

lying energy levels. In Fig. 3 we have plotted the dipole
IV. MODIFIED INTERACTION HAMILTONIAN moment per site and the first two energy levelsNof 10
interacting TLS’s. The following couplings have been used
to observe the present behavidx=0.2, A;=3, and J;
In the last section we studied various forms of the inter-=J=1. The dipole moment is induced by the external elec-
action that might enable us to represent the coherent motiotnic field when this effect is allowed due to the asymmetry in

A. One-dimensional model
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the height of the wellsA#0. Thus the amplitude of the 0.12
dipole moment is proportional td, which is small. More-
over, we observed\ oscillations in the dipole moment,
which is the signature of coherent motion. Exactly at the
position of a sharp change in the dipole moment, a level
crossing between the first two low-lying states occurs, as has
been plotted in Fig. ®).
To show the level crossings more clearly, we have shown
the difference between the first-excited-state enétgynd
the ground-state enerdy, in the inset of Fig. &). These ég 0.08
observations confirm that the model introduced in Ref. 11 &
can be the effective model for the interacting system defined
in Eq.(9). In this sense, the oscillations in the dipole moment
or the number of level crossings between the first two low-
lying states represent the number of tunneling entities which ~ 0.06
move coherently. Therefore, the Hamiltonian of Eg). de-
scribes a system dfl interacting TLS’s in the coherent mo-
tion phase. In the following, we will discuss the range of
parameters over which this phase is observed. The specified
couplings are in accordance with the low-temperature re-
gime, where the collective phenomena of cold glasses has
been observed. By changing the parameters, the phase mayFiG. 4. Dipole moment per site vs the magnetic flux ratio for
appear at higher or lower temperatures. odd-size N=11) interacting TLS's. The coupling constants of the
WhenN is increased, the difference between the energyne-dimensional Hamiltonian afe=0.2, Ag=3, andJ; ;=J=1.
levels and the distance between two level crossing points are o o o )
both reduced. Then, the level crossing occurs for two stated@l electric field. Then the Hamiltoniad (A =0) is invari-
which are nearly degenerate. In this case, the states are sinaint under the parity operatidii(z) = — z, which defines the
lar to each other, and their dipole moments differ onlyZ2 symmetry. Then each eigenstate of the Hamiltonian will
slightly, so we do not observe a pronounced discontinuity. Ibe an eigenstate dii. Sincell?=7Z, the identity operation,
the thermodynamic limit, these two states become degenethe eigenvalues dil are+1 or —1. When the electric field
ate. Thus we would like to stress that the phenomena wés turned on A #0, theZ2 symmetry is broken and we ex-
have predicted are mesoscopic effects which occurs for finitpect it to remove the degeneracy at the level crossing points.
N and not in the thermodynamic limit—cc. This is surpris-  Actually, this is true for odd\, for which the degeneracy is
ingly in agreement with the effective theory of TLSin removed by an electric field as, in the linear stark effect,
which the number of interacting TLS’s is assumed to bethere is no level crossing and the dipole moment changes
~10°. continuously. This means the first two low-lying eigenstates
The other feature which supports the notion that the obof the Hamiltonian with oddN have differentZ2 parity,
served phenomena are mesoscopic is the even and odd dehereas they have the same parity for edérrhe degen-
pendence of the dipole momenfsThe result for an odd eracy still remains at a level crossing for evgrand leads to
value of N (=11) is plotted in Fig. 4. The main difference discontinuous changes in the dipole moment. Thus we
between even and odd appears in the form of the oscilla- should search for another symmetry which might be respon-
tions in the dipole moment. For the evbhease, at the lo- sible for the degeneracy present for ewénWe define the
cations of each level crossing, the ground state changes fromirror image of a one-dimensional array about its center by
one state to another, leading to a discontinuity in the dipole(i)=N—i+1 wherei is the site label and\ is the length
moment. The case of odd-values is different. Hence the of array. AgainQ?=7Z, which defines the eigenvalues )
oscillations arise from a smooth changeRg,/N. In par- =+1(—1), respectively. Sinc€) commutes withH,, all
ticular, the oscillations arise from the beat frequencies of theigenstates of the Hamiltonian are also eigenstate§) of
nearly degenerate ground and first excited states, without anjhus, we conclude that the first two low-lying eigenstates of
level crossing. By changing the magnetic flux ratio thethe evenN Hamiltonian have differenf) parity.
ground and first excited states switch positions, due to the Now we discuss the range of parameters which gives the
alternation in their relative energy differences. Each time thghase with coherent motion. The main coupling constants in
ground state comes close to first excited state, a peak in tfeur model are\; andJ. Since the value oA corresponds to
dipole moment occurs. the asymmetry of the wells, it is considered to be much
The origin of this different behavior for even and ddds ~ smaller than the other parameters. At lafgeralue, the en-
related to the different types of degeneracies of the groundrgy difference of the two wells is too high to allow tunnel-
state at the magnetic flux ratio where the levels cross fong, so some of the particles will be frozen in the lowest well
evenN and beat for oddN. The degeneracy is twofold and of their own tunneling center and do not contribute to the
can be labeled by the eigenvalues of a parity. Supposg in coherent motion. Then the probability of having all particles
we setA =0, the symmetric TLS or in the absence of exter-moving coherently will be reduced. This can be shown by

