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Symmetry-general least-squares extraction of elastic data for strained materials
from ab initio calculations of stress
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A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for
strained materials is reported. It analyzes stresses calculatedab initio for properly selected strains. The prob-
lem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach
that we published last year, but the normal equations turn out to be amenable to the same constrainment
scheme that makes both approaches symmetry general. The symmetry considerations governing the automated
selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials
under general stress is discussed and implemented.VASP was used forab initio calculation of stresses. A
comprehensive range of examples includes a triclinic material~kyanite! and simple materials with a range of
symmetries at zero pressure, MgO under hydrostatic pressure, Ti4As3 under@001# uniaxial strain, and Si under
@001# uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well
as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33
compliance coefficient, leading to a collapse of the material at211.7 GPa, compared with212.0 GPa experi-
mentally. Interpretation of results for Be using two approximations@local density~LDA !, generalized gradient
~GGA!#, two approaches~stress strain and energy strain!, two potential types~projector augmented wave and
ultrasoft!, and two quantum engines~VASP andORESTES! expose the utmost importance of the cell data used for
the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data,
differences are shown to originate mostly in the considerable overestimation of the residual compressive
stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness
coefficients. The symmetry generality of the approach described here enabled the creation of a robust user
interface going seamlessly from the database search to the printout of the elastic coefficients. With it, even
nonspecialist users can reliably produce technologically relevant results like those discussed here in a simple
point-and-click fashion from corresponding entries in theCRYSTMET® and ICSD® structure databases, i.e., for
all pure-phase nonorganic materials with known crystal structure. The case of Ti4As3 exposes, on a first cluster
of properties, stiffness, compliance, and the isotropic properties that can be derived from them, the current
reality of mining crystal structure databases withab initio software for technological properties that were never
measured before. Further developments in that direction are currently underway.

DOI: 10.1103/PhysRevB.65.104104 PACS number~s!: 61.50.Ah, 62.20.Dc, 03.67.Lx, 61.68.1n
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I. INTRODUCTION

There are two major ways of extracting elastic da
through ab initio modeling of materials from their known
crystal structures: an approach based on the analysis o
total energies of properly strained states of the material,
an approach based on the analysis of changes in calcu
stress values resulting from changes in the strain. T
‘‘stress-strain’’ approach originates from the 1983 paper
Nielsen and Martin1 aboutab initio calculation of stress and
its application to calculation of second-, third-, and four
order elastic constants. Additional developments and ap
cations have since appeared in a comprehensive rang
physics, materials, geophysics, and mineralogy journals.
only quote a few of them.2–11

In a previous publication,12 we reported the improvemen
and automation of the energy-based approach. The pre
study develops the concepts and methods required to im
ment similar features, but with stress calculations. Diff
ences mostly stem from the fact that energy is a scalar q
0163-1829/2002/65~10!/104104~14!/$20.00 65 1041
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tity while stress is a rank-II tensor. Advantages of the tru
linear formulation of the stress-based problem are also
ploited here to extend the method to the extraction of prec
elastic data under given initial stress or strain, including la
strains outside the harmonic regime around the equilibri
structure. One of the practical results of the present stud
an automated tool operating seamlessly on entries for p
phases in the well-known crystal structure databasesCRYST-

MET ~Ref. 13! and ICSD.14 This tool, which is part of the
MEDEA framework15 and exploits the stress calculation in th
VASP ~Ref. 16! ab initio engine, produces their stiffness co
efficients together with a number of related thermomecha
cal properties that are directly obtainable from them. W
have tested the present method using this tool on a rang
problems.

The text and equations below use the analytically simp
viewpoint that stress is produced when strain is applied t
relaxed material. Only Sec. III involves the conceptually o
posite but physically equivalent viewpoint that materia
strain under applied stress. Also, where we indicate ‘‘stra
©2002 The American Physical Society04-1
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in the absence of a clear context, we mean a small strai
addition to an initial strain. That initial strain is general a
not restricted to isotropic deformations. For clarity, large a
plied strains are referred to as ‘‘initial strain,’’ ‘‘total strain,
etc. in all cases.

II. LEAST-SQUARES EXTRACTION
OF ELASTIC COEFFICIENTS

A. The triclinic case

Using the matrix notation for elasticity, the well-know
relationship

s i5sumj 51,6Ci j « j ~1!

describes the small stress componentss i ( i 51,6) caused by
application of a small strain« with components« j ( j 51,6)
to a relaxed crystalline compound. In this equation,Ci j are
the elastic coefficients of the relaxed material. We spell
‘‘sum’’ in Eq. ~1! instead of the usual ‘‘S’’ symbol in order to
avoid confusion with large stresses that will be designa
‘‘ S’’ below. When rewritten in matrix forms5C«, Eq. ~1!
then constitutes a linear system of six equations with
variables« j involving the 21 unknownsCi j .

We do not wish to restrict ourselves to the elastic coe
cients of the relaxed material, but also to model the ela
coefficients of the material under a known initial strainE.
That initial strain, which could be large, causes a correspo
ing stressS(E) that can be computed using appropriateab
initio modeling software, irrespective of whetherE is within
the harmonic range of the relaxed material or not. To
strains around valueE can then be writtenE1e, with e
small. Under those conditions, the linearity of the sm
stress changess due to small strain changese can be written

S~E1e!5S~E!1s5S~E!1C~E!e. ~2!

Equation~2! is again linear and relates the stress changs
and the strain changee, both small, through the elastic coe
ficientsC(E) of the material under the large strainE.

The problem to be solved is to extract the constant val
S(E) and C(E) from a number of appropriately selecte
sample valuesS(E1e) calculated throughab initio model-
ing. When written as in Eq.~2!, this problem is linear with
27 variables, namely, the six components of the initial str
S(E) and the 21 independent coefficientsC(E). It is then
amenable to a least-squares solution, similar to that de
oped in Ref. 12.

1. Selection of the experimental data in the triclinic case

Triclinic refers here to the symmetry of the material und
the initial strainE, which is not necessarily the symmetry
the unstrained material. The problem is simplified with
spect to the energy-based approach by the fact that a s
calculation leads here to six ‘‘experimental’’ values per sim
lation, instead of one. It can be appreciated from Eq.~2! that
one can then extract a whole row of the stiffness ma
C(E) through calculation of the stress change caused b
change in a single strain component. The stresses resu
from the seven total applied strainsE, E1e1 , E1e2 ,..., E
10410
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1e6 are calculated. Row 1 of the stiffness matrix is extrac
from the stress differences between theE1e1 and E simu-
lations using Eq.~2!, and row 2 from the stress difference
betweenE1e2 andE etc. The six initial stressesS(E) are
the stresses calculated forE. As there are only 27 number
extracted, six at a time during this procedure, one may w
der if they could be extracted from six or even five mo
adequately selected strains. It seems that this is not the c
and that fewer than seven simulations would not allow
traction of those quantities in the triclinic case, but we ha
no formal proof for this point.

