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Superconducting fluctuations in granular metals with a large coupling between the grains
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We study the fluctuation conductivity of superconducting granular metals at low temperatures and strong
magnetic field destroying the Cooper pairs. Explicit calculations are performed for larger values of the cou-
pling between the grains than those considered in previous works. We show that in a broad region of the
coupling constants the superconducting fluctuations still significantly reduce the conductivity leading to a
negative magnetoresistance.
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[. INTRODUCTION in the granulated systems with the larger coupling between
the grains. At the same time, our region of parameters is

During the last decade study of electric properties of nondifferent from the limit of a homogeneous metal. We assume
homogeneous metals attracted a lot of attention. In particulathat

ranular metals have been investigated recently in a number
gf experimental works:? Theory of superconducting fluctua- 1<g<Eq/s, (1.0
tions in the granulated superconductors was suggested reshereEr=D/R? is the Thouless energy of a single grain,
cently in Refs. 3,4. is the diffusion coefficient, an® is the radius of the grain.

In these works a three-dimension@D) array of grains  The last inequality in Eg(1.1), although being more general
placed in a strong magnetic field>H_, whereH, is the  than that used previousfy* means that the granular structure
field destroying the superconducting gap in the grains, and a$ still important for our consideration.
low temperatures <T., whereT, is the superconducting The granular material we consider now consists of a 3D
transition temperature, was considered. It was demonstratetiray of metallic grains with a typical diameter of the grains
that the correction to the fluctuation conductivityniegative  of 120+20 A. The electrons can tunnel from one grain to
and this effect should exist even at zero temperature. Thanother. It is this tunneling that determines the properties of
resistivity increases and only at extremely strong magnetithe entire system. Inside the grains there can be impurities
fields,H>H_, reaches its classical value. Therefore the sysand the shape of each grain is not perfect, so that the elec-
tem exhibits anegative magnetoresistancehis theory may trons are scattered randomly by the boundaries. Since the
explain existing experiments. hopping amplitude is not very large, the macroscopic charge

It was important for the calculations presented in Ref. 3transfer is determined by the ratio of the hopping amplitude
that the dimensionless conductance satisfied the conditiont to the mean level spacing or, in other words, by the
<Ao/6, hereA, is the BCS gap at zero magnetic field ahd dimensionless conductange=(72/4)(t/5)?. In the limit t
is the mean level spacing. The same effect of the negative- § the discreteness of the energy spectrum in a single grain

magnetoresistance was obtained in a recent pdpetwo- is not resolved and therefore the electron motion is diffusive
dimensional(2D) homogeneous superconducting samples athrough many grains. This limit corresponds to a macro-
low temperature§ <T, and strong magnetic fieldd >H.. scopically weak disorder and results in a large dimensionless

The limit of the homogeneous metal is opposite to the oneonductancey>1. Below, we restrict our consideration by
considered in the work$ because the dimensionless con- this limit.
ductanceg of a homogeneous sample is proportionakgd, Let us discuss what happens with a granular metal at low
wherekg andl are the Fermi momentum and the mean freetemperatures. Below the critical temperatuiie.,, the
path, respectively, and can be very large. The negative maglectron-phonon interaction leads to the formation of a su-
netoresistance can also be seen under certain circumstangesconducting gap in each grain and Cooper pairs appear.
in high-T, superconductofs® for high temperature§>T,  Applying a strong magnetic field one destroys the supercon-
and low magnetic fieldsl<H.. ducting gap in each grain and comes to the picture of a
In the present paper we generalize the results of Refs. 3dormal metal with superconducting fluctuations. Our calcu-
to larger values of the tunneling dimensionless conductanckations are performed in this regime.
g. In particular, the assumption that the dimensionless con- We assume that the energy parameters are ordered as fol-
ductance, g, is restricted from above by\,/é is now lows:
dropped. This means that the structure of the granular metal
becomes more similar to that of a bulk metal. The main O<t,Ao<Er. 1.2
question we are dealing with in this paper is if the superconThe last inequality in Eq.1.2) means that the size of a single
ducting fluctuations may cause a negative magnetoresistangeain R is much smaller than the coherence lengghin this

0163-1829/2002/69)/09451610)/$20.00 65 094516-1 ©2002 The American Physical Society



B. S. SKRZYNSKI, I. S. BELOBORODOV, AND K. B. EFETOV PHYSICAL REVIEW B5 094516

limit the superconducting fluctuations in a single grain arefy  gescribes the elastic interaction of the electrons with
zero dimensional. We want to emphasize that all energies ariﬁm‘ijrities. The interaction in Eq2.2) contains diagonal ma-
smaller than the Thouless enerBy, and as a consequence iy glements only. This form of the interaction can be used
the behavior of the system does not depend on grain bo“”%‘rovided the superconducting gdp, satisfies the last in-
aries or on individual scattering processes. Due to the 'argéquality in Eq.(1.2). The second term in E42.1) describes

values of the conductange>1 we may neglect weak local- ¢ nneling of electrons from grain to grain and is given by
ization and charging effects. Therefore all the effects consid-

ered below are entirely due to the superconducting fluctua- . . e

tions. He= > ti j.p.a@ip@jq eXP(IEA’dij
The superconducting pairing inside the grains can be de- b

stroyed by both the orbital mechanism and the Zeeman splitvhereA is the vector potential and; is a vector connecting

ting. The critical magnetic fieltho" destroying the supercon- the center of graim with the center of a neighboring grajn

ductivity in a single grain in this case can be estimated ag|d;;|=2R). The operattOIaiTp is the creation operator of an

