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Symmetry-general least-squares extraction of elastic data for strained materials
from ab initio calculations of stress
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A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for
strained materials is reported. It analyzes stresses calculhtedtio for properly selected strains. The prob-
lem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach
that we published last year, but the normal equations turn out to be amenable to the same constrainment
scheme that makes both approaches symmetry general. The symmetry considerations governing the automated
selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials
under general stress is discussed and implementes. was used forab initio calculation of stresses. A
comprehensive range of examples includes a triclinic matéqealnite and simple materials with a range of
symmetries at zero pressure, MgO under hydrostatic pressyfes;Tinder[001] uniaxial strain, and Si under
[001] uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well
as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33
compliance coefficient, leading to a collapse of the material 5.7 GPa, compared with 12.0 GPa experi-
mentally. Interpretation of results for Be using two approximatidosal density(LDA), generalized gradient
(GGA)], two approachesstress strain and energy straitwo potential typegprojector augmented wave and
ultrasofy, and two quantum enginégasp andORESTES expose the utmost importance of the cell data used for
the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data,
differences are shown to originate mostly in the considerable overestimation of the residual compressive
stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness
coefficients. The symmetry generality of the approach described here enabled the creation of a robust user
interface going seamlessly from the database search to the printout of the elastic coefficients. With it, even
nonspecialist users can reliably produce technologically relevant results like those discussed here in a simple
point-and-click fashion from corresponding entries in dr'sTMET® andIcsSD® structure databases, i.e., for
all pure-phase nonorganic materials with known crystal structure. The casghst Eixposes, on a first cluster
of properties, stiffness, compliance, and the isotropic properties that can be derived from them, the current
reality of mining crystal structure databases véthinitio software for technological properties that were never
measured before. Further developments in that direction are currently underway.
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[. INTRODUCTION tity while stress is a rank-Il tensor. Advantages of the truly
linear formulation of the stress-based problem are also ex-

There are two major ways of extracting elastic dataploited here to extend the method to the extraction of precise
through ab initio modeling of materials from their known elastic data under given initial stress or strain, including large
crystal structures: an approach based on the analysis of tlrains outside the harmonic regime around the equilibrium
total energies of properly strained states of the material, anstructure. One of the practical results of the present study is
an approach based on the analysis of changes in calculatedt automated tool operating seamlessly on entries for pure
stress values resulting from changes in the strain. Thiphases in the well-known crystal structure databasesT-
“stress-strain” approach originates from the 1983 paper byveT (Ref. 13 and icsp.}* This tool, which is part of the
Nielsen and Martihaboutab initio calculation of stress and MEDEA framework® and exploits the stress calculation in the
its application to calculation of second-, third-, and fourth-vasp (Ref. 16 ab initio engine, produces their stiffness co-
order elastic constants. Additional developments and appliefficients together with a number of related thermomechani-
cations have since appeared in a comprehensive range cél properties that are directly obtainable from them. We
physics, materials, geophysics, and mineralogy journals. Whave tested the present method using this tool on a range of
only quote a few of therA-** problems.

In a previous publicatio? we reported the improvement The text and equations below use the analytically simpler
and automation of the energy-based approach. The preseviewpoint that stress is produced when strain is applied to a
study develops the concepts and methods required to impleelaxed material. Only Sec. Il involves the conceptually op-
ment similar features, but with stress calculations. Differ-posite but physically equivalent viewpoint that materials
ences mostly stem from the fact that energy is a scalar quarstrain under applied stress. Also, where we indicate “strain”
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in the absence of a clear context, we mean a small strain ir-eg are calculated. Row 1 of the stiffness matrix is extracted
addition to an initial strain. That initial strain is general andfrom the stress differences between e e, and E simu-

not restricted to isotropic deformations. For clarity, large ap4ations using Eq(2), and row 2 from the stress differences
plied strains are referred to as “initial strain,” “total strain,” petweenE+e, andE etc. The six initial stresseS(E) are

etc. in all cases. the stresses calculated f&r As there are only 27 numbers
extracted, six at a time during this procedure, one may won-
[l LEAST-SQUARES EXTRACTION der if they could be extracted from six or even five more
OF ELASTIC COEFFICIENTS adequately selected strains. It seems that this is not the case,
A. The triclinic case and that fewer than seven simulations would not allow ex-

traction of those quantities in the triclinic case, but we have

Using the matrix notation for elasticity, the well-known no formal proof for this point.

relationship

ogi=sum-_; LCiie; 1 . —_
! M-16%i18) @ B. Least squares and extension to nontriclinic crystals

describes the small stress componenigi =1,6) caused by The above simple-minded triclinic procedure is amenable

;pzhf;g?(g doi:? sglﬁlrl]es'tg Vgahngompt%?sgt?agij : 1:2} to a symmetry-general least-squares scheme for the extrac-
! ysk P ' _q O, ion of the independent coefficients like those detailed in
the elastic coefficients of the relaxed material. We spell ouf:Q . . . .
ssum”in Eq. (1) instead of the usual®” symbol in order to ef. 12, with analogies, but also with deep differences. There
qre differences in the layout of the problem, the refined vari-

avoid confusion with large stresses that will be designate ) . } ; ,
“3" below. When rewritten in matrix formo=Ce, Eq. (1) ables because stress is refined instead of strain, the selection

then constitutes a linear system of six equations with sif @Ppropriate strained states, and the solution strategy. The
variablese; involving the 21 unknowns;; . system of normal equations is accordingly denved_ in an en-
We do not wish to restrict ourselves to the elastic coeffi-tirely different way. The redundant system of equations to be
cients of the relaxed material, but also to model the elasti§olved by least squares was highly nonlinear for energy
coefficients of the material under a known initial stré&n  Strain in Ref. 12. For stress strain, the system is linear, there-
That initial strain, which could be large, causes a correspondore the derivation of normal equations is not detailed here. It
ing stress3 (E) that can be computed using appropriate  is remarkable that, in spite of such deep algebraic differences
initio modeling software, irrespective of whetHeiis within ~ at the level of the redundant equations to be solved, the sys-
the harmonic range of the relaxed material or not. Totatems of normal equations derived from them can then be
strains around valu& can then be writterE+e, with e  processed and resolved in conceptually parallel ways be-
small. Under those conditions, the linearity of the smallcauseab initio stresses also obey the point-group symmetry
stress changesdue to small strain changescan be written  of the strained crystal.
In a few words, an initial singular system involving 27
2(E+g=%(E)+s=%(E)+C(E)e 2 variables, some of them constrained, is built with properly
Equation(2) is again linear and relates the stress chamige Selected “experimental” data. This system transforms into a
and the strain changg both small, through the elastic coef- regular system when it is expressed in terms of just the in-
ficients C(E) of the material under the large stréin dependent elastic coefficients through implementation of the
The problem to be solved is to extract the constant valuesonstraints by corresponding rank reduction of thex27
2(E) and C(E) from a number of appropriately selected matrix of normal equations. As the symmetry of an initially
sample valuex (E+e€) calculated througlab initio model-  strained model might differ from that of the unstrained ma-
ing. When written as in Eq(2), this problem is linear with  terial, the symmetry constraints applying®E) might then
27 variables, namely, the six components of the initial stresgjffer from those applying to the elastic coefficie@$0) of
3 (E) and the 21 independent coefficier@E). It is then  the relaxed material.
amengble to a least-squares solution, similar to that devel- The solution strategy also has to be different. As all terms
oped in Ref. 12. involving initial strains were zero for zero values of the elas-
tic coefficients in the energy-strain schefA¢he refinement
had to be performed in two steps. In a first step, the elastic
Triclinic refers here to the symmetry of the material undercoefficients were refined with zero initial strains. Then, all
the initial strainE, which is not necessarily the symmetry of variables were included in a second step which required sev-
the unstrained material. The problem is simplified with re-eral cycles to converge to numerical accuracy. Oppositely,
spect to the energy-based approach by the fact that a stregg stress-strain problem is fully linear and first converges to
calculation leads here to six “experimental” values per simu-numerical accuracy in a single cycle with unit weights and
lation, instead of one. It can be appreciated from @ythat  calculation of chi square. The equal weights are then ad-
one can then extract a whole row of the stiffness matrixjusted to give the expected unit value of chi square. A second
C(E) through calculation of the stress change caused by aycle is then performed to extract the standard deviations of
change in a single strain component. The stresses resultinge refined variables. True weighting of the individual obser-
from the seven total applied straigs E+e;, E+e,,..., E  vations can also be performed if desired.

