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Superconducting fluctuations in granular metals with a large coupling between the grains
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We study the fluctuation conductivity of superconducting granular metals at low temperatures and strong
magnetic field destroying the Cooper pairs. Explicit calculations are performed for larger values of the cou-
pling between the grains than those considered in previous works. We show that in a broad region of the
coupling constants the superconducting fluctuations still significantly reduce the conductivity leading to a
negative magnetoresistance.
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I. INTRODUCTION

During the last decade study of electric properties of n
homogeneous metals attracted a lot of attention. In particu
granular metals have been investigated recently in a num
of experimental works.1,2 Theory of superconducting fluctua
tions in the granulated superconductors was suggested
cently in Refs. 3,4.

In these works a three-dimensional~3D! array of grains
placed in a strong magnetic fieldH.Hc , whereHc is the
field destroying the superconducting gap in the grains, an
low temperaturesT!Tc , whereTc is the superconducting
transition temperature, was considered. It was demonstr
that the correction to the fluctuation conductivity isnegative
and this effect should exist even at zero temperature.
resistivity increases and only at extremely strong magn
fields,H@Hc , reaches its classical value. Therefore the s
tem exhibits anegative magnetoresistance. This theory may
explain existing experiments.1

It was important for the calculations presented in Ref
that the dimensionless conductance satisfied the conditiog
!D0 /d, hereD0 is the BCS gap at zero magnetic field andd
is the mean level spacing. The same effect of the nega
magnetoresistance was obtained in a recent paper5 for two-
dimensional~2D! homogeneous superconducting samples
low temperaturesT!Tc and strong magnetic fieldH.Hc .
The limit of the homogeneous metal is opposite to the o
considered in the works3,4 because the dimensionless co
ductanceg of a homogeneous sample is proportional tokFl ,
wherekF and l are the Fermi momentum and the mean fr
path, respectively, and can be very large. The negative m
netoresistance can also be seen under certain circumsta
in high-Tc superconductors6–8 for high temperaturesT.Tc
and low magnetic fieldsH,Hc .

In the present paper we generalize the results of Refs
to larger values of the tunneling dimensionless conducta
g. In particular, the assumption that the dimensionless c
ductance,g, is restricted from above byD0 /d is now
dropped. This means that the structure of the granular m
becomes more similar to that of a bulk metal. The m
question we are dealing with in this paper is if the superc
ducting fluctuations may cause a negative magnetoresist
0163-1829/2002/65~9!/094516~10!/$20.00 65 0945
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in the granulated systems with the larger coupling betw
the grains. At the same time, our region of parameters
different from the limit of a homogeneous metal. We assu
that

1!g!ET /d, ~1.1!

whereET5D/R2 is the Thouless energy of a single grain,D
is the diffusion coefficient, andR is the radius of the grain
The last inequality in Eq.~1.1!, although being more genera
than that used previously,3,4 means that the granular structu
is still important for our consideration.

The granular material we consider now consists of a
array of metallic grains with a typical diameter of the grai
of 120620 Å. The electrons can tunnel from one grain
another. It is this tunneling that determines the properties
the entire system. Inside the grains there can be impur
and the shape of each grain is not perfect, so that the e
trons are scattered randomly by the boundaries. Since
hopping amplitude is not very large, the macroscopic cha
transfer is determined by the ratio of the hopping amplitu
t to the mean level spacingd or, in other words, by the
dimensionless conductanceg5(p2/4)(t/d)2. In the limit t
@d the discreteness of the energy spectrum in a single g
is not resolved and therefore the electron motion is diffus
through many grains. This limit corresponds to a mac
scopically weak disorder and results in a large dimension
conductanceg@1. Below, we restrict our consideration b
this limit.

Let us discuss what happens with a granular metal at
temperatures. Below the critical temperatureTc , the
electron-phonon interaction leads to the formation of a
perconducting gap in each grain and Cooper pairs app
Applying a strong magnetic field one destroys the superc
ducting gap in each grain and comes to the picture o
normal metal with superconducting fluctuations. Our calc
lations are performed in this regime.

We assume that the energy parameters are ordered a
lows:

d!t,D0!ET . ~1.2!

The last inequality in Eq.~1.2! means that the size of a sing
grainR is much smaller than the coherence lengthj0. In this
©2002 The American Physical Society16-1
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limit the superconducting fluctuations in a single grain a
zero dimensional. We want to emphasize that all energies
smaller than the Thouless energyET , and as a consequenc
the behavior of the system does not depend on grain bo
aries or on individual scattering processes. Due to the la
values of the conductanceg@1 we may neglect weak local
ization and charging effects. Therefore all the effects con
ered below are entirely due to the superconducting fluc
tions.

The superconducting pairing inside the grains can be
stroyed by both the orbital mechanism and the Zeeman s
ting. The critical magnetic fieldHc

or destroying the supercon
ductivity in a single grain in this case can be estimated
Hc

orRj'f0, where f05hc/e is a flux quantum,R is the
radius of a single grain, andj5Aj0l is the superconducting
coherence length. The Zeeman critical magnetic fieldHc

z can
be written asgmBHc

z5D0, wheremB is Bohr’s magneton and
g is the Lande´ factor. The ratio of these two fields can b
written in the form Hc

or/Hc
z'Rc /R, where Rc5j(p0l )21.