HYRE~ ¢pg, Where ¢pp=hcle is a flux quantumR is the  electron in graini in the statep anda;, is the annihilation

radius of a single grain, ang= \/&,l is the superconducting ©Operator of an electron in grainin the statep.

coherence length. The Zeeman critical magnetic fitlccan

be written agugHZ= A, Whereug is Bohr’s magneton and ll. FLUCTUATION CONDUCTIVITY

g1S the. Landefactor. lhezratm of these two fields C?P be In this section we consider the conductivity of granular

written in the formHc/Hc~R:/R, where R.=&(pol) " metals in detail. The dc conductivity is related to the op-

For R>R; the orbital critical magnetic field is smaller than gator of the electromagnetic respons® as

the Zeeman critical magnetic field?'<HZ and the super-

conductivity is suppressed by the orbital motion of electrons. - QR(w)

Although the Zeeman mechanism can be easily included in o=lim e ! (3.3)

the present consideration, we consider now only the orbital 00

mechanism of the destruction of the superconductivity. Thisvhere QR(w) is the analytical continuation d®(iw,) into

limit is opposite to the one considered in Ref. 9, where thethe upper complex half plane and is called theardedop-

Zeeman splitting was assumed to be the main mechanism efkator of the electromagnetic response anid the frequency

destruction of the Cooper pairs. A broader region of the conef the external electromagnetic field. In order to calculate

ductanceg used in the present paper makes the calculatiom(iw,) we use Matsubara’s diagram technidféfter cal-

somewhat more difficult than previously because one has teulation of Q(iw,) for imaginary frequencies we have to

consider additional diagrams and calculate them using morearry out the analytical continuation @i(iw,) into the re-

complicated expressions for integrands. The remainder of thgion of real frequenciesw,— w+i0". All diagrams which

paper is organized as follows. In Sec. Il we formulate thecontribute to the conductivity of granular metals are shown

model. In Sec. Il we discuss the fluctuation conductivity of in Fig. 2. The same class of diagrams describe the conduc-

granular metals. In Sec. IV we discuss the weak localizationivity of bulk metals>!! Scattering of the electrons inside the

correction to conductivity of granular metals. Our results aregrains by impurities is included in the Born approximation,

+c.c, (2.3

summarized in the conclusion. giving rise to a scattering mean free timand resulting in a
renormalization of the single electron normal state Green'’s
Il. THE MODEL function to G%ie,,,p)=[ie,— &(p)+i/27sgn(,)] %, here

i i i e,=(2n+ 1)« T is the fermion frequency ané(p)==«(p)
We assume that the grains are packed in a 3D lattice sur- ;s the electron energy counted from the Fermi level. For
rounded by an isulator. The grains are coupled with gacrkl_c, wherel is the mean free path ard, is the cyclotron
other and therefore the electrons can hop from one grain 1, jiys; we can treat the Green’s function in the quasiclassical

another. Inside the grains as well on the surface there can g, qximation. In this approximation the magnetic field re-
impurities and the electrons can interact with phonons. The s in the appearance of an additional phase

Hamiltonian of the system can be written in the form
. , . , ie (r
H=H,+H7, (2.1) Glien,r—r")=G%ie,,r—r )exp(zfr Ads).

hereI:|0 describes a single grain with electron-phonon inter- 32
action in the presence of a strong magnetic field and is given Each wavy line in the diagrams represents the propagator
by of the superconducting fluctuatiobqi(,q):

E(H)+]Q -1
In(—°( )A | k')m(q)} . (33
0

. . ) 1
Ho:% Eiala =N 2 alal ai —a o+ Himp, K(IQk,Q)Z—V—O
) ik,k’
2.2 whereQ,=2k#T is the boson frequency, is the density
wherei stands for the number of the graik=(k,T),—k of states on the Fermi surfaca(q)=8/37T(95/A0)2?:1[1
=(—k,|). The quantity\ is an interaction constant and —cosg;d)] describes the tunneling of electrons from grain to
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g = X XTIk <

FIG. 1. The Dyson equation in the ladder approximation for the

propagator of the superconducting fluctuations. The black point rep- 3
resents the coupling constant and the shaded three-point verte
stands for the renormalized impurity vertex.

2

grain; £(H)=(2/5)(¢/ $o)?Et, where ¢ is the magnetic
flux through the grain. The propagator of superconducting
fluctuations, Eq.(3.3), is presented by the sum of all dia-
grams with two incoming and two outgoing lines in Fig. 1.