B. Least squares and extension to nontriclinic crystals

The above simple-minded triclinic procedure is amena
to a symmetry-general least-squares scheme for the ex
tion of the independent coefficients like those detailed
Ref. 12, with analogies, but also with deep differences. Th
are differences in the layout of the problem, the refined va
ables because stress is refined instead of strain, the sele
of appropriate strained states, and the solution strategy.
system of normal equations is accordingly derived in an
tirely different way. The redundant system of equations to
solved by least squares was highly nonlinear for ene
strain in Ref. 12. For stress strain, the system is linear, th
fore the derivation of normal equations is not detailed here
is remarkable that, in spite of such deep algebraic differen
at the level of the redundant equations to be solved, the
tems of normal equations derived from them can then
processed and resolved in conceptually parallel ways
causeab initio stresses also obey the point-group symme
of the strained crystal.

In a few words, an initial singular system involving 2
variables, some of them constrained, is built with prope
selected ‘‘experimental’’ data. This system transforms into
regular system when it is expressed in terms of just the
dependent elastic coefficients through implementation of
constraints by corresponding rank reduction of the 27327
matrix of normal equations. As the symmetry of an initial
strained model might differ from that of the unstrained m
terial, the symmetry constraints applying toC(E) might then
differ from those applying to the elastic coefficientsC(0) of
the relaxed material.

The solution strategy also has to be different. As all ter
involving initial strains were zero for zero values of the ela
tic coefficients in the energy-strain scheme,12 the refinement
had to be performed in two steps. In a first step, the ela
coefficients were refined with zero initial strains. Then,
variables were included in a second step which required s
eral cycles to converge to numerical accuracy. Opposit
the stress-strain problem is fully linear and first converges
numerical accuracy in a single cycle with unit weights a
calculation of chi square. The equal weights are then
justed to give the expected unit value of chi square. A sec
cycle is then performed to extract the standard deviation
the refined variables. True weighting of the individual obs
vations can also be performed if desired.
4-2
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SYMMETRY-GENERAL LEAST-SQUARES EXTRACTION . . . PHYSICAL REVIEW B65 104104
TABLE I. Efficient strain schemes for various crystal systems in their IRE~Ref. 20! setting. The
symmetry-general least-squares scheme presented in this paper has been tested to extract with no s
the independent elastic coefficients and initial stresses from theab initio computed stresses corresponding
the listed row of applied strains. The test was performed using a single magnitude ofe for each crystal class
in their respective crystal systems. For redundancy in the analyzed data, which is necessary to
meaningful least-squares standard deviations, several magnitudes ofe can be used. Those schemes are
unique. They may not preserve maximum crystal symmetry for each crystal class, or maximum W
symmetry of occupied sites for given crystal structures, but they are fairly efficient all-around scheme
do not think that it is possible to obtain a nonsingular system of normal equations with fewer simulation
in the schemes below.

System Strains

Cubic e1 , e41e51e6

Hexagonal e1 , e3 , e41e5

Tetragonal e1 , e31e6 , e41e5

Orthorhombic e1 , e2 , e3 , e41e51e6

b-unique Monoclinic e1 , e2 , e31e6 , e4 , e5

Triclinic 0, e1 , e2 , e3 , e4 , e5 , e6
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Proper selection of the experimental data
for nontriclinic problems

The following strategy, which provides ample data wh
usually retaining symmetry in the distorted model, can
easily shown to lead to a nonsingular system of normal eq
tions. We select a strain magnitudee and then generate in
turn the seven above single-strainab initio jobs E, E1e1 ,
E1e2 , etc., eliminating the jobs with strains that are sy
metry related to previously generated strains because
would produce numerically equivalent symmetry-relat
stresses. Practically, for cubic symmetry under initial stra
the total strainsE, E1e1 , andE1e4 only are retained. For
tetragonal symmetry, the coefficients are extracted from j
implementing separately the five total strainsE, E1e1 , E
1e3 , E1e4 , andE1e6 .

The justification for the above scheme is that, where
additional strainek was not implemented because a symm
try operation of the strained material would transform it in
the previously generated strainej , we would also be able to
transform the previously computed stress corresponding tej
with the point-group symmetry operation relating the tw
strains. This would give the stress corresponding to strainek
through straightforward tensor transformation of stresses
der a rotation of the reference system rather than throug
lengthyab initio simulation. All the stresses corresponding
the seven triclinic strains would be recovered in this w
This process, which only implements point-group symme
then allows calculation of all 21Ci j coefficients for the sym-
metric material, irrespective of any constraint possibly re
ing them. It follows that the starting data was therefore s
ficient to solve for the independent coefficients. After ra
reduction, a process that essentially migrates the stress
without loss of numerical information for the purpose of e
pressing the problem in terms of just the independent v
ables, the system of normal equations will then not be s
gular.

The same reasoning can be used to establish that
sufficient to extract analytically the independent stiffness
efficients and initial strain from the computed stress val
10410
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by any other method would also be sufficient if process
through the above constrained least-squares procedure
example, Table I lists one such sufficient set of strains for
point groups in each crystal system. Some of those st
combinations have been used before~e.g., Ref. 10 clearly
used the same orthorhombic combination of strains!, but
some of them may be new. We have checked numeric
that, with use of the strains in Table I implemented with
single strain magnitude, the constrained least-squares m
is nonsingular for each point group in each crystal syste
Singularity not being a matter of magnitude, use of th
scheme at several strain magnitudes could then constitu
sensible way to collect appropriate stress data to ext
least-squares elastic coefficients with just the desired de
of redundancy required to get standard deviations with
equate precision.

III. DUALITY OF THE FORMULATIONS IN TERMS
OF STRESS AND STRAIN

Equation~1! translates the viewpoint that stress in a m
terial is the result of applied strain. The corresponding phy
cal property relating stress and strain is called the stiffnesC.
In ab initio calculations, strain changes transform direc
into changes in the input cell data, with no approximati
involved. The corresponding stress is the result of theab
initio calculation. The opposite viewpoint that strain appe
as a result of applied stress can be written

« i5sumj 51,6 Si j s j . ~3!

The corresponding physical property expressed by the 636
S matrix relating stress and strain is called the compliance
follows from Eqs.~1! and ~3! that S5C21. Implementation
of this viewpoint does not lead to a major reformulation, b
may involve some degree of recycling as illustrated in Fig
In simulations aimed at establishing the conformation of
material under a known stress, small stress steps are su
sively applied to the material. These stress steps mus
sufficiently small for the strain calculated with Eq.~3! to be
4-3
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YVON LE PAGE AND PAUL SAXE PHYSICAL REVIEW B65 104104
approximately correct, say within a few percent. This str
is applied to cell dataDn21 , giving cell dataDn . A stress,
stiffness, and compliance recalculation is then performed
cell dataDn . Those stress and compliance data calculated
Dn in turn allow calculation of two strainsGn andFn .