',
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FIG. 5. The dependence of dipole moment per site on the asym- FIG. 6. Dipole moment per site for the two-dimensional model

metry parameter vs magnetic flux ratioldf= 16 interacting TLS’s. . : . ) _
) ; ; vs the magnetic flux ratio. The lattice sizes d&& N=9, (b) N
(& All TLS’s contribute to the coherent motion, wheke=0.05. (b) —12, (o) N=16, and(d) N=20. The coupling constants ate

The effective number of TLS sin coherent motion is reduced to 15:0.2’ Ag=6, andJ; :=J—1, where the interaction is only between
whenA=0.2. The other coupling constants axg=3 andJ; ;=J . ]
-1 J nearest neighbors.

computing the dipole moment for different values®f In ~ \;<A<\,. We have found that for the one-dimensional
Fig. 5, we plotted the dipole moment of a one-dimensionaimodel, \;(1D)=3, and for a two-dimensional lattice, it is
array of N=16 TLS’s with different asymmetriesd=0.05 \,(2D)=6. So we assume\,(3D)~10 for a three-
in part (a) andA=0.2 in part(b). We observe 16 peaks in dimensional model. If we choose a typical value &f
Fig. 5(@), but this number is reduced to 15 in Figbh which =1 K, then the strength of the dipole-dipole interactidi (
shows that only 15 of the tunneling centers are effectivelywould have to bel=100 mK in order to observe a collec-
moving coherently. With increasing\, this number de- tive phenomenon. This estimated valueJobbtained from
creases. our model is surprisingly in agreement with the expected
So by considering a small value far~1/N for a meso- value of the dipole-dipole interaction, assuming the average
scopic sizeN) system, the ratio of the other two parametersdistance between two tunneling centersRis 10 8 m and
(A=A(/J) controls the behavior of the system. If we fix the average dipole moment of each TLS B=2|¢|
=1, thenA, is the tunable parameter. We have found twox 10710 m.
different phases in our model. When<\, the number of
level crossings is less thaw In this phase, just some of the
tunneling centers contribute to the coherent motion, and for
very small values ok the tunneling probability is negligible In this subsection we present the results of our calcula-
and, consequently, there is no coherent motion. This occurions for the dipole moment of the Hamiltonian defined in
when the interaction coupling) is very strong and causes Eg.(9) on a two-dimensional square lattice. We only consid-
the system to be frozen into a ground state which is onlyered the nearest-neighbdNN) interaction. The coupling
defined by the interaction term. In the other phase, wken constants are fixed to the valués=0.2, A;=6, andJ; ;
>\, the model showdN level crossings between the first =J=1. The dipole moment per site on the finite 2D model is
two low-lying levels and consequently the dipole momentplotted in Fig. 6 for lattice sizes dil=3X3, 4X3, 4X4,
oscillates with a frequency proportional td. This phase and 4x5. The expected oscillations in the dipole moment
corresponds to coherent motion. By increasinghe model are observed in all cases. The oscillations are more apparent
behaves similar to that for independent TLS's, singds the  for the smalleN (=9, 12) cases. As we discussed previously,
strongest parameter in the Hamiltonian, and hence the inteby increasingN the difference between the energy levels is
action term becomes negligible. Practically the coherent modecreased, and consequently the magnitude of the oscilla-
tion phase becomes observable in the range of parameteligns in the dipole moment is reduced. Moreover, we still

