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Connectivity transition in the frustrated SÄ1 chain revisited
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The phase transition in the antiferromagnetic isotropic HeisenbergS51 chain with frustrating next-nearest-
neighbor couplinga is reconsidered. We identify the order parameter of the large-a phase as describing two
intertwined strings, each possessing a usual string order. The transition has a topological nature determined by
the change in the string connectivity. Numerical evidence from the density matrix renormalization group results
is supported by the effective theory based on soliton states.
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In recent years, there has been a standing interest in
dimensional frustrated spin systems, motivated by their r
behavior which is often not completely understood.1 A fun-
damental example of such a system in one dimension is
isotropic Heisenberg spin-S chain with antiferromagnetic in
teractions between nearest and next-nearest neighbors
scribed by the Hamiltonian

Ĥ5(
i

SiSi 111a(
i

SiSi 12 . ~1!

The physics of frustrated chains with half-integerS is rela-
tively well understood. For smalla they are gapless, an
above the certaina5ac a Kosterlitz-Thouless-type trans
tion into the gapped dimerized phase occurs, with the ex
nentially slow opening of the gap.

For integer-S chains the situation is much less clear.
a50 they are in the Haldane phase with a finite gap to
elementary excitations. ForS51, the Haldane phase has th
so-calledstring order2 arising due to the brokenZ23Z2
symmetry3 and determined by the nonlocal correlator

O 1
a~n,n8!52K Sn

aS exp (
j 5n11

n821

ipSj
aD Sn8

a L , a5~x,y,z!.

~2!

The physics of theS51 chain is believed to be well capture
by the Affleck-Kennedy-Lieb-Tasaki~AKLT ! model4 which
differs from the Heisenberg model by the additional biqu
dratic exchange term1

3 (SiSi 11)2 in the Hamiltonian, and has
the exactly known ground state of the valence bond s
~VBS! type shown in Fig. 1~a!.

Several years ago it was observed5 that the Haldane phas
in S51 chain breaks down ata.ac.0.75 in a first order
transition, which is characterized by a discontinuous van
ing of the string order parameter ~SOP! O1

5 limun2n8u→`O 1
a(n,n8) at the transition point, while the ga

remains finite. On the basis of simple energetic argume
exploiting the AKLT-type variational states the transition
theS51 chain was heuristically interpreted5 as a decoupling
of a single Haldane chain@cf. Fig. 1~a!# into two subchains
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w-
h

he

de-

o-

e

-

d

-

ts

@cf. Fig. 1~b!#. Later it was shown6 that in the anisotropic
chain the large-a ‘‘double Haldane’’~DH! phase persists in a
finite region of anisotropies.

However, the order parameter of the DH phase was ne
identified, which made the real sense of the transition rat
unclear: complete decoupling would be reached only fora
→`, and at finitea the SOP defined on a subchain is not t
proper order parameter.5

In the present paper we show, using the numerical res
from the density matrix renormalization group~DMRG! sup-
ported by the effective theory based on soliton states, tha
transition into the DH phase corresponds to the decoup
into two intertwined substrings, each having a usual strin
order, and identify the corresponding order parameter.
transition thus has atopological nature determined by the
change in the string connectivity.

FIG. 1. Schematic picture of the ground state of the frustra
S51 chain~1!: ~a! VBS state with one string corresponding to th
Haldane phase;~b!–~d! VBS states with two strings contained in th
DH ~large-a) phase.
©2002 The American Physical Society01-1
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We start with recalling some basic facts about the AK
model. Its exact ground state can be represented in the c
pactmatrix product~MP! form:7,8

CAKLT5tr$g1g2•••gN%, ~3!

gn5~1/A3!~s1u2&n1s2u1&n2s0u0&n),

where sm are the Pauli matrices in the spherical basis,m
50,61, and um&n are the spin states at then-th site. The
AKLT state possesses perfect string order,O 1

a54/9. Elemen-
tary excitations of the AKLT chain aresolitons in the string
order.9 A soliton with Sz5m at then-th site is well approxi-
mated by the MP state

um,n)5tr$g1g2•••gn21~gnsm!gn11•••gN% ~4!

It is more convenient to use the equivalent set of statesur ,n)
with r 5(x,y,z), defined by Eq.~4! with sm replaced by the
Pauli matrices in the Cartesian basiss r . Soliton statesur ,n)
with different n are not orthogonal. However, one can intr
duce the equivalent set of states

ur ,n&5$3ur ,n21!1ur ,n)%/2A2 ~5!

which have the propertŷr ,nur 8,n8&5d rr 8dnn8 . The state
~5! can be represented in the same MP form~4! with (gnsm)
replaced by the following matrixf n

r :

f n
r 5A2/31ur &n2~ i /A6!« r j l s j u l &n . ~6!

