
PHYSICAL REVIEW B, VOLUME 65, 094430
Spontaneous magnetization of the O„3… ferromagnet at low temperatures

Christoph P. Hofmann
Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093

~Received 26 June 2001; published 20 February 2002!

We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry
O(3)→O(2). Theanalysis is performed within the perspective of nonrelativistic effective Lagrangians, where
the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant frame-
work ~chiral perturbation theory!, where loop graphs are suppressed by two powers of momentum, loops
involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the
low-temperature expansion for the partition function are calculated up to orderp10. In agreement with Dyson’s
pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the
magnon-magnon interaction starts manifesting itself only at orderT4. The striking difference with respect to
the low-temperature properties of the O~3! antiferromagnet is discussed from a unified point of view, relying on
the effective Lagrangian technique.
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I. INTRODUCTION

In the following presentation, our interest is devoted
the low-temperature behavior of ferromagnets, which exh
a spontaneously broken internal symmetry O(3)→O(2).
This system has been widely studied in condensed ma
physics and it is not our intention to contribute to its detai
microscopic understanding. Rather, we want to analyze
eral low-energy phenomena from a unified point of vie
relying on the method of nonrelativistic effectiv
Lagrangians. We try to understand how the symmetries,
herent in the underlying theory, manifest themselves in
partition function at low temperatures. The complex mic
scopic description of the system is taken into account o
through a phenomenological parametrization, which, in
effective Lagrangian, emerges in the form of a few coupl
constants.

Nevertheless, let us first consider the Heisenberg mo
which describes the ferromagnet on amicroscopic level.
There, the exchange HamiltonianH0,

H052J(
NN

SW m•SW n , J5const, ~1.1!

formulates the dynamics in terms of spin operatorsSW m , at-
tached to lattice sitesm. Note that the summation only ex
tends over nearest neighbors and that the isotropic inte
tion is assumed to be identical for any two adjacent latt
sites. For positive values of the exchange integralJ, the
above expression leads to an adequate low-energy des
tion of the ferromagnet.

The interaction between a constant magnetic fieldHW
5(0,0,H),H.0, and the spin degrees of freedom is tak
into account through the Zeeman term. In the correspond
extension of the Heisenberg model,1

H5H02m(
n

SW n•HW , ~1.2!

the magnetic field is coupled to the vector of the total sp
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it

er

v-
,

-
e
-
ly
e
g

l,

c-
e

rip-

n
g

.

Within this model, Dyson evaluated the low-temperatu
expansion for the partition function of a ferromagnet for
three types of cubic lattices.2 In particular, for the most
prominent order parameter of the ferromagnet, the sponta
ous magnetization, he obtained the following series:

S~T!/S~0!512a0T3/22a1T5/22a2T7/22a3T41O~T9/2!.
~1.3!

TheT3/2 term, referred to as Bloch’s law, corresponds to fr
magnons. The next two terms involving the coefficientsa1
anda2 are related to the shape of the dispersion curve—
the discreteness of the lattice—and describe free magnon
well. Remarkably, the spin-wave interaction starts manife
ing itself only at orderT4.

In order to obtain this result, Dyson had to set up a hig
involved mathematical machinery. It is our goal to rederi
this series within the effective Lagrangian framework and
understand Dyson’s result by exclusively considering
symmetries of the theory. In order to do so, we will first ha
to establish the momentum power counting scheme for
nonrelativistic system, which represents the very basis fo
systematic expansion of quantities of physical interest. As
will see, it is quite different from the power counting schem
in Lorentz-invariant effective theories~chiral perturbation
theory!.

Another aspect of the present work concerns the comp
son of the low-energy properties of O~3! ferromagnets and
O~3! antiferromagnets. Within the framework of nonrelati
istic effective Lagrangians, we will, e.g., be able to und
stand the striking differences in the low-temperature exp
sions for the order parameters: the spontane
magnetization for a ferromagnet and the staggered mag
zation for an antiferromagnet, respectively.

In the effective Lagrangian perspective, the excitatio
near the ground state, the spin waves or magnons in
present case, are interpreted as Goldstone bosons resu
from a spontaneously broken internal symmetry. Indeed,
Heisenberg Hamiltonian~1.1! is invariant under a simulta
neous rotation of the spin variables described by the sym
try groupG5O(3), whereas the ground state of a ferroma
©2002 The American Physical Society30-1
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net breaks this symmetry spontaneously down toH5O(2):
all the spins are aligned in one specific direction, giving r
to a nonzero spontaneous magnetization.

Whenever a physical system exhibits spontaneous s
metry breaking and the corresponding Goldstone bosons
resent the only low-energy excitations without an ene
gap, we do have a very powerful means at our disposa
analyze its low-energy structure: effective Lagrangians. T
method was originally developed in connection w
Lorentz-invariant field theories ~chiral perturbation
theory!,3–7 admitting a low-energy analysis of the strong i
teraction described by quantum chromodynamics~QCD!.
The effective Lagrangian technique has also proved to
very useful in the investigation of other relativistic system
where Goldstone bosons occur; see, e.g., Refs. 8–10.
method has been extended to finite temperature,11 allowing
for a systematic low-temperature analysis of the partit
function.

In condensed matter physics, spontaneous symm
breaking is a common phenomenon and effective field the
methods are widely used in this domain. Only recently, ho
ever, has chiral perturbation theory been extended to s
nonrelativistic systems,12–14 demonstrating its applicability
to solid-state physics as well. The method is based on ef
tive Lagrangians which exploit the symmetry properties
the underlying theory, i.e., the Heisenberg model in
present case, and permit a systematic low-energy expan
of quantities of physical interest in powers of inverse wa
length. The few applications related to systems exhibit
collective magnetic behavior that appeared in the literat
so far concern spin-wave scattering processes,15 spin-wave-
mediated nonreciprocal effects in antiferromagnets,16 the
low-temperature expansion of the staggered magnetizatio
O(N) antiferromagnets,17 and spin waves in canted phases14

An interesting application concerning SO~5! invariance and
high-Tc superconductivity can be found in Ref. 18. Ped
gogical introductions to effective Lagrangians are Refs. 1
21; brief outlines of the method can be found in Ref. 22.