B. Two-dimensional model
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distinguish the different types of oscillations for odd and 012 —=<— - - =
even system sizes, which is clear by comparing Figa) 6
and Gb) for N=9 and 12, respectively. In the case of ddd 01
the oscillations do not lead to a discontinuity in the dipole
moment, whereas it is discontinuous for ewerOur data for s
the two-dimensional system confirm that the proposed model 0.08
is able to obtain a coherent motion in higher dimensions.
This will be justified by considering long-range interactions
in the next subsection. 0.06
0.04 . . . .
C. Long-range interactions 0.12 T T . .

We now consider the effect of including LR interactions
in our model. Since we are attempting to describe a glassy
system, the positions of the TLS’s are not limited to the sites
on a regular lattice. Hence, each tunneling center may have
many neighbors. In this respect, we have studied long-range
interactions in both one- and two-dimensional models. We
have calculated the dipole moment and the low-energy spec-
trum in order to compare them with the results for NN inter- 0.02
actions studied in the last two subsections. & j

In a one-dimensional array of long-range interacting 0 : :
TLS's, the indices andj run over all lattice points. Since the 0 02 04 o, 06 08 !
interactions originate from dipole-dipole couplings, the ) . ]
strength of the interaction between siieandj should be FIG. 7. The effect of long-rang& R) interactions on the dipole
equal tOJi,jZJ/(rﬁ,—)- We have plotted the resulting dipole moment per _snte for one- and_two-@mt_ensional lattices vs tht_a mag-
moment per site for an array of sid=11 in Fig. 7a). In netic flux ratlo.(f) The lD_Iattlce S|ze_|sN_— 11 and the coupling

. . constants areA=0.2, A,=6, andJ;;=J=1 for NN, and J; ;
this plot, we have presented data for both NN and LR inter-_ 1(3) for LR interactions.(b) Thé] 2D model is a *3:15
actions. The nearest-neighbor coupling strength is taken tg, - 7 . _ N _

. . oL ) quare lattice wherd=0.2, A;=5, andJ;=1 for NN and J,
beJ=1 in both cases. There is no qualitative change in th

: - X & 0.125 for next-NN interactions, the latter representing a long-
behavior of the dipole moment versus the magnetic flux ra-

. . L . range interaction.
tio. This is due to the ordering in the coherent motion phase.
Suppose thati(j) and (j,k) are two NN sites. If the system
is in the coherent motion phase, the relative angles betwe
NN sites is constantd,— 6;|=c;;, |6;— 6,/ =cj. By turn-
ing on the LR interaction between,k), the constraint 6;
— 6,/ =c;jy is imposed on the system, consistent with the pre-
vious system configuration, as seen by noting thatc;; So far, we have studied the Hamiltonian defined in @g.
+cj- Thus, adding LR interactions does not destroy thefor one- and two-dimensional lattices with NN and LR inter-
coherent motion. Moreover, the oscillations are more proactions. In all of these cases we have considered a determin-
nounced in the case of LR interactions, and also the distandstic model, in which all of the couplings were constant and
between two peaks becomes approximately equally spacetlomogeneous for all lattice points. Since we are attempting
Then we observe more clearly the oscillations in the dipoleo describe a phenomena in a glassy media, we expect to
moment with a frequency proportional to the lattice size.have a distribution of coupling constants.
When we consider LR interactions to all neighbors in the The first model is to take the same distribution that has
lattice, the system resembles a three-dimensional one, sinteen used to treat noninteracting TLS's of Ef). For a
each site has many neighbors. This adds for the support tone-dimensional array of TLS'’s interacting via E§) we
the notion that this model may describe three-dimensionahave calculated the dipole moment and the first two low-
coherent motion. lying energy levels of a system witi=4 where the ranges