Fn is a very small strain correction for the difference b
tween the calculated stress and the desired stress for stn.
That difference is usually so small that elastic linearity
now accurately obeyed. The cell data corresponding to ap
cation of Fn to the current cell data will then accurate
match the desired stress.

The strainGn corresponds to the application of the ne
stress step, taking into account the now known small st
offset Fn . A stress calculation after application ofGn will
again give a stress value differing from the desired value
a tiny difference, giving in turn the tiny cell data correctio
Fn11 and the cell data adjustmentGn11 for a further stress
step etc.

This way of proceeding does not require inclusion o
general stress in the expression of the Hamiltonian, but
the capability of computing the stress and the compliance
a given cell configuration. Convergence of this procedure
so fast that we use it even where the stress is a simple
drostatic pressure. This is partly becauseMEDEA retains in
this way the ability to drive for the same purpose quant
codes that do not include the cell optimization under press
among their features. It is also partly because we feel
this way of proceeding might be computationally efficient
view of the fact that noab initio cell optimization in the
quantum code is involved. Elastic relaxation based on
result of theab initio compliance calculation for the inpu
cell data is instead applied later. The two methods are p
ably computationally fairly equivalent with hydrostatic pre
sure, but the present approach also allows efficient ela
calculations under a general stress as well, with an exam
developed in Secs. V E and VI E below.

FIG. 1. Implementation of stress steps in two cycles in
simple case where two cell parameters,a andc, are adjustable. In
the general case, six cell parameters are adjustable. At each sn,
n11, etc, anab initio stress and compliance calculation is pe
formed. This stress and compliance data allow calculation of bo
small strain correctionFn , Fn11 , etc. for the current guess and
large strain stepGn , Gn11 , etc. giving the next guess. The sma
correctionsFn etc. being within the linear range of elasticity at st
n, the corresponding cell data is then accurate.
10410
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IV. ‘‘EXPERIMENTAL’’ PRECAUTIONS

Several precautions must be taken in order to ensure
changes in calculated stress values between simulat
originate in a model change and not mostly in a differe
positioning of integration sampling points with respect to t
quantity being integrated. For energy purposes,12 it was suf-
ficient to use the same primitive vectors, with the same o
gin with respect to the crystal structure, and divide them i
consistent way throughout the simulations. Energy bein
scalar quantity and therefore independent of the sele
axial system, each simulation could then be referred to
Institute of Radio Engineers20 ~IRE! system that was corre
sponding to its symmetry. With stress analysis, the orien
tion of the Cartesian system as well must be retain
throughout the simulations of the various strained mod
with the various subgroup symmetries. The correspond
manipulation of the structure models is straightforward.

V. EXAMPLES OF ACTUAL DERIVATION
OF ELASTIC COEFFICIENTS

As described in the previous section, the present met
has the capability of deriving elastic data under a gene
strain or stress. Although this is of significant technologic
interest, we failed to locate experimental elastic data un
stress other than hydrostatic pressure, but we found a ph
transformation report for Si under uniaxial@001# stress.17

Such calculated numbers would nevertheless be usefu
wards, e.g., studies involving mechanical properties of e
taxial layers of materials with poor cell data match, or w
different thermal-expansion coefficients.

A. Triclinic example: kyanite

The only tractable example we could find where the el
tic coefficients of a material had either been computed
measured is that of kyanite, a triclinic polymorph
Al2SiO5 . The elastic coefficients were recently computed
two methods by Winkler, Hytha, Warren, Milman, Gale, a
Schreuer.18 Like them, we used the cell and fractional coo
dinate data from Winter and Ghose19 as starting points. Pro
vided that right-hand reference systems are used throug
as they should, the somewhat suspicious 90° triclinica angle
does not lead to a setting ambiguity of the atomic struct
with respect to the lattice or of the lattice with respect to t
IRE ~Ref. 20! axes.

The simulations were performed with the following p
rameters: Generalized-gradient approximation~GGA! pro-
jector augmented wave~PAW! potentials,21 relaxation con-
vergence of 1024 eV, electronic convergence of 1025 eV,
conjugate gradient optimization of the wave function
reciprocal-space projection, a 33333 k mesh for the
reciprocal-space integration with a Monkhorst-Pa
scheme,22 and the tetrahedron method with Blo¨chl ~Ref. 21!
corrections for the energy. We used the triclinic scheme
Table I, with strain values10.01 and20.01, leading to the
13 simulations that are reported in Table II together w
resulting stress data. That stress data is a simple rearra
ment with sign change of the cell forces that are printed

e

p

a
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TABLE II. Stress data for kyanite. The first six integers on each odd row are the applied strains in pe
The next six numbers on the same line are the forces on the cell as produced byVASP, transformed into stress
components in kilobars and rearranged in the familiar order 1–6. Corresponding least-squares or reca
values are shown with standard errors on the last printed digit inside parentheses.

0 0 0 0 0 0 8.44 4.87 6.28 1.95 0.34 20.18
Least squares 8.36~9! 4.63~9! 5.88~9! 2.07~9! 0.23~9! 0.26~9!

1 0 0 0 0 0 45.27 15.30 12.82 2.08 0.42 20.54
Recalculation 45.98 15.40 12.90 2.10 0.51 20.55
21 0 0 0 0 0 229.99 26.03 21.11 2.01 20.12 0.11
Recalculation 229.27 26.15 21.13 2.04 20.45 0.41
0 1 0 0 0 0 19.31 39.81 17.17 0.13 0.18 20.02

Recalculation 19.13 40.29 17.12 0.24 0.17 0.09
0 21 0 0 0 0 22.46 231.51 25.60 4.22 0.36 20.69
Recalculation 22.42 231.03 25.35 4.12 0.29 20.60
0 0 1 0 0 0 15.36 15.62 41.91 20.29 0.50 20.13

Recalculation 15.37 15.86 42.84 20.16 0.55 20.18
0 0 21 0 0 0 1.23 26.55 232.01 4.33 20.17 20.46
Recalculation 1.34 26.60 231.08 4.30 20.08 20.49
0 0 0 1 0 0 8.55 2.83 4.29 19.06 0.32 0.13

Recalculation 8.38 2.58 3.66 18.93 0.21 20.05
0 0 0 1 0 0 8.50 6.93 8.58 214.66 0.32 20.39

Recalculation 8.33 6.68 8.11 214.79 0.26 20.47
0 0 0 0 1 0 8.72 4.50 6.26 1.97 9.15 20.95

Recalculation 8.63 4.57 6.20 2.05 9.19 20.93
0 0 0 0 1 0 8.15 4.56 5.67 2.07 28.77 0.49

Recalculation 8.08 4.69 5.57 2.10 28.73 0.42
0 0 0 0 0 1 8.50 5.27 6.42 2.19 20.38 11.72

Recalculation 8.06 4.97 6.12 2.28 20.44 11.81
0 0 0 0 0 1 9.04 4.57 5.80 1.87 0.87 212.42

Recalculation 8.65 4.29 5.65 1.86 0.90 212.33
st
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VASP. Table III reports the least-squares values of the ela
coefficients while the corresponding initial stresses are fo
under the first line in Table II. As an indicator of precisio
we quote the residual after refinementR5sumuSc
2Sou/sumuSou, where So is an individual observed stres
component andSc is the corresponding component calc
lated by inserting the refined least-squares values ofC andS
in expression~2! above. The sums extend over all individu
components, i.e., six values per simulation. The residual a
refinement calculated in this way is 2.3%. The total tim
taken by the 13 simulations was 2 h short of 8 days. Thos
elastic calculations followed a careful optimization of t
coordinate data, but not of the x-ray cell data.