The impurity vertex entering these diagrams is repre-
sented as a shaded half circle and has the ¥6rm

Niegn,iQ—iey,q)
1 9[_8n(Qk_8n)]

3
T 16
[26n= 0+ E6(H) + 982, [1-codqid)]

(3.9

where 0(x) is the Heaviside function and the third term in  FIG. 2. Diagrams for the leading order contribution to the fluc-
the denominator describes tunneling processes from grain tyation conductivity of granular metals. Wavy lines symbolize the
grain. Each external vertex is given by 2etdsin(p-d), propagator of the superconducting fluctuations, thin solid lines with
wheree is the charge of an electrohjs the tunneling am- arrows are the normal state Green’s functions averaged over impu-
plitude, andd is a vector connecting the centers of two rity pqsition_s_ and shaded _semicir_cles are vertex corrections g_rising
neighboring grains. In the following subsections we considefrom impurities. Dashed lines with central crosses are additional

the contributions to the fluctuation conductivity that ariseimp”rity renormalizations and shaded blocks are impurity ladders.
from these diagrams Diagram 1 is the Aslamazov-Larki\L ) contribution, diagram 2 is

the Maki-Thompsor(MT), 5, 6, 7, and 8 are the density of states
(DOS) diagrams. Diagrams 3,4 and 9,10 arise when one averages
A. Correction to the conductivity due to suppression of DOS the DOS and MT diagrams over impurities.

In this section we consider the correction to conductivity - 902 12 12
due to suppression of the density of statese diagrams (i is ):f d>q sinz(q-’d)4et d*v
5-10. This (DOY contribution arises from corrections to ko Enty ) " (2mer)?
the density of states due to the superconducting fluctuations.

Even at strong magnetic fieldsi(>H,) there are still some d3p,d3p, .
electrons that form fluctuational Cooper pairs. These elec- XE 6 Gliensy,P1)
. . £n (2’7T)
trons are bound and cannot simultaneously take part in one-
electron charge transfer. This results in a reduction of the X G2(iey,p2)G(iQx—ien,py), (3.6

number of carriers for the one-electron charge transfer andh do. d h el inside th
the conductivity decreases. The analytical expression for th¥ grepl, an hp2 enc_)te the momenta o _e ectrons |InS|_de the
operator of the electromagnetic response taking into accoufffains.a’ is the quasimomentum, argl, , =&, + o, . Inside

summation over the spin indices has the form the Green’s fl_mptions we may pt, equal to zero 'because
the characteristic frequency of the superconducting fluctua-
g 3 o tion propagatoK (iQ,q) is of the orderQ) ~Ag, vvhich is
Qliw,)== 2 TE f K(GiQ,qT much smaller than_the Thouless energy. The integral
3= O )3 over p, in Eq. (3.6) is only nonzero when the poles of the
Green'’s functions corresponding to one grain lie on different
2000 0, i ; ; sides of the axis of the real numbers. Therefegeand Q)
XSEH Colien, 1 hTen, QI lens), —&, must have different signs. In all other cases the result
3.5 equals to zero. ForQy,e,,»,<1l/r we obtain for
. l(iQkiigr’Hrv)

where a factor of 2 originates from a similar diagram shown 40
in Fig. 2 which gives the same contribution to conductivity. 1 Qp,iens,)= 9 O(—enens,) 0 —en(Qu—en)]
1 14 d 14 "

The analytical expression fdi(iQy,ie,,,) in Eq. (3.5 is véq-rz
given by 3.7
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Now using Eq.(3.7) we calculate the sum over, in Eq.  where Qmax~Ag is an upper cutoff.7(q)= 7(q) +2h and

(3.6 h=(H—H.)/H, is the reduced magnetic field. In E@.12
we may putg=0 inside ¢(x) because the main contribution

D(iQk,iw,,,q)=TE C2iQiQ—ien, DI Qp iens,) to_the integ.ral oveq comes from small momentum gnd in
this casen is a slowly varying function ofj. The remaining

1 integrals over) in Eqg. (3.12 can be easily calculated and
_ 169€” > O[—en(Qx—en)] the final result for the electromagnetic response is
d 0% (|26,— Q +4mTag? , . ,
2gecA 1 A d
3.8 QR(w)z—iw#W<—+—°)E f a
m4dT?y, 2 AxT)i=1 ) (2m)8

