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Spontaneous magnetization of the (B) ferromagnet at low temperatures
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We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry
0O(3)—0(2). Theanalysis is performed within the perspective of nonrelativistic effective Lagrangians, where
the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant frame-
work (chiral perturbation theody where loop graphs are suppressed by two powers of momentum, loops
involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the
low-temperature expansion for the partition function are calculated up to pt8len agreement with Dyson’s
pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the
magnon-magnon interaction starts manifesting itself only at oFdefhe striking difference with respect to
the low-temperature properties of thé3Dantiferromagnet is discussed from a unified point of view, relying on
the effective Lagrangian technique.
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[. INTRODUCTION Within this model, Dyson evaluated the low-temperature
expansion for the partition function of a ferromagnet for all
In the following presentation, our interest is devoted tothree types of cubic latticésIn particular, for the most
the low-temperature behavior of ferromagnets, which exhibiprominent order parameter of the ferromagnet, the spontane-
a spontaneously broken internal symmetry O{3)(2). ous magnetization, he obtained the following series:
This system has been widely studied in condensed matter _ 3 5 21 4 o2
physics and it is not our intention to contribute to its detailed >(T)/2(0)=1—aoT"" = a1 77"~ apT "= asT"+ O(T™9).
microscopic understanding. Rather, we want to analyze sev- 13
eral low-energy phenomena from a unified point of view,The T®? term, referred to as Bloch’s law, corresponds to free
relying on the method of nonrelativistic effective magnons. The next two terms involving the coefficieats
Lagrangians. We try to understand how the symmetries, inand «, are related to the shape of the dispersion curve—or
herent in the underlying theory, manifest themselves in thehe discreteness of the lattice—and describe free magnons as
partition function at low temperatures. The complex micro-well. Remarkably, the spin-wave interaction starts manifest-
scopic description of the system is taken into account onlying itself only at ordefT*.
through a phenomenological parametrization, which, in the |n order to obtain this result, Dyson had to set up a highly
effective Lagrangian, emerges in the form of a few couplinginvolved mathematical machinery. It is our goal to rederive
constants. this series within the effective Lagrangian framework and to
Nevertheless, let us first consider the Heisenberg modelinderstand Dyson’s result by exclusively considering the
which describes the ferromagnet onnaicroscopiclevel.  symmetries of the theory. In order to do so, we will first have

There, the exchange Hamiltonigt, to establish the momentum power counting scheme for this
nonrelativistic system, which represents the very basis for a
Ho=—J>, S,-S,, J=const, (1.1  Systematic expansion of quantities of physical interest. As we

NN will see, it is quite different from the power counting scheme

. in Lorentz-invariant effective theorieghiral perturbation
formulates the dynamics in terms of spin operatSgs at-  theory).
tached to lattice sitem. Note that the summation only ex- Another aspect of the present work concerns the compari-
tends over nearest neighbors and that the isotropic interagon of the low-energy properties of(8 ferromagnets and
tion is assumed to be identical for any two adjacent latticeD(3) antiferromagnets. Within the framework of nonrelativ-
sites. For positive values of the exchange integkathe istic effective Lagrangians, we will, e.g., be able to under-
above expression leads to an adequate low-energy descrigtand the striking differences in the low-temperature expan-
tion of the ferromagnet. sions for the order parameters: the spontaneous
The interaction between a constant magnetic filld magnetization for a ferromagnet and the staggered magneti-
=(0,0H),H>0, and the spin degrees of freedom is takenzation for an antiferromagnet, respectively.
into account through the Zeeman term. In the corresponding In the effective Lagrangian perspective, the excitations
extension of the Heisenberg model, near the ground state, the spin waves or magnons in the
present case, are interpreted as Goldstone bosons resulting
B > o from a spontaneously broken internal symmetry. Indeed, the
H_HO_'“En: Sn-H, 12 Heisenberg Hamiltoniaigl.1) is invariant under a simulta-
neous rotation of the spin variables described by the symme-
the magnetic field is coupled to the vector of the total spin.try groupG=0(3), whereas the ground state of a ferromag-
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net breaks this symmetry spontaneously dowmiteO(2):  dimensional unit vectord'=(U?U?), which transforms
all the spins are aligned in one specific direction, giving risewith the vector representation of the rotation grou3)OAt
to a nonzero spontaneous magnetization. leading order, the ferromagnet is thus characterized by two
Whenever a physical system exhibits spontaneous synlifferent low-energy constani andF. The first term, which
metry breaking and the corresponding Goldstone bosons rejavolves a time derivative, is related to a topological invari-
resent the only low-energy excitations without an energyant. Remarkably, due to this contribution proportional to the
gap, we do have a very powerful means at our disposal tépontaneous magnetizatian the effective Lagrangian of a
analyze its low-energy structure: effective Lagrangians. Théerromagnet fails to be invariant under the gra@p- O(3).
method was originally developed in connection with Note that such expressions, involving order parameters asso-
Lorentz-invariant  field theories (chiral perturbation ciated with the generators of the spontaneously broken
theory,~" admitting a low-energy analysis of the strong in- group, would not be permitted in Lorentz-invariant effective
teraction described by quantum chromodynami@CD).  theories. It represents the main novelty occurring in con-
The effective Lagrangian technique has also proved to bdensed matter physics, where nonrelativistic kinematics is
very useful in the investigation of other relativistic systemsless restrictive than Lorentz invariance.
where Goldstone bosons occur; see, e.g., Refs. 8—10. The The associated equation of motion is the Landau-Lifshitz
method has been extended to finite temperatuetlowing  equation
for a systematic low-temperature analysis of the partition