1. Selection of the experimental data in the triclinic case
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TABLE 1. Efficient strain schemes for various crystal systems in their IREf. 20 setting. The
symmetry-general least-squares scheme presented in this paper has been tested to extract with no singularity
the independent elastic coefficients and initial stresses froralihiritio computed stresses corresponding to
the listed row of applied strains. The test was performed using a single magnitederafach crystal class
in their respective crystal systems. For redundancy in the analyzed data, which is necessary to extract
meaningful least-squares standard deviations, several magnituéesanfbe used. Those schemes are not
unique. They may not preserve maximum crystal symmetry for each crystal class, or maximum Wyckoff
symmetry of occupied sites for given crystal structures, but they are fairly efficient all-around schemes. We
do not think that it is possible to obtain a nonsingular system of normal equations with fewer simulations than
in the schemes below.

System Strains
Cubic e, etesteg
Hexagonal e, e, e, tes
Tetragonal e, €ezteg, e,+ €5
Orthorhombic e, €, es, e,testeg
b-unique Monoclinic e, €, es;teg, €y, €5
Triclinic 0, e, e, €3, €y, €5, €
Proper selection of the experimental data by any other method would also be sufficient if processed
for nontriclinic problems through the above constrained least-squares procedure. For

The following strategy, which provides ample data while example, Table | lists one such sufficient set of strains for all
usually retaining symmetry in the distorted model, can be0iNt groups in each crystal system. Some of those strain

easily shown to lead to a nonsingular system of normal equetomPinations have been used befdesg., Ref. 10 clearly
tions. We select a strain magnitueeand then generate in USed the same orthorhombic combination of stiirt

turn the seven above single-straib initio jobs E, E+e,, ~ Some of them may be new. We have checked numerically
E+e,, etc., eliminating the jobs with strains that are sym-that, with use of the strains in Table | implemented with a
metry related to previously generated strains because th ngle strain magnitude, the constrained least-squares matrix

would produce numerically equivalent symmetry-related!S Nonsingular for each point group in each crystal system.

stresses. Practically, for cubic symmetry under initial strain,Slngularlty not being a matter of magnitude, use of this

the total strain€, E+e;, andE+e, only are retained. For scheme at several strain magnitudes could then constitute a

tetragonal symmetry, the coefficients are extracted from job ensible way to cpllect a.p.propnaye §tress data_to extract
implementing separately the five total straBsE+e;, E east-squares elastic coefficients with just the desired degree
+e,, E+e,, andE+eg of redundancy required to get standard deviations with ad-

The justification for the above scheme is that, where affquate precision.
additional strairg, was not implemented because a symme-
try operation of the strained material would transform it into
the previously generated stragn, we would also be able to
transform the previously computed stress correspondieg to . ) ) )
with the point-group symmetry operation relating the two Equation(1) translates the viewpoint that stress in a ma-
strains. This would give the stress corresponding to segin terial is the result of applied strain. The corresponding physi-
through straightforward tensor transformation of stresses urf:al property relating stress and strain is called the stiff@ess
der a rotation of the reference system rather than through & ab initio calculations, strain changes transform directly
lengthyab initio simulation. All the stresses corresponding to into changes in the input cell data, with no approximation
the seven triclinic strains would be recovered in this wayinvolved. The corresponding stress is the result of abe
This process, which only implements point-group Symmetry,initio calculation. The opposite viewpoi_nt that strain appears
then allows calculation of all 2C;; coefficients for the sym- ~ as a result of applied stress can be written
metric material, irrespective of any constraint possibly relat- _
ing them. It follows that the starting data was therefore suf- &i=SUM-16 S0 - ®)
ficient to solve for the independent coefficients. After rankThe corresponding physical property expressed by tké 6
reduction, a process that essentially migrates the stress daBamatrix relating stress and strain is called the compliance. It
without loss of numerical information for the purpose of ex-follows from Egs.(1) and(3) that S=C ™. Implementation
pressing the problem in terms of just the independent varief this viewpoint does not lead to a major reformulation, but
ables, the system of normal equations will then not be sinmay involve some degree of recycling as illustrated in Fig. 1.
gular. In simulations aimed at establishing the conformation of the

The same reasoning can be used to establish that dataaterial under a known stress, small stress steps are succes-
sufficient to extract analytically the independent stiffness cosively applied to the material. These stress steps must be
efficients and initial strain from the computed stress valuesufficiently small for the strain calculated with E@) to be

IIl. DUALITY OF THE FORMULATIONS IN TERMS
OF STRESS AND STRAIN
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IV. “EXPERIMENTAL” PRECAUTIONS

c step n+2
guess_— Several precautions must be taken in order to ensure that
step n+1 N ete. . . .
final changes in calculated stress values between simulations
Fr+ak, Gn+1 originate in a model change and not mostly in a different
stel?er;-? positioning of integration sampling points with respect to the
G 9 quantity being integrated. For energy purpoSeswas suf-
ficient to use the same primitive vectors, with the same ori-
sgggsrzs gin with respect to the crystal structure, and divide them in a
P consistent way throughout the simulations. Energy being a
step n scalar quantity and therefore independent of the selected
final . . .
a axial system, each simulation could then be referred to the
Institute of Radio Enginee?$ (IRE) system that was corre-

sponding to its symmetry. With stress analysis, the orienta-

FIG. 1. Implementation of stress steps in two cycles in thetion of the Cartesian system as well must be retained
simple case where two cell parameteasandc, are adjustable. In  throughout the simulations of the various strained models
the general case, six cell parameters are adjustable. At each,stepyith the various subgroup symmetries. The corresponding

n+1, etc, anab initio stress and compliance calculation is per- manipulation of the structure models is straightforward.
formed. This stress and compliance data allow calculation of both a

small strain correctiort,,, F,,,, etc. for the current guess and a
large strain stefS,, G,. 1, etc. giving the next guess. The small V. EXAMPLES OF ACTUAL DERIVATION
correctionsF,, etc. being within the linear range of elasticity at step OF ELASTIC COEFFICIENTS