As the effective analysis refers to large wavelengths
does not resolve the microscopic structure of a solid and
system hence appears homogeneous. Accordingly, the e
tive Lagrangian is invariant with respect to translations.
the other hand, the effective Lagrangian is not invariant
der rotations, since the lattice structure of a solid singles
preferred directions. In the case of a cubic lattice, the ani
ropy, however, only shows up at higher orders of the deri
tive expansion:10,13 the discrete symmetries of a cubic lattic
thus imply space rotation symmetry. In the following, w
assume that the ferromagnet exhibits this type of lat
structure: the leading-order effective Lagrangian is then
variant both under translations and under rotations and
corresponding expression for a ferromagnet takes
form12,13

L e f f
2 5S

«ab]0UaUb

11U3
1SmHU32 1

2 F2] rU
i] rU

i . ~1.4!

In the above notation, the two real components of the m
non field, Ua (a51,2), have been collected in a thre
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dimensional unit vectorUi5(Ua,U3), which transforms
with the vector representation of the rotation group O~3!. At
leading order, the ferromagnet is thus characterized by
different low-energy constantsS andF. The first term, which
involves a time derivative, is related to a topological inva
ant. Remarkably, due to this contribution proportional to t
spontaneous magnetizationS, the effective Lagrangian of a
ferromagnet fails to be invariant under the groupG5O(3).
Note that such expressions, involving order parameters a
ciated with the generators of the spontaneously bro
group, would not be permitted in Lorentz-invariant effecti
theories. It represents the main novelty occurring in co
densed matter physics, where nonrelativistic kinematics
less restrictive than Lorentz invariance.

The associated equation of motion is the Landau-Lifsh
equation

]0Ua1«a jkf 0
j Uk1g«a jkDU jUk50, f 0

j 5mHd3
j ,g[

F2

S
,

~1.5!

which describes the dynamics of ferromagnetic spin wav
Its structure is of the Schro¨dinger type: first order in time,
but second order in space. Note that, according to Go
stone’s theorem, there have to be two real Goldstone field
the case of a spontaneously broken symmetry O(3)→O(2).
However, in the nonrelativistic regime, this does not nec
sarily imply that there also have to exist two independ
magnon states. Indeed, in the present case of a ferroma
a complex field is required to describe one particle: th
exists onlyone type of spin-wave excitation in a O~3! ferro-
magnet, following a quadratic dispersion relation

v~kW !5gkW21O~ ukW u4!. ~1.6!

Accordingly, in the effective description of this nonrelativi
tic system,two powers of momentum correspond to onlyone
power of energy or temperature:k2}v,T.

The effective Lagrangian method provides us with a
multaneous expansion in powers of momentum and of
external fieldH. The important point is that, to a given orde
in the low-energy expansion, only a finite number of co
pling constants and a finite number of graphs contribute.
us now set up the effective Lagrangian for a ferromagne
higher orders in the momentum expansion23 and consider the
corresponding power counting scheme.

II. POWER COUNTING AND EFFECTIVE LAGRANGIAN

In his pioneering microscopic analysis, Dyson evalua
the temperature expansion for the partition function of a
bic ferromagnet up to terms of orderT5. In our effective
language, where one power of temperature or energy co
like two powers of momentum, this corresponds to an exp
sion up to orderp10. We will now show that, to this order in
the momenta, contributions to the effective Lagrangian
volving at most six space derivatives enter and the pertu
tive expansion requires the evaluation of graphs contain
at most two loops.

First of all, note that there are no contributions to t
0-2
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SPONTANEOUS MAGNETIZATION OF THE O~3! . . . PHYSICAL REVIEW B65 094430
effective Lagrangian with an odd number of space deri
tives: parity excludes terms like

cabc« rst] rU
a]sU

b] tU
c, ~2.1!

which involve the antisymmetric tensor« rst .
Before constructing the relevant piecesL e f f

4 ,L e f f
6 , . . .

step by step, we have to point out an important assump
underlying the present analysis: we assume that the effec
Lagrangian of a ferromagnet is gauge invariant at sublead
orders. In fact, the discrete symmetries of a cubic lattice
time-reversal invariance ensure that there is no topolog
contribution inL e f f

4 ~see Ref. 13!. Topological contributions
which may show up inL e f f

6 or beyond do not affect the
conclusions of the present work.

Gauge invariance then implies that the magnetic fieldH
enters the derivative expansion through a timelike covar
derivative,

D0Ui5]0Ui1« i jk f 0
j Uk, f 0

j 5mHd3
j . ~2.2!

Note that the magnetic field occurs on the same level as
time derivative and is thus counted as a quantity of orderp2.

The next-to-leading-order Lagrangian is of orderp4. It
involves terms with two time derivatives, terms with on
time and two space derivatives, and terms with four sp
derivatives. Time derivatives, however, can be elimina
with the equation of motion,24

]0Ua1«a jkf 0
j Uk1g«a jkDU jUk50,

such that we end up with the following independent terms25

L e f f
4 5 l 1~] rU

i] rU
i !21 l 2~] rU

i]sU
i !21 l 3DUiDUi .

~2.3!

