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Synchronization of overdamped Josephson junctions shunted by a superconducting resonator
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Synchronization was investigated numerically as well as by the method of slowly varying amplitudes for
two Josephson junctions with McCumber parameters near 1 shunted by a superconductor and a dividing
capacitor building up a resonator for ac currents. Because of the current resonance in the system the synchro-
nizing ac current increases and provides phase locking up to 15% spread of critical currents. Thresholds of the
phase-locked state at small as well as at large values of system parameters were explained in the developed
model. Conditions of forming the phase-locked state are investigated in the many-junction array in which ac
currents between neighbor junctions are formed through the superconducting shunt with a divided capacitance.
It is shown that at certain conditions the total phase locking of all junctions switched into the voltage state
appears when their quantity exceeds some critical value.

DOI: 10.1103/PhysRevB.65.094508 PACS number~s!: 74.50.1r, 85.25.Dq
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I. INTRODUCTION

The mutual phase locking phenomena in arrays of Jose
son junctions have been intensively studied as theoretic
as experimentally with regard to their applications as tuna
submillimeter oscillators.1–10 It was shown that linear array
of junctions connected by the feedback load are conven
objects for synchronization and satisfy all need
conditions.1 The feedback must provide an ac current wh
is large enough to synchronize junctions with some sprea
critical currents. For example, the load consisted of a nor
resistance and an inductance is able to synchronize radia
of junctions with 8–10% spread of critical currents.8 How-
ever, it is hard to obtain small values of spread
experiments.9 There are several solutions of the feedba
problem which lead to phase locking at higher spreads
critical currents. One of them is the use of Josephson ju
tions in the feedback superconducting loop~so-called many-
junction superconducting quantum interference dev
~SQUID! or multijunction superconducting loop!.10,11 It was
shown11,12 that due to the circulating current in the syste
there is the stable in-phase solution of dynamic equati
which can provide the phase locking up to 15% spread
critical currents. Experiments on the systems made of h
temperature superconductors~HTSC’s! with values of Mc-
Cumber parameters of junctions near 1 proved the ability
such a feedback to provide synchronization of all junctio
in the circuit.12 However, there is a strong dependence of
interval of currents in which the phase-locked state is
served on the external magnetic field.10 Another type of feed-
back was applied for the system of junctions with high v
ues of McCumber parameters.2,3,13,14 The system was
shunted by a superconducting shunt and a dividing cap
tance. The common resonance mode for all junctions
obtained by means of such a shunting. The current reson
enhances the amplitude of the common ac current thro
junctions. Experiments on synchronization of two PbInA
oxide-PbSn junctions with high values of McCumber para
eters showed the validity of the developed model.13 Accord-
0163-1829/2002/65~9!/094508~10!/$20.00 65 0945
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ingly to theoretical predictions~obtained by modification of
the method of slowly varying amplitudes for junctions wi
high McCumber parameter! the phase-locked state can ex
in the system with such a feedback up to;15% spread of
critical currents.14 Recently, there are experiments on sy
chronization of two-dimensional arrays of underdamp
Nb/Al/AlO x /Nb Josephson tunnel junctions with a supe
conductor plane above~or under! them.2,3 Numerical inves-
tigations showed that arrays of underdamped junctions
be successfully synchronized in such a scheme.4

Because of promising results of both theoretical and
perimental investigations of phase locking in systems of
derdamped junctions with the common resonance mode,
necessary to expand investigations to arrays of juncti
with small values of McCumber parameters~overdamped
junctions! such as SNS junctions~hereS is for a supercon-
ductor andN is for a normal metal! or most of the HTSC
Josephson junctions. Analytical results obtained in Ref.
are not valid in such systems and we apply the method
slowly varying amplitudes ~SVA’s! for overdamped
junctions1,15 which we expanded for a limited range of c
pacitances of junctions.16 In the present paper we repo
about as analytical as numerical investigations of synchro
zation of two Josephson junctions with small McCumber p
rameters (bc;1). We discuss a feedback consisting of
superconducting shunt and a dividing capacitance. We s
that this feedback being thesequentialresonance contou
forms theparallel resonance contour together with the c
pacitances of junctions in the array and provides the cur
resonance in the circuit. Changing the parameter of the
viding capacitor and the inductance of the loop formed
the shunt and the array we can tune the quality factor of
parallel resonance contour. Because of the resonance th
current through the junctions increases and the system ca
in the phase-locked state even at large spreads of cri
currents. To explain the particularities of the phase lock
behavior we apply the SVA method. Using this method
also explain the thresholds of the phase-locked state at s
as well as large values of the system parameters.
©2002 The American Physical Society08-1
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A. N. GRIB, P. SEIDEL, AND J. SCHERBEL PHYSICAL REVIEW B65 094508
We apply the SVA method also to the consideration of
quasi-infinite system consisted of a many-junction array
a superconducting shunt~with a dividing capacitance! which
is placed close enough to the array to form ac currents
tween neighbor junctions through the plane. In rec
experiments3 analogous systems were investigated exp
mentally with two-dimensional arrays of SIS junctions and
threshold of emitted power was found when the part of ro
of junctions were switched into the voltage state. We sh
that in such a system the interaction between junctions
cays with the distance from the junctions switched into
voltage state~active junctions!. We show that if the distance
between active junctions is large then they oscillate antiph
but when the distance decreases to some critical value
active junctions start to oscillate in phase. Because of
tiphase oscillations the ac power across the array is alm
zero till the concentration of active junctions becomes
large that the distance between them can provide the
phase synchronization. We show finally that there are c
figurations of the active junctions which lead to the thresh
of the total phase locking of all active junctions. We supp
our SVA consideration with the numerical calculations of t
phase dynamic.