. the corresponding cell data is then accurate. As described in the previous section, the present method

_ . ) . has the capability of deriving elastic data under a general
approximately correct, say within a few percent. This straingirain or stress. Although this is of significant technological
is applied to cell datd,,, giving cell dataD,. A stress, jnterest, we failed to locate experimental elastic data under
stiffness, and compliance recalculation is then performed fogiess other than hydrostatic pressure, but we found a phase-
ceII.dataDn. Those stres; and compliance data calculated fofgnsformation report for Si under uniaxigd01] stress'’

Dy in turn allow calculation of two strain&, andF, . Such calculated numbers would nevertheless be useful to-

F, is a very small strain correction for the difference be-\yarqds, e.g., studies involving mechanical properties of epi-
tween the calculated stress and the desired stress fonstepiayial layers of materials with poor cell data match, or with

That difference is usually so small that elastic linearity isgjfferent thermal-expansion coefficients.
now accurately obeyed. The cell data corresponding to appli-
cation of F, to the current cell data will then accurately
match the desired stress.

The strainG,, corresponds to the application of the next  The only tractable example we could find where the elas-
stress step, taking into account the now known small straitic coefficients of a material had either been computed or
offset F,. A stress calculation after application &, will measured is that of kyanite, a triclinic polymorph of
again give a stress value differing from the desired value byAl,SiOs. The elastic coefficients were recently computed by
a tiny difference, giving in turn the tiny cell data correction two methods by Winkler, Hytha, Warren, Milman, Gale, and
F,.1 and the cell data adjustme@, ., for a further stress Schreuef® Like them, we used the cell and fractional coor-
step etc. dinate data from Winter and GhdSas starting points. Pro-

This way of proceeding does not require inclusion of avided that right-hand reference systems are used throughout
general stress in the expression of the Hamiltonian, but jusas they should, the somewhat suspicious 90° trickinangle
the capability of computing the stress and the compliance fodoes not lead to a setting ambiguity of the atomic structure
a given cell configuration. Convergence of this procedure isvith respect to the lattice or of the lattice with respect to the
so fast that we use it even where the stress is a simple hyRE (Ref. 20 axes.
drostatic pressure. This is partly becauseDEA retains in The simulations were performed with the following pa-
this way the ability to drive for the same purpose quantunrameters: Generalized-gradient approximati@GA) pro-
codes that do not include the cell optimization under pressurgector augmented waveéPAW) potentials?! relaxation con-
among their features. It is also partly because we feel thatergence of 10% eV, electronic convergence of 1DeV,
this way of proceeding might be computationally efficient in conjugate gradient optimization of the wave functions,
view of the fact that naab initio cell optimization in the reciprocal-space projection, ax3x3 k mesh for the
guantum code is involved. Elastic relaxation based on theeciprocal-space integration with a Monkhorst-Pack
result of theab initio compliance calculation for the input schemé&? and the tetrahedron method with Bhd (Ref. 21)
cell data is instead applied later. The two methods are prokeorrections for the energy. We used the triclinic scheme in
ably computationally fairly equivalent with hydrostatic pres- Table I, with strain values-0.01 and—0.01, leading to the
sure, but the present approach also allows efficient elastit3 simulations that are reported in Table Il together with
calculations under a general stress as well, with an examplesulting stress data. That stress data is a simple rearrange-
developed in Secs. VE and VI E below. ment with sign change of the cell forces that are printed by

A. Triclinic example: kyanite
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TABLE Il. Stress data for kyanite. The first six integers on each odd row are the applied strains in percent.
The next six numbers on the same line are the forces on the cell as produesgbpyansformed into stress
components in kilobars and rearranged in the familiar order 1—6. Corresponding least-squares or recalculated
values are shown with standard errors on the last printed digit inside parentheses.

000000 8.44 4.87 6.28 1.95 0.34 -0.18
Least squares 8.89) 4.639) 5.8909) 2.0709) 0.239) 0.2609)
100000 45.27 15.30 12.82 2.08 0.42 —0.54
Recalculation 45.98 15.40 12.90 2.10 0.51 —0.55
-100000 —29.99 —6.03 -1.11 2.01 -0.12 0.11
Recalculation  —29.27 —6.15 —-1.13 2.04 —-0.45 0.41
010000 19.31 39.81 17.17 0.13 0.18 -0.02

Recalculation 19.13 40.29 17.12 0.24 0.17 0.09
0-10000 —2.46 -31.51 —-5.60 4.22 0.36 -0.69
Recalculation —-2.42 —-31.03 -5.35 4.12 0.29 —0.60
001000 15.36 15.62 41.91 -0.29 0.50 -0.13
Recalculation 15.37 15.86 42.84 -0.16 0.55 -0.18
00-1000 1.23 —6.55 —-32.01 4.33 -0.17 —0.46
Recalculation 1.34 —6.60 —31.08 4.30 -0.08 -0.49
000100 8.55 2.83 4.29 19.06 0.32 0.13
Recalculation 8.38 2.58 3.66 18.93 0.21 —-0.05
000100 8.50 6.93 8.58 —14.66 0.32 -0.39
Recalculation 8.33 6.68 8.11 —-14.79 0.26 -0.47
000010 8.72 4.50 6.26 1.97 9.15 -0.95
Recalculation 8.63 4.57 6.20 2.05 9.19 —0.93
000010 8.15 4.56 5.67 2.07 —8.77 0.49
Recalculation 8.08 4.69 5.57 2.10 —-8.73 0.42
000001 8.50 5.27 6.42 2.19 —0.38 11.72
Recalculation 8.06 4.97 6.12 2.28 —-0.44 11.81
000001 9.04 4.57 5.80 1.87 0.87 —-12.42
Recalculation 8.65 4.29 5.65 1.86 090 -12.33

VASP. Table IIl reports the least-squares values of the elastiteast-squares processing. For cubic compounds, this means
coefficients while the corresponding initial stresses are founthat we used the strains 8;/—e,;, and +e, at two strain
under the first line in Table Il. As an indicator of precision, magnitudes, i.e., a total of seven simulations leading to re-
we quote the residual after refinemerR=suniSc finement of four numbers with 11 independent observations
—Sd/suniSd, whereSois an individual observed stress of nonzero stress components. For hexagonal compounds,
component andscis the corresponding component calcu- the strains were 0+/—e,, +/—e;3, and +e, at the two

lated by inserting the refined least-squares value3 ahd> magnitudes indicated above, i.e., a total of 11 simulations,
in expression(2) above. The sums extend over all individual etc.

components, i.e., six values per simulation. The residual after

refinement calculated in this way is 2.3%. The total time
taken by the 13 simulations w& h short of 8 days. Those
elastic calculations followed a careful optimization of the