We thus have three effective coupling constantsl 1 , l 2, and
l 3, at next-to-leading order. Note that all terms involving t
magnetic field have been eliminated with the equation
motion. In particular, gauge invariance implies that there
no tree graph fromL e f f

4 contributing to the vacuum energy
Clearly, the question now arises as to what ordern in the

effective LagrangianL e f f
2n we have to go to evaluate the pa

tition function up to accuracyp10. In the following, we will
show that loop corrections involving ferromagnetic magno
are suppressed bythreepowers of momentum and the effe
tive Lagrangian is needed up toL e f f

6 .
To verify this statement, let us consider a scattering p

cess. The effective Lagrangian provides us with an expan
for a multimagnon scattering amplitude in powers of m
mentum. The elastic magnon-magnon scattering amplitud
obtained by expandingLe f f up to order (UaUa)2. As shown
in Fig. 1a, the leading term corresponds to the tree gr
involving the four-magnon vertex fromL e f f

2 and is of order

F2kW2/S2 ~see Ref. 15!. The first correction comes from th
tree graph 1b with a vertex involving the next-to-leadin
order LagrangianL e f f

4 . However, we also have to consid
loop graphs in the effective framework. These corrections
in general infinite and need to be renormalized.
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Consider the magnon-magnon scattering graph 1c, wh
the two vertices come fromL e f f

2 . The form of the loop graph
is

Aloop}E dvd3k

~2p!4 S F2kW2

S2 D 2H 1

v2gkW2J 2

, ~2.4!

where the quantitiesv and kW denote generic energy an
three-momentum, respectively. Each four-magnon ver
from L e f f

2 is of orderF2kW2/S2, while the two magnon propa

gators are of order 1/(v2gkW2). By dimensional analysis, the
loop integral must then have the form

A loop}
g

S2
upW u5. ~2.5!

Comparing this expression with the leading tree graph a
plitude 1a,

A tree}
g

S
pW 2, ~2.6!

we find the remarkable result that, in the effective descript
of the ferromagnet, loops are suppressed bythreepowers of
momentum. This is to be contrasted with the Loren
invariant framework ~chiral perturbation theory!, where
loops are suppressed by two powers of momentum in f
dimensions.

Hence, in order to carry out the expansion for the partit
function up to accuracyp10, we need the Lagrangian up t
terms of orderp6: L e f f

6 shows up in a one-loop graph a
order p9. Notice that the only relevant term coming from
L e f f

6 is quadratic in the magnon field. Eliminating time d
rivatives, we end up with

L e f f
6 5c1UiD3Ui . ~2.7!

As in L e f f
4 , terms involving the magnetic field do not sho

up: they have all been eliminated with the equation of m
tion. More generally, assumingL e f f

4 ,L e f f
6 ,L e f f

8 , andL e f f
10 to

be gauge invariant, there are no tree-graph contributi
from these higher order pieces of the effective Lagrangian
the vacuum energy—provided that the magnetic field is
only external field considered.

FIG. 1. Feynman graphs describing the leading contribution
the magnon-magnon scattering amplitude. The numbers attach
the vertices refer to the piece of the effective Lagrangian they co
from. Vertices associated with the leading termL e f f

2 are denoted by
a dot.
0-3
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CHRISTOPH P. HOFMANN PHYSICAL REVIEW B65 094430
III. FINITE TEMPERATURE

In finite-temperature field theory, the partition function
represented as a Euclidean functional integral,26–28

Tr@exp~2H/T!#5E @dU#expS 2E
T
d4xLe f fD . ~3.1!

The integration is performed over all field configuratio
which are periodic in the Euclidean time directionU(xW ,x4

1b)5U(xW ,x4), with b[1/T. The low-temperature expan
sion of the partition function is obtained by considering t
fluctuations of the fieldU around the ground stateV
5(0,0,1), i.e., by expandingU3 in powers of Ua, U3

5A12UaUa. The leading contribution is of orderp2 and
contains a term quadratic inUa which describes free mag
nons. In the presence of a magnetic field, they obey the
persion relation29

ik4~kW !5gkW21mH1O~ ukW u4!. ~3.2!

The remainder of the effective Lagrangian is treated a
perturbation. Evaluating the Gaussian integrals in the s
dard manner, one arrives at a set of Feynman rules w
differ from the conventional rules of the effective Lagrangi
method only in one respect: the periodicity condition im
posed on the Goldstone field modifies the propagator. A
nite temperature, the propagator is given by

G~x!5 (
n52`

`

D~xW ,x41nb!, ~3.3!

whereD(x) is the Euclidean propagator at zero temperatu

D~x!5E dk4d3k

~2p!4

eikWxW2 ik4x4

gkW22 ik41mH
. ~3.4!

Note that the above Green function corresponds to the pr
gation of a single magnon, described by the complex fi
u5U11 iU 2.

We restrict ourselves to the infinite-volume limit an
evaluate the free energy densityz, defined by

z52T lim
L→`

L23ln@Tr exp~2H/T!#. ~3.5!

Temperature thus produces remarkably little change: to
tain the partition function, one simply restricts the manifo
on which the fields are residing to a torusT in Euclidean
space. The effective Lagrangian remains unaffected—
coupling constantsF,S,l 1 , . . . aretemperature independen

It is convenient to use dimensional regularization
evaluate the graphs of the effective theory. Unlike in
Lorentz-invariant framework, where the physical dimens
d is equal to four, we regularize the nonrelativistic propag
tor only in the three spatial components,

D~x!5
1

~2p!d S p

g D d/2 1

x4
d/2

expS 2
xW2

4gx4
2mHx4DQ~x4!,

~3.6!
09443
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and setd53 at the end of the calculation.
For the thermal propagator, we then have

G~x!5
1

~2p!d S p

g D d/2

(
n52`

`
1

xn
d/2

3expS 2
xW2

4gxn
2mHxnDQ~xn!, ~3.7!

with

xn[x41nb. ~3.8!

Using complex notation for the magnon field, the evaluat
of Gaussian integrals simplifies, since the following tw
point functions vanish:

^0uT$u~xW ,x4!u~yW ,y4!%u0&5^0uT$u†~xW ,x4!u†~yW ,y4!%u0&50.
~3.9!

Nonzero contributions to the partition function only resu
from

^0uT$u~xW ,x4!u†~yW ,y4!%u0&5
2

S
D~x2y!. ~3.10!

The calculation simplifies further due to space rotation sy
metry of the propagator, implying that, at the origin, sing
space derivatives vanish,

] rG~ uxW u,x4! ux5050. ~3.11!

Let us now evaluate the free energy density order by orde
the momentum expansion.

