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Quantum phase transitions in one-dimensional long Josephson junction stacks
in parallel magnetic fields
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We report the effect of quantum and thermal fluctuations on stability of mutual phase locking in one-
dimensional long Josephson junction devices, involving layered superconductors. Accounting for both the
induction coupling and the charging effect, we determined the zero-temperature (T50) phase diagram, using
renormalization-group analysis, and found that thein-phasemode is stable, but someout-of-phasemodes are
unstable against quantum fluctuations. At finiteT, all stable phase-locking modes~at T50! are unstable, but
stability is still maintained within a finite length, which decreases inversely withT. In Bi2Sr2CaCu2O81y , this
length for thein-phasemode is roughly 1000mm at 1 K.
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Layered superconductors, such as YBa2Cu3O7 and
Bi2Sr2CaCu2O81y ~BSCCO!, are a strong candidate for tera
hertz oscillators because they have large superconducting
ergy gaps and behave as vertical stacks of long Josep
junctions~LJJ!, as shown in Fig. 1. For device application
high power output and bandwidth are desirable. These c
acteristics are obtained when stable mutual phase lockin
Josephson junctions is maintained1 in a magnetic field paral-
lel to theS layers. Mutual phase locking, bothin-phaseand
out-of-phaseas shown in Fig. 2, is caused by~magnetic!
inductive coupling between screening currents flow
around adjacent Josephson vortices~fluxons! as they move
under a bias current. While all the phase-locked modes
obtained adjusting the bias current and the field strength,
in-phasemode is most useful. Consequently, stability of th
mode is a focus of much interest.2,3 Recent numerical simu
lations of a stack of 20 LJJ~i.e., N520!, using one-
dimensional~1D! sine-Gordon equations but neglecting t
quantum and thermal fluctuation effects, indicate that thein-
phasemode is stable against small external perturbation3

However, the fluctuation effects are strong in one dimens
For example, quantum fluctuations yield the Kosterli
Thouless-Berezinskii-~KTB! type transition4 in the 1D
Josephson-junction array~JJA! at zero temperature (T50),5

indicating that these effects can destabilize the phase-loc
mode. However, this mode instability was not investiga
for a stack of 1D LJJ.

In this paper, we discuss the effect of quantum and th
mal fluctuations on stability of the phase-locked mode
BSCCO. As suggested by earlier studies,6–8 we use a theo-
retical model for collective phase dynamics, which accou
for ~i! the inductive coupling and~ii ! the presence of a non
equilibrium state due to either the particle-hole imbalance8 or
the breakdown of local charge neutrality7 ~i.e., charging ef-
fect! because of the smallS layer thickness,dS ~;3 Å!. Note
that both the induction coupling and the effect of a noneq
librium state are equally important for the phase dynam
when dS is comparable to the Debye~charge screening!
length, r D , which is at the atomic scale. Here we consid
only the charging effect to account for the presence o
nonequilibrium state, as is usually done, because its stren7
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2 /DdS is more easily controlled. Sincea depends in-

versely on the block layer thicknessD, a can be adjusted
intercalating theI layers with HgI2 .9 Also, a is a nonther-
modynamic parameter and regulates the amplitude of fl
tuations atT50, indicating that the 1D LJJ system can u
dergo the quantum phase transition~QPT!.

Before proceeding further, we outline the main result
this work.We obtain the quantum phase diagram for a sta
of 1D LJJ at T50, using renormalization-group (RG) analy
sis, and find that the in-phase mode is stable, but theout-of-
phasemode with a large wave numberkm in the z direction
is unstable against quantum fluctuations. All stable pha
locked modes become unstable at finiteT, but stability is
maintained within a finite length scale~along theS layers!
which decreases inversely withT. This length scale for the
in-phasemode in BSCCO is roughly 1000mm at 1 K.

