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Disorder and thermally driven vortex-lattice melting in La ,_,Sr,CuQO, crystals
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Magnetization measurements in,LgSr,CuQ, crystals indicate vortex order-disorder transition manifested
by a sharp kink in the second magnetization peak. The transition field exhibits unique temperature dependence,
namely a strong decrease with temperature in the entire measured range. This behavior rules out the conven-
tional interpretation of a disorder-driven transition into an entangled vortex solid phase. It is shown that the
transition in La_,Sr,CuQ, is driven by both thermally- and disorder-induced fluctuations, resulting in a
pinned liquid state. We conclude that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions are
different manifestations of the same thermodynamic order-disorder transition, distinguished by the relative
contributions of thermal and disorder-induced fluctuations.
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The nature of the various vortex matter phases in highvortex phase in which onlf,;, and E, play a role. We
temperature superconductditdTS), and the transitions be- demonstrate that in order to explain the behavior of the tran-
tween them, have been the topic of many experimental angiti(_)n line in LaSCO, one must take into account the contri-
theoretical investigations:*® Two vortex order-disorder bution of thermal energy as well. Thus, our LaSCO samples
phase transitions have been identified: A melting transitiorP*ovide a unique example where the transition to the vortex
into a liquid vortex state manifested by a discontinuous jum isordered state is driven kyoth thermally- and disorder-
in the reversible magnetizatidnand a solid-solid transition Induced fluctuations. The resulting disordered state may be

into an entangled vortex stattmanifested by the appear- identified as a liquid state with irreversible magnetic behav-
ance of a second magnetization peak with pronounced feéc—)r’s"ee\z/"e;Ivorf;rﬁ"rgsed'l'wgseSta%fm from a  single
tures (onset?® kink>! or peaK). Theoretical treatments at- P . 9
tempting to describe the vortex phase diagram in HT8, (L'ao_93§r0_063)2CuO4 crystal, with T of aboutnC:%Z K. Data
ascribe the melting transition to thermal fluctuations and thé"’l'lII be sflwown_ for _sanIe Lllt(O_BZ.ﬁx 0.8 T |\3| thomf[ght_
solid-solid transition to disorder induced fluctuations of vor-&' Sampies gt|ve simiar r?su S(;n all aspects. Magne I'Za lon
tices. Accordingly, the melting line is determined by the measurements wereé performed using a commercial super-
competition between the elastic energy,;, and the thermal conducting quantum interference  device magnetometer
energy, kT, while the contest betweeB,, and the pinning (Quantum Design MPMS-5S

energy,E,;,, determines the solid-solid transition line. The The inset to Fig. 1 presents magnetization loops measured

Sr=ping : at several temperatures, with the field parallel to #te
melting line is expected to decrease strongly with tempera: nes. Similarly to untwinned YBEWO,_ , (YBCO) 14

. |
ture as thermal fluctuations are enhanced, whereas the vort&& L sl
solid-solid transition line is expected to maintain a constanP™® observes four distinct featursdicated by arrows The

; +

value at low temperatures where bdtl;, and E¢; become onset of a secqnd peak on the ascen(jmg. branth)%tet, a
temperature independent. Experiments in a variety of HTSharp change in slope of the magpetlzatlomﬁkk, and
crystalé®%82pasically conform to this theory, yielding a their counterparts on the descending branctHgts. and
melting line which decreases with temperature, or a vortextkink, respectively. The temperature dependence of these
solid-solid transition line which is temperature independenfeatures is depicted in the main panel of Fig. 1. Note that all
in a wide range of temperatures. four lines show similar behavior, namely a steegncave

In this paper we report on a significantly different behav-descent with the increase of temperature. Similar strong tem-
ior obtained in La_,Sr,CuQ, (LaSCO crystals. Magnetiza- perature dependence ldf) ,s;andH s, Was observed also
tion measurements reveal a transition of a quasi-ordered vofer H|c. However, forH|c,H,’, andH;,, were more dif-
tex lattice into a disordered vortex state with enhancedicult to resolve due to the presence of twin boundatfds.
vortex pinning, indicated by a sharp kink in the second magthis manuscript we therefore focus on results obtained with
netization peakR:** However, the transition field exhibits a H|jab.'
unigue behavior, namely strong temperature dependence in Magnetic relaxation measurements yield further insight
the entire measured range. This behavior rules out the cornto the nature of these lines. Figure 2 depicts the evolution
ventional interpretation of a transition into an entangled solidbf the magnetization at 12 K. In this figure every column
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The magnetization curves and relaxation data indicate an
order-disorder phase transition of the vortex system occur-
ring at Hy,,, in agreement with observations in YBCO.
Since the disordered phase is magnetically irreversible, it is
tempting to identify this transition as a vortex solid-solid
phase transition, similar to that observed in YBEO,
Bi,SL,CaCy0; (BSCCO,> Nd,; gCe1{CuU0,_5,° and
Bi; Pl sSLCaCuyOg., 5.2 We note, however, that contrary
to these materials, which exhibit a temperature independent
solid-solid transition line for a wide range of temperatures, in
LaSCO, this line is strongly temperature dependent in the
entire measured temperature range. Thus, the conventional
interpretation of a disordered-driven transition into an en-
tangled solid phase is refutable.

