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Quantum phase transitions in one-dimensional long Josephson junction stacks
in parallel magnetic fields
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We report the effect of quantum and thermal fluctuations on stability of mutual phase locking in one-
dimensional long Josephson junction devices, involving layered superconductors. Accounting for both the
induction coupling and the charging effect, we determined the zero-temperats@) (phase diagram, using
renormalization-group analysis, and found that ithhasemode is stable, but sonmut-of-phasemodes are
unstable against quantum fluctuations. At finiteall stable phase-locking modéat T=0) are unstable, but
stability is still maintained within a finite length, which decreases inversely With Bi,Sr,CaCyOg., ,, this
length for thein-phasemode is roughly 100Qwm at 1 K.
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Layered superconductors, such as ¥Ba&O; and  o=er3/Ddgis more easily controlled. Since depends in-
Bi,Sr,CaCyOg, (BSCCO, are a strong candidate for tera- versely on the block layer thickned®, « can be adjusted,
hertz oscillators because they have large superconducting eimtercalating thel layers with Hg.° Also, a is a nonther-
ergy gaps and behave as vertical stacks of long Josephsamodynamic parameter and regulates the amplitude of fluc-
junctions(LJJ), as shown in Fig. 1. For device applications, tuations atT =0, indicating that the 1D LJJ system can un-
high power output and bandwidth are desirable. These chadergo the quantum phase transiti@PT).
acteristics are obtained when stable mutual phase locking of Before proceeding further, we outline the main result of
Josephson junctions is maintaifiéd a magnetic field paral- this work.We obtain the quantum phase diagram for a stack
lel to the S layers. Mutual phase locking, both-phaseand  of 1D LJJ at T=0, using renormalization-group (RG) analy-
out-of-phaseas shown in Fig. 2, is caused Kynagneti¢  Sis, and find that the in-phase mode is stablet theout-of-
inductive coupling between screening currents flowingPhasemode with a large wave numbegy, in the z direction
around adjacent Josephson vorti¢daxons as they move IS unstable against quantum fluctuations. All stable phase-
under a bias current. While all the phase-locked modes arf9cked modes become unstable at finftiebut stability is
obtained adjusting the bias current and the field strength, thE@intained within a finite length scal@long thes layers

in-phasemode is most useful. Consequently, stability of this Which decreases inversely with This length scale for the

mode is a focus of much interest.Recent numerical simu- m-pha;emode in BSCCO is rqughly 1QOpm at1K.
lations of a stack of 20 LdJi.e., N=20), using one- To include both the magnetic induction coupfirand the

dimensional(1D) sine-Gordon equations but neglecting thechargmg effect, we start with the coupled time-dependent

. - ) sine-Gordon equations deriv€cby Kim for a stack of 1D
quantum anq thermal fluct}Jat|on effects, indicate thaihe LJJ. Here we consider a system with a large number of LJJ
phasemode is stable against small external perturbations.

However, the fluctuation effects are strong in one dimension.

For example, quantum fluctuations vyield the Kosterlitz- } o Ix I
Thouless-Berezinskii-(KTB) type transitiofi in the 1D L 4 <
Josephson-junction arrdyJA) at zero temperaturelT(=0),° /

indicating that these effects can destabilize the phase-locked 7y L

%)

mode. However, this mode instability was not investigated
for a stack of 1D LJJ.