For R.Rc the orbital critical magnetic field is smaller tha
the Zeeman critical magnetic fieldHc

or,Hc
z and the super-

conductivity is suppressed by the orbital motion of electro
Although the Zeeman mechanism can be easily include
the present consideration, we consider now only the orb
mechanism of the destruction of the superconductivity. T
limit is opposite to the one considered in Ref. 9, where
Zeeman splitting was assumed to be the main mechanis
destruction of the Cooper pairs. A broader region of the c
ductanceg used in the present paper makes the calcula
somewhat more difficult than previously because one ha
consider additional diagrams and calculate them using m
complicated expressions for integrands. The remainder o
paper is organized as follows. In Sec. II we formulate
model. In Sec. III we discuss the fluctuation conductivity
granular metals. In Sec. IV we discuss the weak localiza
correction to conductivity of granular metals. Our results
summarized in the conclusion.

II. THE MODEL

We assume that the grains are packed in a 3D lattice
rounded by an isulator. The grains are coupled with e
other and therefore the electrons can hop from one grai
another. Inside the grains as well on the surface there ca
impurities and the electrons can interact with phonons. T
Hamiltonian of the system can be written in the form

Ĥ5Ĥ01ĤT , ~2.1!

hereĤ0 describes a single grain with electron-phonon int
action in the presence of a strong magnetic field and is gi
by

Ĥ05(
i ,k

Ei ,kai ,k
† ai ,k2ulu (

i ,k,k8
ai ,k

† ai ,2k
† ai ,2k8ai ,k81Ĥ imp ,

~2.2!

where i stands for the number of the grain,k[(k,↑),2k
[(2k,↓). The quantityl is an interaction constant an
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Ĥ imp describes the elastic interaction of the electrons w
impurities. The interaction in Eq.~2.2! contains diagonal ma
trix elements only. This form of the interaction can be us
provided the superconducting gapD0 satisfies the last in-
equality in Eq.~1.2!. The second term in Eq.~2.1! describes
tunneling of electrons from grain to grain and is given by

ĤT5 (
i , j ,p,q

t i , j ,p,qaip
† ajq expS i

e

c
A•di j D1c.c., ~2.3!

whereA is the vector potential anddi j is a vector connecting
the center of graini with the center of a neighboring grainj
(udi j u52R). The operatoraip

† is the creation operator of a
electron in graini in the statep and aip is the annihilation
operator of an electron in graini in the statep.

III. FLUCTUATION CONDUCTIVITY

In this section we consider the conductivity of granu
metals in detail. The dc conductivitys is related to the op-
erator of the electromagnetic response as10

s5 lim
v→0

QR~v!

2 iv
, ~3.1!

whereQR(v) is the analytical continuation ofQ( ivn) into
the upper complex half plane and is called theretardedop-
erator of the electromagnetic response andv is the frequency
of the external electromagnetic field. In order to calcula
Q( ivn) we use Matsubara’s diagram technique.10 After cal-
culation of Q( ivn) for imaginary frequencies we have t
carry out the analytical continuation ofQ( ivn) into the re-
gion of real frequencies:ivn→v1 i01. All diagrams which
contribute to the conductivity of granular metals are sho
in Fig. 2. The same class of diagrams describe the cond
tivity of bulk metals.5,11 Scattering of the electrons inside th
grains by impurities is included in the Born approximatio
giving rise to a scattering mean free timet and resulting in a
renormalization of the single electron normal state Gree
function to G0( i«n ,p)5@ i«n2j(p)1 i /2tsgn(«n)#21, here
«n5(2n11)pT is the fermion frequency andj(p)5«(p)
2«F is the electron energy counted from the Fermi level. F
l !Lc , wherel is the mean free path andLc is the cyclotron
radius, we can treat the Green’s function in the quasiclass
approximation. In this approximation the magnetic field r
sults in the appearance of an additional phase

G~ i«n ,r2r 8!5G0~ i«n ,r2r 8!expS ie

c Er

r8
AdsD .

~3.2!

Each wavy line in the diagrams represents the propag
of the superconducting fluctuationsK( iVk ,q):

K~ iVk ,q!52
1

n0
F lnS E0~H !1uVku

D0
D1h~q!G21

, ~3.3!

whereVk52kpT is the boson frequency,n0 is the density
of states on the Fermi surface,h(q)58/3p(gd/D0)( i 51

3 @1
2cos(qid)# describes the tunneling of electrons from grain
6-2
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SUPERCONDUCTING FLUCTUATIONS IN GRANULAR . . . PHYSICAL REVIEW B 65 094516
grain; E0(H)5(2/5)(f/f0)2ET , where f is the magnetic
flux through the grain. The propagator of superconduct
fluctuations, Eq.~3.3!, is presented by the sum of all dia
grams with two incoming and two outgoing lines in Fig. 1

The impurity vertex entering these diagrams is rep
sented as a shaded half circle and has the form3,4

l~ i«n ,iVk2 i«n ,q!

5
1

t

u@2«n~Vk2«n!#

u2«n2Vku1E0~H !1
16

p
gd(

i 51

3

@12cos~qid!#

,

~3.4!

whereu(x) is the Heaviside function and the third term
the denominator describes tunneling processes from gra
grain. Each external vertex is given by22etd sin(p•d),
wheree is the charge of an electron,t is the tunneling am-
plitude, andd is a vector connecting the centers of tw
neighboring grains. In the following subsections we consi
the contributions to the fluctuation conductivity that ari
from these diagrams.