Here ur &n are the Cartesian spin-1 states at the siten,
(r , j ,l )P(x,y,z), and 1 is the 232 unit matrix. One can
check that in the soliton stateur ,n& the string order correla

torsO 1
r 8( l ,l 8) with r 8Þr change sign whenn gets inside the

( l ,l 8) interval, while O 1
r ( l ,l 8) remains insensitive to the

presence of the soliton.
The ground state of the HeisenbergS51 chain differs

from that of the AKLT model by the presence of a fini
density of soliton pairs. Indeed, the action of the spin ope
tor Sn

m on the AKLT state is to create the stateum,n)1um,n
21). Thus generally the action of the Hamiltonian produc
states with soliton pairs of the type( r ur ,n;r ,n8&, and only in
the special case of the AKLT model the contributions
bilinear and biquadratic terms cancel each other. One m
say that the AKLT state is askeleton statefor the Haldane
chain, which gets dressed with the soliton pairs.

The variational energy of the VBS state of Fig. 1~a! for
the Hamiltonian~1! is 24/312a/9 ~per spin!. It is easy to
see5 that there is another VBS state, being a product of t
VBS strings defined on thea-subchains, as shown in Fig
1~b!, whose energy24a/3 becomes lower fora.3/4.
Again, the actual large-a ground state differs from the ske
eton state of Fig. 1~b! by the finite density of soliton pairs
There are two types of pairs, with the solitons sitting on
samea subchain and on different subchains. Presence
pairs with solitons residing on differenta subchains destroy
the normal SOP defined on a single subchain. One can c
that creation of such pairs is equivalent to adding a fin
admixture of states with intertwined VBS strings shown
10040
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Fig. 1~c,d!. There is, however, another order parameter s
viving pair creation. One can definedouble string orderas

O 2
a~n,m!5K Sn

aSn11
a S exp (

j 5n12

m22

ipSj
aDSm21

a Sm
a L , ~7!

and it is easy to check that it is not sensitive to the prese
of any type of soliton pairs. The corresponding order para
eterO25 limum2nu→`

O 2
a(n,m) is finite in any state which is

a product of exactlytwoVBS strings,arbitrarily intertwined,
because one can always factorize Eq.~7! into a product of
two normal SOPs defined along those strings. On the o
hand, the correlator~7! decays exponentially in the AKLT
state with onlyoneVBS string, because in this case Eq.~7!
factorizes intô Sn

aSm
a &O1(m21,n11). One may say thatO2

measures theconnectivityof the state, telling us how man
VBS strings are there. It is natural to assume thatO2 should
be the order parameter characterizing the DH phase.

The above assumption is readily confirmed by the DMR
results. In our DMRG calculations, we have consider
chains with open boundary conditions and up toL5300
spins, keepingM5400 states. We have calculated the ex
tation gap and both the conventional SOPO1 and the new
SOPO2 ~see Fig. 2!. While the results were converged in th
number of states kept, we carried out finite size extrapola
for frustrations very close to the transition point. We obse
that both order parameters exclude each other in the s
that if either of them decays to zero, the thermodynamic lim
of the other is nonzero and vice versa. The value ofO2 is
strictly zero belowa,0.77, and fora50.775 already at
0.061, i.e. 44% of its asymptotic value of 0.1401 fora→`,
where one has two completely decoupled unfrustra
chains, andO2 is simply the square of the string order for th
unfrustratedS51 Heisenberg chain, 0.3743. In fact, for th

FIG. 2. ~a! the string orderO1 and double string orderO2 as
functions of the frustrationa; ~b! the same for the excitation gapD.
Symbols correspond to the DMRG data, and solid lines are theo
ical predictions from the effective model.
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frustrationa51.3, it reaches 90% of the asymptotic valu
At both sides of the transition, both order parameters exh
clearly finite values, signaling the first order transition. T
finding of a finite gap for all values ofa is consistent with
this picture.