Carrying out the summation over thg, in Eq. (3.8) we

obtain for the functiorD(iQ,iw,,q) the following result: I3 1
XIIn| = | =5z =¥+ &Y' (H-1|, (R.13
n| 2¢
D iw,.q)=- 2dT 2 where we introduced the dimensionless parameger
=Ao7n/4wT. For very low temperaturd@<A,7,(£>1) we
x| ' EJF 2wv+9k+a ) may use the asymptotic expansion i6¢£) and finally ob-
2 47T 4 tain the correction to the conductivity due to the suppression
0, of the density of states
—JYl=+—+a 3.9
w 2 47T q ( ) O.DOS 2 5 < ( 1 )>
) . L =——=—{In| =—] ), (3.19
where (x) is the logarithmic derivative of the Gamma- 0o ™ A 7(Q)
function andey is given by
where(---y=V/[2™% . .[d%q/(27)°%], and 0y=8ge*/ 7R is
1 16 O the classical conductivity of a granular metal. One can see
ag=7g T(fo(H)‘*' —952 [1- COS(qld)]) that the DOS diagram gives a negative contribution to the
(3.10 conductivity. The absolute value afP°S is a decreasing

function of the magnetic fieldH and reaches its maximum
The second term in Eq3.10 arises due to the renormaliza- value at the critical magnetic fielti=H.. The absolute
tion of the Cooperons when tunneling processes from graiwalue of this maximum can be estlmateéf ‘és

to grain are taken into account. We insert E89) into Eq.

(3.5 and present the operator of the electromagnetic re- ool 8 AO

sponse in the following form: oo | A_oln 95" (3.19

) This maximum value is smaller than unity and this fact en-
v DK Q). sures our expansion. The conductiviy©® is independent
(3.11) of the temperature and therefore it remains finite in the limit
' T—0. This fact indicates that there are still virtual Cooper
Now the functionQ(iw,) must be continued analytically pairs even at zero temperature and strong magnetic fields.
into the upper complex half plane of the frequency. The anaThe quantityoc°°S becomes comparable wii, wheng is
lytical continuation in Eq(3.11) is carried out in the Appen- of the order of unity. Such values gfmean that we would
dix. As a result, we obtain for the operator of the electromagnot be far from the metal-insulator transition. In this case we
netic responseQ(iw,) after analytical continuation the have to take into account all localization effects and Eq.

. 8.
Q('%)Zg 2

following expression: (3.14 can be used only for rough estimates.
We would like to note that Eq3.14) does not differ from
—iw2g€? 1 3 d3q those written in Refs. 3,4. However, other contributions to
R — " .. . . .
QU w)=—FF—— ¥ (2 2 T)E f 3 the conductivity considered in the next subsections may
7 dT"Aorg =) (2m) change, so the extension of the calculations to the entire
0 0 0dO region specified by Eq1.1) is not as simple.
% f cothz—— As it was shown in Refs. 3,4 we can neglect the higher
0 T 02 ~ order corrections to the DOS, an example is shown in Fig. 3.
2 T (a) At low temperatureT«Ao';; this diagram contains an addi-

tional small factor of §/A,)In 7.

= 1 0? dQ In the following sections we discuss the Aslamazov-
+f0 .0 Q2 oT | (3.12 Larkin (AL) and Maki-ThompsoriMT) contributions to the

Slnhzﬁ — +7%(q) fluctuation conductivity. It turns out that the AL contribution

A is proportional toT? whereas the MT contribution can be
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momentumg’, then summing over the internal frequengy
we obtain in the limit of low temperature for functid(q)
the result

B 32 ge d3 ’
Bla)=—i—— WA sin(q/ d)cog (q;—q/)d ](2 <

(3.18

As in Sec. Il A, in order to calculate the respor@8-, we
have to make the analytical continuation from the Matsubara
frequencyw, to real values ofw. This can be achieved by
transforming the sum ove®), in Eqg. (3.16 into a contour
integral. This procedure allows one to carry out the analytical
continuation ofQ(iw,) into the upper complex half plane,
iw,—w+i0". As a result for the sum over th@, in Eq.
(3.16 we obtain

FIG. 3. Higher order correction to the DOS.

divided into two parts. One is proportional 16 at low tem-
peratures and the other one remains finite wien0. 2

2T 1
T2 KD iw,,0)— i TvE
B. Aslamazov-Larkin contribution to conductivity

3.1
This contribution originates from the ability of virtual ( ?
Cooper pairs to carry an electrical curréhThe diagram for  Using Egs.(3.18 and (3.19 we finally obtain for the AL
the operator of the electromagnetic response is representé@ntribution to the fluctuation conductivity
by the first diagram in Fig. 2 and its analytical expression has

the following form: oAb 64 5212 3 sirf(g;d) -
3 3 o 21988 &\ ) 420
AL 4 d>g .
Q™ (iw, -3 Z 2 f (27)3K('QK’Q) which agrees with the results obtained in Refs. 3,4. One can
see thato" gives a positive contribution to the fluctuation
KiQw—iw,,q)BXiQyiv,,q), conductivity and is proportional t®?, therefore it vanishes
(3.16 in the limit T—0.
' Let us estimate the right hand side in E§.20 for the

B(iQy.iw,,q) describes the block of the Green’s functions case of low temperatures=<A,7, and near the critical mag-
netic field,h<<gé/Ay. The main contribution to the integral