TABLE Ill. Extracted elastic coefficientésee Table . Similar
data from Ref. 26 are italicized.

coordinate data, but not of the x-ray cell data. 3762) 1082) 702) 02) 32) ~3(2)
387(2)  100(1) 46(1)  —3(1) 0(1) —6(1)

B. No applied pressure 1082) 3572) 1122)  —202) -1(2) 3(2)

Tables IV-VI show the stiffness results for the same ma- 355(2)  122(1) -22(2) —3(1) 3(1)
terials that were used in Ref. 12, but now obtained witbP 702) 11202) 3702)  —222) 3(2) 2(2)
(Ref. 16 from calculated stress changes about the experi- 366(1)  —30(2) 3(1) 0(2)
mental x-ray cell data. In Ref. 12, the numbers were obtained 02) -202) —22(2) 1692) 0(2) 2(2)
with orResTES?® from calculated energy changes about the 182(2) —2(2) 0(3)
relaxed configuration. In both cases though, the cell data 3(2) -1(2) 3(2) 0(2) 90(2) -7(2)
reported are the relaxed cell data. 80(1) —6(2)
For the stiffness calculations, we used two strain magni- —3(2) 3(2) 2(2) 22 -7 1212
tudes, 0.007 and 0.01, with both sig?nkaading to a suffi- 132(1)

cient redundancy of the nonzero stress component data fet
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TABLE IV. Cubic system: three elements and a binary com-dron method with Blohl (Ref. 21 corrections for the en-
pound(experimental data from Ref. 9

Cll C12 C44
(GPa a(A)

C 1064 132 565 3.5746 calculation, this study
1079 124 578 3.566 91 experiment
1013 174 603 3.513 3 calculatin

Al 106 57 28  4.042 3 calculation this study
114 62 32 4.049 4 experiment
120 61 34  3.9912 calculatién

Cu 187 133 81 3.6331 calculation, this study
168 121 75 3.614 65 experiment
214 155 99 3.5595 calculatidn

GaAs 118 59 55 5.7315 calculation, this study
119 53 60 5.6533 experiment
112 55 51 5.7451 calculatién

aReference 12.

The following VASP input or execution parameters were
used: GGA PAW potentials’ relaxation convergence of
10 % eV, electronic convergence of 10 eV, conjugate gra-

ergy. The same simulation conditions were used throughout
this manuscript, except where differences are noted.

C. Hydrostatic pressure applied

We chose MgO as a test example because it has been
studied theoretically by, e.qg., Karkt al.? experimentally by
Yoneda?* then more recently in the diamond-anvil cell by
Sinogeikin and Bas%, as well as Zha, Mao, and HemR&y
thus offering a good opportunity for comparisons. The theo-
retical study mostly extends up to 150 GPa while the ex-
perimental pressure in Ref. 25 does not exceed 20 GPa be-
cause of the nonavailability of immersion media capable of
transmitting higher hydrostatic pressures. However, addi-
tional experimental data by Duffy and Ahréhsxtends up to
237 GPa. We accordingly scanned the range from 0 to 237
GPa, but with a greater density of data points in the 0—20-
GPa range.

In this section, for the purpose of easy comparison with
previous experimental and theoretical literature results, we
use the geophysical convention that compressive stresses are
positive. Among other things, this changes the orientation of

dient optimization of the wave functions, reciprocal-spacethe pressure axis with respect to the physical convention that
projection, a 1% 15X 15 k mesh for the reciprocal-space in- compressive stresses are negative. Also, odd-order deriva-
tegration with a Monkhorst-Pack scheRfeand the tetrahe- tives of the elastic coefficients in Table VIl change sign un-

TABLE V. Hexagonal system. Two hcp elements and a rhombohedral compound. Five stress calculations
are at each of two strain magnitudes, 0.7% and 1%. Residual 1.3% using a reciprocal space mesh of 23
X 23X 23. For Be, hcp there are five stress calculations at each of two strain magnitudes, 0.7% and 1%.
Residual 0.8% using a reciprocal space mesh of 23x 23. Atomic positions for AJO; were optimized in

the present study, while they were not in Ref. 12.

Cll ClZ C13 C33 C44
(GPa a c(A)
Mg (hcp, P63/mmg
11 simulations 49 31 21 58 14 3.1906 5.1800 calculation, this study
Experiment 59 26 21 61 17 3.2089 5.2101
27 differences 70 31 24 74 22 3.1354 5.0909 calculdtion
Be, hcp
11 simulations 290 23 12 364 162 2.2639 3.5663 calculation, this study
Experiment 299 27 11 342 166 2.2826 3.5836
(0 K extrapolation
18 differences 336 81 21 443 181 2.1851 3.4710 calcufation
Al,O3, R-3c
Cll C12 C13 C14 C33 C44
(GPa a c(R)

Calculation, this study 495 171 130 20 486 148 4.7642 12.994
Experiment 500 162 111 —23 502 151 4.754 12.982
Calculatio? 518 131 92 17 475 128 4.7040 12.706

%Reference 39.
bReference 12.
‘Reference 40.
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TABLE VI. Tetragonal element. Six stress calculations are at each of two magnitudes, 0.7% and 1%.
Residual 1.3% using a reciprocal space mesh of 15X 15.

CZl.l C12 C13 C33 C44 CGG

(GPa a c(A)
In, 14/mmm
Calculation, this study 55 44 41 46 4 12 3.3162 4.9002
Experiment 45 40 41 45 7 12 3.2523 4.9461
24 difference® 71 36 46 58 11 17 3.0971 5.1905

%Reference 39.
bReference 12.

der a change of convention, while even-order ones are urflow-pressure” data from Ref. 26 and other experimental
changed. The physical convention is used in the rest of thevork quoted in, e.g., Ref. 25 would superimpose nicely with
manuscript. the data already plotted in Fig. 2.

Theab initio stress calculations totaled about two days of A least-squares fit of thab initio stiffness data points by
computing time on a 1.4-GHz Pentium 4. The present leasta polynomial expression was performed for each stiffness

squares procedure analyzed the corresponding stress dataCRefficient. Values and derivatives at zero pressure of the
less than a second for each of the 20 data points. various stiffness coefficients were then read off the coeffi-

With this data, we produced graphs ©f; , K, andG vs cients of that polynomial fit. They are reported in Table VI
hydrostatic pressure. They were so equivalent to those ifPgether with experimental and theoretical literature data.
Ref. 9 that they were not worth showing. We only show here
Fig. 2 that reports the cubic cell volume for MgO vs hydro-
static pressure. The fit with experimental dat&’is excel- Application of a general strain, for example, a uniaxial
lent, quite possibly within experimental error. Additional strain, is straightforward. The componeritsof the lattice

D. Uniaxial strain applied to Ti,As;

TABLE VII. Present MgO results and comparison with previous work. The independent stiffness coeffi-
cientsC;j; , Young's modulusK, the shear modulu§, and their first and second derivatives according to the
present work and Refs. 9, 24—26. Note that the geophysical convention that compressive stresses are positive
is used in this table and in Sec. V C and VIC, but not elsewhere.