2

function. aL . ik T I ;o F
In condensed matter physics, spontaneous symmetr;??OU TeajfoU  y2aAUIUT=0, To=nH o, y= P
breaking is a common phenomenon and effective field theory (1.5

methods are widely used in this domain. Only recently, hOW'\Mhich describes the dynamics of ferromagnetic spin waves.

ever, has chiral perturbation theory been extended to sucIts structure is of the Schdinaer tvpe: first order in time
nonrelativistic system¥ 1% demonstrating its applicability Ut second order in space gNoteyghét 2ccording to Gold-
to solid-state physics as well. The method is based on eﬁegs):tone’s theorem, there Eave .to be two réal Goldstogne fields in
ive L i hich loit th i f ’

tive Lagrangians which exploit the symmetry properties o the case of a spontaneously broken symmetry O(8)2).

the underlying theory, i.e., the Heisenberg model in th wever. in the nonrelativistic reaime. this d not i
present case, and permit a systematic low-energy expansi pWever, € nonrefativistic regime, this does not neces
sarily imply that there also have to exist two independent

of quantities of physical interest in powers of inverse wave- X
length. The few applications related to systems exhibitin%:nagnon states. I.ndeed,.m the present case of a fgrrqmagnet,
collective magnetic behavior that appeared in the literatur pomplex field is requqed to deSC.”b? one particle: there
so far concern spin-wave scattering proces3egin-wave- exists onlyonetype of spin-wave excitation in a(@) ferro-
mediated nonreciprocal effects in antiferromagritshe magnet, following a quadratic dispersion relation
low-temperature expansion of the staggered magnetization of - . ~
O(N) antiferromagnet$’ and spin waves in canted phagés. (k)= 7k +O([k|). (1.6
An interesting application concerning &) invariance and  Accordingly, in the effective description of this nonrelativis-
high-T. superconductivity can be found in Ref. 18. Peda-tic systemtwo powers of momentum correspond to ooiye
gogical introductions to effective Lagrangians are Refs. 19nower of energy or temperatur?« o, T.
21, brief outlines of the method can be found in Ref. 22. The effective Lagrangian method provides us with a si-
As the effective analysis refers to large wavelengths, ifmyltaneous expansion in powers of momentum and of the
does not resolve the microscopic structure of a solid and thgyternal fieldH. The important point is that, to a given order
system hence appears homogeneous. Accordingly, the effegr the low-energy expansion, only a finite number of cou-
tive Lagrangian is invariant with respect to translations. Onyling constants and a finite number of graphs contribute. Let
the other hand, the effective Lagrangian is not invariant unys now set up the effective Lagrangian for a ferromagnet at

der rotations, since the lattice structure of a solid singles outigher orders in the momentum expangiand consider the
preferred directions. In the case of a cubic lattice, the anisoteorresponding power counting scheme.