B(iQy,iw,,q) in Eq. (3.20 comes from small momenta. Therefore we can
. make an expansion iq of sin(gd) and cosgd). Retaining
[ d%q’ et?d\V?2 only the first nonvanishing terms and extending the range of
=— f 3Sln(qi’d)cos{(qi—0|{)d] i integration from 27/d to infinity we obtain
) (mvo7)
AL 2 32
d°p1dp LA _He
2 (2m)° ——— Gligqs,.p1) oo AZ2512\ H=H (3.2
XG(I1Q—ieq,,,p1)G(iey,po) The AL contribution grows when approaching the critical

. _ magnetic fieldH . thus leading to a decrease of resistivity. In
XG(iQ—iensy,P2) order to determine which contribution to the conductivity
XCliens i Qr—iens, . q)Clien,iQ—iw,,q), Wil dominate we compare”" with the maximum value of

DOS
(3.17

where sing/d) denotes the current vertex and [das—g;)d]
describes the tunneling vertex. In this integral we may put
Q=0 andw,=0 because in the vicinity of the critical mag- 5
netic fieldH, the leading contribution to the respon@é“ For h<gé/A, and sufficiently low temperature3,<A7,
arises from the fluctuation propagators rather than from thene can see from E@3.22 that|o*"/aP°9<1. This means
frequency dependence of the functiBnEqg. (3.17). There- that the AL contribution cannot change the monotonous in-
fore we neglect the dependence of functidon frequencies crease of the resistivity of granular metals when decreasing
Qy andw, . Integrating over the momenta ,p,, and quasi- the magnetic field.

O'AL

DOS
T max

3/2

—3/272
9 "1 1(A°)< He (3.22

Tayse" gl AR,
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C. Maki-Thompson contribution to conductivity 1. The anomalous MT contribution to conductivity

This contribution to the conductivity comes from coherent  The termB2" corresponds to thenomalousMT contribu-
electron scattering forming a Cooper pair on impuritie¥  tion, it appears in the case of a special pole arrangement in
The MT contribution is represented by the second diagram ithe integration over momenta in E€B.24), when the poles
Fig. 2. The analytical expression for the operator of the elecef the Green’s functions corresponding to different grains lie
tromagnetic response for the MT contribution to fluctuationon different sides of the axis of the real numbers. In order to
conductivity is given by calculate the fluctuation conductivity we have to insgff

into Eq.(3.23. Then, one should perform the analytical con-

MT S 3 _ _ ) tinuation ofQ*\(i w,) to real values of the external frequency
Q" (lw,)=3 .21 ; f (277)3K('Qk'Q)B('Qk"“’v'Q)' w. Finally, using Eq.(3.1) we get the conductivity. To this
end we represer®?"in the following form:
« (3.23 d p i the following f
where K(iQy,q) is the propagator of the superconducting . 16g€? 3 f d%q cogqd)F(w,,q)
. > . : . )= —
fluctu_at|o_ns ancB(|Qk,|wV,q) is a _functlon describing the Q*iw,) 3rdvg 24 ) (2m) @, tAmTaq
contribution of the loop. This function has the form (3.29
B(iQy,iw,,q) The functionF(iw,,q) is given by®
[ sinaiansin(q, - gy S SV
= | sin(g/d)si _— i =
a “Y S ran)? Fllo, @=T 2 (20,0, (329
3p,d where
f P P G iey,p)
f(iQy,iw,,q)
XG(iQy—ien,py)Glien—,,P2) 1 20,—0, 1 0
XG(iQu—in_,,P2) PR e A PR
. . . . . B Q
XC(ien,iQ—ie,,q)Clieq_,,iQ—len_,,q). 2h+|A_k|+77(q)
0

(3.29
. - Because of the presence of the Heaviside functidn Eq.
In evaluating the sum over the Matsubara frequesicyt is (3.26, B2 is only nonzero in the domaif€);,w, ;]. The
useful to break up the sum into two parts. In the first part upper limit of the sum ovef), in Eq. (3.29 depeynds on the

is in the domains }-, —w,[ and[0[. This gives rise 10 g tarna)| frequencys, . Therefore it is not correct simply to
theregular partof the MT diagram. The secoridnomalous make the substitutionw,— w. Note that we have calculated

parF of the MT Qiagram arises_ from.the summation over th q. (3.2 only for Q= 0 but one can easily obtain the cor-
g, in the domaln[—wV,O[._ Using _thls we can perform the responding expression fa,<0 replacing Q, by |Q].
sum over thes, anq after integration over the moLnenta W€ Therefore, instead of summing over all values @f we
can write the functiorB as a sum of aanomalous B'and a o tract the ternf), =0 and multiply the sum ove®, >0 by

regular B contribution to the MT diagram a factor of 2. The prime on the sum in E@®.29 indicates
g€ that the term withQ,=0 should be multiplied by 1/2. The
B(iQy,iw,,q)= —3ZTcos(qid)(Ba”+ Be9), analytical continuation is achieved by transformation of the

sum into a contour integral. The final result has the following
(329 form:s

where
R LA dQ
a1 0 0(0,— Qi) £+2w”_9k+a F (w,q)__m W
A o, +t47Tay 2 47T q sin >T
! —Qk 1 iQ 1 iQ
—l 5+ +a (3.26 i 10 B B
2 4gT 2+47TT+aq zr/12 47TT+aq
reg— -
. 87w, 1//(2+ 47T +aq> W5 2 4 T+0‘q) Ag
(3.27 (3.30