In this paper, we discuss the effect of quantum and ther-
mal fluctuations on stability of the phase-locked mode in
BSCCO. As suggested by earlier studie§we use a theo-
retical model for collective phase dynamics, which accounts
for (i) the inductive coupling andi) the presence of a non-
equilibrium state due to either the particle-hole imbal&rze n
the breakdown of local charge neutrality.e., charging ef- . / oy
fect) because of the smafilayer thicknessgs (~3 A). Note e B
that both the induction coupling and the effect of a nonequi-
librium state are equally important for the phase dynamics, g, 1. Stack of LJJ is shown schematically as alternating su-
when ds is comparable to the Debyécharge screening perconductingS) and insulating(l) layers with thicknesseds and
length,rp, which is at the atomic scale. Here we considerd, , respectivelyL, and L, denote the dimensions in theandy
only the charging effect to account for the presence of alirections, respectively. The magnetic field is applied in the plane of
nonequilibrium state, as is usually done, because its stréngtiunnel barriers.
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FIG. 2. Mutual phase locking of Josephson vortigéfied
ovalg with the wave numbek,,=27m/(N+ 1)a in the z direction
is schematically illustrated. Heré\ is the number of LJJ in the
stack anda=dg+d, . For thein-phasemode (n=1), the moving
Josephson vortices form a rectangular lattice, but for aheof-
phasemode m=N/2), they form a triangular lattice.
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coupling limit. Noting that % 25<1 and introducing the
gauge-invariant phay, for the Ith layer(i.e., ¢ | 1=
— 1 _1), we reduce Eq(l) to

72 1 9
g%_ _ZP[_‘UH—l"'Z’#I_lﬂI—l
P
—a(P =41t 6 =4 1+ 5)]
==sin(¢ 1= ) +sin(h— ¢ -1). (2

Here A2=—\2D/d’S. For convenience, we introduce the
dimensionlesspacelikeandtimelike coordinates by making
the transformationg/A .—x and w,t—t. One can now see
easily that the dynamics af,, described by Eq(2), is ob-
tained from

(i.e.,N>1) so that the boundary effect can be neglected. We

sethi =kg=c=1. For convenience, we assume that&and
| layers with uniform thicknessek; andd, , respectively, are

stacked in the direction and the magnetic field is applied in

they direction, as shown in Fig. 1. Since the dissipati@h
and charging effect$a) are small in BSCCQa~0.1 and

B~0.2.1 the collective phase dynamics of the gauge-

invariant phase difference,|_; between thelth and (
—1)th Slayers, under a finite bias current, is descrit3day
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neglecting the higher-order terms, such a8(ap)
and O(a®). The term E;=s(¢_2-3+¢i25+1)

+(d"'=2s)(@i—1j-2F @1+1y) +2(s—d") ¢, |_1 accounts for

the coupling between th&layers due to the charging effect.

wpzll\/E)\c is the plasma frequency,is the dielectric con-
stant in thel layers,\ .= (16e7?DJ.) Y2 J. is the Joseph-
son current, D=d’'+2s, d’'=d,+2\ coth{ds/\), and s

= —\[sinh@s/\)]~%. When the charging effect is absent (

£=2 [%

(ﬁ[A(z)lM] ?
—o| T

B

T

+[1_005(l//|_¢|1)]}, (3

where A@yy= (s~ 1)~ (-1~ -,) and r=it de-
notes the imaginary timelike coordinate. The effects of quan-
tum and thermal fluctuations on stability of phase locking are
determined using the partition functiof= [Dye” "],
whereS[:p,]:f(l)”drfdxﬁ. In the remainder of the paper,
we discuss the fluctuation effedtsoth forT=0 and+#0) on

the phase dynamics, using the Lagrangf@nin the func-
tional integral Z.

First, we discuss the effect of quantum fluctuations. At
T=0, the phase-coherence timg, the time scale for retain-
ing the memory of its phase, is infinitée., 7,=«), and
hence,r, does not play a role. Note, is defined, writing the
correlation functiorl’(x,t), which we will discuss below, in
terms of a reduced scaling functiod®g(x,t) as I'(0;t)
xPr(0t)~e Y. Since the system size in thedirection
diverges asT—0, the 1D LJJ stack is described using (1
+1)D classic statistical mechanics. Noting that the sine-
Gordon model of Eq(3) is mapped onto the 2D neutral
Coulomb gas modebr the 2D XY model in r=(x,7),*®> we
reduceZ to a familiar form in the following four steps: first,
write ¢y as Fourier seriegh=3, e ' second, go
back to the phase difference representatian _;
=3 ¢ € ! [ie, ¢ =(1—e "m)y ]; third, inte-

=0), Eqg. (1) recovers the sine-Gordon equations for agrate Out(pk ; and flnally, rescale the coordlnates o

multilayer system, derived by Bulaevskit all? To capture

the 1D nature of collective phase dynamics of EL, the
physical devices must be short in tigedirection (i.e., L).
For simplicity, we neglect the dissipation effece., 3=0)
in the discussion below.

