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Connectivity transition in the frustrated S=1 chain revisited
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The phase transition in the antiferromagnetic isotropic Heiser®erg chain with frustrating next-nearest-
neighbor couplingx is reconsidered. We identify the order parameter of the largdrase as describing two
intertwined strings, each possessing a usual string order. The transition has a topological nature determined by
the change in the string connectivity. Numerical evidence from the density matrix renormalization group results
is supported by the effective theory based on soliton states.
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In recent years, there has been a standing interest in lowef. Fig. 1(b)]. Later it was showhthat in the anisotropic
dimensional frustrated spin systems, motivated by their ricithain the largex “double Haldane”(DH) phase persists in a
behavior which is often not completely understdodifun-  finite region of anisotropies.
damental example of such a system in one dimension is the However, the order parameter of the DH phase was never
isotropic Heisenberg spi-chain with antiferromagnetic in- identified, which made the real sense of the transition rather
teractions between nearest and next-nearest neighbors, d#clear: complete decoupling would be reached onlydfor
scribed by the Hamiltonian — oo, and at finitew the SOP defined on a subchain is not the

proper order parameter.
A= 3 In the present paper we show, using the numerical results
T < SSata - SS+2- D fromthe density matrix renormalization gropMRG) sup-
ported by the effective theory based on soliton states, that the
The physics of frustrated chains with half-integers rela-  transition into the DH phase corresponds to the decoupling
tively well understood. For smalkk they are gapless, and into two intertwined substringseach having a usual string
above the certainv= o, a Kosterlitz-Thouless-type transi- order, and identify the corresponding order parameter. The
tion into the gapped dimerized phase occurs, with the exporansition thus has #pological nature determined by the
nentially slow opening of the gap. change in the string connectivity.

For integerS chains the situation is much less clear. At
a=0 they are in the Haldane phase with a finite gap to the
elementary excitations. F&=1, the Haldane phase has the
so-calledstring ordef arising due to the broke@,XxZ,
symmetry and determined by the nonlocal correlator

n"—1
(’)"j(n,n’)=—<sﬁ( exp > . iq-rSf)Sﬁ,>, a=(x,y,2).
j=n+
)

The physics of th&=1 chain is believed to be well captured
by the Affleck-Kennedy-Lieb-TasaKAKLT ) modef which
differs from the Heisenberg model by the additional biqua-
dratic exchange terfh(S;S ;1) in the Hamiltonian, and has
the exactly known ground state of the valence bond solid
(VBS) type shown in Fig. (a).

Several years ago it was observéfat the Haldane phase
in S=1 chain breaks down at>«a;=0.75 in a first order
transition, which is characterized by a discontinuous vanish-
ing of the string order parameter (SOP O,
=limjh_n/|—-.O%(n,n") at the transition point, while the gap
remains finite. On the basis of simple energetic arguments F|G. 1. Schematic picture of the ground state of the frustrated
exploiting the AKLT-type variational states the transition in s=1 chain(1): (a) VBS state with one string corresponding to the
the S=1 chain was heuristically interpreteds a decoupling  Haldane phaséb)—(d) VBS states with two strings contained in the
of a single Haldane chaifcf. Fig. 1(a)] into two subchains DH (largew) phase.
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We start with recalling some basic facts about the AKLT
model. Its exact ground state can be represented in the com-

pactmatrix product(MP) form:"®

WAk t=1tr{9192" - - On} 3

gnz(ll\/g)(o'+|_>n+0'7|+>n_0'0|0>n)’

where o* are the Pauli matrices in the spherical bagis,
=0,=1, and|u), are the spin states at theth site. The
AKLT state possesses perfect string ordef,= 4/9. Elemen-
tary excitations of the AKLT chain argolitons in the string
order.® A soliton with = 1 at then-th site is well approxi-
mated by the MP state

|,n)=tr{0102 - - On-1(9n0™)Gn+1- - - ON} (4)

It is more convenient to use the equivalent set of states
with r=(x,y,z), defined by Eq(4) with o* replaced by the
Pauli matrices in the Cartesian basis. Soliton statesr,n)

with differentn are not orthogonal. However, one can intro-

duce the equivalent set of states

Ir,ny={3|r,n—1)+|r,n)}/2y2 (5)

which have the propertyr,n|r’,n')= 6,8, . The state
(5) can be represented in the same MP fgdnwith (g,0*)
replaced by the following matrixj, :

fr=2131|r) = (i V6) e j |1} 6)

Here |r), are the Cartesian spin-1 states at the sife
(r,j,) e(xy,2), and 1 is the 2x2 unit matrix. One can
check that in the soliton state,n) the string order correla-
torsO’l'(I ") with r" #r change sign when gets inside the
(1,1") interval, while ©'(I,1") remains insensitive to the
presence of the soliton.

The ground state of the Heisenbe$g1 chain differs

SOP

FIG. 2. (a) the string order®; and double string orde®, as
functions of the frustratiom; (b) the same for the excitation gap
Symbols correspond to the DMRG data, and solid lines are theoret-
ical predictions from the effective model.