The measured temperature dependence of the transition
line may be influenced by effects of surface barriers, which

angles$, and the irreversibility lindopen squargsLines are a guide might obscure the features of the second peak anomaly at

,12,14,19 At ;
to the eye. Inset: Magnetization loops with the field parallel to theIOW temperature%. Indeed, magnetization loops 'n.
ab planes, at 12, 16, 20, and 24 K. Arrows point to four character-@SCO reveal a strong temperature dependence of the field

istic features plotted in the main panel. where flux initially penetrates the sample overcoming sur-
face barrierd® However, Bean-Livingston barriers play a
e only in the increasing branch of the loband have no
ect on the decreasing branch; the fact that in LaSCO the
strong temperature dependence is common to the features
e ) N - measured on both ascending and descending branches, ex-
vary with time, while bothHgpse¢ and Hopseq (Nt Shown oy 4es an explanation associated with surface barriers.
decrease appreciably over an hour. These observations point pngther possible explanation for the behavior of the mea-
to either of the kink fields, rather than the onset, as indicating,ed transition line in LaSCO may be associated with the
an order-disorder transition, as previously found in YBEQ' influence of the persistent current: Strong currents may have
This result is further refined by measurements of the field, tendency to order the vorticBsso that transition into a
dependence of the normalized magnetic relaxation ®te, \ortex glass would be deferred to higher fields. As tempera-
=d(Inmy/d(Int) , as depicted in the inset to Fig. 2: A sharp e is decreased current increases, and its influence on the
change in the slope afvs field is observed at a field corre- yansition line should be marked. This explanation is pre-
sponding toH,, on both the branche$. cluded by the fact that the position of the kink is unaffected
by the change in current; as can be seen from Fig. 2, within
H TGe] the time windqw .Of. Fhe measurement, th(_a_current relgxeg to
4 8 12 16 20 about 75% of its initial value, but the position of the kink is
T not altered, while within the same time window the onset
field shifts by about 1 kOe.

In the following, we propose an explanation for the
unigue temperature dependence of the transition line mea-
sured in LaSCO asserting that this transition is driven by
0.02 both thermally- and disorder-induced fluctuations. The tran-

sition field atH,;,(T) is associated with the second magne-
tization peak, as does the solid-solid transition field, but de-
pends strongly on temperature like the melting field. This
strong temperature dependence implies that the transition to
the disordered vortex state is driven not only by disorder-
induced fluctuations, which are temperature independent far
below T, but also by thermal fluctuations. As both thermal
and disorder-induced fluctuations take a part in destabilizing
FIG. 2. Relaxation measurements at 12 K, on the ascendin e ordered solid, the interplay between all three energy

branch of the loop. Grey columns represent measurements extend .ﬁalzezsile4e| Epin, ‘?‘nd kT', should determ'r_]e_ the transition
over an hour. Lines connect magnetizationtat0 andt=1 h.  lne. The basic premise of our analysis is that an order-

Arrows point at the location of the characteristic features. Note thaﬁisorder tran.sition occurs when the sum of th? thermal and
H ! set Shifts about 1 kOe, buk,;,, is unaffected. Inset: Depen- the disorder-induced displacements of the flux Imé) and
dence of the relaxation rate on field. (U3, respectively, exceeds a certain fraction of the vortex

FIG. 1. Temperature dependence Hf,..(T) (up triangles,
Hiin(T) (circles, Hyini(T) (solid diamondg H,oo{T) (down tri-

al
represents measurement extended over an hour; the so[@f
lines in the figure connect values obtainedtat0 andt
=1 h. Positions of bott;,,, andH,;,, (not shown do not
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200 Epin=Ee. All lines in between these two represent order-
1o disorder transition lines in whicboth thermal and pinning
150 solid:pinned fiquid energies are taken into account. Thus, by tuning the pinnjng
i transition line strength one may gradually change the shape of the transition
melting line and the nature of the disordered phase. In particular,
: 1004 whenE;, andkT are comparable, the behavior of the tran-
= sition line is qualitatively similar to that of a melting line,
m however it represents a transition to a disordered state exhib-
504 iting irreversible magnetic behavior. One may refer to this
disordered state as a “pinned liquid staté.Our experimen-
— 7 tal results for B)p(T) in LaSCO, see Fig. 1, clearly indicate
e L —. that our LaSCO sample provides an example of a transition
0.0 0.2 0.4 0.6 0.8 1.0

into a vortex pinned liquid state driven by both thermally-
and disorder-induced fluctuations.