Note that the anomalous and regular part have different signsor 1 <1 we expand the numerator in a Taylor series around
and the anomalous part has an additional diffusion pole if2=0 and confine ourselves to the first nonvanishing term.
comparison with the regular one. Then we obtain
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2iw 1 A, = dQ 02 As before, we can write this sum as a contour integral. Then,
FR(w,q)= —Lp’(— + ) j . we have to perform the analytical continuation to real values
(47T)%Ay |2 47T (L of the external fre Vo, | +i0t. W d
kg_ 2 quencyw,: iw,—w+i0". We expan
2T Ao A the resulting expression in a Taylor series up to the second

(3.3) orderinw. The static term is canceled by a similar term in

Q(0). As aresult we obtain for the operator of the electro-
The last integral can be calculated in a similar way as thgnagnetic response

second integral in E3.12) in Sec. Il A and we obtain for
the anomalous MT contribution to conductivity the following

. —2iw e2 1 A Qmax Q QdQ
result: Q?g:—4 zg ”(—+ —2 J co 5
3 97 dT VOAO 2 AT T Q ~
ol _4moT? cogq;d) (3.32 Az +7?
o0 9A3 =1 \daTagn¥(a)] ' (3.36

Let us estimate the anomalous MT contribution to thePerforming the integration in Eq3.36 we obtain for the
conductivity. The main contribution to the integral in Eq. regular MT contribution to conductivity in the low tempera-
(3.32 comes from small momenta, therefore forh ture limit
<gd6/A, we expand the numerator and denominator in pow-

ers ofq. Confining ourselves to the first nonvanishing order MT 3
. ) . i Ore 2 0 1
in g, we obtain the following result: 9 _ - - E cogq;d)Inl =—| ). (3.3
oo 9T A= 7(q)
O-'é\lllr;r - T2 HC 1/2 (3 33) - - - - -
oo A3’251/2 —H—HC : Let us estimate the integral in the right hand side of Eq.

(3.37. At very low temperaturesT<A,7, and near the
From Eq.(3.33 we see tha‘tr gives a positive contribu- critical magnetic fieldH,, h<gd/Ay, it turns out that
tion to the fluctuation conductmty and grows when ap-
proaching the critical magnetic field— H. . The anomalous MT 5
MT contribution is proportional td? as temperature goes to ~—— (3.39
zero. At zero temperature the anomalous MT contribution

vanishes. . . _
The regular MT part gives a negative contribution to the

ILis interesting to compare- 1 with the contribution to fluctuation conductivity and it is independent of temperature,
conductivity that arises from the suppression of the densny y T P P
so that even at zero temperatur% remains finite and re-

of stateso®°S. The ratio of these two quantities is given b
g ¢ y duces the conductivity. We have shown before that at very

oMT g 3272 A H 12 low temperature neithes”" nor 0' T can change the mo-
L O S <_0)( ¢ ) (3.34 notonous increase of resistivity caused by the suppression of
oDO8 A58 9o c the density of states and the regular MT contribution.

One can see that <A 7 the anomalous MT contribution
is small compared tarP9°. Thus, we conclude that the
anomalous MT contribution cannot change the monotonous These diagrams arise when the DOS and MT diagrams are

increase of the resistivity of a granular superconductor whe@veraged over the impurity positions. This averaging process

D. Diagrams No. 3, 4, 7, 8 and 9,10

decreasing the magnetic field. results in the appearance of an additional Cooperon connect-
ing two different grains with each other. Let us consider the
2. The regular MT contribution to conductivity diagram 9 in Fig. 2, the diagram 10 can be calculated in the

same way. The analytical expression of the operator of the

Let us now investigate the contribution to the conductivity .
electromagnetic response reads as follows:

arising from theregular part of the MT diagram. The opera-
tor of the electromagnetic response can be written as

43 o3
I Quio)=3 % T8 [ K008 iv, q)

3
reg q , (2m
QMiw)=37 dw AR (2t ad (3.39

w(}+2wv+9k+a )—lﬂ whereK(iQk,q) i§ thg propagator of the supercondu_cting

2 47T q fluctuations and(i{}, ,iw,,q) corresponds to the contribu-

iQ tion of the loop. A factor of 2 in Eq(3.39 comes from the
2h— A_+ 7(q) summation over spin indices and another factor of 2 origi-
0 nates from a similar diagram shown in Fig. 2. The analytical
(3.35  expression for the loop can be written as