II. THE MODEL

The scheme of one possible kind of such a shunted a
is shown in Fig. 1~a!. Two Josephson junctions have no J

FIG. 1. ~a! Scheme of the system of two Josephson junctio
~shown by arrows! with a superconducting shunt resonator~black
area!. ~b! The equivalent circuit of the system.~c! The equivalent
scheme of the system used within the SVA model.
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sephson connection with the shunt made of a supercondu
film. The layer of insulator between each junction and t
shunt is so wide that there are not any supercurrents betw
the array and the shunt. Because of this condition there is
quantization of magnetic flux inside the loop formed by jun
tions, insulator layers and the shunt.1 Layers of insulator
have large resistancesRl@Ra ~Ra is the averaged resistanc
of the Josephson junction!, so we can neglect the norma
conductivity of those layers in comparison to the Joseph
junctions. Each layer has the capacitanceC2 . The loop
formed by the array of junctions and the shunt has the ind
tanceL. It is assumed that in this contour the active res
tance due to the surface impedance of the superconduc
film and the resistivity of the insulator layers is negligib
low against the resistance of the single junction~the case in
which the active resistance is the same order of magnitud
the resistance of the junction is described in Refs. 1, 16,
17; in this case the highest spread of critical currents is o
4–5%!. The equivalent scheme of the shunted array is sho
in Fig. 1~b! ~hereC15C2/2!. Note that due to the resistance
of overdamped junctions the whole contour has a low qua
factorQ<10 at reasonable values of inductances and cap
tances. The junctions have different critical currentsI c1 and
I c2I c15(11d)I ca and I c25(12d)I ca , where d is the
spread of critical currents andI ca5(I c11I c2)/2 is the aver-
aged critical current. We suppose spread in normal re
tances of junctionsRk , however, keeping for simplicity the
product I c,kRk constant for all junctions. The dynamic be
havior of the Josephson junctions can be modeled using
resistively shunted junction~RSJ! model.1 Within this model
the dynamic equations are

@12~21!kd#@bCẅk~t!1ẇk~t!1sin~wk!#5 ī 2q̇~t!,

q̈1
1

bC1bL
q5

1

bL
(
k51

2

ẇk , k51,2, ~1!

wherek is the number of the junction,wk is the phase dif-
ference acrosskth junction, ẇk and ẅk are the first and the
second derivatives of the phase difference used with res
to dimensionless timet52pRaI cat/F0 , ī is the bias current
~all small letters here and further denote normalized un
~see Ref. 1!, q is the charge on the capacitance of the loa
impedances are normalized with respect to the averaged
sistance of junctionsRa , i L is the current flowing through
the shunt,bC52pI caRa

2C/F0 is the McCumber paramete
for the averaged critical current,F0 is the quantum of mag-
netic flux, bC1

52pI caRa
2C1 /F0 is the normalized capaci

tanceC1 , andbL52pI caL/F0 is the inductance paramete
of the system. Voltages across junctions measured in unit
I aRa arevk5ẇk .

To investigate the particularities of phase locking, it
more convenient to consider the system by the method
slowly varying amplitudes~SVA!.15,1 With this purpose we
can formally attach the capacitance of each junction to
external load@see Fig. 1~c!# and consider the junction as on
without capacitance. Thekth junction consists of the sourc
of the ac current with the amplitudeI ck and the resistanceRk
within the approximation of the RSJ model. For simplici

s
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SYNCHRONIZATION OF OVERDAMPED JOSEPHSON . . . PHYSICAL REVIEW B65 094508
let us consider at first a case of junctions with negligib
small difference of critical currents. Because we forma
attached the capacitances of junctions to the shunt, the p
dynamics of junctions can be described by the system of
order differential equations17

ẇk1sin~wk!5 ī 1 ĩ k , ĩ k5 (
k851

2

ykk8vk8 , k51,2, ~2!