In Fig. 6(b) we present our results for a similar situation of parameters are ©A<0.2, 0.05<A,<3, and 0.05J
for a two-dimensional lattice. The lattice size Ns=4Xx3 <1. We have calculated the average values for 10000
=12, where a TLS exists at each lattice point. For simplicitysamples. The general behavior is the same as Fig. 2. The
we have only considered the next nearest-neighibdN)  dipole moment does not demonstrate any oscillations, but
interactions, using it to represent a long-range interactioninstead shows monotonic behavior over the domain model.
since it does not change the generality. In this case, the NINloreover, the first two energy levels exhibit neither a level
coupling is J;=1 and the NNN coupling isJ,=0.125, crossing nor a level frequency beating. This calculation veri-
which are supposed to behave as®1As discussed for the fies that the model with this type of distribution function
1D case, there are no qualitative changes in the results. ldoes not describe coherent motion. We note that the type of

] I
1 1
1 1l
1 |
1 |
1 |
] i
1 i
1 1
1 1
1| 1
1 1
1 1
1 1
1 i

d

comparison with the NN results, the oscillations in the dipole
&oment are observed to be clearer and more equally spaced.

D. Random couplings
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02 ' ' ; level crossing points whelN is even. The total number of
/@ oscillations is 4, with 2 in the regio/¢y<[0,0.5] [Fig.
8(a)] and 2 in theg/ ¢y [0.5,1] region, which are not pre-
sented to save computation time. For 0.1, the variance is
equal to 10% of the average value and still the oscillations in
the dipole moment are clear, confirming coherent motion.
For y=0.1 we have also presented the two lowest-energy
levels in Fig. 8b), in which the effect of level frequency
beating instead of level crossing can be seen. Since we in-
cluded random variables in the model, we do not expect
sharp level crossing. But the oscillations with frequency pro-
portional toN in the energy levels show the dependence of
the energy on the number of interacting TLS'’s, suggesting
collective behavior. If variance is less than or equal to 10%
of the average value, we still will observe evidence for co-
herent motion. By increasing, the amplitude of the oscil-
lations is reduced, and for=0.5, there are almost no oscil-
lations. In other words, a wide distribution of randomness
destroys the collective behavior. Hence, we have shown that
the proposed model exhibits coherent motion provided that
the distribution of the coupling constants is sufficiently nar-
row.

~o 0.1 0.2 0.3 0.4 0.5
/0,

FIG. 8. (a) Dipole moment per site vs the magnetic flux ratio V. CONCLUSION

with Gaussian randomnesE for &h=4 one-dimensional array of We have attempted to find an appropriate interaction be-
i~ntere£:ting TLE’S. The widtla of the Gaussian distribution satisfies tween TLS’s in order to exp|ain the experimenta| evidence
a=vyx, wherex is the average value of the random variable. Datafor collective phenomenon in multicomponent glasses at ul-
are presented foy=0, 0.1, 0.25, 0.5. For small values ofthe  tralow temperatures. Our first attempt was to distinguish the
oscillations in the dipole moment are strong and clearly evidentfeatures of double-well and triple-well potentials in the pres-
providing evidence for coherent motion. With increasifigthe  ence of Ising-like interactions. The Ising interactions are in-
model loses its evidence for collective behavi@m Ground- and  tanded to simulate the component of the dipole-dipole in-
first-excited-state energies of the model for 0.1 which show the  taractions between two wells when one uses a distribution of
level frequency beating, a sign of coherent motion. exchange couplings to simulate different dipole moment ori-
o ] ] ] entations. Our calculations confirm that none of the two- and
distribution functionf(A,A,) defined in Eq.(6) follows  three-well models with Ising-type interactions can provide
from the assumption that the TLS's in glasses are consideregligence for a coherent motion phase. This is true for both
to be isolated. Thus we argue that for interacting TLS’s thejixed and random couplings. The crucial point arises from