B. No applied pressure

Tables IV–VI show the stiffness results for the same m
terials that were used in Ref. 12, but now obtained withVASP

~Ref. 16! from calculated stress changes about the exp
mental x-ray cell data. In Ref. 12, the numbers were obtai
with ORESTES,23 from calculated energy changes about t
relaxed configuration. In both cases though, the cell d
reported are the relaxed cell data.

For the stiffness calculations, we used two strain mag
tudes, 0.007 and 0.01, with both signs,3 leading to a suffi-
cient redundancy of the nonzero stress component data
10410
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least-squares processing. For cubic compounds, this m
that we used the strains 0,1/2e1 , and 1e4 at two strain
magnitudes, i.e., a total of seven simulations leading to
finement of four numbers with 11 independent observati
of nonzero stress components. For hexagonal compou
the strains were 0,1/2e1 , 1/2e3 , and 1e4 at the two
magnitudes indicated above, i.e., a total of 11 simulatio
etc.

TABLE III. Extracted elastic coefficients~see Table II!. Similar
data from Ref. 26 are italicized.

376~2! 108~2! 70~2! 0~2! 3~2! 23~2!

387(2) 100(1) 46(1) 23(1) 0(1) 26(1)
108~2! 357~2! 112~2! 220~2! 21~2! 3~2!

355(2) 122(1) 222(2) 23(1) 3(1)
70~2! 112~2! 370~2! 222~2! 3~2! 2~2!

366(1) 230(2) 3(1) 0(2)
0~2! 220~2! 222~2! 169~2! 0~2! 2~2!

182(2) 22(2) 0(3)
3~2! 21~2! 3~2! 0~2! 90~2! 27~2!

80(1) 26(2)
23~2! 3~2! 2~2! 2~2! 27~2! 121~2!

132(1)
4-5
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YVON LE PAGE AND PAUL SAXE PHYSICAL REVIEW B65 104104
The following VASP input or execution parameters we
used: GGA PAW potentials,21 relaxation convergence o
1026 eV, electronic convergence of 1027 eV, conjugate gra-
dient optimization of the wave functions, reciprocal-spa
projection, a 15315315 k mesh for the reciprocal-space in
tegration with a Monkhorst-Pack scheme,22 and the tetrahe-

TABLE IV. Cubic system: three elements and a binary co
pound~experimental data from Ref. 39!.

C11 C12 C44

a ~Å!~GPa!

C 1064 132 565 3.574 6 calculation, this study
1079 124 578 3.566 91 experiment
1013 174 603 3.513 3 calculationa

Al 106 57 28 4.042 3 calculation this study
114 62 32 4.049 4 experiment
120 61 34 3.991 2 calculationa

Cu 187 133 81 3.633 1 calculation, this study
168 121 75 3.614 65 experiment
214 155 99 3.559 5 calculationa

GaAs 118 59 55 5.731 5 calculation, this study
119 53 60 5.653 3 experiment
112 55 51 5.745 1 calculationa

aReference 12.
10410
e

dron method with Blo¨chl ~Ref. 21! corrections for the en-
ergy. The same simulation conditions were used through
this manuscript, except where differences are noted.

C. Hydrostatic pressure applied

We chose MgO as a test example because it has b
studied theoretically by, e.g., Karkiet al.,9 experimentally by
Yoneda,24 then more recently in the diamond-anvil cell b
Sinogeikin and Bass,25 as well as Zha, Mao, and Hemley26

thus offering a good opportunity for comparisons. The the
retical study9 mostly extends up to 150 GPa while the e
perimental pressure in Ref. 25 does not exceed 20 GPa
cause of the nonavailability of immersion media capable
transmitting higher hydrostatic pressures. However, ad
tional experimental data by Duffy and Ahrens27 extends up to
237 GPa. We accordingly scanned the range from 0 to
GPa, but with a greater density of data points in the 0–
GPa range.

In this section, for the purpose of easy comparison w
previous experimental and theoretical literature results,
use the geophysical convention that compressive stresse
positive. Among other things, this changes the orientation
the pressure axis with respect to the physical convention
compressive stresses are negative. Also, odd-order de
tives of the elastic coefficients in Table VII change sign u

-

lations
h of 23

nd 1%.

y

y

94

6

TABLE V. Hexagonal system. Two hcp elements and a rhombohedral compound. Five stress calcu
are at each of two strain magnitudes, 0.7% and 1%. Residual 1.3% using a reciprocal space mes
323323. For Be, hcp there are five stress calculations at each of two strain magnitudes, 0.7% a
Residual 0.8% using a reciprocal space mesh of 23323323. Atomic positions for Al2O3 were optimized in
the present study, while they were not in Ref. 12.

C11 C12 C13 C33 C44

a c ~Å!~GPa!

Mg ~hcp, P63 /mmc!

11 simulations 49 31 21 58 14 3.1906 5.1800 calculation, this stud
Experimenta 59 26 21 61 17 3.2089 5.2101
27 differences 70 31 24 74 22 3.1354 5.0909 calculationb

Be, hcp

11 simulations 290 23 12 364 162 2.2639 3.5663 calculation, this stud
Experimentc

~0 K extrapolation!
299 27 11 342 166 2.2826 3.5836

18 differences 336 81 21 443 181 2.1851 3.4710 calculationb

Al2O3 , R-3c

C11 C12 C13 C14 C33 C44

~GPa! a c ~Å!

Calculation, this study 495 171 130 20 486 148 4.7642 12.9
Experimenta 500 162 111 223 502 151 4.754 12.982
Calculationb 518 131 92 17 475 128 4.7040 12.70

aReference 39.
bReference 12.
cReference 40.
4-6
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TABLE VI. Tetragonal element. Six stress calculations are at each of two magnitudes, 0.7% an
Residual 1.3% using a reciprocal space mesh of 15315315.

C11 C12 C13 C33 C44 C66

a c ~Å!~GPa!

In, I4/mmm
Calculation, this study 55 44 41 46 4 12 3.3162 4.9002
Experimenta 45 40 41 45 7 12 3.2523 4.9461
24 differencesb 71 36 46 58 11 17 3.0971 5.1905

aReference 39.
bReference 12.
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der a change of convention, while even-order ones are
changed. The physical convention is used in the rest of
manuscript.

Theab initio stress calculations totaled about two days
computing time on a 1.4-GHz Pentium 4. The present le
squares procedure analyzed the corresponding stress d
less than a second for each of the 20 data points.