In order to describe the physical picture sketched abo
we have constructed the effective theory based on the so
states~5!. Fora, 3

4 we regard the AKLT state as the vacuu
state, and introduce bosonic operatorstnr

† creating states
ur ,n&, r 5(x,y,z). Similarly, for a. 3

4 we treat the two-
subchain VBS state shown in Fig. 1~b! as the vacuum; this
state can be conveniently represented in the following
form:

CAKLT25tr$G̃1G2•••G̃N21GN%, ~8!

whereGn5(gn^ 1) and G̃n5(1^ gn) are 434 matrices, and
the total number of spinsN is assumed to be even. Th
operatorstnr

† are interpreted as creating soliton statesur ,ñ&
on the subchains, defined by replacing thenth matrix Gn or
G̃n in Eq. ~8! with the matrixF n

r 5( f n
r

^ 1) or F̃ n
r 5(1^ f n

r ),
respectively.

Calculating all matrix elements corresponding to the h
ping of solitons and creation of pairs, and passing to
momentum representation, one obtains on the quadratic l
the effective Hamiltonian of the form

Ĥe f f5(
kr

Aktk,r
† tk,r1

1

2
Bk~ tk,r

† tk,r
† 1H.c.!. ~9!

Here for the Haldane phase (a, 3
4 ) the amplitudesAk , Bk

are given by the expressions

Bk52~112a/2721!cosk2~10a/9!cos 2k

2~13a23!Ck
(1,1) ,

Ak5Bk1~4/27!$15213a1~9216a!cosk23a cos2k%,
~10!

and for the DH phase (a. 3
4 ) one has

Bk5~2/9!~2 cosk2a cos 2k!2Ck
(3,2)2aCk

(4,2) ,

Ak5Bk1~4a/9!~513 cos 2k!, ~11!

where the following shorthand notation is used:

Ck
( l 8,l )5

8

9

3 cos~ l 8k!1cos@~ l 2 l 8!k#

513 cos~ lk !
.

The Hamiltonian~9! does not take into account any inte
action between the solitons. The most important contribut
to the interaction comes from the constraint that at most
particle can be present at a given site, which is effectiv
equivalent to the infinite on-site repulsionU. We treat the
effect of the constraint using Brueckner’s approximati
along the lines proposed by Kotovet al.10 In this approach,
one neglects the contribution of anomalous Green’s functi
and obtains in the limitU→` the vertex functionG rr 8,ss8
10040
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5G(k,v)(drsdr8s81drs8dr8s), wherek and \v are respectively
the total momentum and energy of the incoming particl
with

1

G~k,v!
52

1

N (
q

ZqZk2quq
2uk2q

2

v2Vq2Vk2q
. ~12!

The corresponding normal self-energyS(k,v) is

S~k,v!5~4/N!(
q

Zqvq
2G~k1q,v2Vq!. ~13!

The normal Green function has the form

G~k,v!5
v1Ak1S~2k,2v!

~v2S2!22~Ak1S1!21Bk
2

, ~14!

whereS6[ 1
2 $S(k,v)6S(2k,2v)%, and its quasiparticle

part is given by

G~k,v!5
Zkuk

2

v2Vk1 i«
2

Zkvk
2

v1Vk2 i«
~15!

which defines the renormalization factorsZk , the Bogoliu-
bov coefficientsuk , vk and the spectrumVk as follows:

Vk5S21Ek , Ek5$~Ak1S1!22Bk
2%1/2,

uk
25

1

2
$11~Ak1S1!/Ek%, vk

25uk
221,

1

Zk
512

]S2

]v
2

~Ak1S1!

Ek

]S1

]v
, ~16!

whereS6 and their derivatives are understood to be taken
v5Vk . The system of equations~12!, ~13!, ~16! has to be
solved self-consistently with respect toZ and S. This ap-
proach is valid as long as the soliton densityr
5(3/N)(qZqvq

2 remains small, ensuring that the contributio
of anomalous Green’s functions is irrelevant.10

It should be remarked that our Eqs.~16! differ from the
corresponding expressions of Kotovet al.,10 which can be
obtained from Eq.~16! assuming thatS(k,v) is almost lin-
ear inv in the frequency interval (2Vk ,Vk); however, this
latter assumption fails for the present model.

As far as Eqs.~12!, ~13!, ~16! are solved, one can calcu
late the reduction of the string order caused by the prese
of pairs. For the usual SOP in the Haldane phase (a, 3

4 ) one
finds

O 1
z5~4/9!~122grpR!2. ~17!

Hereg5 2
3 is the correcting factor which takes into accou

that (zz) pairs do not affectO 1
z , and the total density of

soliton pairsrp5(1/2N)(nn8r^tnr
† tn8r

† &2 and the mean size o
the pairR are given by

rp5~3/2N!(
q

Zq
2uq

2vq
2 ,
1-3
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R5

(
m>1

mwm
2

(
m>1

wm
2

, wm5
1

N ( Zquqvqeiqm. ~18!