A. Correction to the conductivity due to suppression of DOS

In this section we consider the correction to conductiv
due to suppression of the density of states~see diagrams
5–10!. This ~DOS! contribution arises from corrections t
the density of states due to the superconducting fluctuati
Even at strong magnetic fields (H.Hc) there are still some
electrons that form fluctuational Cooper pairs. These e
trons are bound and cannot simultaneously take part in o
electron charge transfer. This results in a reduction of
number of carriers for the one-electron charge transfer
the conductivity decreases. The analytical expression for
operator of the electromagnetic response taking into acc
summation over the spin indices has the form

Q~ ivn!5
8

3 (
i 51

3

T(
Vk

E d3q

~2p!3
K~ iVk ,q!T

3(
«n

C2~ i«n ,iVk2 i«n ,q!I ~ iVk ,i«n1n!,

~3.5!

where a factor of 2 originates from a similar diagram sho
in Fig. 2 which gives the same contribution to conductivi
The analytical expression forI ( iVk ,i«n1n) in Eq. ~3.5! is
given by

FIG. 1. The Dyson equation in the ladder approximation for
propagator of the superconducting fluctuations. The black point
resents the coupling constant and the shaded three-point v
stands for the renormalized impurity vertex.
09451
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I ~ iVk ,i«n1n!5E d3q8

~2p!3
sin2~qi8d!

4e2t2d2V2

~2pn0t!2
T

3(
«n

E d3p1d3p2

~2p!6
G~ i«n1n ,p1!

3G2~ i«n ,p2!G~ iVk2 i«n ,p2!, ~3.6!

wherep1 andp2 denote the momenta of electrons inside t
grains,q8 is the quasimomentum, and«n1n5«n1vn . Inside
the Green’s functions we may putVk equal to zero becaus
the characteristic frequency of the superconducting fluct
tion propagatorK( iVk ,q) is of the orderVk;D0 which is
much smaller than the Thouless energyET . The integral
over p2 in Eq. ~3.6! is only nonzero when the poles of th
Green’s functions corresponding to one grain lie on differ
sides of the axis of the real numbers. Therefore«n and Vk
2«n must have different signs. In all other cases the res
equals to zero. ForVk ,«n ,vn!1/t we obtain for
I ( iVk ,i«n1n)

I ~ iVk ,i«n1n!5
4ge2

n0
2p2d

u~2«n«n1n!u@2«n~Vk2«n!#.

~3.7!

e
p-
tex

FIG. 2. Diagrams for the leading order contribution to the flu
tuation conductivity of granular metals. Wavy lines symbolize t
propagator of the superconducting fluctuations, thin solid lines w
arrows are the normal state Green’s functions averaged over im
rity positions and shaded semicircles are vertex corrections ari
from impurities. Dashed lines with central crosses are additio
impurity renormalizations and shaded blocks are impurity ladd
Diagram 1 is the Aslamazov-Larkin~AL ! contribution, diagram 2 is
the Maki-Thompson~MT!, 5, 6, 7, and 8 are the density of stat
~DOS! diagrams. Diagrams 3,4 and 9,10 arise when one avera
the DOS and MT diagrams over impurities.
6-3
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Now using Eq.~3.7! we calculate the sum over«n in Eq.
~3.6!

D~ iVk ,ivn ,q!5T(
«n

C2~ iVk ,iVk2 i«n ,q!I ~ iVk ,i«n1n!

5
16ge2

d
T (

n52n

21
u@2«n~Vk2«n!#

~ u2«n2Vku14pTaq!2
.

~3.8!

Carrying out the summation over the«n in Eq. ~3.8! we
obtain for the functionD( iVk ,ivn ,q) the following result:

D~ iVk ,ivn ,q!52
ge2

p2dT
u~Vk1vn!

3Fc8S 1

2
1

2vn1Vk

4pT
1aqD

2c8S 1

2
1

uVku
4pT

1aqD G , ~3.9!

where c(x) is the logarithmic derivative of the Gamma
function andaq is given by

aq5
1

4pT S E0~H !1
16

p
gd(

i 51

3

@12cos~qid!# D .

~3.10!

The second term in Eq.~3.10! arises due to the renormaliza
tion of the Cooperons when tunneling processes from g
to grain are taken into account. We insert Eq.~3.9! into Eq.
~3.5! and present the operator of the electromagnetic
sponse in the following form:

Q~ ivn!5
8

3 (
i 51

3

T(
Vk

E d3q

~2p!3
D~ iVk ,ivn ,q!K~ iVk ,q!.

~3.11!

Now the functionQ( ivn) must be continued analyticall
into the upper complex half plane of the frequency. The a
lytical continuation in Eq.~3.11! is carried out in the Appen
dix. As a result, we obtain for the operator of the electrom
netic responseQ( ivn) after analytical continuation the
following expression:

QR~v!5
2 iv2ge2

p4dT2D0n0

c9S 1

2
1

D0

4pTD(
i 51

3 E d3q

~2p!3

3F E0

Vmax
coth

V

2T

VdV

V2

D0
2

1h̃2~q!

