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Hidden symmetry and knot solitons in a charged two-condensate Bose system
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We show that a charged two-condensate Ginzburg-Landau model or equivalently a Gross-Pitaevskii func-
tional for two charged Bose condensates, can be mapped onto a version of the nonlinear O~3! s model. This
implies in particular that such a system possesses a hidden O~3! symmetry and allows for the formation of
stable knotted solitons.
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For over forty years there has been a wide interes
condensed matter systems with several coexisting B
condensates.1 Here we shall investigate the physically impo
tant example of two charged condensates together with t
electromagnetic interaction. This system is described b
Ginzburg-Landau model with two flavors of Cooper pai
Alternatively, it relates to a Gross-Pitaevskii functional wi
two chargedcondensates of tightly bound fermion pairs,
some other charged bosonic fields. Such theoretical mo
have a wide range of applications and have been previo
considered in connection of two-band superconductivity.
deed, these models describe superconductivity in trans
metals.1,2 The presence of two condensates has been
served in experiments on Nb, Ta, and V as well as in N
doped Sr Ti O3.3 More recently the renewed interest to tw
gap superconductivity was sparked by discovery of the tw
band superconductor with surprisingly high critic
temperature Mg B2.4 It has also been argued in Ref. 5 th
under certain conditions liquid metallic hydrogen might
low for the coexistence of superconductivity with both ele
tronic and protonic Cooper pairs. In a liquid metallic deu
rium a deuteron superfluidity may similarly coexist wi
superconductivity of electronic Cooper pairs6 ~see also Ref.
7!.

Here we shall be particularly interested in anexact
equivalence between the two-flavor Ginzburg-Landau-Gro
Pitaevskii~GLGP! model and a version of the nonlinear O~3!
s model introduced in Ref. 8. We expose this equivalence
presenting an exact, explicit change of variables between
two models. The model in Ref. 8 is particularly interesti
since it describes topological excitations in the form
stable, finite length knotted closed vortices.9 The equivalence
then implies that a system with two charged condens
similarly supports topologically nontrivial, knotted soliton
Previously it has been argued that these topological def
could play an important role in high energy physics.8–13 The
purpose of the present paper is to discuss the condensed
ter counterparts.

A system with two electromagnetically coupled, opp
sitely charged Bose condensates can be described by a
flavor ~denoted by a51,2) Ginzburg-Landau or Gross
Pitaevskii~GLGP! functional,

F5E d3xF 1

2m1
US \]k1 i

2e

c
AkDC1U2

1
1 US \]k2 i

2e
AkDC2U2

1V~ uC1,2u2!1
B2 G , ~1!
2m2 c 8p
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where we take

V~ uC1,2u2!52bauCau21
ca

2
uCau4.

Here we shall consider the general case where the two
densates are characterized by different effective massesma ,
different coherence lengthsja5\/A2maba and different
concentrationsNa5^uCau2&5ba /ca .14 The properties of
the corresponding model with a single charged Bose field
well known. In that case the field degrees of freedom are
massive modulus of the single complex order parameter
a vector field which gains a mass due to the Meissner-Hi
effect. The important property of the present GLGP mode
that the two charged fields are not independent but there
nontrival coupling which is mediated by the electromagne
field. This implies that we have a nontrivial, hidden topolo
which becomes obscured when we represent the model in
variables~1!. In order to expose the topological structure w
introduce a new set variables, involving a massive fieldr
which is related to the densities of the Cooper pairs an
three-component unit vector fieldn¢ . The important feature of
these new variables is their gauge invariance: Neither
relative phase of the condensatesC1 andC2 nor the gauge
field A enters in the free energy functional when represen
in these new variables.

We start by introducing variablesr andx1,2 by

Ca5A2marxa ,

where the complexxa5uxaueiwa are chosen so thatux1u2
1ux2u251. The modulusr then has the following expres
sion:

r25
1

2 S uC1u2

m1
1

uC2u2

m2
D .

In terms of the variablesr andxa the free energy density in
Eq. ~1! reads as follows:

F5\2~]r!21\2r2u~]k1 iÃk!x1u21\2r2u~]k2 iÃk!x2u2

1
B2

8p
1V, ~2!

where we denoteÃk5(2e/\c)Ak , and] ~without an index!
is the ordinary¹ operator. The standard gauge invariant e
pression for the supercurrent density
©2002 The American Physical Society12-1
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J5
i\e

m1
$C1* ]C12C1]C1* %2

i\e

m2
$C2* ]C22C2]C2* %

2
4e2

c S uC1u2

m1
1

uC2u2

m2
DA ~3!

becomes in these new variables

J54\er2F j

2
2ÃG , ~4!

where
j5 i @x1]x1* 2x1* ]x12x2]x2* 1x2* ]x2#.