To include both the magnetic induction coupling6 and the
charging effect,7 we start with the coupled time-depende
sine-Gordon equations derived10 by Kim for a stack of 1D
LJJ. Here we consider a system with a large number of

FIG. 1. Stack of LJJ is shown schematically as alternating
perconducting~S! and insulating~I! layers with thicknessesdS and
dI , respectively.Lx and Ly denote the dimensions in thex and y
directions, respectively. The magnetic field is applied in the plane
tunnel barriers.
©2002 The American Physical Society09-1
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~i.e., N@1! so that the boundary effect can be neglected.
set\5kB5c51. For convenience, we assume that theSand
I layers with uniform thicknessesdS anddI , respectively, are
stacked in thez direction and the magnetic field is applied
the y direction, as shown in Fig. 1. Since the dissipation~b!
and charging effects~a! are small in BSCCO~a;0.1 and
b;0.2!,11 the collective phase dynamics of the gaug
invariant phase differencew l ,l 21 between thel th and (l
21)th S layers, under a finite bias current, is described10 by

]2w l ,l 21

]x2 2
1

lc
2D S 1

vp
2

]2

]t2 1
b

vp

]

]t D
3@d8w l ,l 211s~w l 11,l1w l 21,l 22!#

2
a

lc
2D

1

vp
2 S ]2J l

]t2 D
5

1

lc
2D @d8 sinw l ,l 211s~sinw l 11,l1sinw l 21,l 22!#,

~1!

neglecting the higher-order terms, such asO~ab!
and O(a2). The term J l5s(w l 22,l 231w l 12,l 11)
1(d822s)(w l 21,l 221w l 11,l)12(s2d8)w l ,l 21 accounts for
the coupling between theS layers due to the charging effec
vp51/Aelc is the plasma frequency,e is the dielectric con-
stant in theI layers,lc5(16ep2DJc)

21/2, Jc is the Joseph-
son current, D5d812s, d85dI12l coth(dS/l), and s
52l@sinh(dS/l)#21. When the charging effect is absent (a
50), Eq. ~1! recovers the sine-Gordon equations for
multilayer system, derived by Bulaevskiiet al.12 To capture
the 1D nature of collective phase dynamics of Eq.~1!, the
physical devices must be short in they direction ~i.e., Ly!.
For simplicity, we neglect the dissipation effect~i.e., b50!
in the discussion below.

The dynamics of the sine-Gordon Eq.~1! is described
using a Lagrangian. In BSCCO, the LagrangianL corre-
sponding to Eq.~1! is found, taking advantage of the fact th
the induction coupling is close to the strong-coupling lim
Note that S5s/d8520.499 99 for BSCCO ~since l
;1500,dI;15, anddS;3 Å!, while S520.5 in the strong-

FIG. 2. Mutual phase locking of Josephson vortices~filled
ovals! with the wave numberkm52pm/(N11)a in thez direction
is schematically illustrated. Here,N is the number of LJJ in the
stack anda5dS1dI . For thein-phasemode (m51), the moving
Josephson vortices form a rectangular lattice, but for theout-of-
phasemode (m5N/2), they form a triangular lattice.
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coupling limit. Noting that 112S!1 and introducing the
gauge-invariant phase13 c l for the l th layer ~i.e., w l ,l 215c l
2c l 21!, we reduce Eq.~1! to

Lc
2 ]2c l

]x2 2
1

vp
2

]2

]t2 @2v l 1112c l2c l 21

2a~c l 1224c l 1116c l24c l 211c l 22!#

52sin~c l 112c l !1sin~c l2c l 21!. ~2!

Here Lc
252lc

2D/d8S. For convenience, we introduce th
dimensionlessspacelikeand timelikecoordinates by making
the transformationsx/Lc→x andvpt→t. One can now see
easily that the dynamics ofc l , described by Eq.~2!, is ob-
tained from

L5(
l

H 1

2F S ]c l

]x D 2

1S ]@c l2c l 21#

]t D 2

2aS ]@D~2!c l #

]t D 2G1@12cos~c l2c l 21!#J , ~3!

where D (2)c l5(c l2c l 21)2(c l 212c l 22) and t5 i t de-
notes the imaginary timelike coordinate. The effects of qu
tum and thermal fluctuations on stability of phase locking
determined using the partition functionZ5*Dc le

2S@c l #,
whereS@c l #5*0

1/Tdt*dxL. In the remainder of the pape
we discuss the fluctuation effects~both forT50 andÞ0! on
the phase dynamics, using the Lagrangian~3! in the func-
tional integralZ.