1E
0

` 1

sinh2
V

2T

V2

V2

D0
2

1h̃2~q!

dV

2TG , ~3.12!
09451
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where Vmax;D0 is an upper cutoff,h̃(q)5h(q)12h and
h5(H2Hc)/Hc is the reduced magnetic field. In Eq.~3.12!
we may putq50 insidec(x) because the main contributio
to the integral overq comes from small momentum and i
this caseaq is a slowly varying function ofq. The remaining
integrals overV in Eq. ~3.12! can be easily calculated an
the final result for the electromagnetic response is

QR~v!52 iv
2ge2D0

p4dT2n0

c9S 1

2
1

D0

4pTD(
i 51

3 E d3q

~2p!3

3F lnS j

h̃
D 2

1

2j
2c~j!1jc8~j!21G , ~3.13!

where we introduced the dimensionless parameterj

5D0h̃/4pT. For very low temperatureT!D0h̃,(j@1) we
may use the asymptotic expansion forc(j) and finally ob-
tain the correction to the conductivity due to the suppress
of the density of states

sDOS

s0
52

2

p

d

D0
K lnS 1

h̃~q!
D L , ~3.14!

where^•••&5V*0
2p/d

¯@d3q/(2p)3#, ands058ge2/pR is
the classical conductivity of a granular metal. One can
that the DOS diagram gives a negative contribution to
conductivity. The absolute value ofsDOS is a decreasing
function of the magnetic fieldH and reaches its maximum
value at the critical magnetic fieldH5Hc . The absolute
value of this maximum can be estimated as3,4

Usmax
DOS

s0
U; d

D0
lnS D0

gd D . ~3.15!

This maximum value is smaller than unity and this fact e
sures our expansion. The conductivitysDOS is independent
of the temperature and therefore it remains finite in the lim
T→0. This fact indicates that there are still virtual Coop
pairs even at zero temperature and strong magnetic fie
The quantitysDOS becomes comparable withs0 when g is
of the order of unity. Such values ofg mean that we would
not be far from the metal-insulator transition. In this case
have to take into account all localization effects and E
~3.14! can be used only for rough estimates.

We would like to note that Eq.~3.14! does not differ from
those written in Refs. 3,4. However, other contributions
the conductivity considered in the next subsections m
change, so the extension of the calculations to the en
region specified by Eq.~1.1! is not as simple.

As it was shown in Refs. 3,4 we can neglect the high
order corrections to the DOS, an example is shown in Fig
At low temperatureT!D0h̃ this diagram contains an add
tional small factor of (d/D0)ln h̃.

In the following sections we discuss the Aslamazo
Larkin ~AL ! and Maki-Thompson~MT! contributions to the
fluctuation conductivity. It turns out that the AL contributio
is proportional toT2 whereas the MT contribution can b
6-4
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divided into two parts. One is proportional toT2 at low tem-
peratures and the other one remains finite whenT→0.

B. Aslamazov-Larkin contribution to conductivity

This contribution originates from the ability of virtua
Cooper pairs to carry an electrical current.12 The diagram for
the operator of the electromagnetic response is represe
by the first diagram in Fig. 2 and its analytical expression
the following form:

QAL~ ivn!5
4

3 (
i 51

3

T(
Vk

E d3q

~2p!3
K~ iVk ,q!

3K~ iVk2 ivn ,q!B2~ iVk ,ivn ,q!,

~3.16!

B( iVk ,ivn ,q) describes the block of the Green’s function

B~ iVk ,ivn ,q!

52 i E d3q8

~2p!3
sin~qi8d!cos@~qi2qi8!d#

et2dV2

~pn0t!2
T

3(
«n

E d3p1d3p2

~2p!6
G~ i«n1n ,p1!

3G~ iVk2 i«n1n ,p1!G~ i«n ,p2!

3G~ iVk2 i«n1n ,p2!

3C~ i«n1n ,iVk2 i«n1n ,q!C~ i«n ,iVk2 ivn ,q!,

~3.17!

where sin(qi8d) denotes the current vertex and cos@(qi2qi8)d#
describes the tunneling vertex. In this integral we may
Vk50 andvn50 because in the vicinity of the critical mag
netic field Hc the leading contribution to the responseQAL

arises from the fluctuation propagators rather than from
frequency dependence of the functionB, Eq. ~3.17!. There-
fore we neglect the dependence of functionB on frequencies
Vk andvn . Integrating over the momentap1 ,p2, and quasi-

FIG. 3. Higher order correction to the DOS.
09451
ted
s
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momentumq8, then summing over the internal frequency«n
we obtain in the limit of low temperature for functionB(q)
the result

B~q!52 i
32ged

pD0
E sin~qi8d!cos@~qi2qi8!d#

d3q8

~2p!3
.

~3.18!

As in Sec. III A, in order to calculate the responseQAL, we
have to make the analytical continuation from the Matsub
frequencyvn to real values ofv. This can be achieved by
transforming the sum overVk in Eq. ~3.16! into a contour
integral. This procedure allows one to carry out the analyti
continuation ofQ( ivn) into the upper complex half plane
ivn→v1 i01. As a result for the sum over theVk in Eq.
~3.16! we obtain

T(
Vk

K~ iVk ,q!K~ iVk2 ivn ,q!→2 iv
2pT2

3n0
2D0

2

1

h̃4
.

~3.19!

