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We report on a zero-fiel§3Cu nuclear quadrupole resonan@®QR) study of nonmagnetic Mg impurity
substituted Cy ,Mg,GeQ; (single crystals; the spin-Peierls transition temperalyge- 14, 13.5, and 11 K for
x=0, 0.0043, and 0.020n a temperature range from 4.2 to 250 K. We found that beldw 77 K, Cu NQR
spectra are broadened and nonexponential Cu nuclear spin-lattice relaxation increases for undoped and more
remarkably for Mg-doped samples. The results indicate that random lattice distortion and impurity-induced
spins appear beloWw*, which we associate with a precursor of the spin-Peierls transition. Conventional
magnetic critical slowing down does not appear down to 4.2 K béllgy
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The discovery of the first inorganic spin-Peierls com-and the Cu NQR study of nhonmagnetic Mg impurity substi-
pound CuGe@ (the transition temperaturds,~14 K) tution effect on Cy_,Mg,GeQ; (single crystals;Ts,~ 14,
(Ref. 1) and subsequent reports on unprecedented impuritg3.5, and 11 K foix=0, 0.0043, and 0.020n a wide tem-
effect¥™’ have renewed the interests of a quasi-oneperature range of =4.2—-250 K. We found that the broad-
dimensional spin S=1/2 Heisenberg antiferromagnet ening of Cu NQR spectra and the increase of nonexponential
coupled to phonons. No soft mode of phonoTgtis one of ~ Cu nuclear spin-lattice relaxation occur below about 77 K
the characteristics of CuGgQAn appreciable interchain ex- much higher thaf,, which suggest a precursor of the spin-
change interactiofiattice, and phonon anomaly perpendicu- Peierls transition. We did not observe critical divergence of
lar to the chait'are different from an ordinary spin-Peierls 1/T; for x=0.020 down to 4.2 K, although the magnetic
system or conventional theoretical resdliA pseudogap in  ordering occurs at about 2.5K.
the magnetic excitation spectrum below 20 K observed by The single crystals grown by a floating-zone method are
inelastic neutron scatteriffgand a local dimerization until at well characterized in Ref. 4. Zero-fieffCu NQR spin-echo
least 40 K observed by diffusive X-ray scattefiigesemble measurements were carried out with a coherent-type pulsed
a pseudogap of the electronic Peierls materfals. contrast  spectrometer. NQR frequency spectra with quadrature detec-
to conventional competition between &leordering and lat-  tion were measured by integration of th&Cu nuclear-spin
tice dimerization, the impurity substitutiofZn, Mg, Ni, or  echoes as the frequency was changed point by point. Nuclear
Si) for Cu or Ge induces a dimerized antiferromagntic order-spin-lattice relaxation was measured by an inversion recov-
ing state’® where a spin-wave mode coexists in the spin-ery spin-echo technique, where tfiéCu nuclear spin-echo
Peierls gag. The coexistence af=0 K is understood amplitudeM(t) was recorded as a function of time interval
within the framework of the phase Hamiltonin&h. between an inversiomr pulse and ar/2 pulse (r—t— /2

Nuclear quadrupole resonan@QR) and nuclear mag- — 7-echg.
netic resonancéNMR) are unique and powerful techniques  Figure 1 shows®*Cu NQR spectra for undoped=0 (a)
to study low-frequency dynamics and local spin fluctuationsand for Mg doping ofx=0.020(b) in the temperature range
in space. The intensive studies using Cu NQR and NMRof T=4.2-250 K. The observed Cu NQR spectra for Mg
techniques have revealed many aspects of CuG&G°The  doping are nearly symmetrically broadened, not of Gaussian
spin-gap opening &, was evidenced by an abrupt decreasenor of Lorentzian type but rather have a triangle-shaped line
of the Cu nuclear spin-lattice relaxation ratél {without  profile for x=0.020 at 4.2 K. Implication of the characteris-
any appreciable change of Cu NQR spectfirajthough a tic line shape is not clear. In general, the Cu NQR frequency
singlet-triplet excitation, a spin gap, and ion displacement is given by v=(e?qQ/2h)\1+ %?%/3, whereeq is the
were directly confirmed by neutron scatterf¢  The above maximum component of the electric-field gradient tensor at
Tsp spin dynamics, the Cu Tf, is understood by a quasi- the nuclear siteQ is the nuclear quadrupole moment, and
one-dimensiona=1/2 antiferromagnetic correlation with- (0<#5=<1) is an asymmetry facté’. The muon spin-
out spin-phonon couplind:?>23 To our knowledge, how- relaxation measurements have not detected any static internal
ever, there are no reports of Cu NQR spectrum far atiqye  magnetic field for Zn-doped samples above about4Tikus
for CuGeQ nor of impurity effects on the low-frequency it is likely that the random distribution of the electric-field
spin dynamics, after the work on Zn dopiffy. gradient €q and ») is the origin of broadening.