1 Q
27 27T "%
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FIG. 5. Weak localization correction to conductivity. The shaded
block denotes the renormalized Cooperon.

p3 , E+®

) ) . ) . (Tﬂ: O_DOS+ O_AL+ O'MT. (341)
FIG. 4. DOS-type diagram with an additional impurity renor-

malization. Other contributions from the diagrams in Fig. 2 are equal to
zero. At low temperatures[<A,7, the final result for the

. _ _ 3q’ . total fluctuation conductivity of granular metals can be writ-
B(|Qky|wyaQ):4f sin(q; d) J sin(q;'d) ten as
(27)
fl
d3q" e?t2d?\v2 fd3pld3p2 "_z_Ai 2i<|n ~L)>
(2m)? (2mver)® & ) (2m)° 7o Solem} An(q)
3 .
XGlien: , p1)GAien,py) 3 (84, 0T sir(ad)
. . 0 . =11277 A\ M)
XG(iQg—ien,Pp2)Cien,iQr—iey,0q) 0 7
X Cligns, i Q—ien,q), (3.40 +4_7TT_2< cogq;d) >
9 Ag 477Taq772(q)

wherep, andp, denote the momenta in the different gran-
ules andq’,q"” are quasimomenta. As before we can Qgt 2 1
inside the Green’s functions equal to zero. We can immedi- - 9—< cos(qid)ln(~—) > ) ] (3.42
ately see that after integration ovey,q” the function 7 7(q)

B(iQy,iw,,q) is equal to zero and the contribution to the gqyation (3.4 is the main result of our paper. For low

fluctuation conductivity from this diagram vanishes. The ~ L
same reason holds fo?/the diagram B%nd 4 in Fig. 2 WhicﬁemperaturesT«Aon and strong magnetic field >H; the

come from the averaging of the MT diagram over impurity ,[2?::5 ﬁgntt;fubtg;k(é?sm if,sEf:ﬁ%%he;\;'rjtciﬂgefrﬁznéze '[IhaeSt
positions. Also the diagrams 7 and 8 of Fig. 2 do not con- e 4 ’

tribute to the fluctuation conductivity. For simplicity we i?p?;%%?;jrugggél?;Luaatltﬂ,r;?r?]rémZﬁ;?;ai?véhreeSCSEdol;CéMty
present the diagram 7 once again in Fig. 4. 9 9 9 9:

One can easily see that the corresponding analytical e>£—3'4.2’ is written for the region K.g<(ET/5)' In the _n_ext
pression of such a diagram contains a term of the form section we show that the correction to the conductivity due

to weak localization effects can be neglected.

3
f P GA(e,p2) G (£,p2) =0. IV. WEAK LOCALIZATION CORRECTION TO
(2m)3 CONDUCTIVITY OF GRANULAR METALS

Both Green’s functions have poles on the same side of the 1€ weakly localized regim@VLR) is the regime where

complex plane and therefore the integral is zero. Thus, wélterference effects between different plane waves, being
may neglect diagrams 7 and 8. As we have shown, only th&reated independently, start to play a role. The interference of

diagrams 1(AL), 2 (MT), 5, and 6(DOS) make a contribu- plane waves leads to an increase of the probability to find an
tion to the fluctuation cénductivity of granular metals. electron at a certain place and this effect results in a reduc-

tion of the conductivity. The diagram corresponding to the
. WL correction to conductivitf®* is shown in Fig. 5.
E. Final Formulas For the WL correction of granular metifswe obtain

The calculations presented in the previous subsections
show that in granular superconducting metals fluctuations C(0,9) d3q
TVq

WL 16 2 °
make a considerable contribution to the conductivity in the ~ 60 =~ 39925(1 izl f 2 COS{Qid)w’
normal phase at low temperatures and strong magnetic field. 4.1)
The fluctuation conductivity of granular metals is given by
the DOS, Aslamazov-Larkin and Maki-Thompson contribu-whereC(0,q) is the Cooperon taken at the frequengy-0

tion. and quasimomenturg. Using Eq.(3.4) and making the in-

094516-8
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tegration over quasimomentuqin Eq. (4.1) we obtain the
final result for the WL correction to conductivity of granular
metals

WL 12
6o g3 ﬁ
0'0 5 '

Similar to the case of a homogeneous sample, the WL cor-
rection to conductivity has the negative sign.

Now let us compare the WL correction with®°S, The
ratio of these two quantities is given by

4.2

Resistivity
Ry

50_WL A 0 3/2 A 0
D0 =9 3/2( =5 In~ 1( g_é) . 4.3 Magnetic fieldh=(H-Hc2)/Hc2
max

For largeg> 1, this ratio is small and therefore the WL cor- F'G'd6' tSch?n;atuz ‘;'Ct”re OI the res'St]lV'tytf)f a %r?rr]lulated Sutf
rection is always smaller than the correction which arises;‘.’ercOn uctor at fixed temperature as a function of the magnetic

from the suppression of the density of states. teld.