ropy, however, only shows up at higher orders of the deriva-
tive expansiort®*3the discrete symmetries of a cubic lattice
thus imply space rotation symmetry. In the following, we
assume that the ferromagnet exhibits this type of lattice In his pioneering microscopic analysis, Dyson evaluated
structure: the leading-order effective Lagrangian is then inthe temperature expansion for the partition function of a cu-
variant both under translations and under rotations and thgic ferromagnet up to terms of ord@®. In our effective
corresponding expression for a ferromagnet takes thganguage, where one power of temperature or energy counts

IIl. POWER COUNTING AND EFFECTIVE LAGRANGIAN

form!213 like two powers of momentum, this corresponds to an expan-
. sion up to ordep®®. We will now show that, to this order in
£apdoU%U Lo the momenta, contributions to the effective Lagrangian in-
L2 =320 — 0u3 +3uHUS—L1F24,U'5,U'. (1.4 ; grang

volving at most six space derivatives enter and the perturba-
tive expansion requires the evaluation of graphs containing
In the above notation, the two real components of the magat most two loops.

non field, U® (a=1,2), have been collected in a three- First of all, note that there are no contributions to the
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effective Lagrangian with an odd number of space deriva-
tives: parity excludes terms like
CabcErstdy U3dsUPa U, (2.2)

which involve the antisymmetric tenser,;.

Before constructing the relevant piecééff,ﬁgff, ce FIG. 1. Feynman graphs describing the leading contributions to
step by step, we have to point out an important assumptiothe magnon-magnon scattering amplitude. The numbers attached to
underlying the present analysis: we assume that the effectivibe vertices refer to the piece of the effective Lagrangian they come
Lagrangian of a ferromagnet is gauge invariant at subleadinfjom. Vertices associated with the leading tefrg; are denoted by
orders. In fact, the discrete symmetries of a cubic lattice an@ dot.
time-reversal invariance ensure that there is no topological

contribution inL &, (see Ref. 18 Topological contributions Consider the magnon- magnon scattering graph 1c, where
which may show up inC¢;, or beyond do not affect the the two vertices come fromd 2;;. The form of the loop graph
conclusions of the present work. is
Gauge invariance then implies that the magnetic fléld
enters the derivative expansion through a timelike covariant deod3k [ F2k2\ 2 1 2
derivative, A f = , (2.9
100" ) (2 w— K2
DoU'=3doU'+ e fhUX,  fh=uH&L. (2.2

where the gquantitieso and k denote generic energy and
Note that the magnetic field occurs on the same level as thiaree-momentum, respectively. Each four-magnon vertex

time derivative and is thus counted as a quantity of opfer  from [;gff is of orderF2k2/3,2, while the two magnon propa-

. Tlhe n(taxt-to—lea}tdr:ntg—or?_er ngrgngt]!an 'St of orcbf_%t.hlt gators are of order 14— yk?). By dimensional analysis, the
involves terms with two time derivatives, terms with one oop integral must then have the form

time and two space derivatives, and terms with four space
derivatives. Time derivatives, however, can be eliminated
with the equation of motioA? Y-

a Aloop“§|p|5- (25)
F?an‘FSajkf{)Uk‘F ysajkAUjUk=0,

Comparing this expression with the leading tree graph am-

such that we end up with the following independent tefts: plitude 1a,

L4:=11(3,U3,UN2+1,(d,U'9U")2+1,AU AU, )
(2'3) Atreeoc gpzv (2-6)