Stiffness coefficient$GPa Ci1 Ci Cua K G
This work 303.7 97.2 148.2 166.0 130.2
Sinogeikin and Basgs 297.9 95.8 154.4 163.2 130.2
Yoned& 297.8 95.1 155.8 162.7

Zha, Mao, and Hemléy 297.0 95.2 155.7 162.5 130.4
Karkid et al. 291 91 139 159.4 126.8
First derivativesno unitg Ch Ci, Cia K’ G’
This work 8.91 1.59 0.99 4.03 2.06
Sinogeikin and Bass 9.05 1.34 0.84 3.96 2.35
Yoned& 8.75 1.90 1.30 4.1

Zha, Mao, and Hemléy 9.7 0.82 1.09 3.99 2.85
Karki¢ et al. 4.28 2.18
Second derivative§GPa *) Cch, Cl, Cl, K" G"
This work —0.035 —0.011 —-0.018 —0.019 —-0.016
Sinogeikin and Bass —0.090 —0.002 0.006 —0.044 —0.040
Yoned& —0.034 —0.003 —0.082 —0.028

Zha, Mao, and Hemléy —-0.126 +0.06 —0.009 —0.084
Karki? et al. -0.027 -0.022

8Reference 25.
bReference 24.
‘Reference 26.
dreference 9.
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A. This constitutes a solid support for the assignment of the

75 Dty | ThyP, type to TiAs; by Berger! The refinedx coordinate

26 « Perez L) shows that Ti has moved by 0.107 away from the vatue
A \ :‘E’)ijayve' i ={; that would place it at equal distance from two sets of
e \ — Poly, (This study) (111 equilateral triangles of As neighbors with positions
660 < fixed by symmetry. On the contrary, froGRYSTMET entry

55 $ AL4092, P seems to have that 5 coordinate value within
56 \ experimental error in T4P,.

45 Y ‘ \""”\kx\ After theab initio transformation of the cell and structure-

type CRYSTMET entry AL4132 into a credible full crystal
<500 50 100 150 200 250 structure description as performed above, we then proceeded
FIG. 2. Graph of cell volume in vs hydrostatic pressure for With ab initio computing of its elastic coefficients. In the
MgO. The curve is a polynomial fit to thab initio data points ~Unstrained state, JAs; has only one refinable coordinate
calculated for the present study. Experimental data points by Magarameter, but under straéy, for example, the model be-
and Bell (Ref. 28, Perez-Albuerne and DrickameRef. 29,  comes monoclinic with space group2 and 20 adjustable
Weaver, Takahashi, and BasséRef. 30, and Duffy and Ahrens atom coordinates. We ge€,,=273, C1,=71, and Cy,
(Ref. 27 are also shown in the graph. =61 GPa. Young's, shear, and bulk moduli for the isotropic
material are first derived from théfhas 138, 75, and 190
translations are worked out for the Cartesian system wher&Pa: This in turn predicts the speed of sound for longitudinal
the strainE has been defined. Application of the strain gives'd transverse waves to be, respectively, 6237 and 3496 m/s.
new componentt '=(E+1)L. The new lattice data is cal- Frorr; the rfnizg zo_undb}[/glogét)ll Ofd'379t1 m/s, a Dt(re]bye t?m'
culated fromL’ directly and with no approximation. We perature o IS obtained,‘eading 1o, €.9., a thermak-

h ¢ | : d'in the ab the caloylsEXPansion coefficient of 2410 ® K~ at 300 K assuming a
1ave, lor exampie, performed In the above way the calculag, e of 2.0 for Grueisen’s coefficient. All those calcula-
tions corresponding to thg001] uniaxial compression of

) : tions are automatically performed in less than a second on
TisAss up to 10 GPa with001) clamped. _ the elastic coefficients refined by our software, with printout
TisAs; seems to have only been prepared in powder formgp, the same sheet ab initio stiffness and of course com-

Its ThyP, structure type was established by Berger in 1477. pliance.

Table VIl echoes thecRYSTMET database entries for this We then proceed to uniaxial Compressive Straining of
material and for TkP,. There are marked differences be- Ti,As; along[001], i.e., shorteningc while retaining frac-
tween the two compounds. They have quite different celtional coordinates as well as the lengths of thandb cell
volumes[453 vs 640 K] and the crystal-chemical roles edges. The strained material therefore becomes tetragonal
played by cations and anions are opposite. Strictly speakingyith six independent stiffness coefficients. In this section and
Ti,As; should then be assigned the antisPh type when in Sec. VE below, we used the samespP parameters as in
considered to be an inorganic compound. All this points toSec. VB above except that we implemented here>ab5
possible large differences in atom coordinates, although the X5 k mesh. Results are reported in Fig. 3 for all six coeffi-
coordinate of Ti is the only free parameter in the unstrainec®ientsCyi, Ci,, Ci3, Cg3, Cuy, andCes.
state of this compound.

An ab initio optimization of cell and structure converged
toa=7.6779 A, Tix=0.0753. The optimized cell edge isin  Application of a general stress is slightly more difficult
perfect agreement with the experimental value of 7.6295 than application of a strain because that involves recycling.

E. Uniaxial stress applied

TABLE VIII. crysTMET (Ref. 13 entries for TjAs; and ThP,, reprinted with permission.

Entry Formula Structure type Space group Pearson symbol
AL4132%2 TisAsz ThsPy 1-43d (220 cl28
AL4092 ThsPy ThsPy 1-43d (220 cl28
Cell dimensions
a b c Y B ¥ Volume (A3) z
A) )
AL4143 7.679%2) 7.67982) 7.679%2) 90 90 90 452.90 4
AL4092 8.6170 8.6170 8.6170 90 90 90 639.84 4
Atom type Wyckoff site Site symmetry Fractional coordinates Uiso Occupancy
P 16& 3 0.083 0.083 0.083 0.50 1.0
Th 12a -4 3 0 : 0.50 1.0

3Reference 31.
bK. Meisel, Z. Anorg. Allg. Chem240, 300 (1939.
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Ti4As3 under [001] strain B ..
Compressive coefficients 2o

Stiffness (GPa)

AU
x ) 200
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3
pa— 350 50 |
g —— o
% i 107 - c12
4 g | —a—C13
£ - 50
= -C33
@ 150
r— r T T T T
b—:—\'ﬁi. 125 10 75 5 25 0
56 (a) [001] Uniaxial Stress (GPa)
0.07 0.06 0.05 0.04 -0.03 -0.02 -0.01 0 Shear coefficients

strain (no units)

FIG. 3. Elastic coefficients of JAs; under [001] uniaxial
strain, i.e., clamped i001).

~—Cd4

In order to apply a uniaxial compressive stress al@@{] to o
-

Si, meaning that Si can freely expand in {@®921) plane, we
followed the procedure outlined in Sec. Ill above. We used
2-GPa stress steps in order to calculate the strain €gps
The subsequent strain correctiofs, ; turned out to corre-
spond to a few hundredths of a GPa, giving cell data conver- - ‘ ‘ ‘ ‘ : 38
gence to a high accuracy in two elastic calculations at each (;;‘ e 0

step. The compressed material expands akm@agdY while $33 vs stress

it shrinks alongZ, thus acquiring tetragonal symmetry, re- .
quiring the tetragonal elastic coefficients in Fig. 4 that are
additional to the independent cubic coefficients. MEDEA 86
softwaré® generates transparently those coefficients through
automated handling of the corresponding symmetry aspects.