The dynamics of the sine-Gordon E() is described
using a Lagrangian. In BSCCO, the Lagrangiéncorre-

sponding to Eq(l) is found, taking advantage of the fact that
the induction coupling is close to the strong-coupling limit.

Note that S=s/d’'=-0.49999 for BSCCO (since \
~1500,d,~ 15, andds~ 3 A), while S= — 0.5 in the strong-

=(xK}, ,T/Km) (X,7). We write the partition function as
Z=CIly_Z, , where the phase-locked mode contributfon
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QUANTUM PHASE TRANSITIONS IN ONE. ..

C=exg U2y (KyT/wp)X,, [(dk2m)In(é+wd)], K,
=(KI/KX)Y2 is the effective coupling constankX =2(1
—coska), Kpn=1-2a(l-coska), kn=2mm/(N+1)
(with m=1,2,...N), w,=(2n7T)K/wy, ny_is the number
of positively (and negatively charged particlesq; is the

charge located at;, & is the distance between the charges,

andz=K,.e~ "2 s the fugacity. Note that decouplitfpf

the phase-locked modes allows one to examine the stability

of each mode separatelg, of Eq. (4) is similar to that for

the 2D Coulomb gas modé&f{,but there are two important
differences:(i) K,, does not depend oif but (ii) it does
depend on both,, anda. Hence the LJJ stack exhibits QPT
ask,, and « change. This QPT is identical to the KTB tran-
sition between thdlow-T) ordered phase and théhigh-T)
disorderedphase in the 2D classical XY model.

The ordered and disorderedphases of Eq(4) represent
the stable and unstableregions for the phase-locked mode,
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FIG. 3. The phase diagram for stability of the phase-locked

respectively, since the appearance of unbound charges in tféPde alT=0, obtained from RG analysis.

Coulomb gas model corresponds to the quanplrase slip

in 1D LJJ, as in the 1D JJA, due to the fluxon-antifluxonsince the charging effect enhances quantum fluctuations, but

disassociation. Thetable-unstablghase boundary aft=0
is determined using RG analysf§ Scaling of the charge
separation distance frod, to &.+dé; (to the lowest order
in fugacity) yields

dx __y_z
4 & ®
dy__ﬁl
& ©

wherex= 0?2, y=47K &, Q*=nKpyay 0y , andK&

=K,e ™Kn2 These scaling equations indicate that the R
flow trajectories lie longx?—y?=const and flow to the
stable critical fixed liney=0 for K,,>K¢,. Along y=0, the

the time scaler,,. Note 7
the quantum critical pointQCP (i.e., K,,=K},), the size of

the in-phasemode (i.e., them=1 mode in Fig. 2 remains

stable.

We now discuss the effect of thermal fluctuations. At fi-
nite T, all phase-locked modes in the LJJ system are unstable
since the temperature sets the system size to be finite in the
direction(i.e.,L .= 1/T). The 1D systems have no long-range
order at finiteT. However, stability is still maintained within
, Is finite whenT is nonzero. Near
7, (relative toL,) is used to separate the finife phase
diagram into the thermally disorderddD), the quantum
critical (QC), and the quantum disorderd®D) regimes,
shown schematically in Fig. 4. First, in the TD region, ther-

Cmal fluctuations are dominant, argdfor K,,>KS¢, is finite.