First, we discuss the effect of quantum fluctuations.
T50, the phase-coherence timetw , the time scale for retain-
ing the memory of its phase, is infinite~i.e., tw5`!, and
hence,tw does not play a role. Notetw is defined, writing the
correlation functionG(x,t), which we will discuss below, in
terms of a reduced scaling functionFR(x,t) as G(0,t)
}FR(0,t);e2t/tw.14 Since the system size in thet direction
diverges asT→0, the 1D LJJ stack is described using (
11)D classic statistical mechanics. Noting that the sin
Gordon model of Eq.~3! is mapped onto the 2D neutra
Coulomb gas model~or the 2D XY model! in r5(x,t),15 we
reduceZ to a familiar form in the following four steps: first
write c l as Fourier seriesc l5Skm

ckm
e2 ikmal; second, go

back to the phase difference representationw l ,l 21
5Skm

wkm
e2 ikmal @i.e., wkm

5(12e2 ikma)ckm
#; third, inte-

grate out wkm
; and finally, rescale the coordinates tor̄

5(xKm
x ,t/Km

t )5( x̄,t̄). We write the partition function as
Z5CPkm

Zkm
, where the phase-locked mode contribution16

Zkm
is

Zkm
5(

nkm

z2nkm

~nkm
! !2 E d2r̄ 1

jc
2 ¯E d2r̄ 2nkm

jc
2

3expS 2pKm(
j Þ l

qj ,km
ql ,2km

ln
u r̄ j2 r̄ l u

jc
D , ~4!
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C5exp@1/2Skm
(KmT/vp)Svn

*(dk/2p)ln(k21vn
2)#, Km

5(Km
t /Km

x )1/2 is the effective coupling constant,Km
x 52(1

2coskma), Km
t 5122a(12coskma), km52pm/(N11)

~with m51,2,...,N!, vn5(2npT)Km
t /vp , nkm

is the number

of positively ~and negatively! charged particles,qj is the
charge located atr̄ j , jc is the distance between the charge
andz5Kme2p2Km/2 is the fugacity. Note that decoupling16 of
the phase-locked modes allows one to examine the stab
of each mode separately.Zkm

of Eq. ~4! is similar to that for
the 2D Coulomb gas model,17 but there are two importan
differences:~i! Km does not depend onT but ~ii ! it does
depend on bothkm anda. Hence the LJJ stack exhibits QP
askm anda change. This QPT is identical to the KTB tran
sition between the~low-T! ordered phase and the~high-T!
disorderedphase in the 2D classical XY model.

The ordered and disorderedphases of Eq.~4! represent
the stableand unstableregions for the phase-locked mod
respectively, since the appearance of unbound charges i
Coulomb gas model corresponds to the quantumphase slip
in 1D LJJ, as in the 1D JJA, due to the fluxon-antiflux
disassociation. Thestable-unstablephase boundary atT50
is determined using RG analysis.18 Scaling of the charge
separation distance fromjc to jc1djc ~to the lowest order
in fugacity! yields

dx

djc
52

y2

jc
, ~5!

dy

djc
52

xy

jc
, ~6!

wherex5Q222, y54pK̄jc
2, Q25pKmqkm

q2km
, and K̄jc

2

5Kme2p2Km/2. These scaling equations indicate that the R
flow trajectories lie longx22y25const and flow to the
stable critical fixed liney50 for Km.Km

c . Along y50, the
quantum sine-Gordon model of Eq.~3! corresponds exactly
to a free-field model. Hence, thestableandunstablephases
from Eqs.~5! and~6!, characterized by the correlation fun
tion G( r̄ )5^eiw( r̄ )e2 iw(0)&,

G~ r̄ !;H 1

r̄ h~Km! for Km.Km
c ,

e2 r̄ /j for Km,Km
c ,

~7!