where ĩ k is the ac current flowing through thekth junction in
the circuit which is formed with junctions and the load co
sisting of the shunt impedance and capacitances of both j
tions,ykk8 are the connection coefficients which are equa
the amplitudes of the ac current in thekth junction when
there is one unit of voltage on thek8th junction. We can
solve the system~2! of the first order differential equation
by means of the SVA to obtain the interval of voltages
which junctions oscillate coherently~the locking intervalD!.
The approximations of this method are the small differen
between frequencies of junctions generation with respec
their absolute values and small amplitudes of the ac curr
ĩ k in comparison toī that let us to consider currentsĩ k as
perturbations and expand the phase differences across
tions in series on the small parameter of the amplitude of
perturbation. Accordingly to the SVA method we consid
the first harmonic of the Fourier series of the voltage on
kth junction vk5 v̂k1Re(«1e

juk), where the caret represen
averaging over fast processes such as the Josep
generation,1 «1 is the Fourier coefficient, and the averag
phasesuk are determined from the relationsu̇k5 v̂k . To ob-
tain the valuesuk we have to solve the system of reduc
equations17

u̇k5 v̄k
A1

a

2
Re(

k8
ykk8e

j ~uk82uk!, k51,2, ~3!

wherev̄k
A is the full averaged voltage of the single noninte

actingkth junction,a5«1r d
A/ ī , r d

A5 ī / v̄A, andv̄A is the volt-
age across the noninteracting junction with the avera
critical current. Solving the system~3! we obtain1,8

ḣ5a Im~y12!sin~h!1~ v̄1
A2 v̄2

A!, ~4!

where h5u12u2 . This equation has the solutionh
5const. which describes synchronization of radiation in
interval

m[uv̄1
A2 v̄2

Au5F~ v̄ !usin~h!u, ~5!

where F5au Im(y12)u Supposing a small spread of critic
currents~so thatm! v̄! within the RSJ approximation th
relationm5uA(I /I c1)2212A(I /I c2)221u is valid ~hereI is
the bias current!. The right side of Eq.~5! contains the de-
pendenceF( v̄) obtained for the voltage corresponding to t

averaged critical currentv̄5A(I /I ca)
221[A ī 221. The co-
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efficient a can be written asa52/(v̄21Av̄211) in this
case.1 At h56p/2, u sinhu51 Eq.~5! can be solved numeri
cally for the different values of the spread of critical curren
d. The ranges of the phase-locked stateD at given d are
between the points of the intersection of the curvesF( v̄) and
m( v̄) @see Figs. 2~a! and 2~b!#.

The limitations of the SVA method for finite values ofd
andbC follow from the suppositions about the small diffe
ence of junctions frequenciesm! v̄ and the small values o
the high frequency part in the first term of the phase diff
ence expansion on the amplitude of the ac current1,16 uw̃u
!1. The numerical evaluations give the values
limitations16 d<0.04– 0.05,bC50.1– 0.5. For the values o
d andbC which exceed these limitations the SVA method
not available and to obtain the locking interval Eq.~1! have
to be solved numerically.

III. RESULTS AND DISCUSSION

Using the method of contour currents we found the ima
nary part of the coefficientsy12:

FIG. 2. ~a! DependenciesF( v̄) at different values ofbL . The
dependencem( v̄) at d50.05 is shown by a dotted line.~b! IV
characteristics of the two feedbacked junctionsbC50.4, bC1

50.4, bL54, andd50.05.
Im y125

n̄3bC
2 bL2 n̄@bC~21a!1bL#1

a

n̄bC

4@ n̄2bCbL2~11a!#21F n̄3bC
2 bL2 n̄@bC~21a!1bL#1

a

n̄bC
G2 , ~6!
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A. N. GRIB, P. SEIDEL, AND J. SCHERBEL PHYSICAL REVIEW B65 094508
wherea5bC /bC1
. It was shown16 that the SVA approxima-

tion for the inductance parameter of the loop is valid
bL<15.

We solved Eq.~5! numerically for h56p/2,usinhu51
using the expression~6! for different values of parameter
bC , bC1

, bL , andd within the interval of the validity of the
SVA method. For the comparison we also calculated lock
intervalsD by means of the numerical solution of dynam
equations~1! using the Runge-Kutta method. For the detail
analyzes of the system by means of the SVA model
choose values of parametersbC50.4, bC1

50.4, andbL54
which are in the range of validity of the SVA
approximations16 and allow one to obtain the locking interva
near the voltagen̄51. Examples of the dependenciesF( n̄) at
values of parameters which are close to chosen are show
Fig. 2~a!. From Fig. 3 one can see that the SVA approxim
tion for the D(bL) dependencies are in a good agreem
with those obtained by means of the numerical solution
Eqs.~1!.