Fig. 1(c,d). There is, however, another order parameter sur-
viving pair creation. One can defiuble string orderas

m—2

oxnm={ s, @03, ins) ). 0

and it is easy to check that it is not sensitive to the presence
of any type of soliton pairs. The corresponding order param-

eter(’)2=lim‘m_n|Hw(f)§(n,m) is finite in any state which is

a product of exactlywo VBS strings,arbitrarily intertwined,
because one can always factorize Ef. into a product of
two normal SOPs defined along those strings. On the other

from that of the AKLT model by the presence of a finite hand, the correlato(7) decays exponentially in the AKLT
density of soliton pairs. Indeed, the action of the spin operastate with onlyoneVBS string, because in this case E®@)

tor S on the AKLT state is to create the stdje,n)+|u,n

factorizes into{ S3S5) O;(m—1,n+1). One may say thab,

—1). Thus generally the action of the Hamiltonian producesmeasures theonnectivityof the state, telling us how many

states with soliton pairs of the typ|r,n;r,n’), and only in

VBS strings are there. It is natural to assume tBatshould

the special case of the AKLT model the contributions ofbe the order parameter characterizing the DH phase.
bilinear and biquadratic terms cancel each other. One may The above assumption is readily confirmed by the DMRG

say that the AKLT state is akeleton statdor the Haldane
chain, which gets dressed with the soliton pairs.

The variational energy of the VBS state of Figajlfor
the Hamiltonian(1) is —4/3+2a/9 (per spin. It is easy to

results. In our DMRG calculations, we have considered
chains with open boundary conditions and up Lte- 300
spins, keepingl =400 states. We have calculated the exci-
tation gap and both the conventional SOR and the new

se€ that there is another VBS state, being a product of twdSOP®, (see Fig. 2 While the results were converged in the

VBS strings defined on the-subchains, as shown in Fig.

1(b), whose energy—4a/3 becomes lower fora>3/4.

number of states kept, we carried out finite size extrapolation
for frustrations very close to the transition point. We observe

Again, the actual large- ground state differs from the skel- that both order parameters exclude each other in the sense

eton state of Fig. (b) by the finite density of soliton pairs.

that if either of them decays to zero, the thermodynamic limit

There are two types of pairs, with the solitons sitting on theof the other is nonzero and vice versa. The valuggfis
samea subchain and on different subchains. Presence atrictly zero belowa<0.77, and fora=0.775 already at

pairs with solitons residing on differeat subchains destroys

0.061, i.e. 44% of its asymptotic value of 0.1401 for> o,

the normal SOP defined on a single subchain. One can chegkhere one has two completely decoupled unfrustrated
that creation of such pairs is equivalent to adding a finitechains, and), is simply the square of the string order for the
admixture of states with intertwined VBS strings shown inunfrustratedS=1 Heisenberg chain, 0.3743. In fact, for the
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frustrationa=1.3, it reaches 90% of the asymptotic value. =T'(k,w)(8s6,/s + &< 6-0), Wherek and%w are respectively

clearly finite values, signaling the first order transition. Theyitn

finding of a finite gap for all values ok is consistent with

this picture. 1 1 « ZgZ—qUili_q
In order to describe the physical picture sketched above, m: N > m (12
! q —-q

we have constructed the effective theory based on the soliton
stateg5). FOI’a’<%1 we regard the AKLT state as the vacuum The corresponding normal self-energyk, ) is
state, and introduce bosonic operatdfs creating states
[r,n), r=(x,y,z). Similarly, for «>2% we treat the two-
subchain VBS state shown in Fig(h) as the vacuum; this

state can be conveniently represented in the following MP _
form: The normal Green function has the form

S(kw)=(4N) X Zpil(k+q0-Q4. (19
q

W akL12=1t{G1Go- - - Gn_ 160}, (8 G(K, )= w+A+2(—K —w) (14

= -3 2= (A+3,)%+B2
whereG,=(g,®1) andG,=(1®g,) are 4<4 matrices, and (072 )™= (At 2 )" By
the total number of spind is assumed to be even. The where.=3{3(k,0)+3(—k,—w)}, and its quasiparticle
operatorst! are interpreted as creating soliton stales)  part is given by
on the subchains, defined by replacing tite matrix G, or
Gy, in Eq. (8) with the matrix Fh=(fl®1) or Fl=(1efl), GiK o) = _ _
respectively. (ko) w—Qtie o+tQ—ie

Calculating all matrix elements corresponding to the hop-Which defines the renormalization factdfg, the Bogoliu-

ping of solitons and cr_eation of paﬁrs, and passing to th% v coefficientauy, v, and the spectrurf), as follows:
momentum representation, one obtains on the quadratic IeveP '