Using Eqs.~3.18! and ~3.19! we finally obtain for the AL
contribution to the fluctuation conductivity

sAL

s0
5

64

27
g

d2T2

D0
4 (

i 51

3 K sin2~qid!

h̃4~q!
L , ~3.20!

which agrees with the results obtained in Refs. 3,4. One
see thatsAL gives a positive contribution to the fluctuatio
conductivity and is proportional toT2, therefore it vanishes
in the limit T→0.

Let us estimate the right hand side in Eq.~3.20! for the
case of low temperatures,T!D0h̃, and near the critical mag
netic field,h!gd/D0. The main contribution to the integra
in Eq. ~3.20! comes from small momenta. Therefore we c
make an expansion inq of sin(qid) and cos(qid). Retaining
only the first nonvanishing terms and extending the range
integration from 2p/d to infinity we obtain

sAL

s0
;g23/2

T2

D0
3/2d1/2S Hc

H2Hc
D 3/2

. ~3.21!

The AL contribution grows when approaching the critic
magnetic fieldHc thus leading to a decrease of resistivity.
order to determine which contribution to the conductiv
will dominate we comparesAL with the maximum value of
sDOS

U sAL

smax
DOSU; g23/2T2

D0
1/2d3/2

ln21S D0

gd D S Hc

H2Hc
D 3/2

. ~3.22!

For h!gd/D0 and sufficiently low temperatures,T!D0h̃,
one can see from Eq.~3.22! that usAL/sDOSu!1. This means
that the AL contribution cannot change the monotonous
crease of the resistivity of granular metals when decreas
the magnetic field.
6-5
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C. Maki-Thompson contribution to conductivity

This contribution to the conductivity comes from cohere
electron scattering forming a Cooper pair on impurities.13,14

The MT contribution is represented by the second diagram
Fig. 2. The analytical expression for the operator of the e
tromagnetic response for the MT contribution to fluctuati
conductivity is given by

QMT~ ivn!5
2

3 (
i 51

3

T(
Vk

E d3q

~2p!3
K~ iVk ,q!B~ iVk ,ivn ,q!,

~3.23!

where K( iVk ,q) is the propagator of the superconducti
fluctuations andB( iVk ,ivn ,q) is a function describing the
contribution of the loop. This function has the form

B~ iVk ,ivn ,q!

5E sin~qi8d!sin@~qi2qi8!d#
d3q8

~2p!3

e2t2d2V2

~pn0t!2
T

3(
«n

E d3p1d3p2

~2p!6
G~ i«n ,p1!

3G~ iVk2 i«n ,p1!G~ i«n2n ,p2!

3G~ iVk2 i«n2n ,p2!

3C~ i«n ,iVk2 i«n ,q!C~ i«n2n ,iVk2 i«n2n ,q!.

~3.24!

In evaluating the sum over the Matsubara frequency«n it is
useful to break up the sum into two parts. In the first part«n
is in the domains ]2`,2vn@ and @0,̀ @ . This gives rise to
theregular partof the MT diagram. The second~anomalous!
part of the MT diagram arises from the summation over
«n in the domain@2vn,0@ . Using this we can perform the
sum over the«n and after integration over the momenta w
can write the functionB as a sum of ananomalous Ban and a
regular Breg contribution to the MT diagram

B~ iVk ,ivn ,q!5232
ge2

d
cos~qid!~Ban1Breg!,

~3.25!

where

Ban52
1

4p

u~Vk!u~vn2Vk11!

vn14pTaq
FcS 1

2
1

2vn2Vk

4pT
1aqD

2cS 1

2
1

Vk

4pT
1aqD G , ~3.26!

Breg5
1

8pvn
FcS 1

2
1

2vn1Vk

4pT
1aqD2cS 1

2
1

Vk

4pT
1aqD G .

~3.27!

Note that the anomalous and regular part have different s
and the anomalous part has an additional diffusion pole
comparison with the regular one.
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1. The anomalous MT contribution to conductivity

The termBan corresponds to theanomalousMT contribu-
tion, it appears in the case of a special pole arrangemen
the integration over momenta in Eq.~3.24!, when the poles
of the Green’s functions corresponding to different grains
on different sides of the axis of the real numbers. In orde
calculate the fluctuation conductivity we have to insertBan

into Eq.~3.23!. Then, one should perform the analytical co
tinuation ofQan( ivn) to real values of the external frequenc
v. Finally, using Eq.~3.1! we get the conductivity. To this
end we representQan in the following form:

Qan~ ivn!52
16ge2

3pdn0
(
i 51

3 E d3q

~2p!3

cos~qid!F~vn ,q!

vn14pTaq
.

~3.28!

The functionF( ivn ,q) is given by15

F~ ivn ,q!5T (
Vk50

vn218
f ~Vk ,vn ,q!, ~3.29!

where

f ~ iVk ,ivn ,q!

5

cS 1

2
1

2vn2Vk

4pT
1aqD2cS 1

2
1

Vk

4pT
1aqD

2h1
uVku
D0

1h~q!

.

Because of the presence of the Heaviside functionu in Eq.
~3.26!, Ban is only nonzero in the domain@V1 ,vn21#. The
upper limit of the sum overVk in Eq. ~3.29! depends on the
external frequencyvn . Therefore it is not correct simply to
make the substitutionivn→v. Note that we have calculate
Eq. ~3.26! only for Vk>0 but one can easily obtain the co
responding expression forVk,0 replacing Vk by uVku.
Therefore, instead of summing over all values ofVk we
extract the termVk50 and multiply the sum overVk.0 by
a factor of 2. The prime on the sum in Eq.~3.29! indicates
that the term withVk50 should be multiplied by 1/2. The
analytical continuation is achieved by transformation of t
sum into a contour integral. The final result has the followi
form:15

FR~v,q!52
iv

4pTE0

` dV

sinh2
V

2T

3

cS 1

2
1

iV

4pT
1aqD2cS 1

2
2

iV

4pT
1aqD

2h2
iV

D0
1h~q!