The values ofF( n̄) for the investigated system are a
much as fifty percent higher than those obtained for the l
consisting of a resistance and an inductance.16 To explain
this enhance let us consider the electrical properties of
system in detail. If there is voltage across one junction th
the current circuit corresponds to a parallel resonance c
tour, one current branch of each is formed by the capacita
of the junction and another branch is formed by the ind
tance L, capacitanceC1 , and the other junction~LC1J
branch!. Dependencies of real and imaginary parts of
contour impedance on the frequency~voltage! are shown in
Fig. 4. The behavior of Im(z11) shows that there are tw
resonances in the circuit. The first resonance is the volt
resonance which corresponds to the equality of positive
negative parts of the impedance of theLC1J branch ~n̄1

'A1/(bLbC1
2bCbC1

) for n̄1bC!1; n̄1'0.83 in the ex-

ample of Fig. 4!. The second resonance atn̄251.12 is the
current resonance in the parallel contour formed by both
LC1J branch and the capacitance of the junction. The beh

FIG. 3. Dependencies of the locking intervalD on the parameter
bL . The solid line represents data obtained from the dynamic eq
tions ~1!, dotted line represents data obtained by the SVA appro
mation.
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ior of the impedance near the resonance frequencyn̄2

5A(bC1bC1
)/bLbCbC1

~n̄251.12 for the parameter given
in Fig. 4! is typical for a parallel contour with a low quality
factor.18 We can estimate the quality factorQ in Fig. 4 using
the expressionD8/ n̄251/Q ~hereD8 is an interval of volt-
ages where Rez11 decreases on the factor&! and getQ
'6.6. The current resonance specifies the circulating cur
in the contour. This circulating current synchronizes t
phase dynamics of both junctions. The main maxima ofF( n̄)
are disposed at the left side of the resonance voltagen̄2 @for
example,n̄max51.0 in Fig. 2~a!, curve 3#. Such a behavior of
n̄max can be explained within the frames of the general c
sideration of the system behavior near the resonance.1 It is
known1 that the solutions of the dynamic equation ha
smaller stability on the right part of the current resonan
than on the left part and can become unstable at some va
of parameters within the right part of the resonance. T
maxima of F( n̄) dependencies are shifted to low voltag
together with a shift of the resonance voltagen̄2 . Thus, the
origin of the F( n̄) increase is the enhancement of the
current in the load due to the current resonance.

To prove the stability of the in-phase solution of the d
namic equation~1! in the region of the current resonance w
performed the stability analyzes of these in-phase soluti
for different values of parametersbC , bC1

, bL , andd50.
The procedure of the stability analysis is described in det
elsewhere.19,12 In this procedure the real parts of Floqu
exponentslk are obtained for the perturbations of in-pha
solutions of the differential Eqs.~1!. If both the values of
Relk are negative, the in-phase solution is stable and
perturbation of this solution decays. On the contrary, if no
even one of the Relk is positive, the in-phase solution i
unstable and any perturbation increases with time. W
Relk,0, the in-phase solution with larger absolute value
Relk is more stable because perturbations decay faster if
absolute value of Relk is large. The dependence of the lar
est of the two values of Relk on the averaged voltage i
shown in Fig. 5. Because the capacitive load~the capacitance
of the junctions together with the capacitanceC1! gives a
negative slope in theIV characteristic1 at voltagesn̄<0.83,

a-
i-

FIG. 4. Dependencies of the real and imaginary parts of
system impedance on the averaged voltagev̄.
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SYNCHRONIZATION OF OVERDAMPED JOSEPHSON . . . PHYSICAL REVIEW B65 094508
there are not any stable solution of dynamic equations in
region and we can not obtain Floquet exponents an̄
<0.83. TheIV characteristic in this region has a jump fro
n̄50 to n̄'0.83 @see Fig. 2~b!#. The IV characteristics cal-
culated within the SVA approximation@Eq. ~3!# have such a
jump, too. On the contrary, the functionF( n̄) determines
only the amplitude of the locking voltage@but not theIV
characteristic, see Eqs.~4!, ~5!# and can be calculated in th
whole region of voltages. The voltage which corresponds
the first maximum ofF( n̄) @see Fig. 2~a!, curve 3# is placed
entirely within the ranges of the above mentioned jump
the IV characteristic and therefore this maximum does
manifest itself at the dependence (Relk)max on voltage. The
dependence of (Relk)max on the averaged voltage has a de
minimum at the voltage which corresponds to the sec
F( n̄) maximum @see Fig. 2~a!, curve 3#. Such a behavior
signifies the largest stability against perturbations~in connec-
tion with the spread of critical currents, for example! at this
voltage. We can make a conclusion that the in-phase s
tions of dynamic Eqs.~1! are very stable at the main max
mum of F( n̄) dependencies. Note that as far as we kn
there is no quantitative theory which allows one to conn
the stability against perturbations with the particularities
theF( n̄) function, such as the connection between the m
mum of (Relk)max and the maximum ofF( n̄). Another par-
ticularity of the (Relk)max dependence consists in the ze
crossing of this function from negative to positive within th
region n̄;2.3– 2.6. We can see that this region correspo
to the decay ofF( n̄) to almost zero values@Fig. 2~a!, curve
3#. Accordingly to the SVA approximation, at these voltag
a locking intervalD exists only at negligible small spreads
critical currents. The stability analysis proves this conclus
because the change of the sign of (Relk)max means the loss
of stability of the in-phase solution. Thus, we can state
connection between the behavior of Floquet exponents
the behavior of the functionF( n̄).

The curves forF( n̄) have two maxima. The first maxi
mum appears at low frequencies and is formed by the p
tive values of Im(y12). The second maximum at higher fre
quencies is formed by negative values of Im(y12).