In this Communication, we report the high-temperature Figure Xc) shows the temperature dependence of the peak
measurement of Cu NQR spectrum for undoped CuGeOfrequency v for x=0, 0.0043, and 0.020. The observed
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FIG. 1. The temperature dependence®®u NQR frequency  preformed dimer bonds. In the soliton pictdfeT, is an
spectrum fox=0 (a) and forx=0.020(b). The temperature depen- order-to-disorder transition temperature of locally dimerized
dence of the peak frequenéyr (c) and of the linewidth(full width segmentsT* may correspond to the onset of development of
at half maximum A vy (d) for x=0, 0.0043, and 0.020. The  the interchain correlation between the soliton and antisoliton.
dashed lines irid) are guides to the eye. Figure 2 shows Mg-doping effect dffCu recovery curve

p(t)=1—M(t)/M (=) of the 83Cu nuclear magnetization
linear temperature dependence®#, nearly independent of M(t) at 10 K (<Tsp) (a) and at 16 K &Tgp) (b). The
Mg content, is similar to that of the cuprate mono-oxiderecovery curve changes from a single exponential function to
CuOZ° Figure Xd) shows the temperature dependence of theonexponential one as Mg is substituted and as the tempera-
linewidth defined as full width at half maximurf®Av,,. ture is decreased. To account for the nonexponential func-
The linewidth as well as the peak frequency does not showion, we assume a minimal model, which consists of a host
any appreciable change &, in agreement with the previ- homogeneous relaxation process and of a single inhomoge-
ous reports on CuGed®?%?’ The linewidth of thex  neous relaxation one. The solid curves are the least-squares
=0.020 sample is about three times larger than thak of fitting results using the following equatioh:
=0 atT>T*. In Fig. 1(d), we obtain a significant result that
%A v, increases rapidly below about 775K, (denoted
as T*) for all samples including CuGeQ For each
x, ©Av,, at 4.2 K is about two times larger than that
aboveT*. The fit parameters ang(0), (T1)nor,>?andr,. p(0) is a

NQR is a measure of deviation of charge distribution fromfraction of an initially inverted magnetization, and,)yor
cubic symmetry around the nuclear site, being quite sensitives the nuclear-spin-lattice relaxation time due to the host Cu
to crystal imperfections. The observed nearly symmetric linespin fluctuations.r; is an impurity-induced nuclear-spin-
shape implies a random distribution of local chafgé.the lattice relaxation time, which is originally termed a longitu-
origin of %A v,, is a static distribution of lattice distortion dinal direct dipole relaxation time, because the second term
around crystal imperfectior$®A »,,, would decrease as the of Eq. (1) is derived from a randorT, process of I¥,(r)
temperature is decreased so as to scale with the temperatuseC/r® (C is a constant, and is a distance between an
dependence of3v. However, the actuaP®Av,,, increases impurity-induced spirS and a Cu nuclear spih) through a
below T*. Thus the inhomogeneity of lattice distortion must direct dipole coupling<1.S,/r® (S, is thez component of5,
depend on temperature and must increase rapidly b&fow andl .. is a raising or lowering operator ¢f. The randomly
Without dimerization, a freezing of some lattice motion be-distributed impurity-induced spins yield the stretched expo-
low T* and the active motion abovE* would lead to the nential function of Eq.(1). The original Mg ion does not
observed temperature dependencéfv,,. However, no carry spin 1/2. Atomic defects or Mg ions cut chains into
softening of phonon af* has been observed in these mate-segments. The existence of spatially extended staggered mo-
rials, i.e., no slowing down of lattice motion. The appearancanent induced by an edge or an impurity has been pointed out
of nonexponential nuclear spin-lattice relaxation Bt  for a finite or a semi-infinite chaif?>***The assumption of
(shown below could not be accounted for by a uniform impurity-induced spins could be only a working hypothesis
freezing of the lattice motion. Some inhomogeneous electroto introducer;. Since the essence of the stretched exponen-
spin-lattice formation must be causedTat. The pretransi- tial function is randomness in th&; process, one may
tional lattice fluctuations abové, observed by the diffrac- speculate thal,(r) with a local-spin density induced by Mg
tion experiment? which are explained by the random-phaseis approximated by a power law, leading to the stretched
approximation calculatiof may be closely related with the exponential function. In the soliton pictut® the soliton
increase oA v,;,. According to the recent quantum Monte which stays in the middle of a segment or near the edges due
Carlo simulatiort® a precursory dimerization takes place to an interchain coupling, carries spin 1/2, so that it can act
near the edges far aboVWg,. T* corresponds to the onset of as an impurity spin.