wherer̄ 5( x̄21 t̄2)1/2, indicate that the correlation lengthj is
infinite ~i.e., j5`! for Km.Km

c ~stable! but varies asj

;eA/@Km
21

2(Km
c )21#1/2

for Km,Km
c ~unstable!.18 Here the criti-

cal coupling constantKm
c is determined frompKm

c 22

54pKm
c e2p2Km

c /2. A simple numerical calculation revea
that Km

c '0.7193. The critical exponenth(Km)5 1
4 for Km

5Km
c but it is less than1

4 for Km.Km
c . The phase diagram

for stability, shown in Fig. 3, indicates that thein-phase
mode ~the m51 mode in Fig. 2! is stable, but theout-of-
phasemodes with largekm ~i.e., them5N/4 andN/2 modes
in Fig. 2! are unstable against quantum fluctuations. T
phase boundary is shifted to a smallerkm with increasinga
10050
,

ity

the

e

since the charging effect enhances quantum fluctuations
the in-phasemode ~i.e., them51 mode in Fig. 2! remains
stable.

We now discuss the effect of thermal fluctuations. At
nite T, all phase-locked modes in the LJJ system are unst
since the temperature sets the system size to be finite in tt
direction~i.e.,Lt51/T!. The 1D systems have no long-rang
order at finiteT. However, stability is still maintained within
the time scaletw . Notetw is finite whenT is nonzero. Near
the quantum critical point~QCP! ~i.e., Km5Km

c !, the size of
tw ~relative to Lt! is used to separate the finiteT phase
diagram into the thermally disordered~TD!, the quantum
critical ~QC!, and the quantum disordered~QD! regimes,
shown schematically in Fig. 4. First, in the TD region, the
mal fluctuations are dominant, andj for Km.Km

c is finite.
Second, in the QC region, both thermal and quantum fl
tuations are equally important. The dotted line separates
TD and QC regions, but the phase dynamics, in these
regions, are identical sincetw>Lt . Finally, in the QD re-
gion, quantum fluctuations, rather than thermal fluctuatio
destabilize the phase-locked mode sincetw is exponentially
long ~i.e., tw@Lt!.

14 This region is characterized by the co

FIG. 3. The phase diagram for stability of the phase-lock
mode atT50, obtained from RG analysis.

FIG. 4. The finiteT phase diagram for the 1D LJJ stack syste
is shown schematically. The dotted line separates the TD reg
from the QC region, while the dashed line (T;D) separates the QC
region from the QD region.
9-3
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dition T!D;e2A/@Km
21

2(Km
c )21#1/2

. The dashed line, repre
sentingT;D, separates the QC region from the QD regio

We estimate the length scalel m,w for maintaining stability
~along theS layers! in the TD and the QC regions, computin
tw . The phase-coherence timetw

TD QC in these regions is
characterized by relaxational dynamics. We computetw

TD QC,
noting that the 1D LLJ system is scale invariant at the Q
and is described by free Gaussian theory, which is con
mally invariant, forKm.Km

c . The conformal symmetry19 is
used to compute the correlation functionGkm

( x̄,t̄)

5^eiwkm
( x̄,t̄)e2 iwkm

(0,0)& at finite T from the resultGkm
( r̄ )

5@( t̄1 i x̄)( t̄2 i x̄)#h(Km)/2 at T50. Using the mapt̄6 i x̄
→(vp /pKm

t T)sin@(pKm
t T/vp)(t̄6ix̄)#, we write the two-

point correlation function at finiteT as

Gkm
~ r̄ !;F ~pKm

t T/vp!2

sin
pKm

t T

vp
~ t̄1 i x̄ !sin

pKm
t T

vp
~ t̄2 i x̄ !G h/2

. ~8!

The time scale for the relaxation dynamics is compu
using the relation tm,R5 ixkm

(0,0)@]xkm

21(0,v)/]v#v50 .

The dynamical susceptibility xkm
(k,v) is obtained

from analytical continuation of ivn in xkm
(k,ivn)

5*0
vp /Tdt*dxe2 i (kx2vnt)Gkm

( x̄,t̄) to real frequencies~i.e.,

ivn→v1 id!. Following the usual procedure20 for evaluat-
ing the integrals inxkm

(k,ivn), we obtain

tm,w
TD QC5

1

2T
cot

ph~Km!

4
, ~9!

indicating that the phase coherence is maximally incoher
Hence, the length scalel m,w5 c̄mtm,w

TD QC decreases inversel
with T. Here the Swihart velocityc̄m for the modem,10
i,

10050
.