.

~3.30!

For V!1 we expand the numerator in a Taylor series arou
V50 and confine ourselves to the first nonvanishing te
Then we obtain
6-6



th

g

he
q.

w
e

p-

o
io

si
y

e
ou
he

ity
-

en,
es

ond
in
o-

-

q.

he
re,

ery
-
n of

are
ess
ect-
he
the
the

g
-

igi-
cal

SUPERCONDUCTING FLUCTUATIONS IN GRANULAR . . . PHYSICAL REVIEW B 65 094516
FR~v,q!5
2iv

~4pT!2D0

c8S 1

2
1

D0

4pTD E
0

` dV

sinh2
V

2T

V2

V2

D0
2

1h̃2

.

~3.31!

The last integral can be calculated in a similar way as
second integral in Eq.~3.12! in Sec. III A and we obtain for
the anomalous MT contribution to conductivity the followin
result:

san
MT

s0
5

4pdT2

9D0
2 (

i 51

3 K cos~qid!

4pTaqh̃
2~q!

L . ~3.32!

Let us estimate the anomalous MT contribution to t
conductivity. The main contribution to the integral in E
~3.32! comes from small momentaq, therefore for h
!gd/D0 we expand the numerator and denominator in po
ers ofq. Confining ourselves to the first nonvanishing ord
in q, we obtain the following result:

san
MT

s0
;g23/2

T2

D0
3/2d1/2S Hc

H2Hc
D 1/2

. ~3.33!

From Eq.~3.33! we see thatsan
MT gives a positive contribu-

tion to the fluctuation conductivity and grows when a
proaching the critical magnetic fieldH→Hc . The anomalous
MT contribution is proportional toT2 as temperature goes t
zero. At zero temperature the anomalous MT contribut
vanishes.

It is interesting to comparesan
MT with the contribution to

conductivity that arises from the suppression of the den
of statessDOS. The ratio of these two quantities is given b

U san
MT

smax
DOSU; g23/2T2

D0
1/2d3/2

ln21S D0

gd D S Hc

H2Hc
D 1/2

. ~3.34!

One can see that atT!D0h̃ the anomalous MT contribution
is small compared tosmax

DOS. Thus, we conclude that th
anomalous MT contribution cannot change the monoton
increase of the resistivity of a granular superconductor w
decreasing the magnetic field.

2. The regular MT contribution to conductivity

Let us now investigate the contribution to the conductiv
arising from theregular part of the MT diagram. The opera
tor of the electromagnetic response can be written as

Qreg~ ivn!5
8ge2

3pdvnn0
(
i 51

3

T(
Vk

E d3q

~2p!3
cos~qid!

3

cS 1

2
1

2vn1Vk

4pT
1aqD2cS 1

2
1

Vk

4pT
1aqD

2h2
iV

D0
1h~q!

.

~3.35!
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As before, we can write this sum as a contour integral. Th
we have to perform the analytical continuation to real valu
of the external frequencyivn : ivn→v1 i01. We expand
the resulting expression in a Taylor series up to the sec
order inv. The static term is canceled by a similar term
Q(0). As aresult we obtain for the operator of the electr
magnetic response

Qreg
MT5

22ivge2

9p4dT2n0D0

c9S 1

2
1

D0

4pTD E
0

Vmax
coth

V

2T

VdV

V2

D0
2

1h̃2

.

~3.36!

Performing the integration in Eq.~3.36! we obtain for the
regular MT contribution to conductivity in the low tempera
ture limit

s reg
MT

s0
52

2

9p

d

D0
(
i 51

3 K cos~qid!lnS 1

h̃~q!
D L . ~3.37!

Let us estimate the integral in the right hand side of E
~3.37!. At very low temperatures,T!D0h̃, and near the
critical magnetic fieldHc , h!gd/D0, it turns out that

s reg
MT

s0
;2

d

D0
. ~3.38!

The regular MT part gives a negative contribution to t
fluctuation conductivity and it is independent of temperatu
so that even at zero temperatures reg

MT remains finite and re-
duces the conductivity. We have shown before that at v
low temperature neithersAL nor san

MT can change the mo
notonous increase of resistivity caused by the suppressio
the density of states and the regular MT contribution.

D. Diagrams No. 3, 4, 7, 8 and 9,10

These diagrams arise when the DOS and MT diagrams
averaged over the impurity positions. This averaging proc
results in the appearance of an additional Cooperon conn
ing two different grains with each other. Let us consider t
diagram 9 in Fig. 2, the diagram 10 can be calculated in
same way. The analytical expression of the operator of
electromagnetic response reads as follows:

Q~ ivn!5
4

3 (
i 51

3

T(
Vk

E d3q

~2p!3
K~ iVk ,q!B~ iVk ,ivn ,q!,

~3.39!

where K( iVk ,q) is the propagator of the superconductin
fluctuations andB( iVk ,ivn ,q) corresponds to the contribu
tion of the loop. A factor of 2 in Eq.~3.39! comes from the
summation over spin indices and another factor of 2 or
nates from a similar diagram shown in Fig. 2. The analyti
expression for the loop can be written as
6-7
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B~ iVk ,ivn ,q!54E sin~qi8d!
d3q8

~2p!3E sin~qi9d!