FIG. 5. The dependence of the largest real part of the Floq
exponent on the average voltagev̄.
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Accordingly to the theory of phase locking at positive valu
of Im(y12) junctions oscillate antiphase and at negative v
ues of Im(y12) junctions oscillate in phase.1,8 If the parameter
d is small (d,0.03– 0.04) there are two intervals of th
phase-locked state in the system: antiphase locking inte
at small voltages and in-phase locking interval at higher v
ages. To demonstrate this, we chose the system paramet
such a way that the initial jump of voltages on theIV char-
acteristic is small enough to show the behavior ofIV char-
acteristics at the first maximum of the functionF( n̄) and
solved Eqs.~1!. Dependencies of the voltages across b
junctions on time are shown in Fig. 6 at very small spre
d50.01 and at bias currentsī 51.10 (n̄50.62) and ī
51.37 (n̄51.25), the tops of maxima inF( n̄). Note that at
d50 both junctions oscillate coherently. One can see that
a spreadd50.01 at ī 51.10 voltages oscillate antiphase b
in phase atī 51.37. This coincidence of numerical calcul
tions with the SVA approximation proves once more the v
lidity of SVA method. Because the in-phase maximum
higher than that for anti-phase, only one locking interval
in-phase oscillations remains with increasing of spread
critical currents.

The influence of the parameterbL reveals in increase o
the F( n̄) maxima, while decreasing of the curve width an
shifting the maxima to lower voltages. The same behavio
bL is noted for the system of two Josephson junctions wit
shunt consisting of an inductance and a resistance.16 This
behavior predicts the existence of two thresholds of ph
locking. The first threshold appears at smallbL when the

et

FIG. 6. Time dependencies of voltages across junctions at~a!

ī 51.10 and~b! ī 51.37.
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A. N. GRIB, P. SEIDEL, AND J. SCHERBEL PHYSICAL REVIEW B65 094508
maxima of F( n̄) become larger than values ofm( n̄). The
second threshold exists at largebL when valuesm( n̄) be-
come so high that the maxima ofF( n̄) appear again beneat
them @see Fig. 2~a! and Fig. 3#.

The behavior ofF( n̄) with the change of the paramete
bC ~within the limitations of the SVA model, i.e., atbC
<0.5! is analogous to that described above. When the
rameterbC1

is increased the height ofF( n̄) maxima also
increases as well as the shift of them to lower frequenc
and the existence of both thresholds of phase locking is
found similar to the previous cases but the width of theF( n̄)
maxima in this case increases with increasing ofbC1

.

Though the top ofF( n̄) maximum can be shifted beneath th
curve m( n̄), the part of the broad maximum remains und
that curve. This leads to the very slow decay of the lock
interval D with increase ofbC1

~Fig. 7!. We calculated the

dependenceD(bC1
) at largebC1

and found thatD50.24 at

bC1
5100.

We investigated the highest spread of critical curre
dmax at which synchronization exists at different values
parametersbL , bC1

, andbC . The optimal values of param

etersbC1
and bL are bC1

;0.4– 0.6,bL;3 – 5. We solved
Eqs. ~1! numerically using these optimal values and fou
the dependencedmax(bC) ~Fig. 8!. The minimal value ofbC
was takenbC50.01 in our calculations. This dependence h
a maximum atbC51 and the highest value ofdmax exceeds
0.15. The evaluation of the highest spread of critical curre
within the SVA approximation is as follows:1,8 dmax'n̄/ ī ( ī
1n̄)uIm(y12)u. Though the valuebC51 is out of the range of
the SVA approximations, we can roughly estimatedmax using
this expression and Eq.~6!: dmax'0.13. Despite this estima
tion of dmax is out of ranges of the SVA approximation,
shows that atbC51 the highest spread of critical curren
increases. Furthermore, this value is close to the obta
numerically valuedmax50.15. Such a value of the highe
spread of critical currents coincides also with prediction14

for systems of underdamped junctions with LC load and

FIG. 7. The dependence of the locking intervalD on the param-
eterbC1

.
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high enough quality factor of the resonatorQ;30. We can
see that at optimal values of the system parameters the h
est spread is the same for the system of overdamped j
tions but with lower values of the quality factor~because the
synchronizing currentĩ k flowing through each junction can
reach the same high value at optimal parameters!.

IV. SOME ASPECTS OF EXPERIMENTAL REALIZATION

Though this paper is devoted to theoretical analysis
synchronization of a Josephson junction array with a sup
conducting resonator we like to discuss some aspects of
perimental realization of such system corresponding to
analysis. The experimental investigations of systems with
superconducting shunts are more advanced now than the
derstanding of the phase locking mechanisms in th
systems.2,3,20,21 Recently, there are experimental investig
tions which prove the usefulness of the superconduc
shunt for phase locking in SIS and SINIS~hereN is for a
normal metal! arrays of Josephson junctions2,3,20 and appli-
cations of this effect.21 For example, in the two-dimensiona
array of junctions with a superconducting ground plane~di-
vided by a layer of insulator from the array!, the dc-to-ac
power conversion efficiency is one order of magnitu
higher than in other Josephson junction arrays.3 An one-
dimensional array of overdamped SINIS junctions integra
into the low-impedance superconducting microstripline w
used for a programmable Josephson voltage standard d
internal phase locking of junctions.20,21 Together with the
successful applications of these systems the new phys
effect of a threshold of the ac power was discovered in s
tems with the resonator.3 Thus, a question of optimization o
these circuits is strongly connected with understanding of
origin of phase locking.