P
r-

d

t.

c̄m5
1

Ae F 114a sin2
kma

2

114S 2S

112SD sin2
kma

2

G 1/2

, ~10!

represents the maximum speed for the moving phase-loc
Josephson vortices. In BSCCO, assuminge'25,11 this
length scale for thein-phasemode (m51) and theout-of-
phasemode~with m5N/8! modes at 1 K are roughly 1000
and 20mm, respectively. This large value ofl m,w for the
in-phasemode is due to the strong inductive coupling~i.e.,
S520.499 99!, which strongly enhances the Swihart velo
ity for m51.1,10

In summary, we investigated the effect of fluctuations
stability of the phase-locked mode in a stack of 1D LJJ. O
result shows that the nature of QPT in this system is
stable-unstabletransition for the phase-locked mode, indica
ing theout-of-phasemodes with largekm are unstable but the
in-phasemode is stable against quantum fluctuations.
phase-locked modes are found unstable at finiteT, but sta-
bility is still maintained within the lengthl m,w , which de-
creases inversely withT. l m,w for the in-phase mode in
Bi2Sr2CaCu2O81y ~;1000mm! is much larger than that fo
theout-of-phasemode due to strong inductive coupling. Th
work provides insight on the operating range of temperatu
and the physical dimensions of LJJ devices for high pow
output applications requiring the stablein-phasemode. This
prediction can be verified in the LJJ stack that is short (Ly)
in the y direction since such devices are within reach
present day fabrication technology.

The author thanks KIAS, where a part of this work w
completed. This work was supported in part by the UN
Research Seed Money Program.
-

for
els
1A. V. Ustinov and S. Sakai, Appl. Phys. Lett.73, 683~1998!; J. U.
Lee et al., ibid. 71, 1412 ~1997!; N. F. Pedersen and S. Saka
Physica C332, 297 ~2000!.

2A. E. Koshelev and I. S. Aranson, Phys. Rev. Lett.85, 3938
~2000!; R. Kleineret al., Phys. Rev. B62, 4086~2000!; Physica
C 362, 29 ~2001!; R. Kleiner, Phys. Rev. B50, 6919~1994!.

3M. Machidaet al., Physica C330, 85 ~2000!.
4J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!; V.

L. Berezinskii, Zh. Eksp. Teor. Fiz.61, 1144~1971! @Sov. Phys.
JETP34, 610 ~1971!#.

5See, for example, M. Y. Choiet al., Phys. Rev. B63, 094516
~2001!; R. M. Bradley and S. Doniach,ibid. 30, 1138~1984!.

6S. Sakaiet al., J. Appl. Phys.73, 2411~1993!.
7M. Machidaet al., Phys. Rev. Lett.83, 4618 ~1999!, and refer-

ences therein.
8S. N. Artemenko and A. G. Kobelkov, Phys. Rev. Lett.78, 3551

~1997!; D. Ryndyk, ibid. 80, 3376~1998!.
9Y.-J. Dohet al., Phys. Rev. B63, 144523~2001!.

10J. H. Kim, Int. J. Mod. Phys. B15, 3347~2001!.
11K. Schlengaet al., Phys. Rev. B57, 14 518 ~1998!; Ch. Preis
et al., in Superconducting Superlattices II, SPIE Conference
Proceedings~SPIE, Bellingham, WA, 1998!, p. 236.

12L. N. Bulaevskiiet al., Phys. Rev. B50, 12 831~1994!.
13L. N. Bulaevskii and J. R. Clem, Phys. Rev. B44, 10 234~1991!.
14S. Sachdev,Quantum Phase Transitions~Cambridge University,

Cambridge, England, 1999!; S. L. Sondhi et al., Rev. Mod.
Phys.69, 315 ~1997!.

15P. M. Chaikin and T. C. Lubensky,Principles of Condensed Mat
ter Physics~Cambridge University, New York, 1995!.

16A similar mode decoupling was also found in an elastic theory
the stripe phase of the 2D electron gas in high Landau lev
@see H. Yi, H. Fertig, and R. Coˆté, Phys. Rev. Lett.85, 4156
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