IV. EVALUATION OF THE FREE ENERGY DENSITY

The relevant Feynman graphs are shown in Fig. 2. D
picted are all contributions to the free energy density up
orderp10 or, equivalently, orderT5.

As we will see, all these contributions to the free ener
density exclusively involve propagators and space der
tives thereof, to be evaluated at theorigin x50. It is conve-

FIG. 2. Feynman graphs occurring in the low-temperature
pansion of the partition function for an O~3! ferromagnet up to
orderp10. The numbers attached to the vertices refer to the piec
the effective Lagrangian they come from. Vertices associated w
the leading termL e f f

2 are denoted by a dot. The numbers specifyi
individual graphs correspond to the power of momentum in
derivative expansion. Note that, in the counting scheme for fe
magnetic magnons, two powers of momentum correspond to
power of energy or temperature.
0-4
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SPONTANEOUS MAGNETIZATION OF THE O~3! . . . PHYSICAL REVIEW B65 094430
nient to introduce the following notation:

G1[@G~x!#x50 ,

GD[@DG~x!#x50 , ~4.1!

where D represents the Laplace operator in thr
dimensions—no confusion should occur withD(x), denoting
the zero-temperature propagator.

The quantityG1 is split into a finite piece, which is tem
perature dependent, and a divergent piece, which is temp
ture independent,

G15G1
T1G1

0 . ~4.2!

Using dimensional regularization, the explicit expressio
are

G1
T5

1

~2p!d S p

g D d/2

(
n51

`
e2mHnb

~nb!d/2
,

G1
05

1

~2p!d S p

g D d/2F 1

x4
d/2

expS 2
xW2

4gx4
DQ~x4!G

x50

.

~4.3!

Likewise, forGD we have

GD
T5

1

~2p!d S p

g D d/2S 2
d

2g D (
n51

`
e2mHnb

~nb!d/211
,

GD
0 5

1

~2p!d S p

g D d/2F 1

x4
d/211 H 2d

2g
1

xW2

4g2x4
J

3expS 2
xW2

4gx4
DQ~x4!G

x50

. ~4.4!

The temperature-independent piecesG1
0 andGD

0 , as well as
propagators involving higher orders of space derivatives,
all related to momentum integrals of the form

E ddk~kW2!mexp@2gx4kW22x4mH#, m50,1,2, . . . ,

~4.5!

which are proportional to

exp@2x4mH#

~gx4!m1d/2
GS m1

d

2D . ~4.6!

In dimensional regularization, however, these express
vanish altogether:G1

0, GD
0 , and propagators involving mor

Laplacians do not contribute in the limitd→3. Therefore, in
the evaluation of the above graphs, only the temperat
dependent piecesG1

T ,GD
T , . . . are relevant.

The first contribution to the free energy density, which
of orderp2, comes from tree graph 2. It does not depend
temperature and is given by

z252SmH. ~4.7!
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The orderp5 contribution from one-loop graph 5 is ass
ciated with ad-dimensional nonrelativistic free Bose gas. F
the temperature-dependent part, we obtain

z5
T52

1

8p3/2g3/2
T5/2(

n51

`
e2mHnb

n5/2
. ~4.8!

At order p7, the next-to-leading-order LagrangianL e f f
4

comes into play. For one-loop graph 7, which involves
two-magnon vertex, we get

z752
2l 3

S
@D2G~x!#x50 , ~4.9!

yielding

z7
T52

15l 3

16p3/2Sg7/2
T7/2(

n51

`
e2mHnb

n7/2
. ~4.10!

The first two-loop graph appears at orderp8. Remarkably,
this contribution is proportional to single space derivatives
the propagator at the origin and thus vanishes,

z8}@] rG~x!#x50@] rG~x!#x5050. ~4.11!

At order p9, two one-loop graphs show up which involv
L e f f

4 andL e f f
6 , respectively. For graph 9a, we get

z9a52
2c1

S
@D3G~x!#x50 , ~4.12!

leading to the temperature-dependent contribution

z9a
T 5

105c1

32p3/2Sg9/2
T9/2(

n51

`
e2mHnb

n9/2
. ~4.13!

Graph 9b is proportional to an integral over the torusT
which involves a product of two propagators,

z9b52
2l 3

2

S2ET
dd11xD2G~x!D2G~2x!. ~4.14!

This expression, however, can be reduced to
x-independent term involving one propagator only. To ver
this statement, consider the equation for the thermal pro
gator,

S ]

]x4
2gD1mH DG~x!5d~x!, ~4.15!

and take the derivative with respect to the magnetic fie
The quantity]G(x)/](mH) may then be written as a convo
lution integral over the torus. At the origin, the expressi
reads

F ]G~x!

]~mH !G
x50

52E
T
dd11yG~2y!G~y!. ~4.16!

Inserting Laplace operators at intermediate steps, we ob
the more general result
0-5
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CHRISTOPH P. HOFMANN PHYSICAL REVIEW B65 094430
FD (m1n)
]G~x!

]~mH !G
x50

52E
T
dd11yDmG~2y!DnG~y!,

~4.17!

such that Eq.~4.14! can be written as

z9b5
2l 3

2

S2 FD4
]G~x!

]~mH !G
x50

. ~4.18!

For the temperature-dependent part of graph 9b, we then

z9b
T 52

945l 3
2

64p3/2S2g11/2
T9/2(

n51

`
e2mHnb

n9/2
. ~4.19!

Finally, at orderp10, two-loop graphs with insertions from
L e f f

4 show up. Graph 10a contributes with

z10a52
2

3S2
~8l 116l 215l 3!GDGD

2
2l 3

S2
G1@D2G~2x!#x50 . ~4.20!

The evaluation of graph 10b amounts to

z10b5
2l 3

S2
G1@D2G~2x!#x50 , ~4.21!

and cancels the second term inz10a . For the temperature
dependent part of orderp10 we thus end up with

z1052
3~8l 116l 215l 3!

128p3S2g5
T5H (

n51

`
e2mHnb

n5/2 J 2

. ~4.22!