We thus have three effective coupling constdntsl,, and
I3, at next-to-leading order. Note that all terms involving thewe find the remarkable result that, in the effective description
magnetic field have been eliminated with the equation obf the ferromagnet, loops are suppressedHtige powers of
motion. In particular, gauge invariance implies that there ismomentum. This is to be contrasted with the Lorentz-
no tree graph frontc‘e}ff contributing to the vacuum energy. invariant framework (chiral perturbation theojy where
Clearly, the question now arises as to what omar the  loops are suppressed by two powers of momentum in four
effective LagrangiarC 27, we have to go to evaluate the par- dimensions.
tition function up to accuracp™®. In the following, we will Hence, in order to carry out the expansion for the partition
show that loop corrections involving ferromagnetic magnondunction up to accuracyo , we need the Lagrangian up to
are suppressed hifiree powers of momentum and the effec- terms Of orderp®: £ ShOWS up in a one-loop graph at
tive Lagrangian is needed up 0% order p°. Notice that the only relevant term coming from
To verify this statement, let us consider a scattering pro,Ceff is quadratic in the magnon field. Eliminating time de-
cess. The effective Lagrangian provides us with an expansiofivatives, we end up with
for a multimagnon scattering amplitude in powers of mo-
mentum. The elastic magnon-magnon scattering amplitude is L8 =c,UASU. 2.7
obtained by expanding; up to order J2U?)2. As shown
In Fig. 1a, the leading term corresponds to the tree grapAs in £ 4, terms involving the magnetic field do not show
involving the four-magnon vertex from ¢ and is of order  p: they have all been eliminated with the equation of mo-
F2k?/32 (see Ref. 15 The first correction comes from the tion. More generally, assuminge s, £ o, L84, andL 2 to
tree graph 1b with a vertex involving the next-to-leading-be gauge invariant, there are no tree-graph contributions
order Lagrang|arfeff However, we also have to consider from these higher order pieces of the effective Lagrangian to
loop graphs in the effective framework. These corrections aréhe vacuum energy—provided that the magnetic field is the
in general infinite and need to be renormalized. only external field considered.
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Il. FINITE TEMPERATURE
In finite-temperature field theory, the partition function is

represented as a Euclidean functional intefftad®

e fimd-Jo) 20 (3 3 OO CO

The integration is performed over all field conflguratlons %

which are periodic in the Euclidean time d'reCt'U”(X,X4 FIG. 2. Feynman graphs occurring in the low-temperature ex-
+B)=U(X,X4), With B=1/T. The low-temperature expan- pansion of the partition function for an(8) ferromagnet up to
sion of the partition function is obtained by considering theorderp?®. The numbers attached to the vertices refer to the piece of
fluctuations of the fieldU around the ground stat&/ the effective Lagrangian they come from. Vertices associated with
=(0,0,1), i.e., by expandindJ® in powers of U3 U3 the leading ternt 2;; are denoted by a dot. The numbers specifying
- m The leading contribution is of ordq12 and individual graphs correspond to the power of momentum in the
contains a term quadratic id® which describes free mag- derivative expansion. Note that, in the counting scheme for ferro-

nons. In the presence of a magnetic field, they obey the dléni?nft'? r?la?nonfttvr\;o pr0\;v¢arrs of momentum correspond to one
persion relatiof’ power of energy or temperaiure

e - - and setd=3 at the end of the calculation.
ika(K)= 7K+ uH + O(KI%). (3.2 For the thermal propagator, we then have
The remainder of the effective Lagrangian is treated as a
perturbation. Evaluating the Gaussian integrals in the stan- ™
dard manner, one arrives at a set of Feynman rules which (27)d y
differ from the conventional rules of the effective Lagrangian

method only in one respect: the periodicity condition im- p( X2
X ex

]
G(x)=

dr2
0 Xn

posed on the Goldstone field modifies the propagator. At fi- ~ aox — uHX, | O(X,), (3.7
nite temperature, the propagator is given by Vn
. with
G(0= 2 A(Xxstnp), (3.3 Xn=X4+NB. (3.8

Using complex notation for the magnon field, the evaluation
of Gaussian integrals simplifies, since the following two-
point functions vanish:

whereA(x) is the Euclidean propagator at zero temperature

_J~ dk4d3k eil&—ik4x4 (3 4)
(2m)* lez_ik4+,U«H . . <0|T{U(X Xa)u( y ya)}0)= <0|T{U X X4)UT(V ya)}0)= 09)

Note that the above Green function corresponds to the propa-
gation of a single magnon, described by the complex fieldNonzero contributions to the partition function only result

u=Ul+iuz, from
We restrict ourselves to the infinite-volume limit and 5
evaluate the free energy densiydefined by <0|T{u(§,x4)uT(§,y4)}|0>=§A(x—y). (3.10
z=—TIlim L 3In[Trexp —H/T)]. (3.5