With this data, we produced graphs ofCi j , K, andG vs
hydrostatic pressure. They were so equivalent to thos
Ref. 9 that they were not worth showing. We only show h
Fig. 2 that reports the cubic cell volume for MgO vs hydr
static pressure. The fit with experimental data27–30 is excel-
lent, quite possibly within experimental error. Addition
10410
n-
e

f
t-

a in

in
e

‘‘low-pressure’’ data from Ref. 26 and other experimen
work quoted in, e.g., Ref. 25 would superimpose nicely w
the data already plotted in Fig. 2.

A least-squares fit of theab initio stiffness data points by
a polynomial expression was performed for each stiffn
coefficient. Values and derivatives at zero pressure of
various stiffness coefficients were then read off the coe
cients of that polynomial fit. They are reported in Table V
together with experimental and theoretical literature data

D. Uniaxial strain applied to Ti 4As3

Application of a general strain, for example, a uniax
strain, is straightforward. The componentsL of the lattice
oeffi-
the

positive
TABLE VII. Present MgO results and comparison with previous work. The independent stiffness c
cientsCi j , Young’s modulusK, the shear modulusG, and their first and second derivatives according to
present work and Refs. 9, 24–26. Note that the geophysical convention that compressive stresses are
is used in this table and in Sec. V C and VI C, but not elsewhere.

Stiffness coefficients~GPa! C11 C12 C14 K G

This work 303.7 97.2 148.2 166.0 130.2
Sinogeikin and Bassa 297.9 95.8 154.4 163.2 130.2
Yonedab 297.8 95.1 155.8 162.7
Zha, Mao, and Hemleyc 297.0 95.2 155.7 162.5 130.4
Karkid et al. 291 91 139 159.4 126.8

First derivatives~no units! C118 C128 C148 K8 G8

This work 8.91 1.59 0.99 4.03 2.06
Sinogeikin and Bassa 9.05 1.34 0.84 3.96 2.35
Yonedab 8.75 1.90 1.30 4.1
Zha, Mao, and Hemleyc 9.7 0.82 1.09 3.99 2.85
Karkid et al. 4.28 2.18

Second derivatives~GPa21! C119 C129 C149 K9 G9

This work 20.035 20.011 20.018 20.019 20.016
Sinogeikin and Bassa 20.090 20.002 0.006 20.044 20.040
Yonedab 20.034 20.003 20.082 20.028
Zha, Mao, and Hemleyc 20.126 10.06 20.009 20.084
Karkid et al. 20.027 20.022

aReference 25.
bReference 24.
cReference 26.
dReference 9.
4-7
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translations are worked out for the Cartesian system wh
the strainE has been defined. Application of the strain giv
new componentsL 85(E1I )L . The new lattice data is cal
culated fromL 8 directly and with no approximation. We
have, for example, performed in the above way the calc
tions corresponding to the@001# uniaxial compression o
Ti4As3 up to 10 GPa with~001! clamped.

Ti4As3 seems to have only been prepared in powder fo
Its Th3P4 structure type was established by Berger in 197731

Table VIII echoes theCRYSTMET database entries for thi
material and for Th3P4 . There are marked differences b
tween the two compounds. They have quite different c
volumes @453 vs 640 Å3# and the crystal-chemical role
played by cations and anions are opposite. Strictly speak
Ti4As3 should then be assigned the anti-Th3P4 type when
considered to be an inorganic compound. All this points
possible large differences in atom coordinates, although tx
coordinate of Ti is the only free parameter in the unstrain
state of this compound.

An ab initio optimization of cell and structure converge
to a57.6779 Å, Tix50.0753. The optimized cell edge is i
perfect agreement with the experimental value of 7.6795~2!

FIG. 2. Graph of cell volume in Å3 vs hydrostatic pressure fo
MgO. The curve is a polynomial fit to theab initio data points
calculated for the present study. Experimental data points by M
and Bell ~Ref. 28!, Perez-Albuerne and Drickamer~Ref. 29!,
Weaver, Takahashi, and Bassett~Ref. 30!, and Duffy and Ahrens
~Ref. 27! are also shown in the graph.
10410
re
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Å. This constitutes a solid support for the assignment of
Th3P4 type to Ti4As3 by Berger.31 The refinedx coordinate
shows that Ti has moved by 0.107 away from the valuex
5 1

12 that would place it at equal distance from two sets
~111! equilateral triangles of As neighbors with position
fixed by symmetry. On the contrary, fromCRYSTMET entry
AL4092, P seems to have thatx5 1

12 coordinate value within
experimental error in Th3P4 .

After theab initio transformation of the cell and structure
type CRYSTMET entry AL4132 into a credible full crysta
structure description as performed above, we then procee
with ab initio computing of its elastic coefficients. In th
unstrained state, Ti4As3 has only one refinable coordinat
parameter, but under straine4 , for example, the model be
comes monoclinic with space groupC2 and 20 adjustable
atom coordinates. We getC115273, C12571, and C44
561 GPa. Young’s, shear, and bulk moduli for the isotrop
material are first derived from them32 as 138, 75, and 190
GPa. This in turn predicts the speed of sound for longitudi
and transverse waves to be, respectively, 6237 and 3496
From the mean sound velocity of 3791 m/s, a Debye te
perature of 446 K is obtained,32 leading to, e.g., a thermal
expansion coefficient of 1131026 K21 at 300 K assuming a
value of 2.0 for Gru¨neisen’s coefficient. All those calcula
tions are automatically performed in less than a second
the elastic coefficients refined by our software, with printo
on the same sheet asab initio stiffness and of course com
pliance.

We then proceed to uniaxial compressive straining
Ti4As3 along @001#, i.e., shorteningc while retaining frac-
tional coordinates as well as the lengths of thea andb cell
edges. The strained material therefore becomes tetrag
with six independent stiffness coefficients. In this section a
in Sec. V E below, we used the sameVASP parameters as in
Sec. V B above except that we implemented here a 535
35 k mesh. Results are reported in Fig. 3 for all six coe
cientsC11, C12, C13, C33, C44, andC66.

E. Uniaxial stress applied

Application of a general stress is slightly more difficu
than application of a strain because that involves recycli

o

l

4

ncy
TABLE VIII. CRYSTMET ~Ref. 13! entries for Ti4As3 and Th3P4 , reprinted with permission.