Collecting terms, the result for the free energy density
to orderp10 becomes

z52SmH2
1

8p3/2g3/2
T5/2(

n51

`
e2mHnb

n5/2

2
15l 3

16p3/2Sg7/2
T7/2(

n51

`
e2mHnb

n7/2
2

105

32p3/2Sg9/2

3S 9l 3
2

2gS
2c1DT9/2(

n51

`
e2mHnb

n9/2

2
3~8l 116l 215l 3!

128p3S2g5
T5H (

n51

`
e2mHnb

n5/2 J 2

. ~4.23!

The first term is temperature independent and origina
from tree graph 2. Contributions which involve half integ
powers of the temperature—T5/2, T7/2, and T9/2,
respectively—arise from one-loop graphs and are all rela
to the free energy density of noninteracting magnons.
markably, there is only one term in the above series,
order T5 contribution coming from two-loop graph 10a
which is due to the magnon-magnon interaction.
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V. INTERLUDE:
FREE MAGNONS VERSUS INTERACTING MAGNONS

Consider the formula for the free energy density of a g
of noninteracting bosons,

z5z01
T

~2p!3E d3k ln~12e2v(kW )/T!, ~5.1!

wherez0 is the energy density of the vacuum. With the lea
ing term of the dispersion relation

v~kW !5gkW21mH1O~ ukW u4!, g[
F2

S
,

we readily reproduce the dominant one-loop contribut
z5

T}T5/2 in the free energy density of the O~3! ferromagnet.
In order to account for subleading terms in the dispers

relation, we have to evaluate higher-order contributions
the two-point function ^0uT$u(xW ,x4)u†(yW ,y4)%u0& of the
magnon field. The relevant graphs are shown in Fig. 3. D
picted are all contributions up to orderp10. Instead of listing
individual results for the two-point function, we give th
final expression for the dispersion relation originating fro
these graphs:

v~kW !5
1

S
~F2kW21SmH22l 3kW412c1kW6!. ~5.2!

The two new terms correspond to graph 7, graph 9a,
graph 9b of Fig. 3. Note that one-loop graph 8 does
contribute to the dispersion relation. The effect of the th
remaining one-loop graphs of orderp10 will be discussed in
a moment.

Inserting the above dispersion relation into formula~5.1!,
we reproduce all contributions to the free energy dens
which are associated with one-loop graphs: graphs 5, 7,
and 9b of Fig. 2. These contributions are all related to n
interacting magnons—the corresponding coefficients in
dispersion relation are independent of the temperature.

As far as the evaluation of the three one-loop graphs
orderp10 ~Fig. 3! is concerned, the situation is the following

FIG. 3. Feynman graphs occurring in the low-energy expans
of the two-point function for an O~3! ferromagnet up to orderp10.
The numbers specifying individual graphs correspond to the po
of momentum in the derivative expansion.
0-6
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in the sum of these contributions, only one term remains
originates from graph 10a and leads to an additional term
the dispersion relation

}
~8l 116l 215l 3!

S2
GD

0 kW2. ~5.3!

However, in dimensional regularization, the quantityGD
0 , as

we have seen, vanishes, such that the dispersion relatio
not affected by the graphs of orderp10.

Nevertheless, we can mimic the magnon-magnon inte
tion by allowing some of the coefficients of the dispersi
relation to become temperature dependent. If we replaceGD

0

by GD
T in Eq. ~5.3!, we obtain an interaction term propo

tional toT5 in the free energy density. Moreover, we see t
the leading order coupling constantg is not renormalized a
leading order (}G1

TkW2, i.e., orderp8 in the free energy den

sity!, but only at next-to-leading order (}GD
TkW2, i.e., order

p10 in the free energy density!. This observation, implying
that the two-loop graph 8 does not contribute to the disp
sion relation, was already made in Ref. 30.

In this section, we have split the free energy density int
piece corresponding to free magnons and a piece repre
ing the magnon-magnon interaction,

z5zf ree1zinter . ~5.4!

The free part can be obtained from the free Bose gas form

zf ree5z01
T

~2p!3E d3k ln~12e2v(kW )/T!,

with the modified dispersion relation

v~kW !5
1

S
$F2kW21SmH22l 3kW412c1kW6%.

The coupling constantsF, S, l 3, andc1 are all independen
of the temperature. The interaction part originates from tw
loop graph 10a which involves a four-magnon vertex fro
L e f f

4 ,

zinter52
3~8l 116l 215l 3!

128p3S2g5 S (
n51

`
e2mHnb

n5/2 D 2

T5.

In order to make the structure of the low-temperature
pansion for the free energy density of an O~3! ferromagnet
more transparent, we rewrite the series in the form

z5z02h0T5/22h1T7/22h2T9/22h3T51O~T11/2!,
~5.5!

where the temperature-dependent coefficientshi are given by

z052SmH,

h05
1

8p3/2g3/2 (
n51

`
e2mHnb

n5/2
,
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h15
15l 3

16p3/2Sg7/2 (
n51

`
e2mHnb

n7/2
,

h25
105

32p3/2Sg8/2 S 9l 3
2

2gS
2c1D (

n51

`
e2mHnb

n9/2
,

h35
3~8l 116l 215l 3!

128p3S2g5 S (
n51

`
e2mHnb

n5/2 D 2

. ~5.6!

In the limit (mH/T)→0, these coefficients become temper
ture independent and the sums reduce to Riemann zeta f
tions,

h̃05
1

8p3/2g3/2
z~ 5

2 !,

h̃15
15l 3

16p3/2Sg7/2
z~~ 7

2 !,

h̃25
105

32p3/2Sg9/2 S 9l 3
2

2gS
2c1D z~ 9

2 !,

h̃35
3~8l 116l 215l 3!

128p3S2g5
z2~ 5

2 !. ~5.7!