F. LDA vs GGA and energy strain vs stress strain
in the case of beryllium 0:3

The discrepancy between tl@®,, values obtained by a 6:2
LDA/energy-strain approach implemented with thRESTES L
guantum engine and those obtained by a GGA/stress-strain \’__ 01
approach with thesasp engine is very large and puzzling. , ‘ . . ‘
Although there is little doubt as to which set of results agrees _;, 42 10 8 N 4 2 0
better with the experiment, we performed additional tests GPa
based on the beryllium results in Table V, with the purpose ©

of exploring the noted differences in relaxed cell data be- [ 4, (g) and(b) Elastic coefficients for Si uniaxially stressed
tween th?_VaHOUS engines and approximations used. along [001]. The material becomes tetragonal when subjected to
In addition to echoing the Be results of Table V, Table IX this kind of stress. It hardens alofig00] and softens considerably
reports additional elastic calculations for Be, all computedalong[001]. The material is seen to collapse at around 11.7-GPa
with the same execution parameters except those noted. Tli®mpressive stress, in agreement with experimental results in Ref.
conditions adjusted were the cell data and the type of ap17. (c) Plot of the S;; compliance coefficient of Si unddf01]
proximation and are detailed in Sec. VIF. uniaxial stress. The gradual softening aléhtpads to the collapse
of Si under 11.7-GPE01] compressive stress. The last two points
shown correspond to applied stresses-af1.608 and—11.614
GPa. The corresponding compliances are 0.13 and 0.59'GRa
It seems that one of the main advantages of the stress=11.7 GPa the material has collapsed into the well-knggin
based approach is that, as seen in Hds.or (2), and as Structure.
previously pointed out by Wentzcovitch, Karki, Karato, and
Da Silva the derived stress change is a first-order functionchanges where the corresponding energy changes would be
of the small applied strains. Oppositely, the derived energygo small that they would necessarily be imprecise.
change is a second-order function of the applied strain The way of generating the strains developed in Sec. Il
change. As a consequence, the stress-based approach edove and in Table | may not be fully optimal, but this point
implement small strains and still give fairly precise stressis perhaps not as important as it would have been a few years

VI. DISCUSSION
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TABLE IX. Be elasticity computed under a variety of conditions.

Used Ci1 Cip Cyi3 Czz3 Cy Refined
Engine Energy/stress LDA/PAW or GGA/ultrasoft a c (GPa a c
VASP stress GGA/PAW 2.2826 35836 290 23 12 364 162 2.2639 3.5663
VASP stress LDA/ultrasoft 2.2826 35836 273 15 32 348 158 2.2193 3.5130
VASP stress GGA/PAW 2.2639 35663 307 29 12 377 164
VASP stress LDA/ultrasoft 2.2193 3.5130 334 39 9 412 173
VASP stress GGA/PAW 2.1851 3.4710 390 66 27 478 189
VASP stress LDA/ultrasoft 2.1851 3.4710 365 54 16 456 185
ORESTES energy LDA 2.1851 3.4710 336 81 21 443 181 2.1851 3.4710
Experiment 299 27 11 342 166 2.2826 3.5836

(0 K extrapolation

8Reference 40.

ago, due to a continued drastic decrease in computing costierger than 3, are roughly in statistical agreement between
It has already been shown by Ref. 9 that elastic data for e two studies. It should be noted that all such coefficients
cubic material can be extracted from just two simulationsthat are not calculated to be zero by one study or the other
with respective strains zero ate;+eg]. In that case, the are also in agreement for the sign. The importance of this
first simulation has cubic symmetry and the second one hagmark is that, contrary to the compressive or shear coeffi-
monoclinic symmetry. In Table I, we propose the dail ], cients, the sign of those coefficients would reverse upon re-
which is tetragonal anfle,+ es+eg], which is rhombohe- versal of one of the conventions for either tensile or shear
dral. Other schemes are possible, like zero pegte,], strain. This sign agreement of the coefficients confirms that
which is orthorhombic. We do not think that there exists athe conventions used for input preparation,dbrinitio com-
scheme that is superior for all structures with a same crystgdutation, and for analysis in Ref. 18 are identical or equiva-
system, or even with a same point group. Occupation ofent to those we use here. As the two software packages are
Wyckoff sites is structure dependent. The best scheme is théndependent, this fit of magnitudes and signs is a very en-
structure dependent because it should preserve as much @furaging indication of the generally high quality of current
the Wyckoff site symmetry as possible. For some cubiccutting-edge quantum and analysis software.
structures, it may be more economical to use a rhombohedral The numbers in Table Il may help towards appreciation of
distortion, while for others, it may be more economical tothe improvement brought by least squares with respect to a
use an orthorhombic distortion. simple-minded analysis of the raw numbers. First, the exis-
tence of computational noise is obvious in all observations:
none of the 78 “observed” stress components ends up being
numerically equal to its recalculated value. In particular,
Comparison of our refined elastic coefficients with thosesome of the stress components refined for no applied strain
calculated by Winkleet al,'® also shown in Table IIl, indi- differ significantly from their “observed” counterparts. This
cates good agreement of the refinement parameters, with thevites to caution towards simplifying assumptions, like con-
possible exception of coefficier@ 3 that they calculate as sidering that stress data coming out of cell relaxation can be
46(1), while we get 702) GPa. The smaller differences be- equated with zero or directly subtracted from similar stress
tween the other compressive coefficiellg;, Cq,, Co,y, data derived after application of strain. Even if the program
C,3, andCs3 can probably be ascribed on one hand to theirproduced a zero value for stress after relaxation, such a value
use of thecAsTEPquantum engine, while we usegsp, and  would be on the same footing as any other value because it
on the other hand to slight differences in the methodologycomes from the same calculation. Even that zero value
For example, we used the x-ray cell data while they relaxeghould then be included in the least-squares adjustment.
theirs. Our relaxed cell data, which result from the initial It might be correctly argued that better fits with the ex-
stress and the refined compliance coefficients in our calculgeeriment have been obtained in other papers, or that linear
tions (a=7.112,b=7.848,c=5.566 A, anda=90.17°, 8 fits of a given stress component for more strain magnitudes
=101.09°, y=105.969 are not very different from the ex- could also lead to better values than ours, e.g., by spotting
perimental cell data we used in the calculatiof’s126, and then neglecting outlying observations. This is of course
7.852, 5.572, 89.99, 101.10, 106)p@or from the values true. It is also true that, if reanalyzed through our least-
optimized by Winkleret al!® (7.075, 7.779, 5.523, 89.74, squares implementation, the corresponding stress values
101.16, 106.04 Nevertheless, the differences in cell datawould lead to even better elastic numbers through processing
could account for at least part of the differences in the elastiof the additional, or intrinsically better, stress data, or by
coefficients. downweighting the observations leading to anomalously
The mixed compression/shear coefficients, in other worddarge discrepancies. The now classical works of Gdirss
the coefficients with one index smaller than 4 and the othed821, 1823, 1826show that a weighted least-squares refine-