Entry Formula Structure type Space group Pearson symbo

AL4132a Ti4As3 Th3P4 I -43d ~220! cI28
AL4092b Th3P4 Th3P4 I -43d ~220! cI28

Cell dimensions

a b
~Å!

c a b
~°!

g Volume ~Å3! Z

AL4143 7.6795~2! 7.6795~2! 7.6795~2! 90 90 90 452.90 4
AL4092 8.6170 8.6170 8.6170 90 90 90 639.84

Atom type Wyckoff site Site symmetry Fractional coordinates Uiso Occupa

P 16c .3 0.083 0.083 0.083 0.50 1.0
Th 12a 24 3

8 0 1
4 0.50 1.0

aReference 31.
bK. Meisel, Z. Anorg. Allg. Chem.240, 300 ~1939!.
4-8
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In order to apply a uniaxial compressive stress along@001# to
Si, meaning that Si can freely expand in the~001! plane, we
followed the procedure outlined in Sec. III above. We us
2-GPa stress steps in order to calculate the strain stepsGn .
The subsequent strain correctionsFn11 turned out to corre-
spond to a few hundredths of a GPa, giving cell data con
gence to a high accuracy in two elastic calculations at e
step. The compressed material expands alongX andY while
it shrinks alongZ, thus acquiring tetragonal symmetry, r
quiring the tetragonal elastic coefficients in Fig. 4 that a
additional to the independent cubic coefficients. TheMEDEA

software15 generates transparently those coefficients thro
automated handling of the corresponding symmetry aspe

F. LDA vs GGA and energy strain vs stress strain
in the case of beryllium

The discrepancy between theC12 values obtained by a
LDA/energy-strain approach implemented with theORESTES

quantum engine and those obtained by a GGA/stress-s
approach with theVASP engine is very large and puzzling
Although there is little doubt as to which set of results agr
better with the experiment, we performed additional te
based on the beryllium results in Table V, with the purpo
of exploring the noted differences in relaxed cell data
tween the various engines and approximations used.

In addition to echoing the Be results of Table V, Table
reports additional elastic calculations for Be, all compu
with the same execution parameters except those noted.
conditions adjusted were the cell data and the type of
proximation and are detailed in Sec. VI F.

VI. DISCUSSION

It seems that one of the main advantages of the str
based approach is that, as seen in Eqs.~1! or ~2!, and as
previously pointed out by Wentzcovitch, Karki, Karato, a
Da Silva3 the derived stress change is a first-order funct
of the small applied strains. Oppositely, the derived ene
change is a second-order function of the applied str
change. As a consequence, the stress-based approac
implement small strains and still give fairly precise stre

FIG. 3. Elastic coefficients of Ti4As3 under @001# uniaxial
strain, i.e., clamped in~001!.
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changes where the corresponding energy changes woul
so small that they would necessarily be imprecise.

The way of generating the strains developed in Sec
above and in Table I may not be fully optimal, but this poi
is perhaps not as important as it would have been a few y

FIG. 4. ~a! and~b! Elastic coefficients for Si uniaxially stresse
along @001#. The material becomes tetragonal when subjected
this kind of stress. It hardens along@100# and softens considerabl
along @001#. The material is seen to collapse at around 11.7-G
compressive stress, in agreement with experimental results in
17. ~c! Plot of the S33 compliance coefficient of Si under@001#
uniaxial stress. The gradual softening alongZ leads to the collapse
of Si under 11.7-GPa@001# compressive stress. The last two poin
shown correspond to applied stresses of211.608 and211.614
GPa. The corresponding compliances are 0.13 and 0.59 GPa21. At
211.7 GPa the material has collapsed into the well-knownb-tin
structure.
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TABLE IX. Be elasticity computed under a variety of conditions.

Engine Energy/stress LDA/PAW or GGA/ultrasoft

Used C11 C12 C13 C33 C44 Refined

a c ~GPa! a c

VASP stress GGA/PAW 2.2826 3.5836 290 23 12 364 162 2.2639 3.5
VASP stress LDA/ultrasoft 2.2826 3.5836 273 15 32 348 158 2.2193 3.5
VASP stress GGA/PAW 2.2639 3.5663 307 29 12 377 164
VASP stress LDA/ultrasoft 2.2193 3.5130 334 39 9 412 173
VASP stress GGA/PAW 2.1851 3.4710 390 66 27 478 189
VASP stress LDA/ultrasoft 2.1851 3.4710 365 54 16 456 185
ORESTES energy LDA 2.1851 3.4710 336 81 21 443 181 2.1851 3.47
Experimenta

~0 K extrapolation!
299 27 11 342 166 2.2826 3.583

aReference 40.
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ago, due to a continued drastic decrease in computing c
It has already been shown by Ref. 9 that elastic data fo
cubic material can be extracted from just two simulatio
with respective strains zero and@e11e6#. In that case, the
first simulation has cubic symmetry and the second one
monoclinic symmetry. In Table I, we propose the pair@e1#,
which is tetragonal and@e41e51e6#, which is rhombohe-
dral. Other schemes are possible, like zero and@e11e4#,
which is orthorhombic. We do not think that there exists
scheme that is superior for all structures with a same cry
system, or even with a same point group. Occupation
Wyckoff sites is structure dependent. The best scheme is
structure dependent because it should preserve as muc
the Wyckoff site symmetry as possible. For some cu
structures, it may be more economical to use a rhombohe
distortion, while for others, it may be more economical
use an orthorhombic distortion.

A. Triclinic example: kyanite

Comparison of our refined elastic coefficients with tho
calculated by Winkleret al.,18 also shown in Table III, indi-
cates good agreement of the refinement parameters, with
possible exception of coefficientC13 that they calculate as
46~1!, while we get 70~2! GPa. The smaller differences be
tween the other compressive coefficientsC11, C12, C22,
C23, andC33 can probably be ascribed on one hand to th
use of theCASTEPquantum engine, while we usedVASP, and
on the other hand to slight differences in the methodolo
For example, we used the x-ray cell data while they rela
theirs. Our relaxed cell data, which result from the init
stress and the refined compliance coefficients in our calc
tions ~a57.112,b57.848,c55.566 Å, anda590.17°, b
5101.09°,g5105.96°! are not very different from the ex
perimental cell data we used in the calculations~7.126,
7.852, 5.572, 89.99, 101.10, 106.00!, nor from the values
optimized by Winkleret al.18 ~7.075, 7.779, 5.523, 89.74
101.16, 106.04!. Nevertheless, the differences in cell da
could account for at least part of the differences in the ela
coefficients.

The mixed compression/shear coefficients, in other wo
the coefficients with one index smaller than 4 and the ot
10410
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larger than 3, are roughly in statistical agreement betw
the two studies. It should be noted that all such coefficie
that are not calculated to be zero by one study or the o
are also in agreement for the sign. The importance of
remark is that, contrary to the compressive or shear coe
cients, the sign of those coefficients would reverse upon
versal of one of the conventions for either tensile or sh
strain. This sign agreement of the coefficients confirms t
the conventions used for input preparation, forab initio com-
putation, and for analysis in Ref. 18 are identical or equi
lent to those we use here. As the two software packages
independent, this fit of magnitudes and signs is a very
couraging indication of the generally high quality of curre
cutting-edge quantum and analysis software.