p(t)=p(0)exd — (t/T1)nor— Vt/ 7). (1)
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FIG. 3. Log-log plots of®(1/T;)yor (@ and %(1/r) (b) as doped CuGe@(sqlid curve is also reproduced. from Ref. 1.
functions of temperature for undoped=0 and for Mg-doped N general, 1T, T is the low-frequency dynamical spin sus-
samples ofk=0.0043 and 0.020. Ifg), the solid line is ar® func-  ceptibility at an NQR frequency summed over a momentum
tion, and the dashed curve is the least-squares fitting result usinggpace via a nuclear-electron couplifigzorx=0 aboveT,
function of 17T, =R, exp(—2A/T). 83(1/T; T)noris understood by the sum of the staggered spin

_ . susceptibility x(q=)~1/T and the Bonner-Fisher-type
. Figure 3 shows log-log plots of¥(1/T1)nor (8 and  yniform spin susceptibilit, (to be exacty?).?#%The up-
(1/71) (b) as functions of temperature for=0, 0.0043, 1, of 63(1lTlT)NQR just aboveT,,, which is ascribed to

and 0.020. Far abovel*, ©®%(1/T;)yqr for Mg-doped - : :
' the staggereq(g= m)~ 1/T, is suppressed by Mg doping of
samples is nearly the same as that for an undoped one. For ggered(q =) PP y g doping

i =0.020. Then, the contribution from the uniform moge
undoped andx=0.0043, the activation-type temperature od

dependence off3(1/T;)yor is Observed belowTg,. The ;e?] cI: ;angoYrehrsd,_be|rr]11%§;rri\;laerats?l tgifetsggiatiﬁee?;?n_
spin gapA is estimated to be-26 K by fits of 1T, Xu- IN€q=m y yimp

=R,exp(—2A/T) (R, andA are fitting parametey$* which tion, comparatively rQGore than tlee=0 mode, as can be seen
agrees with the value estimated from the stati(:';%r La,Cuy 2O, Howeverz, one should note that
susceptibility! For x=0.020, however, the temperature de-  (1/T1T)nqr for x=0.020 andy;, for x=0 aboveT, are
pendence 0163(1/T1)NQR is Changed into a power-|aw type similar but do not Complet6|y agree with each other. The
(~T%), probably because of an inhomogeneous distributiorsuppression of¥(1/T;T)yor for x=0.020 begins from be-
of A(r). Conventional critical divergence toward the mag-low 60—120 K more steeply than that gf below about 50
netic ordering does not appeatr. K. Thus the further mechanism of the suppression is needed.
Below aroundT*, %3(1/r,) immediately increases as the The precursory dimerization enhanced by Mg below around
temperature is decreased downTig, even forx=0, which  T* is a possible candidate. Our observations of the sup-
indicates the increase of the impurity-induced spin correlapressed y(q=m) and of the deviation between
tion. Far bE|OWTSp, 63(1/71) is SyStematically enhanced by 63(1/T1T)NQR and Xﬁ for Mg_doped Samp|es will be con-

Mg doping, which is due to an increase of the number Ofsyraints on dynamical theory toward the low-temperature
impurity relaxation centers. It is likely that the origin of yimerized antiferromagnetic transition.

(1/7,) for x=0 is due to nonintentionally introduced im- To conclude, belowT*~77 K, the inhomogeneous

perfections(defects, dislocations . .). The actual _sample is roadening of Cu NQR spectra and the impurity-induced Cu
not a perfect crystal, because the observed linewidths qliuclear spin-lattice relaxation occur for undoped and more
Cu NQR spectra of oux=0 (~180 kHz at 4.2 K, omarpably for Mg-doped CuGeOPrecursory dimerization,
~100 kHz above 100 Kare broader than those expectednomogeneous in real space, is suggested. The host antifer-
from T, or T, broadeninga few kH2), i.e., inhomogeneous romagnetic correlation abovk, is suppressed by Mg dop-

broadening. The estimate®A ., for x=0 is nearly the 4 ofy—0.020. No magnetic critical divergence down to 4.2
same as or somewhat sharper than the reported values bel is a puzzle.

40 K 1817222710 Fig. 3b), ®°7; for eachx makes a kink at
aroundTs,. In terms of an impurity spin picturé(1/7,) is We thank Dr. J. Kikuchi and Professor M. Ogata for
nearly proportional to the lifetime of the impurity spin scat- stimulating discussions. This work was supported by
tered by the host magnetic excitations. Then, the kink oNew Energy and Industrial Technology Development Orga-
®3(1/7;) reflects a change in the host magnetic excitatiomization (NEDO) as Collaborative Research and Develop-
spectrum at the true transition temperatdig,, which is  ment of Fundamental Technologies for Superconductivity
evident in ®¥(1/T;) yor- Applications.
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