Because the resonance contour is used for obtaining
phase locking the drawback of the proposed scheme is
limited tunability of the scheme to the necessary range
frequencies. To satisfy the condition of obtaining of the w
est locking interval~i.e. the highest range of frequencies
which junctions radiate coherently! all the parameters of the

FIG. 8. The dependence of the maximal spread of critical c
rent dmax on the junction parameterbC .
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circuit should be close to the calculated values~bC1

;0.4– 0.6,bL;3 – 5, andbC;0.8– 1.3!. The array of over-
damped junctions has the advantage in this point in comp
son with the array of underdamped junctions because
resonance system based on the overdamped junctions
low quality factor due to the low resistances of junction
The resonance is broad in this case and deviations of pa
eters in the above mentioned intervals can provide ph
locking in the system.

The considered system of junctions with a low-capac
resonator can be realized experimentally in arrays of SIN
overdamped junctions20,21 or HTSC grain boundary Joseph
son junctions because the McCumber parameter of m
HTSC Josephson junctions satisfies the optimal conditi
bC;1. For high-TC superconductors the system can be fa
ricated using HTSC technology in vertical geometry@as it is
shown in Fig. 1~a!# or in planar geometry using deep ste
edge junctions10 and thick layers of HTSC superconducto
to provide a good capacitive connection. To satisfy the o
mal conditions (bC1

<1) the value of capacitorC1 should be

C1;1 pF. The resistance of the insulator inside the capac
should exceed the normal resistance of Josephson junc
as much as 100 times and the thickness of this insul
should provide a negligible small supercurrent between
array of junctions and the superconducting shunt. Wit
these limitations the proper material of the insulator and
thickness can be chosen. Note that one can fabricate
capacitors on the edges of the array and connect them
succession@as it is shown in Fig. 1~a!# or prepare only one
capacitor and connect the other end of the array with
superconducting shunt. The capacitors should have s
geometrical dimensions to provide the inductance param
of the loopbL;3.

V. THRESHOLD OF PHASE LOCKING IN SHUNTED
MANY-JUNCTION ARRAYS

Recent investigations of two dimensional arrays of
sephson junctions connected capacitively to a supercond
ing ground plane showed that the emitted ac power ha
sharp increase from almost zero values to finite values~a
threshold! if the amount of junctions activated into the vol
age state~active junctions! exceeds some critical value.3 In
this section we demonstrate a mechanism of synchroniza
which leads to a threshold of emitted power and is valid b
for underdamped and overdamped junctions.

We consider a infinite one-dimensional array of junctio
with a superconducting plane and a dividing layer of insu
tor. If the superconducting plane is placed close enough
the array, ac current circuits are formed between neigh
junctions. The electrical scheme of the ac circuit of su
system is shown in Fig. 9~it is supposed that the dc bia
current flows through the line of junctions!. It follows from
Eq. ~2! that synchronization of active junctions in the syste
appears due to the ac currentĩ k produced by each activ
junction and flowing through other active junctions. Coef
cients ykk8 which determine this ac current have differe
characteristic distances of the decay~or distances of the in-
teraction with other junctions! in different systems.1,17 For
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the infinite system shown in Fig. 9 coefficientsykk8 are given
with17

ykk85
1

2A2z1~z21zj !
e2uk2k8uA~z21zj !/z1, ~7!

wherez1 , z2 , andzj are impedances of the capacitanceCs ,
the inductanceLs and the junction, respectively. The absolu
value of the difference between numbers of junctionsuk
2k8u we call ‘‘the distance’’ in the following consideration

We suppose that there are only two active junctions a
all other junctions are in the superconducting~passive! state.
At first we assume that junctions are nearly identical, i
d→0. Accordingly to Eq.~5!, at h56p/2,usinhu51 the
ranges of synchronization for the given bias current are gi
by zero points of the functionF. We calculated the imaginary
part of the connection coefficientykk8 using Eq.~7! @Fig.
10~a!, solid line#. For the calculation of impedances we no
malized the capacitanceCs and the inductanceLs : bCs

52pI caRa
2Cs /F0 , bLs52pI caLs /F0 . The sign of the

function Im(ykk8)5f(uk2k8u) is negative atuk2k8u<3 and
positive atuk2k8u.3. It means that active junctions oscilla
in phase if the distance between them does not exceed 3
they oscillate antiphase if the distance exceeds 3. Thus, t
is a certain critical distancer c between active junctions to
obtain their in-phase synchronization~r c53 in this case!. If
we consider the infinite chain of junctions in which activ
junctions are distributed uniformly at some distance fro
each other, they do not oscillate in phase with each ot
until the distance between neighbors is larger thanr c . The
distancer c is reached at a certain quantity of active junctio
Na5N/r c that gives a critical concentration of active jun
tions xcr5Na /N51/r c ~xcr5

1
3 in our case!. Accordingly to

Eq. ~5!, if there is some spread of critical currents of jun
tions, the distance at which the in-phase locked state is
served at givend andn̄ is between the points of the interse
tion of the curvesF(uk2k8u) andm5const.