2 2
Zuj Zwi

(15

the effective Hamiltonian of the form Q=3 _+E,, E={(A+3,)2— Bﬁ}llz,
1

N + - oot 1

Hett % Aty rticr + 5 Bt i +H.C). ©) Uﬁ:§{1+(Ak+2+)/Ek}, 2= 1,
Here for the Haldane phase€3) the amplitudesh,, By
are given by the expressions i—l— 92 (AtX,) 9%, 16

Ze Jw E dow '’
k k

By=2(112w/27— 1)cosk— (10a/9)cos X ) o
where2, . and their derivatives are understood to be taken at

—(13a—3)C{Y, w=0,. The system of equatiord?2), (13), (16) has to be

solved self-consistently with respect and 3. This ap-

A =B+ (4/27){15— 13a+ (9— 16a)cosk— 3a cosXk}, proach is valid as long as the soliton densify
(100 =(3/N)Z4Zqv; remains small, ensuring that the contribution

of anomalous Green’s functions is irrelevaht.
It should be remarked that our Eq4.6) odiffer from the
. . l .
B.=(2/9)(2 cosk— a cos ) — C3D— 4C42). corresponding expressions of Kotet al.,” which can be
= (219 “ )= G aly obtained from Eq(16) assuming thak (k,w) is almost lin-
11 e inw in the frequency interval{ Q,,Q,); however, this
latter assumption fails for the present model.

and for the DH phasea>2) one has

A=By+ (4a/9)(5+ 3 cos k),

where the following shorthand notation is used: As far as Eqgs(12), (13), (16) are solved, one can calcu-
late the reduction of the string order caused by the presence
C(l,’l)_8 3 cogl'k)+cog (1 —1")k] of pairs. For the usual SOP in the Haldane phase ) one
k 79 5+ 3 coslk) ' finds
The Hamiltonian(9) does not take into account any inter- 05=(419)(1-2yp,R)?. (17)

action between the solitons. The most important contributio e . : .
: . ) ere y=3 is the correcting factor which takes into account
to the interaction comes from the constraint that at most on . 2 .
at (z2 pairs do not affectD7, and the total density of

particle can be present at a given site, which is effectively” ™. i L0 )
equivalent to the infinite on-site repulsidih We treat the  SOliton pairspp=(1/2N)Z v (tat,,)* and the mean size of
effect of the constraint using Brueckner's approximationthe pairR are given by

along the lines proposed by Kot@t al° In this approach,

one neglgcts _the con_tri_bution of anomalous Gr(_aen’s functions p :(3/2,\')2 72022,

and obtains in the limitU—o the vertex functionl’,;/ ¢ P g a4
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any ratio of the rung and leg exchange. One may thus expect
mE>1 mvvﬁq that in the frustratedS=1 chain with alternating nearest-
R=—— W= — > unqvqeiqm_ (18 neighbor interaction the DH phase is smoothly connected to
2 N the dimerized phase. However, this problem is not clear since
> wa _ . .
m=1 in a ladder there arthree ways to define the double string
o . . _ order, depending on whether the initial and final pairs of
A similar calculation forO, in the DH phase yields points are placed on the rungs or diagonals, and only one of
the definitions gives a finite value in the completely dimer-
OEZ (4/9)2{1_ ’yplpRl}Ll{l_ Zyp;)RI}Z, (19) ized state.
on a single subchajrand “transversal'(intersubchaippairs, ~Way generalize the notion of double string ordey for the
respectively, case of &=1 chain with interactions ranging up pmnearest
neighborgor, alternatively, for g-leg generalize®=1 lad-
p'p‘tI(ppin)/Z, den. One can conjecture that in the limit g’ weakly

coupled chains, 2 p’ <p, the corresponding quantit9, (a
- 3 mean value of the product qf’ string order operators de-
PO=5N Eq: Z4Zg+ 7(Uqug)(Ugs nVq+ 7)), (20 fined along the chainswill be the proper topological order
parameter. Another possible generalization is for a spin chain
andR', R, are the corresponding average pair sigeste  with even-integer spit8=2L, where one can define the set
that all distances are defined in terms of the initial cjlain  of operators

> (2mw3, > (2mWiy,, OpM=((SHMexp > iwSASOM), 1<M<2L
R|=m>1 Rt=m20 (21) n<j<n’
> W, > W21 which would distinguish between VBS states with different
m=1 m=0

dimerization patterns. We think it is an interesting subject for

i _ future studies.
In Fig. 2 we show the results of the DMRG calculations |, symmary, we have identified the nature of the first or-

together with the theoretical curves obtained on the basis Qfq; transition in the frustrate8=1 chain as a change in the

the effecti_ve _theory. '_I'hough the theoretical calculations ar¢onnectivity of underlying VBS states, and established the
not quginntatlvel_y satisfactory, they nevert_he_zlgss capture thﬁroper order parameter for the largephase. We have also
essential behavior of the system. In the vicinity of the tra”'?eveloped the effective description based on soliton states,

sition the theoretical results are rather far from the numericawhich qualitatively describes the physics of both phases.
data; one reason is that at=3 the completely dimerized
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