3
d3q9

~2p!3

e2t2d2V2

~2pn0t!3
T(

«n

E d3p1d3p2

~2p!6

3G~ i«n1n ,p1!G2~ i«n ,p2!

3G~ iVk2 i«n ,p2!C2~ i«n ,iVk2 i«n ,q!

3C~ i«n1n ,iVk2 i«n ,q!, ~3.40!

wherep1 and p2 denote the momenta in the different gra
ules andq8,q9 are quasimomenta. As before we can setVk
inside the Green’s functions equal to zero. We can imme
ately see that after integration overq8,q9 the function
B( iVk ,ivn ,q) is equal to zero and the contribution to th
fluctuation conductivity from this diagram vanishes. T
same reason holds for the diagram 3 and 4 in Fig. 2 wh
come from the averaging of the MT diagram over impur
positions. Also the diagrams 7 and 8 of Fig. 2 do not co
tribute to the fluctuation conductivity. For simplicity w
present the diagram 7 once again in Fig. 4.

One can easily see that the corresponding analytical
pression of such a diagram contains a term of the form

E d3p2

~2p!3
GA~«,p2!GA~«,p2!50.

Both Green’s functions have poles on the same side of
complex plane and therefore the integral is zero. Thus,
may neglect diagrams 7 and 8. As we have shown, only
diagrams 1~AL !, 2 ~MT!, 5, and 6~DOS! make a contribu-
tion to the fluctuation conductivity of granular metals.

E. Final Formulas

The calculations presented in the previous subsect
show that in granular superconducting metals fluctuati
make a considerable contribution to the conductivity in
normal phase at low temperatures and strong magnetic fi
The fluctuation conductivity of granular metals is given
the DOS, Aslamazov-Larkin and Maki-Thompson contrib
tion.

FIG. 4. DOS-type diagram with an additional impurity reno
malization.
09451
i-

h

-

x-

e
e
e

ns
s

e
ld.

-

sfl5sDOS1sAL1sMT. ~3.41!

Other contributions from the diagrams in Fig. 2 are equa
zero. At low temperatures,T!D0h̃, the final result for the
total fluctuation conductivity of granular metals can be wr
ten as

sfl

s0
52

d

D0
F 1

2p K lnS 1

h̃~q!
D L

2(
i 51

3 S 64

27
g

d2T2

D0
4 K sin2~qid!

h̃4~q!
L

1
4p

9

T2

D0
2 K cos~qid!

4pTaqh̃
2~q!

L
2

2

9p K cos~qid!lnS 1

h̃~q!
D L D G . ~3.42!

Equation ~3.42! is the main result of our paper. For low
temperatures,T!D0h̃ and strong magnetic field,H.Hc the
main contribution comes from the first and from the la
terms in the brackets in Eq.~3.42!. As a consequence, th
superconducting fluctuation contribution to the conductiv
of granular metals isnegative. The quantitative result of Eq
~3.42! is written for the region 1!g!(ET /d). In the next
section we show that the correction to the conductivity d
to weak localization effects can be neglected.

IV. WEAK LOCALIZATION CORRECTION TO
CONDUCTIVITY OF GRANULAR METALS

The weakly localized regime~WLR! is the regime where
interference effects between different plane waves, be
treated independently, start to play a role. The interferenc
plane waves leads to an increase of the probability to find
electron at a certain place and this effect results in a red
tion of the conductivity. The diagram corresponding to t
WL correction to conductivity16,17 is shown in Fig. 5.

For the WL correction of granular metals3,4 we obtain

dsWL52
16

3
ge2dd2(

i 51

3 E C~0,q!

2pn0
cos~qid!

d3q

~2p!3
,

~4.1!

whereC(0,q) is the Cooperon taken at the frequencyv50
and quasimomentumq. Using Eq.~3.4! and making the in-

FIG. 5. Weak localization correction to conductivity. The shad
block denotes the renormalized Cooperon.
6-8



r

co

r-
se

la
O

e
iz

u
a

he

ibu

an
h
s

pi
o

d.

I
ea

r
ro

re
R
d

on
c-

-
x-
by

te-

on-

i-
tity

su-
etic

SUPERCONDUCTING FLUCTUATIONS IN GRANULAR . . . PHYSICAL REVIEW B 65 094516
tegration over quasimomentumq in Eq. ~4.1! we obtain the
final result for the WL correction to conductivity of granula
metals

dsWL

s0
;2g23/2S D0

d D 1/2

. ~4.2!

Similar to the case of a homogeneous sample, the WL
rection to conductivity has the negative sign.

Now let us compare the WL correction withsDOS. The
ratio of these two quantities is given by

UdsWL

smax
DOSU5g23/2S D0

d D 3/2

ln21S D0

gd D . ~4.3!

For largeg@1, this ratio is small and therefore the WL co
rection is always smaller than the correction which ari
from the suppression of the density of states.

