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In two recent publicationgPhys. Rev. B50, 7496(1999; 63, 054508(2001) ] Kuplevakhsky has questioned
the existence and stability of isolated Josephson vortices in layered superconductors. He argued that “vortex
planes” rather than isolated vortices correspond to “unconditional minimum” of Gibbs free energy and ruled
out “any possibility of single Josephson vortex penetration.” In this comment, | disprove those statements and
demonstrate that isolated Josephson vortices penetrate layered superconductors and have considerably lower
energy than vortex planes.
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Josephson vorticedfluxong in layered superconductors in length scales of fluxon and Meissn@n-phasé solutions
and stacked Josephson junctiof®JJ's have been exten- is seen from Fig. @). From Fig. 1 it is seen that unlike
sively studied both theoreticafly’ and experimentallf®  Egig, Ein_phaseincreases rapidly witiN together with\ .
However, recently” Kuplevakhsky “revised previous calcu- For N>1, \y—\;/\1— 2|5 =\, as shown by the dotted
lations” and concluded that “the infinite Lawrence-Doniach line in Fig. 1. And the in-phase solution becomes identical to
model does not admit solutions in the form of isolated Jo-Eq. (37) from Ref. 2(note,\; in Ref. 2 is our\). The free
sephson vortices” and that vortices exist only in the form ofenergy per fluxon for the in-phase solution saturates at the
“vortex planes.” His three main arguments against fluxonsvalue
are (i) vortex planes have lower free energy) the fluxon N
sgluuon_ is not unique for given boundary conditions, and Ein-phasd N>1)= —E,. 2)

(i) a single fluxon cannot penetrate the stack at any mag- A;
netic field H. In this comment | disprove those statements ) o .
and show by direct numerical simulations that isolated flux- From Fig. 1 it is seen thaf;, ynaseis always larger than

ons penetrate layered superconductors and have considerallying: implying that the in-phase solution is unstable inside
lower energy than vortex planes. the stack, in contrast to Kuplevakhsky’s erroneous conclu-

I'll consider a stack ofN identical junctions with inter- ~Sion that the vortex-plane solution corresponds to an “uncon-

layer spacing, Josephson penetration depth, and London ditio_nal minimum_” of free energy. A similar instability of a
penetration deptha,, and \.. Properties of SJJ's are de- laminar solution is known for type-Il superconductéfdn
scribed by the coupled sine-Gordon equati¢@SGE with reality, the m—pha_se solution maximizes both magnetic and
magnetic coupling constast I'll follow notations of Ref. 7. Josephson energies because vortices are placed at the short-
Free energyFree energy of SJJ's is composed of kinetic, €St dlst_ances_ from each other, the flux quantum is squeezed
magnetic, and Josephson energies. Using the first integral 81 one junction and the Josephson core has the largest pos-
CSGE? it can be shown that free energy of any iso'ateds|b|e S|Ze)\c (nOte, that the total energy Is twice the Joseph-
solution is twice the Josephson enefigee Eqs(10) and  SON energy.
(29 in Ref. 6]. Figure 1 shows calculated energies of the
single fluxon,Egjnq (data from Ref. ¥, and the vortex-plane /R
(in-phasg solution per vortexEi,_phaser VS the number of 100 )Lc .
SJJ's. Parameters of SJJ's are typical for Bi2212 High-
superconductor(HTSC). Energies are normalized to the
fluxon energy in a single junctioB,. From Fig. 1 it is seen
that Egj,q Only slightly increases wittN and for N>\ ,,/s
saturates at 10

T | | T T T T T T T TTTIT
—_——

E/E,

Eqing(N>1)=3.6E,. (1)