A. Triclinic example: kyanite

104104-10



SYMMETRY-GENERAL LEAST-SQUARES EXTRACTION . .. PHYSICAL REVIEW B5 104104

ment gives statistically the best results that can be extracteduave now computed this coefficient to be positive by two
from data with known standard error. This is because leadlifferent methods. We note the negative valueCef, calcu-
squares does not focus on a subset of the data to extract okmed by Duan, Karki, and Wentzcovitéhbut also the fact
variable at a time, a procedure that can lead to error propahat they use rhombohedral axes rather than hexagonal axes
gation, but rather considers all the variables and all the datfor their description of the structure of corundum. In view of
at the same time. the general agreement between the calculated and observed
It should be noted that since kyanite is a problem with 32stiffness values except for the sign©f, for corundum, and
atoms per primitive cell, its processing in 8 days on a Penthe match of mixed compression-shear coefficients in the tri-
tium 4 required making decisions balancing execution timeclinic case in Sec. V A and VI A above, we intend to perform
vs precision of stress data, for example, for ktraesh. How-  more work in an attempt to clarify this apparent discrepancy.
ever, this borderline precision is precisely what makes it an
interesting example to expose the trade-offs performed by C. Hydrostatic pressure applied

the least-squares procedure in the extraction of the best pos- i th | . . | h
sible elastic coefficients and initial stress, given the raw _AS can be seen in the results summarized in Table V1, the

stress data. stiffness coefficients calculated here are within 5% of the
experimental values at zero pressure. It is well known that
the experiment usually gives stiffness values that are repro-

B. No pressure applied ducible to about 1%, and probably even better for MgO.

) ) Those experimental numbers are accordingly more reliable
The numbers reported in Tables IV-VI are noticeably betya the results of our calculations. Nevertheless athéni-

ter than those obtained previously with the energy-basegl, nymbers are sufficiently accurate to have been of techno-
approactt? In fact this improvement is probably due to a logical interest in the absence of measured values.
combination of the use here oAsp with the generalized " contrast, our calculated values for the first derivatives
gradient approximationGGA), the recent projector aug- ym out to be bracketed by the values printed by the three
mented wave(PAW) potentials;” and the present analysis g qteq experimental studies. This is an encouraging sign for
method, or to a possible intrinsic superiority of stress-baseg},qi, reliability with respect to the experimental first-

methods as previously pointed out in Ref. 3. The numbers iQarivative data.

Ref. 12 were based on the use of theesTEsenginé” with The considerable spread of values for the second deriva-
the local-density approximatidi.DA). The present numbers e of experimental elastic coefficients suggests that it might
were obtained with the GGA. We have not performed an,e premature to perform comparisons about this point. The
exhaustive series of tests separating unambiguously the ifg,gh agreement between the values calculated in the present
fluence of the various factors because this would require &tudy and theb initio values reported in Ref. 9 is an encour-
separate paper, but we are confident that they all contributgqing sign. It is not impossible that curreati initio methods

one way or another to the resulting stiffness values. Nevergq iy fact lead to better values of the second derivative than
theless, we interpret in Sec. VI F the limited Be data in Tablepgse obtained from state-of-the-art diamond-anvil experi-

IX'in terms of a drastic influence of the cell data used, and &,,ants. There is of course no way to be sure of this aspect in
modest influence of the approximation, potential, analysisne apsence of better experimental data.
method, or quantum engine used. The large overestimation

of initial stress at x-ray cell data for Be and LDA then causes
an underestimation of the relaxed cell size, which ripples
into increased elastic coefficients. We trust this analysis on Figure 3 shows the elastic behavior ofAs; under[001]
Be to be of more general applicability, and to help in the lateruniaxial compressive strain. Partial derivatives of the stiff-
decomposition of the smaller effects by other factors. ness coefficients with respect to the varied strain component
As fewer simulations are required with the stress-straifor combination of strain components for a more general
approach to reach the same degree of data redundancy ksrain than[001] uniaxial compressionare extracted in a
cause of the six observations per simulation vs one for thstraightforward way as the coefficient of the linear term in a
energy-based approach, that same redundancy can then felynomial fit to the curve of the corresponding coefficient
reached in only a fraction of the computing time required forvs strain. They aredCyi/de;=—661, JCq,/de;=81,
the energy-based approach. This, and the algebraically sin#C,3/de;=—471, ICa3/des=—2241, IC,4/dez= — 390,
pler extension to strained materials, may be the bottom linend dCgg/de;= —181 GPa.
for superiority of the stress-based approach. Our energy- The corresponding numbers probably have only modest
based approa¢htoo can be extended to strained materialscurrent technological value because there is no current indi-
with limited effort, but we have no plans to undertake this incation that TjAs; is about to become a “hot” material to-
the near future. morrow. We picked this material at random. However, the
One item probably worth noting is the sign of ty,  numbers in Sec. VD and the above numbers expose clearly
stiffness coefficient fora-Al,05;, corundum. This sign, the quantum jump in capabilities brought about by linking
which has been reported to be experimentally positive irthe CRYSTMET and ICSD crystal structure databases and the
early work, has been unanimously reported to be experimerautomated tools made possible by our present symmetry-
tally negative since the authoritative and thorough work ofgeneral least-squares approaches. Those numbers were pro-
Wachtman, Jr., Tefft, Lam, and Stinchfigldn 1960. We  duced in straightforward point-and-click fashion on a mate-

D. General strain applied
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rial for which only the structure type was known. Experiencetials, and LDA with ultrasoft potentials. The refined elastic
that we have gained so far on probably close to 150 elementiata agree reasonably well between themselves and with the
and compounds now makes us extremely confident that thexperimental data. The notable difference is in the relaxed
numbers we show in Secs. VD and VID are correct. Thosesell data produced by the two elastic calculations, with
numbers comprise the fractional coordinate of Ti, which GGA/PAW producing a much better cell than LDA/ultrasoft.
we predict to be 0.107 A away from the center of the fixed- The second group of simulations corresponds to the same
shape As coordination polyhedron, with a shape midway bepair of conditions, but with the relaxed cell data that each
tween a trigonal prism and an octahedrgentrigonal anti-  approximation refined in the first group. We start seeing no-
prism) at 0 K. They also comprise the zero-pressure singletable differences here, with the GGA/PAW results remaining
crystal elastic coefficients, and Young’s, shear, and bulknore or less consistent with the experimental values. For the
moduli for the polycrystalline material. They include the LDA/ultrasoft combination, the elastic coefficients remain
speed of sound for longitudinal and transverse waves and trmompatible with the experimental data, but the values of the
Debye temperature. They include partial derivatives of stiff-three independent diagonal coefficients jump up in this case.
ness coefficients with respect to any strain component as The third group of calculations uses the cell data refined
shown above. Hydrostatic compression curves like weby the energy-based approach with thRESTES quantum
showed for MgO in Sec. VIC, with pressure derivatives, forengine and nonultrasoft potentials. The diagonal coefficients
example, as well as general stressing as shown in Sec. VI lymp up for both approximations this time. The elastic coef-
all become feasible with a few mouse clicks and keystrokesicients extracted for the same cell data by the three different
by a moderately experienced user. Of course, the computingombinations of approximations, potentials, strain schemes,
power has to be adapted to the pure-phase material selectathrmal equations, and quantities refined are strikingly simi-
In the present example on sAs;, we used one personal lar.