VI. SPONTANEOUS MAGNETIZATION

With the above representation for the free energy dens
the low-temperature series for some relevant thermodyna
quantities can readily be derived. Since the system is ho
geneous, the pressure is given by the temperature depen
part of the free energy density,

P5z02z, ~6.1!

and the low-temperature expansion amounts to

P5h0T5/21h1T7/21h2T9/21h3T51O~T11/2!, ~6.2!

with coefficientshi given in Eqs.~5.6!.
The first contribution represents the free Bose gas te

which originates from one-loop graph 5. Subsequent te
exhibiting half integer powers of the temperature are rela
to the shape of the dispersion curve and represent effects
to the discreteness of the cubic lattice. Remarkably, ther
no T4 term in this series: two-loop graph 8 does not contr
ute. In the low-temperature expansion for the pressure,
interaction among ferromagnetic spin waves only sta
manifesting itself at orderT5.

The corresponding expressions for the energy densitu,
for the entropy densitys, and for the heat capacitycV are
readily worked out from the thermodynamic relations

s5
]P

]T
, u5Ts2P, cV5

]u

]T
5T

]s

]T
. ~6.3!
0-7
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CHRISTOPH P. HOFMANN PHYSICAL REVIEW B65 094430
Reordering powers of the temperature and taking the li
(mH/T)→0, we get

u5 3
2 h̃0T5/21 5

2 h̃1T7/21 7
2 h̃2T9/214h̃3T51O~T11/2!,

s5 5
2 h̃0T3/21 7

2 h̃1T5/21 9
2 h̃2T7/215h̃3T41O~T9/2!,

cV5 15
4 h̃0T3/21 35

4 h̃1T5/21 63
4 h̃2T7/2120h̃3T41O~T9/2!,

~6.4!

with coefficientsh̃i given in Eqs.~5.7!.
Let us now consider the low-temperature expansion

the spontaneous magnetization,

S~T!52 lim
H→0

]z

]~mH !
. ~6.5!

With the expression~5.5! for the free energy density, w
obtain the following series:

S~T!/S512a0T3/22a1T5/22a2T7/22a3T41O~T9/2!.
~6.6!

The coefficientsan are independent of the temperature a
given by

a05
1

8p3/2Sg3/2
z~ 3

2 !,

a15
15l 3

16p3/2S2g7/2
z~ 5

2 !,

a25
105

32p3/2S2g9/2S 9l 3
2

2gS
2c1D z~ 7

2 !,

a35
3~8l 116l 215l 3!

64p3S3g5
z~ 5

2 !z~ 3
2 !. ~6.7!

Here comes the appropriate place where we would like
compare our result with Dyson’s microscopic calculation.
fact, one of the main motivations for his analysis was
following question: at what order in the low-temperature e
pansion does the spin-wave interaction manifest itself in
spontaneous magnetization? Before his rigorous analysi
which he showed that the spin-wave interaction only sta
contributing at orderT4, there appeared to be an amazi
mess in the literature. At least three different answers w
available, all of them in contradiction with each other and,
it turned out, also in contradiction with Dyson’s result: th
authors31 obtained a term proportional toT2 and the two
references 32 and 33 ended up with two different contri
tions of orderT7/4.

Within the effective Lagrangian framework we clear
confirm Dyson’s finding: in the spontaneous magnetizati
the leading contribution coming from the magnon-magn
interaction is of orderT4. Any microscopic information, such
as the specification of the type of the cubic lattice, is co
prised in the numerical values of the effective coefficie
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an—they involve the coupling constantsF,S,l 1 , . . . occur-
ring in the derivative expansion of the effective Lagrangi
L e f f

2 ,L e f f
4 , and L e f f

6 , which phenomenologically param
etrize the microscopic detail.

After Dyson’s work, various authors tried to derive h
results with alternative methods within the microscop
framework of the Heisenberg model. In particular, there w
emerging interest in simplifying his complicate
calculation.34 In the course of these investigations, howev
not all authors could confirm Dyson’s findings and, surpr
ingly, a new term in the temperature expansion for the sp
taneous magnetization started to haunt the literature: var
authors35 ended up with an interaction term of orderT3.
However, theT3 contribution turned out to be a spuriou
effect.36 It emerged due to the approximation methods us
in these involved microscopic calculations: random ph
approximation and decoupling approximation in the meth
of double-time temperature-dependent Green functions.

We would like to emphasize that there are no such
proximations in the effective Lagrangian framework. T
method applies to any system where the Goldstone bos
are the only excitations without energy gap. In the effect
Lagrangian perspective, the problem is approached fro
unified and model-independent point of view, based on
symmetries inherent in the underlying theory. In the pres
case of a ferromagnet, it is the spontaneously broken inte
symmetry O(3)→O(2) of the Heisenberg model and th
nonzero value for the spontaneous magnetization, which
tate the structure of the low-temperature series considere
this paper.

Our calculation clearly shows that there is noT3 term in
the low-temperature expansion for the spontaneous mag
zation of a cubic O~3! ferromagnet. Using effective languag
this translates into the statement that the contribution fr
two-loop graph 8 of Fig. 2 to the free energy density va
ishes. As we have pointed out, the reason is due to sp
rotation symmetry of the leading-order effective Lagrangia
implying that single space derivatives of the propaga
evaluated at the origin, are zero.

The argument is not restricted to cubic lattices. Consi
the leading-order Lagrangian of the O~3! ferromagnet:

L e f f
2 5S

«ab]0UaUb

11U3
1SmHU32 1

2 F2] rU
i] rU

i .

Let us replace the last term, which is invariant under sp
rotations, by the more general expression

2 1
2 F1

2]1Ui]1Ui2 1
2 F2

2]2Ui]2Ui2 1
2 F3

2]3Ui]3Ui ,
~6.8!

in order to account for anisotropies of the crystal lattice. T
modified equation for the thermal propagator,

S ]

]x4
2g1]1

22g2]2
22g3]3

21mH DG~x!5d~x!, ~6.9!

again, allows us to eliminate all terms in the evaluation
graph 8 up to contributions which involve single space d
rivatives of the propagator at the origin,
0-8
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z85(
p

cp@]pG~x!#x50@]pG~x!#x50 , p51,2,3.

~6.10!