The numbers in Table II may help towards appreciation
the improvement brought by least squares with respect
simple-minded analysis of the raw numbers. First, the e
tence of computational noise is obvious in all observatio
none of the 78 ‘‘observed’’ stress components ends up be
numerically equal to its recalculated value. In particul
some of the stress components refined for no applied st
differ significantly from their ‘‘observed’’ counterparts. Thi
invites to caution towards simplifying assumptions, like co
sidering that stress data coming out of cell relaxation can
equated with zero or directly subtracted from similar stre
data derived after application of strain. Even if the progra
produced a zero value for stress after relaxation, such a v
would be on the same footing as any other value becau
comes from the same calculation. Even that zero va
should then be included in the least-squares adjustment.

It might be correctly argued that better fits with the e
periment have been obtained in other papers, or that lin
fits of a given stress component for more strain magnitu
could also lead to better values than ours, e.g., by spot
and then neglecting outlying observations. This is of cou
true. It is also true that, if reanalyzed through our lea
squares implementation, the corresponding stress va
would lead to even better elastic numbers through proces
of the additional, or intrinsically better, stress data, or
downweighting the observations leading to anomalou
large discrepancies. The now classical works of Gauss~in
1821, 1823, 1826! show that a weighted least-squares refin
4-10
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ment gives statistically the best results that can be extra
from data with known standard error. This is because le
squares does not focus on a subset of the data to extrac
variable at a time, a procedure that can lead to error pro
gation, but rather considers all the variables and all the d
at the same time.

It should be noted that since kyanite is a problem with
atoms per primitive cell, its processing in 8 days on a P
tium 4 required making decisions balancing execution ti
vs precision of stress data, for example, for thek mesh. How-
ever, this borderline precision is precisely what makes it
interesting example to expose the trade-offs performed
the least-squares procedure in the extraction of the best
sible elastic coefficients and initial stress, given the r
stress data.

B. No pressure applied

The numbers reported in Tables IV–VI are noticeably b
ter than those obtained previously with the energy-ba
approach.12 In fact this improvement is probably due to
combination of the use here ofVASP with the generalized
gradient approximation~GGA!, the recent projector aug
mented wave~PAW! potentials,21 and the present analys
method, or to a possible intrinsic superiority of stress-ba
methods as previously pointed out in Ref. 3. The number
Ref. 12 were based on the use of theORESTESengine23 with
the local-density approximation~LDA !. The present number
were obtained with the GGA. We have not performed
exhaustive series of tests separating unambiguously the
fluence of the various factors because this would requir
separate paper, but we are confident that they all contrib
one way or another to the resulting stiffness values. Ne
theless, we interpret in Sec. VI F the limited Be data in Ta
IX in terms of a drastic influence of the cell data used, an
modest influence of the approximation, potential, analy
method, or quantum engine used. The large overestima
of initial stress at x-ray cell data for Be and LDA then caus
an underestimation of the relaxed cell size, which ripp
into increased elastic coefficients. We trust this analysis
Be to be of more general applicability, and to help in the la
decomposition of the smaller effects by other factors.

As fewer simulations are required with the stress-str
approach to reach the same degree of data redundanc
cause of the six observations per simulation vs one for
energy-based approach, that same redundancy can the
reached in only a fraction of the computing time required
the energy-based approach. This, and the algebraically
pler extension to strained materials, may be the bottom
for superiority of the stress-based approach. Our ene
based approach12 too can be extended to strained materi
with limited effort, but we have no plans to undertake this
the near future.

One item probably worth noting is the sign of theC14
stiffness coefficient fora-Al2O3 , corundum. This sign,
which has been reported to be experimentally positive
early work, has been unanimously reported to be experim
tally negative since the authoritative and thorough work
Wachtman, Jr., Tefft, Lam, and Stinchfield33 in 1960. We
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have now computed this coefficient to be positive by tw
different methods. We note the negative value ofC14 calcu-
lated by Duan, Karki, and Wentzcovitch,34 but also the fact
that they use rhombohedral axes rather than hexagonal
for their description of the structure of corundum. In view
the general agreement between the calculated and obse
stiffness values except for the sign ofC14 for corundum, and
the match of mixed compression-shear coefficients in the
clinic case in Sec. V A and VI A above, we intend to perfor
more work in an attempt to clarify this apparent discrepan

C. Hydrostatic pressure applied

As can be seen in the results summarized in Table VII,
stiffness coefficients calculated here are within 5% of
experimental values at zero pressure. It is well known t
the experiment usually gives stiffness values that are re
ducible to about 1%, and probably even better for Mg
Those experimental numbers are accordingly more relia
than the results of our calculations. Nevertheless, theab ini-
tio numbers are sufficiently accurate to have been of tech
logical interest in the absence of measured values.

In contrast, our calculated values for the first derivativ
turn out to be bracketed by the values printed by the th
quoted experimental studies. This is an encouraging sign
their reliability with respect to the experimental firs
derivative data.

The considerable spread of values for the second der
tive of experimental elastic coefficients suggests that it mi
be premature to perform comparisons about this point. T
rough agreement between the values calculated in the pre
study and theab initio values reported in Ref. 9 is an encou
aging sign. It is not impossible that currentab initio methods
do in fact lead to better values of the second derivative t
those obtained from state-of-the-art diamond-anvil exp
ments. There is of course no way to be sure of this aspec
the absence of better experimental data.

D. General strain applied

Figure 3 shows the elastic behavior of Ti4As3 under@001#
uniaxial compressive strain. Partial derivatives of the st
ness coefficients with respect to the varied strain compon
~or combination of strain components for a more gene
strain than@001# uniaxial compression! are extracted in a
straightforward way as the coefficient of the linear term in
polynomial fit to the curve of the corresponding coefficie
vs strain. They are]C11/]e352661, ]C12/]e3581,
]C13/]e352471, ]C33/]e3522241, ]C44/]e352390,
and]C66/]e352181 GPa.

The corresponding numbers probably have only mod
current technological value because there is no current i
cation that Ti4As3 is about to become a ‘‘hot’’ material to
morrow. We picked this material at random. However, t
numbers in Sec. V D and the above numbers expose cle
the quantum jump in capabilities brought about by linki
the CRYSTMET and ICSD crystal structure databases and t
automated tools made possible by our present symme
general least-squares approaches. Those numbers were
duced in straightforward point-and-click fashion on a ma
4-11
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YVON LE PAGE AND PAUL SAXE PHYSICAL REVIEW B65 104104
rial for which only the structure type was known. Experien
that we have gained so far on probably close to 150 elem
and compounds now makes us extremely confident that
numbers we show in Secs. V D and VI D are correct. Th
numbers comprise thex fractional coordinate of Ti, which
we predict to be 0.107 Å away from the center of the fixe
shape As coordination polyhedron, with a shape midway
tween a trigonal prism and an octahedron~5trigonal anti-
prism! at 0 K. They also comprise the zero-pressure sing
crystal elastic coefficients, and Young’s, shear, and b
moduli for the polycrystalline material. They include th
speed of sound for longitudinal and transverse waves and
Debye temperature. They include partial derivatives of st
ness coefficients with respect to any strain componen
shown above. Hydrostatic compression curves like
showed for MgO in Sec. VI C, with pressure derivatives,
example, as well as general stressing as shown in Sec. V
all become feasible with a few mouse clicks and keystro
by a moderately experienced user. Of course, the compu
power has to be adapted to the pure-phase material sele
In the present example on Ti4As3 , we used one persona
computer~PC! for three days. We feel that this feasibility
a sign of things to come for computational materials scien
with more properties to be harnessed, one at a time,
across structure databases.