V. CONCLUSION

We have obtained the fluctuation conductivity of granu
metals at low temperatures and strong magnetic field.
main result is given by Eq.~3.42!. To obtain this result we
assumed that the dimensionless conductanceg satisfies the
inequality ~1.1!. Therefore, the granular structure of th
metal is essential for our consideration. We have general
the previous studies3,4 to the entire region 1!g!ET /d. This
case is still different from the case of 2D homogeneo
superconductor5 where the dimensionless conductance w
assumed to be very large~of orderkFl ).

One can see thatsDOS ands reg
MT give anegative contribu-

tion to the fluctuation conductivity, whereas the AL and t
anomalous MT contributions are positive. This leads to
competition between the positive and the negative contr
tions. But as we have shown, at low temperatures,T!Tc ,
and strong magnetic field,H@Hc , this negative contribution
cannot be compensated by the positive contributions
therefore the entire fluctuation conductivity is negative. T
situation holds even atT50 where the AL and anomalou
MT contributions are equal to zero.

Qualitatively results are depicted in Fig. 6, where the ty
cal curve for the dependence of the fluctuation resistivity
the reduced magnetic fieldh at low temperature is presente
The curve reaches the value of the classical resistivityR0
asymptotically only in extremely strong magnetic fields.
was shown in Ref. 3 that for the granular metals the r
transition into the superconducting state occurs not atHc but
at a lower fieldHc2

, which is due to the electron motion ove
many grains. Thus, in order to take into account the mac
scopic orbital electron motion we have to replaceHc by Hc2

in our formulas.
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APPENDIX

In this appendix we carry out the analytical continuati
in Eq. ~3.11! and obtain the result for the operator of ele
tromagnetic responseQR(v), Eq. ~3.12!. The lower limit in
the sum overVk in Eq. ~3.11! depends on the external fre
quencyvn . Therefore the analytical continuation of this e
pression in the region of real frequencies is not correct
simply making the replacementivn→v1 i01, it can be
achieved by a transformation of the sum into a contour in
gral

T (
Vk52vn

`

D~ iVk ,ivn ,q!K~ iVk ,q!

→ 1

4p i EC11C2

coth
z

2T
D~z,ivn ,q!K~z,q!dz,

~A1!

where the contours of integrationC1 and C2 are shown in
Fig. 7. We should interpret the propagator of the superc
ducting fluctuations as theretarded propagatorKR when
Im(z).0 and as theadvancedpropagatorKA when Im(z)
,0. In the vicinity of the critical magnetic field, (H
2Hc)/Hc!1, we can expand the logarithm in the denom
nator ofK and the retarded or advanced form of this quan
has the following form:3

FIG. 6. Schematic picture of the resistivity of a granulated
perconductor at fixed temperature as a function of the magn
field.

FIG. 7. Contours of integrationC1 andC2, the arrows indicate
the way going along the paths.
6-9
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KR,A~2 iV,q!52
1

n0
S 2h7

iV

D0
1h~q! D 21

, ~A2!

whereh5(H2Hc)/Hc .
The contribution to the integral from the large circle va

ishes if we extend the contour toi`, so that only the paths
along the horizontal lines with Im(z)50 and Im(z1 ivn)
50 remain. Thus for the right hand side in Eq.~A1! we
obtain

E
2`

1`

coth
z

2T
DR~2 iz,ivn ,q!KR~2 iz,q!

dz

4p i

1E
2`

`

coth
z

2T
DA~2 iz,ivn ,q!KA~2 iz,q!

dz

4p i

1E
2`2 ivn

1`2 ivn
coth

z

2T
DA~2 iz,ivn ,q!KA~2 iz,q!

dz

4p i
,

~A3!

whereDR,DA are the retarded, advanced forms of the fun
tion D( iVk ,ivn ,q). They are given by

DR,A~V,v,q!52
ge2

p2dT
Fc8S 1

2
2

2iv1 iV

4pT
1aqD

2c8S 1

2
7

iV

4pT
1aqD G . ~A4!

In the third integral in Eq.~A3! we make the substitution o
variablesz1 ivn→z and use the fact that coth@(z1ivn)/2T#
5coth(z/2T). Now we can simply make the analytical co
tinuation:ivn→v. Finally we obtain for the sum overVk in
Eq. ~A1! the following result:
d-

v

.

09451
-

E
2`

1` dV

4p i
coth

V

2T
DR~2 iV,v,q!KR~2 iV,q!

1E
2`

1` dV

4p i S coth
V2v

2T
2coth

V

2TD
3DA~2 iV,v,q!KA~2 iV,q!. ~A5!

Since we are interested in the dc conductivity it is sufficie
to retain the linear term inv in Eq. ~A5! then we obtain

T (
Vk52vn

`

→ iv
ge2

4p4dT3E2`

1`

coth
V

2T
c9S 1

2
2

iV

4pT
1aqD

3KR~2 iV,q!
dV

4p i

2
v

2TE2`

1`DA~2 iV,0,q!KA~2 iV,q!

sinh2
V

2T

dV

4p i
.

~A6!

The main contribution to the integral overV in Eq. ~A6!
comes from small values of the frequency therefore we m
put V50 inside c(x) in the first integral and extend th
integrand byiV/D01h̃. One can easily see that this integr
is logarithmically divergent and it has to be cut off atVmax
;D0. In the second integral we make an expansion inV,
retaining only the first nonvanishing term and then we exte
the resulting expression by2 iV/D01h̃. As a result for the
operator of electromagnetic response we obtain Eq.~3.12!.
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