We introduce a gauge-invariant vector fieldCW , directly
related to the supercurrent density by

CW 5
J

er2
~5!

We then rearrange the terms in Eq.~2! as follows: We add
and subtract from Eq.~2! a term 1

4 \2r2j2 and observe tha
the following expression:

\2r2F u]x1u21u]x2u22
j2

4 G ~6!

is also gauge invariant. Indeed if we introduce the gau
invariant field

n¢5~ x̄,sW x!, ~7!

wherex5(x1 ,x2* ) andsW are the Pauli matrices, thenn¢ is a
unit vectorun¢ u51 and we can write Eq.~6! as follows:

\2r2F u]x1u21u]x2u22
j2

4 G5
1

4
\2r2~]n¢ !2. ~8!

Consider now the remaining terms in Eq.~1!. For the
magnetic field we get

B5rotA52
c

8e
rotCW 1

\c

4e
rot j , ~9!

where rotj can be written in terms of the unit vectorn¢ as
follows:

rot j5
1

2
n¢•] in¢3] jn¢ .

Combining these we then arrive at our main result: T
GLGP free energy density becomes

F5
\2r2

4
~]n¢ !21\2~]r!21

\2c2

512pe2 S 1

\
@] iCj2] jCi #

2n¢•] in¢3] jn¢ D 2

1
r2

16
CW 21V~r,n3!, ~10!

where we identify a version of the nonlinear O~3! s model
introduced in Ref. 8

F05
\2r2

4
~]n¢ !21

\2c2

512pe2
~n¢•] in¢3] jn¢ !2 ~11!

in interaction with a vector fieldCW . With this we have com-
pleted the mapping between the two-condensate GL
model~1! and~10!, which is an extension of the model~11!
introduced in Ref. 8. We emphasize that this involves
exact change of variables between the GLGP model and
10051
e

e

P

n
q.

~10!. This change of variables in particular eliminates t
gauge field and as a consequence the final result invo
only the physically relevant field degrees of freedom that
present in the two-condensate system.

Note in particular the appearance of the ma
for CW 2 which is a manifestation of the Meissner effec
the London magnetic field penetration length isl2

5(c2/16pe2)@ uC1u2/m11uC2u2/m2#215c2/32pe2r2. We
also emphasize that the contributionn¢•] in¢3] jn¢ to the mag-
netic field term in Eqs.~10! and ~11! is a fundamentally
important property of the two-condensate system which
no counterpart in a single condensate system. Indeed,
exactly due to the presence of this term that the tw
condensate system acquires properties which are qua
tively very different from those of a single-condensate s
tem: This term describes the magnetic field that becom
induced in the system due to a nontrivial electromagne
interaction between the two condensates.

The potential termV depends only on Cooper pair con
centrations and masses, and it is a function of the modulur
and then3 component of the vectorn¢ only. In particular, we
can write the mass term in Eq.~10! explicitly as follows:

V5A1Bn31Cn3
2 , ~12!

where
A5r2@4c1m1

214c2m2
22b1m12b2m2#,

B5r2@8c2m2
228c1m1

22b2m21b1m1#,

C54r2@c1m1
21c2m2

2#. ~13!

This mass term determines the energetically prefer
ground-state value forn3, which we denote byñ3. Explicitly,

ñ35
N1 /m12 N2 /m2

N1 /m11 N2 /m2
. ~14!

Thus the ground state value ofn¢ is a circle specified by the
conditionn35ñ3 on the unit two-sphere. This yields a un
form, unperturbed ground state for the condensates. N
that the ground state value only depends on the concen
tions Na and the massesma of the Cooper pairs.

However, here we are mostly interested in topological
fects where the unit vectorn¢ locally deviates from this
ground-state value. This then corresponds to the formatio
a local inhomogeneity in the densities of the Cooper pa
But in order to ensure a finite energy, at a certain dista
from the inhomogeneity the vectorn¢ should return to the
circle defined by Eq.~14!.

Indeed, the equivalence between the models~1! and ~10!
reveals a hidden topological structure in Eq.~1! which has a
number of important physical consequences. In particula
leads to the understanding of vortex types which are allow
by a two-condensate system: The model~11! is known to
admit topological defects that have the shape of stable k
ted solitons and are characterized by a nontrivial Ho
invariant8–12 ~see also comment15!. The simplest nontrivial
solution to the equations of motion that follow from Eq.~11!
was proposed in Ref. 8. In terms of vectorn¢ it forms a
toroidal vortex ring, twisted once around its core before jo
ing the ends. The equivalence between the two-conden
2-2
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model ~1! and ~10! then implies that the GLGP model wit
two charged condensates not only possesses a hidden~3!
symmetry, but should also allow for the formation of su
knotted vortex solitons. The stability of these topological d
fects has been confirmed in extensive numeri
simulations9–12 ~for video animation of the numerical simu
lations of the knotted solitons see the www-address indica
in Ref. 12!. Indeed, the knotted vortex solitons, e.g., in
two-condensate superconductor should consist of fin
length stable closed vortices, which carry a nontrivial heli
configuration of the magnetic field. These finite-leng
closed vortices have properties which are substantially
ferent from those of a loop which is formed by an ordina
Abrikosov vortex. In particular: the present vortices are p
tected against shrinkage by the third term in Eq.~10! @second
term in Eq.~11!#.