To check our consideration we made numerical simu
tions of the quasi-infinite chain of junctions with a superco
ducting plane shown in Fig. 9. The dynamic equations in E
~1! get the extended form

@12~21!kd#@bCẅk~t!1ẇk~t!1sin~wk!#5 ı̄ 2q̇k~t!,

FIG. 9. ~a! The ac circuit scheme of the array of four junction
with a superconducting resonator strip line which provides curre
between neighbor junctions through the plane,Ls is the inductance
of the strip line between junctions andCs are capacitance of the
insulator layer between the array and the strip line.
8-7
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bLsq̈k1
1

bCs
~2qk2qk212qk11!5ẇk , k51,2, ~8!

whereqk is the charge on the capacitance of thekth junction.
We investigated the imaginary part of the connection

efficients and the total ac power of two active junctio
placed on different distance from each other. The evalua
of uIm(ykk8)u within the SVA approximation is as follows:1,8

uIm(ykk8)u'@ ı̄( ı̄1n̄)/n̄#dmax, wheredmax is the highest spread
of critical currents at which synchronization exists when
first junction is atkth position and the second junction is
thek8th position. To know the sign of the values Im(ykk8) we
checked the in-phase or antiphase behavior of voltage o
lations. The calculated values of the Im(ykk8) @shown by solid
circles in Fig. 10~a!# are in a good agreement with thos
obtained by means of the SVA approximation.

We consider the cluster of two active junctions placed
different distance from each other in the middle of the ar
of 30 passive junctions. Such disposition of the cluster
active junctions allows us to avoid the effects of reflectio

FIG. 10. ~a! The dependence ofuIm(ykk8)u on the distance be
tween the junctionsuk2k8u. The solid line represents the SVA ap
proximation, solid circles obtained from the solution of dynam
equations. The parameters of the calculations arebC51, bCs

50.5, bLs51, ī 51.10, ~b! The dependence of the normalized
power across the array of two junctionsP/P0 on the distance be
tween junctions.d50.01, other parameters are the same as in~a!.
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from the ends of the array. The ac currents produced
active junctions in the cluster decay at edges of the array
provides the condition of the quasi-infinite system for whi
the Eq. ~7! is fitted. We set values of critical currents o
passive junctionsi c,pas51.3 while critical currents of active
junctions were distributed around the averaged valuei c,act
51 with the spreadd.

The ac powerP across the whole array normalized on t
ac power of the single active junctionP0 placed in the
middle of the array of passive junctions is as follows:

P

P0

5

S (
n51

N

~ ẇn2 n̄n!D 2

~ ẇ12 n̄1!2

, n51,...,N, ~9!

wheren is the number of the junction,N is the total quantity
of junctions ~active and passive!, ẇn is the time-dependen
voltage across thenth junction,n̄n is the averaged dc voltag
across thenth junction, ẇ1 and n̄1 are the time-dependen
voltage and the averaged dc voltage across the single a
junction which is placed in the middle of the array of pass
junctions, two lines above expressions represent avera
over time and over the random value of critical currents d
tributed uniformly within the interval$12d,11d%. If active
junctions are synchronized in phase with zero phase s
then P/P05Na

2(ẇ12 n̄1)2% /(ẇ12 n̄1)2% 5Na
2, whereNa is the

amount of active junctions in the cluster.
The normalized ac power across the array of two act

junctions as a function of the distance between them
shown in Fig. 10~b!. We can see thatP/P0 changes from 4 to
;3.5 if the distance increases to 3~in-phase oscillations! and
becomes almost zero ifuk2k8u.4 ~antiphase oscillations!.
These results are also in full agreement with predictions
the SVA approximation.