computer(PC) for three days. We feel that this feasibility is  After having dissociated in the above way the separate
a sign of things to come for computational materials scienceroles played by the various approximations and cell size, we
with more properties to be harnessed, one at a time, butrn to finding out why the relaxed cell data is so different

across structure databases. between GGA/PAW and LDA/ultrasoft. In elastic terms, the
cell change is calculable &= — S%,, whereE is the strain
E. Application of general stress leading transforming the old cell into the relaxed cedljs the elastic
to a phase transformation compliance, an is the residual stress calculatel initio

) ) for the old cell. As the two sets of elastic coefficients for

. Ong may wonder Whether.thls approach might not be Op5GA and LDA are quite similar, the larger cell change with
timal in terms of the computing effort. We do not think so | pa is then necessarily due to larger stresses calculated with
because, provided the stress step is chosen to be sufficiently, x-ray cell data. In fact, the refined initial streds, 35)
small, only one compliance calculation is to be performed at; o x-ray cell data i€2.56, 0.50 GPa for the GGA/PAW
each step. We in fact performed a second calculation at the, mpination and8.06, 5.24 GPa with LDA/ultrasoft, con-
final configuration for e'ach step, but derived_from it 'Iittle firming the above rea’soning. '
more than a corroboration of the two facts tfgtcompli- We therefore ascribe the generally accepted superiority of
ance was not significantly different ard) the calculated 5 over LDA (Refs. 35—38 not to any superiority in the
stress at the final configuration was indeed quite accurately, | ,1ation of stress change or energy change, but to a better
the desired stress. evaluation of stress and energy itself. In agreement with our

The above 2-GPa step only held far from a phase transsg|jeagues who are closely associated with quantum software
formation. Below —10 GPa, we had to decrease the Stepdevelopment(see Acknowledgments sectionwe do not
down to 0.5 GPa, and then to 0.1 GPa belewl.5 GPa.  hink that there could be any difference between the energy-
Around —11.7 GPa, theS; term becomes anomalous, thus 54 stress-based approaches for the extraction of the elastic

putting an end to this straightforward stepping process. Figggefficients other than those caused by the different noise in
4(@) and 4b), respectively, report the compressive and sheagyess or energy numbers coming out of the simulations for
stiffness coefficients for Si. Although large changes are seegitterent selections of strain.

on stiffness when applied stress approaché&.7 GPa, they
fail to translate the sudden implosion of the material graphi-

cally depicted in Fig. &). This is in agreement with Ref. 17 VIl. SUMMARY AND CONCLUSIONS
that reports experimentally a phase change at 12.0 GPa under

a [001] uniaxial load. The collapse of the material leads to
the well-knownpg-tin structure type.

We have developed and implemented above a symmetry-
general least-squares method for the extraction of elastic co-
efficients of strained materials froab initio calculations of
stress. Implementation differences with an energy-based ap-
proach that we published earftérare considerable, requir-
ing, for example, different sets of efficient strains and a dif-

The data in Table IX comprise three groups of two orferent strategy for the least-squares refinement of a different
three simulations each. The first group corresponds to streshst of variables. However, both methods share the increased
strain calculations withvasp using the x-ray experimental precision brought about by the least-squares procedure as
cell data, the two approximations, GGA with PAW poten- well as the generality brought about by the streamlined treat-

F. LDA vs GGA and energy strain vs stress strain
on the case of beryllium
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ment of the normal equations for all crystal symmetries. method is of course limited tab initio engines that output

As the stress-strain equations constitute & 27 linear  stress data. Those are less widespread than the total-energy
system, and therefore an algebraically simple case, a numbengines.
of applications not readily tractable with the algebraically It should be stressed that it is the symmetry generality of
more complex energy-based approach becomes straightfdfe least-squares approach detailed here that made it possible
ward. We have detailed calculations for kyanite, a 32-atonf© produce a robust user interface. This interface goes all the
triclinic compound, and for a selection of materials with away from crystal structure databases, through transparent
range of symmetries at zero pressure. We include exampld¥eparation of the necessary quantum tasks, up to analysis of
of application to the elastic behavior of materials under hy-a Initio rgsults |nto.(.alast.|c coefflclents. The printout in-
drostatic pressure on MgO, under general strain QA cludes derived quantities like Young'’s modu_lus, Debye_tem-
and under general stress on Si. The MgO case leads to go rature, and a spectrum of thermpmechamcal .propertles' for
agreement with experimental stiffness, including its first an he polycrystalline material, "?‘" def"’ab'e f_rom stifiness. This
second pressure derivatives. We report curvesifinitio Interface e_nables even relatively |_nexper|enced users to pro-
elastic coefficients corresponding [t@01] uniaxial straining duce physpally reI.evant results, !|ke thosg we rep_ort above
of Ti;As;, a material known only from its cell- and and more, in straightforward pomt—and-cllc!( _f_ashlon._ '_rhe
structure-type data, and for which, to our best knowledge, n§ase of TiAs; demonstrates th_e current possibility of mining
other experimental data is apparently available, not even 8rysta_| structure Qataba§es wih |n|t|o_softwarg for tech-
structure refinement. The Si case of uniaxial stressing alon ological prqpertles. Th!s may be a sign of things to come
[001] shows the evolution of elastic behavior that ends in th r computational materla!s science. .
collapse of the material at11.7 GPa, compared with 12 All the above computations were performed USUEDEA
GPa experimentally. (Ref._ 15 and VASP (Ref. 16 ,runmng_on several 1.4-GHz

We find the case of beryllium to be quite sensitive to ceIIP_entlum 4 or e_quwalent PC S exploited under various ver-
data. On that sensitive case, we find that the differences iion> of the .W'”dOW.S operating system. Computation costs
the values of the refined elastic coefficients between the LDA®™® accordingly quite modest.
and GGA approximations, as well as between energy- and
stress-based approaches, are minimal if the same cell data is
used. This remains true for different implementationsin We are very grateful to Dr. Georg Kresse from Vienna
initio packages based on different pseudopotentials. Howdniversity for permission to use a pre-release version of the
ever, we find the GGA evaluation of relaxed cell data to bePAW potentials. We acknowledge numerous useful discus-
consistently closer to observed x-ray cell data than that fronsions with Dr. John Rodgers from Toth Information Systems,
LDA. All this points to a better evaluation of stress and en-Inc. (Ottawa, Canadaand with Drs. Erich Wimmer, John
ergy, but not necessarily to changes in stress and energy, biarris, Alex Mavromaras, Jgen Sticht, and Walter Wolf
GGA when compared with LDA. The use of the presentfrom Materials Design SARI(Le Mans, France
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