Second, in the QC region, both thermal and quantum fluc-

tuations are equally important. The dotted line separates the

quantum sine-Gordon model of E() corresponds exactly Tp and QC regions, but the phase dynamics, in these two

to a free-field model. Hence, trstableand unstablephases
from Eqgs.(5) and (6), characterized by the correlation func-
tion I'(r) =(e'*(Ne1¢(0)

Cc
S for K. >Kp,,

ram~ (7)

—TI¢

e for K,<Kg,

wherer= (x2+72)'2, indicate that the correlation lengéts
infinite (i.e., é=) for K,,>K¢, (stablg but varies as¢

regions, are identical since,=L .. Finally, in the QD re-
gion, quantum fluctuations, rather than thermal fluctuations,
destabilize the phase-locked mode singeis exponentially
long (i.e., 7,>L ). This region is characterized by the con-

thermally

~ KR = () 1 g Km<KE (unstable.'® Here the criti-
cal coupling constantK;, is determined fromwK},—2
—47KSe ™Kn2. A simple numerical calculation reveals
that K$,~0.7193. The critical exponeny(K,,)=3 for K,
=K¢ but it is less thar; for K,,>KS¢,. The phase diagram
for stability, shown in Fig. 3, indicates that the-phase
mode (the m=1 mode in Fig. 2 is stable, but theout-of-
phasemodes with largé,, (i.e., them=N/4 andN/2 modes
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FIG. 4. The finiteT phase diagram for the 1D LJJ stack system
is shown schematically. The dotted line separates the TD region

in Fig. 20 are unstable against quantum fluctuations. Therom the QC region, while the dashed linE{ A) separates the QC

phase boundary is shifted to a smalkg with increasinga
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dition T<A~e MKn'= KD The dashed line, repre- 1+ darsiim® 1/2
sentingT~ A, separates the QC region from the QD region. 1 asim—
We estimate the length scdlg , for maintaining stability Cm:T — al (10
. . . € . m
(along theSlayers in the TD and the QC regions, computing 1+4 1535 ssz
DQC

7,. The phase-coherence ti in these regions is
characterized by relaxational dynamics. We compjte®°,
noting that the 1D LLJ system is scale invariant at the QCFepresents the maximum speed for the moving phase-locked
and is described by free Gaussian theory, which is conforJosephson vortices. In BSCCO, assumiag 25" this
mally invariant, fork ,>K¢,. The conformal symmetfjis  length scale for thén-phasemode (=1) and theout-of-
used to compute the correlation functiol (X,7) phgsgg]ode(wnh mt:' N{S) 'rlphqdels alkK ?re :I?;ghljy 1’[?100
ey (CTeion (O, . an um, respectively. This large value 6f, , for the
_<elwkm_(x e Iq_ok’"(o %) at finite T from the resultfim(f)_ in-phasemode is due to the strong inductive couplifig.,
=[(7+ix)(7—ix)]"*m"> at T=0. Using the mapr+iX  s=-0.49999, which strongly enhances the Swihart veloc-
— (wp/ K T)si (7K T/wp)(7=iX)], we write the two- ity for m= 1110

point correlation function at finit& as In summary, we investigated the effect of fluctuations on
K™ T/ )2 2 stability of the phase-locked mode in a stack of 1D LJJ. Our
T (F~ (mKnT/wp) ®) result shows that the nature of QPT in this system is the
m CaKET o aKIT stable-unstabléransition for the phase-locked mode, indicat-
sin (7+ix)sin o (7 iX) ing theout-of-phasenodes with largd,,, are unstable but the

“p P in-phasemode is stable against quantum fluctuations. All
The time scale for the relaxation dynamics is computethhase-locked modes are found unstable at filijtut sta-
using the relation 7 r=ixi (0,00 dx (0.@)/dw],=0-  bility is still maintained within the length, ., which de-
The dynamical susceptibility xy (k,w) is obtained creases inversely witll. I, , for the in-phase mode in
from analytical continuation of iw, in ka(k,iwn) Bi,Sr,CaCyOg, (~1000 um) is much larger than that for

ey T (ke w7 o the out-of-phasenode due to strong inductive coupling. This
ffop dT.fdxe e _ T (X,7) to real frequenciesie., o provides insight on the operating range of temperatures
iw,—w+i6). Following the usual procedui®for evaluat-  and the physical dimensions of LJJ devices for high power

ing the integrals iy, (k,iw,), we obtain output applications requiring the stabifephasemode. This
prediction can be verified in the LJJ stack that is shag) (
maoc_ L mn(Kn) 9 in the y direction since such devices are within reach of
Tme® ~ 5T C 4 ©) present day fabrication technology.
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