We investigated the ac power across a cluster of 11 ju
tions placed in the middle of the array of 30 junctions. Acti
junctions were uniformly distributed along the cluster.
investigate the influence of the distance between active ju
tions on the ac power across the array we consider only
set of configurations of active junctions in which they d
tributed uniformly along the cluster, so we do not avera
P/P0 over different configurations of active junctions insid
the cluster. The relationP/P0 as a function of the amount o
active junctionsNa is plotted in Fig. 11. The value ofP/P0
is insufficient until Na,5 ~antiphase oscillations of junc
tions!, thenP/P0 increases slowly untilNa56 and then in-
creases sharply atNa57. The further increase ofNa leads to
the increase ofP/P0 as a square of their quantityNa that is
characteristic of the phase coherence of all active junctio1

We can note two particularities in Fig. 11: the increase
P/P0 from almost zero values atNa.4 and the beginning of
the total in-phase radiation of all junctions atNa57. These
features ofP/P05 f (Na) behavior can be explained in th
ranges of the SVA approximation. When there are few act
junctions in the array, they are placed far from each other
oscillate antiphase@see Figs. 10~a! and 10~b!#. The ac power
across the array is therefore insufficient. The critical dista
for the array withd50.01 is r c52. If active junctions are
8-8
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distributed regularly along the cluster, atNa55 there appear
configurations in which active junctions are placed at
distancer c from each other, several active junctions are s
chronized in phase and others are not synchronized
them. At Na56 junctions oscillate in phase with their firs
neighbors and antiphase with second neighbors. The add
of one more active junction (Na57) into the center of the
cluster creates the nucleous of the several junctions w
oscillate in phase and pull all active junctions into the pha
locked state. Note that if the seventh active junction is ad
to the one of the ends of the cluster, the state in which o
the part of junctions is synchronized still exists and the
power across the array is not so large~but the total phase
locking appears if an eighth active junction is added in
middle of the cluster!. Thus, from the consideration of Fig
11 we can make the conclusion that in the system with m
active junctions there are configurations which lead to
threshold of the ac power.

VI. CONCLUSIONS

In the first part, we investigated theoretically the syst
of two Josephson junctions with McCumber parametersbC
;1 loaded by a superconducting shunt and a capacita
We analyzed the dependence of voltages at which junct
oscillate coherently~the locking interval! on parameters o
the system by both the method of slowly varying amplitud
~SVA’s! in the available ranges of parameters as well as
solving numerically the system of dynamic equations. D
pendencies of the locking interval on different paramet
obtained within SVA approximation are in a good agreem
with those obtained by means of solution of dynamic eq
tions. The analytic result give a contribution to better und
standing of the mechanism of phase locking and dyna
behavior of the system.

The load consisted of inductance and capacitance
vides the current resonance in the system and the circula
current through junctions. This circulating current synch
nizes the oscillations of both junctions. We analyzed the
havior of real and imaginary parts of the circuit impedan

FIG. 11. The dependenceP/P0 on the quantity of active junc-

tions Na . Parameters of calculations:bC51, bCs
50.5, bLs51, ī

51.10, andd50.01.
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and showed that the maxima of the ‘‘locking voltage’’F
appear at the left side of the resonance voltagen̄2 . We ana-
lyze the stability of the in-phase solutions of dynamic equ
tions and found that solutions in the vicinity of the resonan
at the maximum ofF have the highest stability.

Due to the circulating current the values ofF are as much
as fifty percent higher than those obtained for the load c
sisting of a resistance and an inductance thus provides
phase locking up to 15% spread of critical currents. W
showed that a superconducting resonator shunt gives ad
tages for synchronization of Josephson junctions in comp
son with the traditional shunts made of normal conducto
We found the optimal values of McCumber parametersbC ,
parameters of the load capacitancebC1

, and inductance pa
rameters of the systembL for phase locking.

There are thresholds of the phase-locked state at sma
well as large values of system parameters. By means of
SVA method we found that the origins of these thresholds
an insufficiency of the ‘‘locking voltage’’F to get phase
locking at these values of parameters. We finally discus
aspects of realization of this promising system, particula
using HTSC technology. Because the resonance contou
used as a load, the system has to be tuned to the requ
frequencies of radiation. Parameters of the circuit should
close to calculated values (bC1

;0.4– 0.6,bL;3 – 5,bC

;0.8– 1.3) to get a wider the range of frequencies at wh
junctions radiate coherently. We can consider the present
tem as an alternative to the many-junction SQUID~which
also gives phase locking up to 15% spread of critical c
rents! but is sensitive to external magnetic fields because
ist closed superconducting loop.

In the second part, we applied the SVA method to t
consideration of the quasi-infinite system of a many-junct
array and a superconducting shunt which is placed cl
enough to the array to form ac currents between neigh
junctions through the plane. In such a system the connec
coefficients decay with the distance from the junctions wh
are into the voltage state~active junctions!. If active junc-
tions are placed far from each other, they oscillate antiph
and the total ac power of radiation is almost zero. We sh
that in-phase synchronization of active junctions appear
they are placed at some critical distance from each other
provide this critical distance the concentration of active jun
tions must be high enough depending on the spread pa
eterd. We checked these predictions of the SVA approxim
tion by numerical solution of the dynamic equation. W
showed that if junctions are distributed uniformly along t
chain then there is in-phase locking of some active juncti
when the quantity of active junctions exceeds the criti
value. We also showed that there are configurations at wh
the total phase locking of all active junctions appears a
the addition of one more active junction to the cluster. T
addition leads to the threshold of ac power. We believe t
this mechanism is valid for two-dimensional arrays, too, a
gives an explanation of the experimental observed thresh
in the number of rows.3
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