This energy is consistent with 3.3E, estimated from Clem-

Coffey solution? Note that fluxon energies both for stacked TE Y o il

and single Josephson junctions have the same order of mag- 1 10 100 1000

nitude. This is due to the fact that the energy is predomi-

nantly stored in the fluxon core, which has the same length

scalex;.” FIG. 1. Calculated energies of a single fluxon and the in-phase
On the other hand, the length scale of the in-phase soluvortex-plang solution per fluxon for SJJ's with different number of

tion is given by the largest characteristic lengtl (Ref. 7 junctions. It is seen the;,_phaseiS always larger thaig;nge and

andE;n_phaseper vortex is=(Ay/\;)Eq. A large difference that both saturate & — .
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Figure 2 shows a result of numerical solution of the full
dynamic CSGE forN=31. External magnetic field was
slowly increased until fluxons start to penetrate in the stack.
Figure 2 represents a snapshot at the beginning of penetra-
tion. From Fig. Zb) it is clear that a single fluxon has pen-
etrated the middle junction=16 and is moving inside the
stack as shown by an arrow. The boundary condition,
B;(0)=H, is not violated at any instance, as seen from Fig.
2(a). Both for single and stacked Josephson junctions, fluxon
penetration can be considered as decomposition of a bound
fluxon-antifluxon pair, a “breather? centered at the edge of
the junctions. This does not violate boundary conditions be-
cause fluxon and antifluxon fields cancel each other at the
center of the breather.

Nevertheless, Kuplevakhsky has correctly concluded that
the Meissner state in SJJ's can exist up to a superheating
field Hg=®,/ 7\ S, which is essentially the field in the cen-
ter of the vortex plane. For HTSG{5 can be almost two
orders of magnitude larger thdth,, =47E;,4/Po<1 Oe.

FIG. 2. Numerical simulation of the dynamics of fluxon penetra- However, numerical simulations, Fig. 2, have shown that

tion in SJJ’s: snapshots @) magnetic induction an¢b) voltage in

single fluxons (not vortex planes penetrate SJJ's ad

j:unct?ons 16-20. Fron@b)_it.is clear that a single quan eptered ~Hs. At a finite temperature, fluctuations reduce the pen-
junction 16, and from(@) it is seen that there is no violation of ayration field as in conventional type-Il superconductors. The

boundary conditions at=0. Also note a large difference in length

scales of fluxon and Meissnén-phasé solutions in Fig. 2a).

strong surface pinning of fluxons is probably responsible for
the in-plane penetration field in HTSC being larger than ex-
pectedH ;.=

Finally, | would like to comment on speculations about

Uniqueness of fluxon solutionsKuplevakhsky has
claimed that solution of CSGE for given boundary condi-finite vs infinite systems. In the latest pap&uplevakhsky
tions is unique and discarded fluxon solutions as violatingargued that fluxons don’t exist only in infinite systems, while
this requirement. However, such requirement is incorrectin finite SJJ's unstable fluxon solution may exist. From Fig. 1
This can be clearly seen from the limiting cae=1, for it is clear that forN>\,,/s the fluxon solution becomes
which nonunique analytic solution is knovwhFor SJJ's the independent ofN and agrees well with Bulaevskiiand
situation is much more complicatet¥ fluxons can be ar- Clem-Coffey solutions. From this we can say that fluxons
ranged inN junctions in a numbetup toN™) of quasiequi- do exist in an infinite system if infinity is considered as a
librium configurationgmode3.%° Existence of multiple qua- limit of large N.
siequilibrium fluxon modes in SJJ's has been demonstrated In conclusion, | have shown that single fluxons can pen-
both analytically, numerically and experimentify. etrate layered superconductors and have free energy much

Fluxon penetration Boundary conditions require that less than the vortex plaré-phaseg state. This is confirmed
magnetic inductiorB;(0)=H, i.e., uniform. Kuplevakhsky by direct numerical simulations in the dynamic case and is in
has argued that sind& of the fluxon is nonuniform, it can- strong disagreement with Refs. 1, 2.
not penetrate SJJ’s at am, However, he did not take into
account that penetration is essentially a dynamic process. | am grateful to L. N. Bulaevskii for valuable remarks.
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