distribution function should be modified. the symmetry of the interaction. The Ising interaction has a
Hence, we choose a Gaussian distribution for the paranyiscrete symmetry, whereas a continuous symmetry is re-
eters in our model, quired in order to trace the path of the tunneling process for

the simulation of coherent motion.

1 _ (x—x)%I3a2 Second, we considered &l interaction proportional to

g(x)= 5\/2_e , (10 the cosfé:—6,)), whered, is the angle of the dipole moment
T projected onto they plane(see Fig. 1 Thus the interaction

is sensitive to the relative angle of the dipole moments in two
coupled TLS's. In the coherent motion phase, the relative
angle of each coupled TLS’s is constant, so the ensemble of
TLS’s demonstrates a collective phenomenon in which all of
the particles tunnel in the same directi@hockwise or anti-

wherex=(x) is the average value of the variabteanda
= J(x?)—(x)? its width. Now we consider a Gaussian dis-
tribution for all of the parameters in our model. In Figag
the dipole moment of a one-dimensional array of TLS’s with

N=4 is plotted versus the magnetic flux ratio for four dif- ,01\vise. One may treat at this phenomenon effectively by
ferent values of the parameter This parameter defines the , gingje TS with a charge equal to the sum of the charges of
variance of the distribution bg= yx. The average values of g| of the correlated TLS’s. ThXY interaction has a continu-
parameters arda=0.2, Ag=3, andJ=1. We have computed ous U1) symmetry which properly traces out the path of
the average values of the physical quantities over 10 00@nneling and simulates the coherent motion. We have stud-
samples. In this notationy=0 is the deterministic case in ied this model on one- and two-dimensional lattices in which
which there is no random variable, leading to very sharpghe tunneling centers are restricted to the lattice points. We
oscillations in the dipole moment. As discussed in the lashave predicted the coherent motion phase in a range of cou-
sections, the dipole moment behaves discontinuously at thgling constants by calculating the dipole moments and the
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low-energy levels of the coupled TLS’s. The range of param4ing collective behavior. For a wide distribution of parameters
eters isN1<Ay/J<\, where\ ;=10 is estimated for a 3D the coherent motion phase is destroyed.
system. If we consider the typical value fap=1 K and Finally we conclude that th¥ Y-like interactions between
assume thax,=1000, we obtain 1 mKJ<100 mK. This TLS's, combined with the Aharanov-Bohm effect of the
is in agreement with the experimental observations at fevgingle-particle Hamiltonian, allow us to construct a success-
millikelvin.® ful model exhibiting the important features suggestive of the
The effects of long-range interactions were studied in &ollective phenomenon of coherent motion in low-
model exhibiting the expected clearly and equally spacegemperature glasses. Since we have observed an oscillation
oscillations in the dipole moment. By definition, in the co- yersus flux ratio for many excited-state energies, we expect
herent motion phase the relative angle between coupleghat finite-temperature calculations show also a similar be-
TLS's is constant. Adding LR interactions imposes con-havior: namely, oscillations in the dipole moment propor-
straints between non-nearest neighbors which are effectiveliyonal toN. There are still many aspects of the model such as

satisfied by imposing a NN constraint. Thus LR interactionshe density of states as well as finite temperatures which
do not destroy the coherent motion phase. Moreover, resulghould be investigated in future studies.

obtained with LR interactions resemble those obtained in

higher spatial dimensions, which suggests that our model

may be relevant for the 3D case as_well. Th_e glassy proper- ACKNOWLEDGMENTS
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