_ , , An indication for the nature of this phase transition was
FIG. 3. Numerical solution Offe=Epn +kT. The melting o ninoy from partial hysteresis loop measurem#&its2°

(solid-solid transitionline is calculated by neglecting pinnirither- . N .
mal) energy. All lines in between represent order-disorder transitionThese partial loops exhibit history dependent phenomena in

lines in which both thermal and pinning energies are taken intdN€ r€gion Honeo(T) <H<Hyi(T), similar to those ob-
account, but differ in the pinning strengti,(arbitrary unit. tained in YBCO'* The observed history phenomena indicate
that a disordered vortex state can be “supercooled” to exist
as a metastable stateelow the transition line, i.e., in the
lattice constanf,a, . This leads tqu3) + (uj;) =c?a3 (c_is  region H,,.ofT)<H<H,(T). Likewise, the ordered
the Lindemann numbgror equivalently” to the energy bal- phase can be “superheated” to exist as a metastable state
ance at the transition field: above the transition line, in the regionH . (T)<H
<H.w(T). These observations indicate the first order
naturé*30 of the transition to the vortex pinned-liquid state.

A more accurate analysis should involve the averaged total he first order nature of both the meltih@nd the solid-solid
displacement of the fiux line, which is not necessarily thetransition;*****was noted previously.
sum of(u2) and(u3,.). Our simplified analysis yields, how- ~ In summary, we observe puzzling temperature depen-
ever, a qua”tative description' and provides important in.dence of the order-disorder transition field in LaSCO. We
sight. show that this behavior may be explained assuming that both
We numerically solve Eq(1), using Ee=ze,c2a, and  thermally- and disorder-induced fluctuations act together in
Epin=Ugp(Lo/Le) ¥ from the cage modét® Here, ¢ is the ~ destroying the ordered phase. This approach leads to the con-
anisotropy ratioe,= (®,/4m\)? is the vortex line tension, (?|US.IOFI that the meltmg_, .sol|d-sol|q, and soI|d. to p|.nned—
Udp=(78260§4)1’3 is the single vortex depinning energy, liquid vortex phasg transitions are dlﬁerent manlfestatlong of
L,=2ea, is the characteristic length for the longitudinal the_ same order-dls_orde;r thermodynamic first order transition,
fluctuations, anchz(s“eggZ/y) 1135 the size of the coher- which, in general, is driven bgoth thermally- and disorder-

ently pinned segment of the vortex. The above expression'é‘duced fluctuations. This conclusion is in accordance with

. 32 . -
for Ee and E,;, are clearly applicable for analyzing our several recent works in BSCCH?2claiming that the vortex

results forH[lc. We adopt the same expressions also fOImelting line and solid-solid transition line are two manifes-

b assuming that Abriosow vorice, rathe han Josepri21%s f ne same st orter veniion Qu resuts o
son vortices, are involved, owing to the small value of the

1T,

EeI:Epin+ kT. (1)

disordered state are determined by the relative contribution

anisotropy, 1¢~10-20° Also, we assume pinning by point . g ) : L
defects, neglecting the intrinsic pinning in between the cu-cf the disorder-induced fluctuations. When this contribution
1s negligible (dominateg a transition to a liquidsolid) dis-

layers, as the angular deviation between different experi- . ; -
ments in our setup is larger than the lock-in angk, ( ordered state is obtained. When the contributions of

: . thermally- and disorder-induced fluctuations are comparable,
<1°) 102627 Equation (1) was solved numerically, foe - : o . .
:16372)\2k/q)5,‘écz b ir(13)ertin the explicit tem er)z;ture de- a transition to a pinned liquid state is obtained. Thus, the
d ° ? hL y h gI h b 1 T/F')I' a—1/2 observed transition line retains the shape of the melting tran-
Fheen pi?w%?fat?or: ctlae;?h Er;\an[cle ??/ql' )ﬁ‘i[_ 2 (an dcih]e pir'l sition, but the pinning suffices for the transition to be ob-
—MNol+T c ) -

served as a second peak, and not as a jump in magnetization.
ning parametety= vy,[ 1— (T/T.)*]2.2 This procedure yields P Jurmp g

X . The vortex system in LaSCO exhibits such a transition over
the temperature dependence of the order-disorder transitiaQ, ;o region of the phase diagram.

line Bop(T) for different amplitudes of the pinning param-

eter y,, as illustrated in Fig. 3. The “pure” melting line in Important contribution from T. Sasagawa is acknowl-
the figure is obtained by neglecting the pinning energy, sedged. Continuous and helpful discussions with A. E. Ko-
thatEg=KkT , whereas the “pure” solid-solid transition line shelev, D. Giller, and Y. Wolfus are gratefully acknowledged.
is obtained by neglecting the thermal energy, i.e., wherimportant comments from E. Zeldov, V. Geshkenbein, T.
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