Even though the thermal propagator is no longer space r
tion symmetric, it is still invariant under parity, such th
single space derivatives, evaluated at the origin, vanish.
conclude that, also for anisotropic lattices, described by
new contributions~6.8! in the effective Lagrangian, there i
no interaction term of orderT3 in the low-temperature serie
for the spontaneous magnetization.

VII. ORDER PARAMETERS
OF FERRO- AND ANTIFERROMAGNETS:

SPONTANEOUS VERSUS STAGGERED
MAGNETIZATION

The low-energy behavior of an O~3! ferromagnet is deter
mined by the spin waves which represent the Goldst
bosons of this nonrelativistic system. These low-energy
citations obey aquadratic dispersion relation. As is wel
known, the spin waves of anantiferromagnet, on the other
hand, follow alinear dispersion law. Accordingly, the low
temperature properties of these two systems are q
different—the difference reveals itself, e.g., in the lo
temperature expansion for the corresponding order par
eters. In this section we are going to address the two syst
within the effective Lagrangian perspective.

The low-temperature analysis of an O(N) antiferromag-
net, exhibiting a spontaneously broken internal symme
O(N)→O(N21), was the object of Ref. 17. Here, we on
want to point out some basic ingredients in order to comp
the system with the ferromagnet.

In the underlying theory, the O(N) symmetry of the
Heisenberg model is explicitly broken by an external anis
ropy fieldhW . It is convenient to collect the (N21) Goldstone
fields Ua in an N-dimensional vectorUi5(U0,Ua) of unit
length,

Ui~x!Ui~x!51, ~7.1!

and to take the constant external field along the zeroth a
hi5(h,0, . . . ,0). TheEuclidean form of the effective La
grangian for an O(N) antiferromagnet up to orderp4 then
reads8

L e f f
AF5 1

2 F 2]mUi]mUi2Ssh
iUi2e1~]mUi]mUi !2

2e2~]mUi]nUi !21k1

Ss

F 2
~hiUi !~]mUk]mUk!

2k2

Ss
2

F 4
~hiUi !22k3

Ss
2

F 4
hihi . ~7.2!

In the power counting scheme, the fieldU(x) counts as a
quantity of order one. For the antiferromagnet, derivativ
correspond to one power of the momentum,]m}p, whereas
the external fieldh counts as a quantity of orderp2. Hence,
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at leading order (}p2) two coupling constantsF and Ss

occur; at next-to-leading order (}p4) we have five such con
stantse1 , e2 , k1 , k2, andk3.

The essential point here is the fact that a term involvin
single time derivative does not show up in the effective L
grangian: this topological contribution is proportional to t
spontaneous magnetization which, in the case of an ant
romagnet, vanishes. Hence, the corresponding equatio
motion is of second order both in space and in time,
relativistic structure determining the number of independ
magnon states: the Fourier decomposition contains b
positive and negative frequencies, such that a single real
suffices to describe one particle. Accordingly, there existtwo
different types of spin-wave excitations in a
antiferromagnet—as is the case in Lorentz-invariant theor
Goldstone fields and Goldstone particles are in one-to-
correspondence. These low-energy excitations follow a lin
dispersion relation. As a consequence, in the power coun
scheme for antiferromagnetic magnons, powers of mom
tum are on the same footing as powers of energy or temp
ture: k2}v2,T2.

Let us now turn to the evaluation of the partition functio
of an O(N) antiferromagnet,N>2. The relevant graphs ar
depicted in Fig. 4. Lorentz invariance ensures that only e
powers of momentum occur and that loop graphs are s
pressed bytwo powers of momentum. Shown are all contr
butions to the free energy density up to orderp6 or, equiva-
lently, T6. Note the striking difference with respect to Fig.
which displays the Feynman graphs relevant for the eva
tion of the partition function of an O~3! ferromagnet.

The tree graphs 4b and 6c are temperature indepen
and hence merely renormalize the vacuum energy. One-
graph 6b exclusively contains a vertex which is quadratic
the Goldstone boson field and thus only contributes to
renormalization of the massM25Ssh/F 2 in the free Bose

FIG. 4. Feynman graphs occurring in the low-temperature
pansion for the partition function of an O(N) antiferromagnet up to
orderp6. The numbers attached to the vertices refer to the piec
the effective Lagrangian they come from. Vertices associated w
the leading term ofL e f f

AF are denoted by a dot. The numbers spe
fying individual graphs correspond to the power of momentum
the derivative expansion. Note that, in the counting scheme
antiferromagnetic magnons, two powers of momentum corresp
to two powers of energy or temperature.
0-9
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CHRISTOPH P. HOFMANN PHYSICAL REVIEW B65 094430
gas term related to graph 4a.37 To the orderp6 considered
here, we are thus left with only one candidate for the int
action: two-loop graph 6a.

In the limit of a zero external field, the low-temperatu
expansion of the pressure amounts to

PAF5 1
90 p2~N21!T41O~T8!. ~7.3!

TheT4 contribution represents the free Bose gas term wh
originates from one-loop graph 4a. The effective interact
among the Goldstone bosons, remarkably, only manifest
self through a term of orderT8, which is beyond the scope o
the present discussion. As it turns out, the contribution
order p6 coming from two-loop graph 6a is proportional
the external field, such that, in the limith→0 considered
here, it vanishes.

It is interesting to note that this two-loop graph, whic
involves a four-magnon-vertex from the leading Lagrang
L e f f

2 , does not contribute to the pressure of an O~3! ferro-
magnet, either. The reason, however, is quite different.
the antiferromagnet, the contribution is only absent in z
external field, whereas for the ferromagnet the contribut
from graph 8 vanishes because of space rotation symmet
parity.

Let us now turn to the order parameters. In the case o
O~3! antiferromagnet this quantity is referred to as stagge
magnetization. It is given by the logarithmic derivative of t
partition function with respect to the external fieldh and, for
an O(N) antiferromagnet, the low-temperature expans
amounts to~for details see Ref. 17!

Ss~T!/Ss~0!

512
N21

24

T2

F 2
2

~N21!~N23!