E. Application of general stress leading
to a phase transformation

One may wonder whether this approach might not be
timal in terms of the computing effort. We do not think s
because, provided the stress step is chosen to be suffici
small, only one compliance calculation is to be performed
each step. We in fact performed a second calculation at
final configuration for each step, but derived from it litt
more than a corroboration of the two facts that~i! compli-
ance was not significantly different and~ii ! the calculated
stress at the final configuration was indeed quite accura
the desired stress.

The above 2-GPa step only held far from a phase tra
formation. Below210 GPa, we had to decrease the s
down to 0.5 GPa, and then to 0.1 GPa below211.5 GPa.
Around 211.7 GPa, theS33 term becomes anomalous, thu
putting an end to this straightforward stepping process. F
4~a! and 4~b!, respectively, report the compressive and sh
stiffness coefficients for Si. Although large changes are s
on stiffness when applied stress approaches211.7 GPa, they
fail to translate the sudden implosion of the material grap
cally depicted in Fig. 4~c!. This is in agreement with Ref. 1
that reports experimentally a phase change at 12.0 GPa u
a @001# uniaxial load. The collapse of the material leads
the well-knownb-tin structure type.

F. LDA vs GGA and energy strain vs stress strain
on the case of beryllium

The data in Table IX comprise three groups of two
three simulations each. The first group corresponds to str
strain calculations withVASP using the x-ray experimenta
cell data, the two approximations, GGA with PAW pote
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tials, and LDA with ultrasoft potentials. The refined elas
data agree reasonably well between themselves and with
experimental data. The notable difference is in the rela
cell data produced by the two elastic calculations, w
GGA/PAW producing a much better cell than LDA/ultraso

The second group of simulations corresponds to the s
pair of conditions, but with the relaxed cell data that ea
approximation refined in the first group. We start seeing
table differences here, with the GGA/PAW results remain
more or less consistent with the experimental values. For
LDA/ultrasoft combination, the elastic coefficients rema
compatible with the experimental data, but the values of
three independent diagonal coefficients jump up in this ca

The third group of calculations uses the cell data refin
by the energy-based approach with theORESTES quantum
engine and nonultrasoft potentials. The diagonal coefficie
jump up for both approximations this time. The elastic co
ficients extracted for the same cell data by the three differ
combinations of approximations, potentials, strain schem
normal equations, and quantities refined are strikingly si
lar.

After having dissociated in the above way the separ
roles played by the various approximations and cell size,
turn to finding out why the relaxed cell data is so differe
between GGA/PAW and LDA/ultrasoft. In elastic terms, t
cell change is calculable asE52SS, whereE is the strain
transforming the old cell into the relaxed cell,S is the elastic
compliance, andS is the residual stress calculatedab initio
for the old cell. As the two sets of elastic coefficients f
GGA and LDA are quite similar, the larger cell change wi
LDA is then necessarily due to larger stresses calculated
the x-ray cell data. In fact, the refined initial stress~S1 , S3!
at the x-ray cell data is~2.56, 0.50! GPa for the GGA/PAW
combination and~8.06, 5.24! GPa with LDA/ultrasoft, con-
firming the above reasoning.

We therefore ascribe the generally accepted superiorit
GGA over LDA ~Refs. 35–38! not to any superiority in the
calculation of stress change or energy change, but to a b
evaluation of stress and energy itself. In agreement with
colleagues who are closely associated with quantum softw
development~see Acknowledgments section!, we do not
think that there could be any difference between the ene
and stress-based approaches for the extraction of the el
coefficients other than those caused by the different nois
stress or energy numbers coming out of the simulations
different selections of strain.

VII. SUMMARY AND CONCLUSIONS

We have developed and implemented above a symme
general least-squares method for the extraction of elastic
efficients of strained materials fromab initio calculations of
stress. Implementation differences with an energy-based
proach that we published earlier12 are considerable, requir
ing, for example, different sets of efficient strains and a d
ferent strategy for the least-squares refinement of a diffe
list of variables. However, both methods share the increa
precision brought about by the least-squares procedur
well as the generality brought about by the streamlined tre
4-12
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ment of the normal equations for all crystal symmetries.
As the stress-strain equations constitute a 27327 linear

system, and therefore an algebraically simple case, a num
of applications not readily tractable with the algebraica
more complex energy-based approach becomes straigh
ward. We have detailed calculations for kyanite, a 32-at
triclinic compound, and for a selection of materials with
range of symmetries at zero pressure. We include exam
of application to the elastic behavior of materials under h
drostatic pressure on MgO, under general strain on Ti4As3 ,
and under general stress on Si. The MgO case leads to g
agreement with experimental stiffness, including its first a
second pressure derivatives. We report curves ofab initio
elastic coefficients corresponding to@001# uniaxial straining
of Ti4As3 , a material known only from its cell- and
structure-type data, and for which, to our best knowledge
other experimental data is apparently available, not eve
structure refinement. The Si case of uniaxial stressing al
@001# shows the evolution of elastic behavior that ends in
collapse of the material at211.7 GPa, compared with212
GPa experimentally.

We find the case of beryllium to be quite sensitive to c
data. On that sensitive case, we find that the difference
the values of the refined elastic coefficients between the L
and GGA approximations, as well as between energy-
stress-based approaches, are minimal if the same cell da
used. This remains true for different implementations inab
initio packages based on different pseudopotentials. H
ever, we find the GGA evaluation of relaxed cell data to
consistently closer to observed x-ray cell data than that fr
LDA. All this points to a better evaluation of stress and e
ergy, but not necessarily to changes in stress and energ
GGA when compared with LDA. The use of the prese
a
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method is of course limited toab initio engines that outpu
stress data. Those are less widespread than the total-e
engines.

It should be stressed that it is the symmetry generality
the least-squares approach detailed here that made it pos
to produce a robust user interface. This interface goes al
way from crystal structure databases, through transpa
preparation of the necessary quantum tasks, up to analys
ab initio results into elastic coefficients. The printout i
cludes derived quantities like Young’s modulus, Debye te
perature, and a spectrum of thermomechanical propertie
the polycrystalline material, all derivable from stiffness. Th
interface enables even relatively inexperienced users to
duce physically relevant results, like those we report ab
and more, in straightforward point-and-click fashion. T
case of Ti4As3 demonstrates the current possibility of minin
crystal structure databases withab initio software for tech-
nological properties. This may be a sign of things to co
for computational materials science.

All the above computations were performed usingMEDEA

~Ref. 15! and VASP ~Ref. 16! running on several 1.4-GHz
Pentium 4 or equivalent PC’s, exploited under various v
sions of the Windows operating system. Computation co
were accordingly quite modest.
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