Since the variablen3 acquires the preferable value~14! in
the ground state, the knotted solitons have the follow
form: At spatial infinity the unit vectorn¢ assumes a value o
the circle which is defined by the conditionn35ñ3. We de-
note this value ofn¢ at spatial infinity by

n¢`5~n1
` ,n2

` ,ñ3! @n¢`5n¢~x→`!#. ~15!

At the center of a knotted soliton the unit vector then reac
a value which corresponds to the opposite point on the
sphere. In the case of a nontrivial knotted soliton the cu
where the vectorn¢ coincides with this opposite point valu
in general forms a closed loop or a knot. This is thecore of
the knotted soliton and we denote it by18

n¢05~2n1
` ,2n2

` ,2ñ3! ~n¢ value at core!. ~16!

At the core the densities of the condensates are characte
by the following nonvanishing values uC1(n¢0)u2
5(m1 /m2)N2 ; uC2(n¢0)u25(m2 /m1)N1. In between the
core wheren¢5n¢0 and the boundary wheren¢→n¢` the unit
vectorn¢ in general rotates in a manner which is determin
by the ensuing Hopf invariant.19 Consequently knotted soli
tons can be characterized by the number of rotations wh
are performed by the component ofn¢ , which is perpendicular
to the axis defined by the boundary conditionsn¢` and n¢0
when we move around the knotted soliton by covering
once in toroidal and once in poloidal directions over a
surface which is located between the coren¢5n¢0 and the
boundaryn¢5n¢`. In particular, in the region between the co
and the boundary the magnetic field acquires a contribu
from n¢ with a helical geometry,Bh}n¢•] in¢3] jn¢ . A sche-
matic plot of a toroidal-shaped knot soliton is given in Fig.

Finally we comment on the length scales that are pres
in our system. For simplicity we assume that the two co
densates have equal coherence lengthsj15j25j. In this
case one concludes immediately that Eq.~10! has two differ-
ent length scales. These arel which is the mass of the field
CW , andj which is the mass of the componentn3 and relates
to the coherence lengths of condensates. In the type-I l
which corresponds tol!j, and in the type-II limit where
l@j the characteristic sizes of knotted solitons are then
termined by different factors: In the type-I limit the size
determined by an interplay of the terms (]n¢)2 and (n¢•] in¢
3] jn¢)2 which implies that the size is of orderl.20 In the
10051
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type II limit the size of the soliton is determined by the lar
mass ofn3 and thus it is of order ofAlj.

In conclusion, we have argued that charged tw
condensate Bose systems possess a number of intere
properties which are qualitatively different from those of
single condensate system. In particular they can sup
stable knotted solitons as topological defects. Indeed, we
it remarkable that a GLGP functional for a two-compone
charged superfluid becomes intimately related to the mo
introduced by one of the authors in Ref. 8 which has be
previously found to be relevant for strong interactio
physics.9,10 This is a manifestation of the universal charac
of the model, which appears to describe a wide range
systems despite the differences in their physical origins. A
consequence the possibility of experimental investigation
the formation, properties, and interactions of knotted solito
in approproate superfluids~e.g., MgB2, Nb, Ta, V, Nb-doped
Sr Ti O3) along with numerical simulations, could then sh
light even on the properties of similar objects in non-Abeli
gauge theories of fundamental interactions.
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FIG. 1. A schematic plot illustrating helical geometry of th
vector n¢ in a simplest toroidal knot soliton~for simplicity we ne-
glected anisotropy effects connected with nonzero mass of then3

component of the vectorn¢). The toroidal hollow surface is a surfac
situated between the knot coren¢0 and the knot boundaryn¢`. On this
surface the vectorn¢ has a constant projection to the axis defined
the boundary conditionsn¢` andn¢ . The spiral lines on this surface
indicate the lines where the vectorn¢ has some particular constan
position on the unit sphere~the picture schematically shows a to
oidal knot soliton which, in terms of the vectorn¢ , was twisted twice
around its core before joining its ends!. If we proceed along an
arbitrary path over this surface covering the knot soliton once in
toroidal direction and then once in the poloidal direction, the vec
n¢ will perform n andm rotations correspondingly, according to th
Hopf invariant which characterizes the given soliton. In a gene
case the fluxtube can also be knotted~see also animations availabl
at the http address in Ref. 9!.
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