1152

T4

F 4
1O~T6!.

~7.4!

On the other hand, the low-temperature expansion for
spontaneous magnetization of the O~3! ferromagnet, derived
in the present paper, reads

S~T!/S~0!512a0T3/22a1T5/22a2T7/22a3T41O~T9/2!.

Comparing these formulas for the staggered and spontan
magnetization, respectively, the following issues are wo
pointing out.

Obviously, as far as the structure of the low-temperat
expansion is concerned, the two series are quite differ
The leading terms (}T2 for the antiferromagnet,}T3/2 for
the ferromagnet! are an immediate consequence of the c
responding dispersion laws: linear for the antiferromagn
quadratic for the ferromagnet. They are both related t
one-loop graph.

Now we have to emphasize that the evaluation of
partition function for the antiferromagnet was performed in
Lorentz-invariant framework, exhibiting a relativistic dispe
sion law

v25v4M21v2kW2, ~7.5!
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with the speed of light replaced by the spin-wave velocityv.
The point is that we did not consider corrections proportio

to kW4,kW6, . . . in the dispersion relation in order to accou
for the discreteness of the lattice. Equivalently, we did n
consider terms in the subleading piecesL e f f

4 ,L e f f
6 , . . . of

the effective Lagrangian which, although space rotation
variant, are no longer Lorentz invariant. They would ha
manifested themselves as terms of orderT4,T6, . . . in the
staggered magnetization of the antiferromagnet. Like
analogous terms of orderT5/2,T7/2, . . . in the spontaneou
magnetization of the ferromagnet, these contributions me
correspond to noninteracting magnons.

What is remarkable, however, is the fact that the two-lo
contribution involving a four-magnon vertex from the lea
ing pieceL e f f

2 of the effective Lagrangian vanishes in eith
case: in the low-temperature series for the staggered
spontaneous magnetization, the spin-wave interaction d
not manifest itself through this graph. Note that the reas
are different. For an O(N) antiferromagnet, there is actuall
a term proportional toT4 in the low-temperature series~7.4!
for the order parameter. But for the particular caseN53 we
are considering, the term does not show up in the stagg
magnetization—corrections associated with the magnon
teraction only appear at orderT6.17 On the other hand, the
two-loop contribution for the ferromagnet, proportional
T3, vanishes due to space rotation symmetry—correcti
originating from the magnon interaction manifest themsel
through the Dyson term proportional to four powers of t
temperature.

Another striking difference concerns the fact that for t
antiferromagnet, the low-temperature expansion is co
pletely fixed by a single coupling constantF up to orderT4,
i.e., including the first correction coming from th
interaction.38 This is not the case for the ferromagnet, whe
the leading interaction term, i.e., the two-loop contributi
a3T4, involves coupling constants from the next-to-leadin
order LagrangianL e f f

4 . We conclude that, for Lorentz
noninvariant systems, the kinematics is much le
restrictive—less information is available via symmetry co
siderations, such that more phenomenological input for
corresponding nonrelativistic system is required.

VIII. CONCLUSIONS AND OUTLOOK

The low-energy behavior of an O~3! ferromagnet is deter-
mined by its low-energy excitations, the magnons or s
waves, which represent the Goldstone bosons of the spo
neously broken internal symmetry O(3)→O(2). Thesystem
may be analyzed within the framework of nonrelativistic e
fective Lagrangians, which tackles the phenomenon of sp
taneous symmetry breaking from a unified point of view. T
method exploits the symmetry properties of the underly
theory, i.e., the Heisenberg model in the present case,
formulates the dynamics in terms of Goldstone boson fie
At large wavelengths, the microscopic structure of co
densed matter systems does not play a significant role: in
corresponding effective Lagrangian, the specific proper
0-10
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SPONTANEOUS MAGNETIZATION OF THE O~3! . . . PHYSICAL REVIEW B65 094430
of the system only manifest themselves in the numerical
ues of a few coupling constants.

The low-energy excitations of an O~3! ferromagnet obey a
quadratic dispersion relation. In the momentum pow
counting scheme, which provides us with a systematic
pansion of physical quantities in powers of inverse wa
length, two powers of momentum thus correspond to o
one power of energy or temperature. Remarkably, unlike
Lorentz-invariant framework where loop corrections are s
pressed by two powers of momentum, loops involving fer
magnetic magnons are suppressed by three momentum
ers.

In this nonrelativistic framework, the evaluation of th
partition function for an O~3! ferromagnet is presented up
order p10: up to orderT5 in the free energy density or
equivalently, up to orderT4 in the spontaneous magnetiz
tion. In agreement with Dyson’s microscopic analysis,
find that, in the spontaneous magnetization, the spin-w
interaction only starts contributing at orderT4. Moreover,
within the effective Lagrangian perspective we readily u
derstand the absence of aT3 term in the spontaneous mag
netization. This spurious term, which was the object of va
ous microscopic investigations, vanishes because of s
rotation symmetry or parity of the leading order effecti
Lagrangian. The effective Lagrangian method not o
proves to be more efficient than the complicated microsco
analysis, but also addresses the problem from a mo
independent point of view based on the symmetries of
system.
ti
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It is very instructive to compare the O~3! ferromagnet and
the O~3! antiferromagnet within the framework of effectiv
Lagrangians. Spin waves in antiferromagnets obey a lin
dispersion relation, implying that powers of momentum, e
ergy, and temperature are all on the same footing: the po
counting is identical with the standard, Lorentz-invaria
scheme. Accordingly, the low-temperature properties of th
two systems are quite different as illustrated by the lo
temperature expansion for the pressure and for the co
sponding order parameters, the spontaneous and stagg
magnetization, respectively.

Having established the power counting scheme for
ferromagnet, we have paved the way for further investi
tions of this nonrelativistic system within the effective L
grangian perspective. In fact, the low-temperature expan
for the partition function has already been carried to or
p11, where the first three-loop graphs show up. An outline
the calculation, which goes beyond Dyson’s microsco
analysis, will be presented in a forthcoming paper.39
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