A similar calculation forO2 in the DH phase yields

O 2
z5~4/9!2$12grp

l Rl%4$122grp
t Rt%2, ~19!

whererp
l andrp

t are densities of the ‘‘longitudinal’’~sitting
on a single subchain! and ‘‘transversal’’~intersubchain! pairs,
respectively,

rp
l ,t5~rp6 r̃p!/2,

r̃p5
3

2N (
q

ZqZq1p~uqvq!~uq1pvq1p!, ~20!

and Rl , Rt are the corresponding average pair sizes~note
that all distances are defined in terms of the initial chain!:

Rl5

(
m>1

~2m!w2m
2

(
m>1

w2m
2

, Rt5

(
m>0

~2m!w2m11
2

(
m>0

w2m11
2

. ~21!

In Fig. 2 we show the results of the DMRG calculatio
together with the theoretical curves obtained on the basi
the effective theory. Though the theoretical calculations
not quantitatively satisfactory, they nevertheless capture
essential behavior of the system. In the vicinity of the tra
sition the theoretical results are rather far from the numer
data; one reason is that ata5 3

4 the completely dimerized
state has the same variational energy as the VBS state
Fig. 1~a,b!, which is not taken into account in the theory.

It should be mentioned that a definition similar to Eq.~7!
was recently used by Todoet al.,11 for the spin-1 ladder, with
(n,n11) and (m21,m) placed on two rungs. They hav
shown that such an order is present in theS51 ladder for
p
,

tt

J

10040
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any ratio of the rung and leg exchange. One may thus exp
that in the frustratedS51 chain with alternating nearest
neighbor interaction the DH phase is smoothly connected
the dimerized phase. However, this problem is not clear si
in a ladder there arethree ways to define the double string
order, depending on whether the initial and final pairs
points are placed on the rungs or diagonals, and only on
the definitions gives a finite value in the completely dime
ized state.

It is also worthwhile to note that one can in an obvio
way generalize the notion of double string orderO2 for the
case of aS51 chain with interactions ranging up top nearest
neighbors~or, alternatively, for ap-leg generalizedS51 lad-
der!. One can conjecture that in the limit ofp8 weakly
coupled chains, 2,p8,p, the corresponding quantityOp8 ~a
mean value of the product ofp8 string order operators de
fined along the chains! will be the proper topological order
parameter. Another possible generalization is for a spin ch
with even-integer spinS52L, where one can define the se
of operators

O L
a,M5K ~Sn

a!Mexp (
n, j ,n8

ipSj
a~Sn8

a
!ML , 1,M,2L

which would distinguish between VBS states with differe
dimerization patterns. We think it is an interesting subject
future studies.

In summary, we have identified the nature of the first o
der transition in the frustratedS51 chain as a change in th
connectivity of underlying VBS states, and established
proper order parameter for the large-a phase. We have also
developed the effective description based on soliton sta
which qualitatively describes the physics of both phases.

One of us~A.K.! gratefully acknowledges the hospitalit
of the Institute for Theoretical Physics, Hannover, where
present study was initiated, and thanks H. Takayama
fruitful discussions. This work was supported in part by t
Grant No. I/75895 from the Volkswagen-Stiftung. U.Sch.
supported by a Gerhard-Hess Grant of the DFG.
.

tter

ys.

hys.
*URL: http://www.itp.uni-hannover.de/;kolezhuk
1Magnetic Systems with Competing Interactions (Frustrated S

Systems), edited by H.T. Diep~World Scientific, Singapore
1994!.

2M. den Nijs and K. Rommelse, Phys. Rev. B40, 4709 ~1989!;
S.M. Girvin and D.P. Arovas, Phys. Scr.T27, 156 ~1989!; T.
Kennedy and H. Tasaki, Phys. Rev. B45, 304 ~1992!.

3T. Kennedy, J. Phys.: Condens. Matter2, 5737~1990!.
4I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys. Rev. Le

59, 799 ~1987!; Commun. Math. Phys.115, 477 ~1988!.
5A. Kolezhuk, R. Roth, and U. Schollwo¨ck, Phys. Rev. Lett.77,

5142 ~1996!; Phys. Rev. B55, 8928~1997!.
6T. Hikihara, M. Kaburagi, H. Kawamura, and T. Tonegawa,
in

.

.

Phys. Soc. Jpn.69, 259 ~2000!.
7M. Fannes, B. Nachtergaele, and R.F. Werner, Europhys. Lett10,

633 ~1989!; Commun. Math. Phys.144, 443 ~1992!.
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