APPENDIX
V. CONCLUSION
In this appendix we carry out the analytical continuation

We have obtained the fluctuation conductivity of granulariy gq. (3.11) and obtain the result for the operator of elec-
metals at low temperatures and strong magnetic field. Ouromagnetic respons®®(w), Eq. (3.12. The lower limit in
main result is given by Eq(3.42. To obtain this result we  the sum over), in Eq. (3.11) depends on the external fre-
assumed that the dimensionless conductansatisfies the  gyencyw,. Therefore the analytical continuation of this ex-
inequality (1.1). Therefore, the granular structure of the pression in the region of real frequencies is not correct by
metal is essential for our consideration. We have generalizegimply making the replacemerit,—w+i0", it can be
the previous St_Ud'é§ to the entire region &g<E1/4. This  achjeved by a transformation of the sum into a contour inte-
case is still different from the case of 2D homogeneousgra|
superconductSrwhere the dimensionless conductance was

assumed to be very lardef orderkgl). o0
One can see that®S ando}g; give anegative contribu- T > D(iQio, )K(IQq)
tion to the fluctuation conductivity, whereas the AL and the QY=-o,

anomalous MT contributions are positive. This leads to a .

competition between the positive and the negative contribu- —_— coch—D(z,in,q)K(z,q)dz,

tions. But as we have shown, at low temperatuiieg, T, 4miJei+c, T

and strong magnetic fielé>H,, this negative contribution (A1)

cannot be compensated by the positive contributions and

therefore the entire fluctuation conductivity is negative. Thewhere the contours of integratiod,; and C, are shown in

situation holds even af=0 where the AL and anomalous Fig. 7. We should interpret the propagator of the supercon-

MT contributions are equal to zero. ducting fluctuations as theetarded propagatorK® when
Qualitatively results are depicted in Fig. 6, where the typi-Im(z)>0 and as theadvancedpropagatorK® when Im()

cal curve for the dependence of the fluctuation resistivity on<0. In the vicinity of the critical magnetic field, H

the reduced magnetic fietdat low temperature is presented. —H_)/H.<1, we can expand the logarithm in the denomi-

The curve reaches the value of the classical resistiRly nator ofK and the retarded or advanced form of this quantity

asymptotically only in extremely strong magnetic fields. It has the following form®

was shown in Ref. 3 that for the granular metals the real

transition into the superconducting state occurs nétabut Im(z)

at a lower fieldH ¢y which is due to the electron motion over

many grains. Thus, in order to take into account the macro-

scopic orbital electron motion we have to replateby H., G
in our formulas. Re(z)
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iQ
2hx—

. 1 -t
KR'A(—IQ,q)=—V—O( A0+n(q)) . (A2

whereh=(H—-H.)/H..

The contribution to the integral from the large circle van-

ishes if we extend the contour tee, so that only the paths
along the horizontal lines with Ilzj=0 and Img+iw,)
=0 remain. Thus for the right hand side in E@1) we
obtain

+o z o i dz
f COch—TDR(—IZ,Iw,,,q)KR(—IZ,q)4—

e} Z A . . A ) dZ
+] coch—TD (—iz,)iw,, QK (—Iz,Q)m

+o—lw

+J ’
—x—iw,

z A dz
cothz—TD (—iz,iw,,qQ)K (—|z,q)m

(A3)

whereDR,D* are the retarded, advanced forms of the func-

tion D(iQy,iw,,q). They are given by

DRACY 0.a)— ge? [ (1 2ietiQ
(Q,0,9)= 24T E ? ag
1_|Q

ARkt (Ad)

In the third integral in Eq(A3) we make the substitution of
variablesz+iw,—z and use the fact that cdtfa+iw,)/2T]
=coth@2T). Now we can simply make the analytical con-
tinuation:i w,— w. Finally we obtain for the sum ové, in
Eqg. (A1) the following result:

PHYSICAL REVIEW B5 094516

+ed)
J, —coch—DR(—|Q 0, KR(—-iQ,q)

+J+O°dQ
— 477

XDA(—iQ,0,q)KA(—iQ,q).

cothQ— cothz—

(A5)

Since we are interested in the dc conductivity it is sufficient
to retain the linear term im in Eq. (A5) then we obtain

” 100
T >

W=-o,

—lw +aq

ge? 3J+ Cothz—zp”(

A7%dT
XKR(—=iQ da
(=i ,q)4 i

+=DA(—i1Q,09)KA(-iQ,q) dQ

2T Q 4mi’

smhzﬁ

(AB)

The main contribution to the integral ovél in Eq. (A6)
comes from small values of the frequency therefore we may
put Q=0 inside (x) in the first integral and extend the

integrand byj Q/AO+77. One can easily see that this integral
is logarithmically divergent and it has to be cut off @f, .,
~Ay. In the second integral we make an expansiorin
retaining only the first nonvanishing term and then we extend

the resulting expression byiQ/Ay+ 7. As a result for the
operator of electromagnetic response we obtain(Bd.2.
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