The calculation simplifies further due to space rotation sym-

metry of the propagator, implying that, at the origin, single

Temperature thus produces remarkably little change: to obspace derivatives vanish,

tain the partition function, one simply restricts the manifold

on which the fields are residing to a torGsin Euclidean arG(|§|,x4)|X:0=0. (3.1D

space. The effective Lagrangian remains unaffected—the

coupling constants, 3|, ... aretemperature independent. Let us now evaluate the free energy density order by order in
It is convenient to use dimensional regularization tothe momentum expansion.

evaluate the graphs of the effective theory. Unlike in a

Lorentz-invariant framework, where the physical dimension V. EVALUATION OF THE FREE ENERGY DENSITY

d is equal to four, we regularize the nonrelativistic propaga-

tor only in the three spatial components,

1 T dr2 1 4 )22
A(x)= (—) —exp — — puHX
X (2md\ v x,2 dyx, M7

L—o

The relevant Feynman graphs are shown in Fig. 2. De-
picted are all contributions to the free energy density up to
orderp® or, equivalently, ordefl®.

O(xy), As we will see, aI_I these contributions to the free energy
density exclusively involve propagators and space deriva-

(3.6 tives thereof, to be evaluated at thegin x=0. It is conve-
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nient to introduce the following notation: The orderp® contribution from one-loop graph 5 is asso-
ciated with ad-dimensional nonrelativistic free Bose gas. For
G1=[G(X)]x=o0, the temperature-dependent part, we obtain
GAE[AG(X)]X:(), (41) T 1 5/2§ efﬂHnﬁ
. Ze=—————T 4.8
where A represents the Laplace operator in three ° 87232 i=1 2 “8

dimensions—no confusion should occur wiiix), denoting

the zero-temperature propagator. At order p’, the next-to-leading-order Lagrangiah
The quantityG; is split into a finite piece, which is tem- comes into play. For one-loop graph 7, which involves a

perature dependent, and a divergent piece, which is temperawo-magnon vertex, we get

ture independent,

215
G,=G]+G!. 4.2 2=~ 5 [A%G(0) k-0, 4.9
Using dimensional regularization, the explicit expressionsyie|ding
are
15 o, e uHng
dr2 *  —pH T_ 3 712
Gi= ! (Z) Lnﬂ, 7 16773’2277’2T nzl n7’2 (4.10
(2m\ v/ i=1(np)¥?

The first two-loop graph appears at orgér Remarkably,
1 X2 this contribution is proportional to single space derivatives of
- O(X4)
X

—an X the propagator at the origin and thus vanishes,

Xq 4 VX4

o 1 T dr2
G1: d -
(2m)*\ Y

Likewise, forG, we have

43 26 [0,G(0) ool 4G (X)]x0=0. (41D

At order p®, two one-loop graphs show up which involve
L& and L3, respectively. For graph 9a, we get

GT_ 1 (ﬂ_ d/2( d ) * ef,an,B
AT dly T2y & di2+1° 2
21 Y Y/n=1(n Cq
m ") 00—~ S TAG() loo, @12
dr2 _ 2
G%= ! T 1 _d + X leading to the temperature-dependent contribution
A (2m)dly x, 4251 2y 442x,
105 o, e mHnA
X2 =Ty . 4.13
xXexp = 7| O(xy) (4.4) 327325492 751 92
VX4
x=0

Graph 9b is proportional to an integral over the torDis
The temperature-independent pie@sandG? , as well as  which involves a product of two propagators,
propagators involving higher orders of space derivatives, are

. 2
all related to momentum integrals of the form — %J P IXAZG(0AZG(—x). (414
T

dle(2ym _ 2 =
f d7k(K®)"exd = yXgk®=xauH], m=012..., This expression, however, can be reduced to an
(4.5  x-independent term involving one propagator only. To verify
this statement, consider the equation for the thermal propa-

which are proportional to gator,

exf —XguH] d
(yxg)™* 92 F( m 5) ' G(x)=5(x), (4.15

In dimensional regularization, however, these expressionand take the derivative with respect to the magnetic field.
vanish altogetherG?, G, and propagators involving more The quantityoG(x)/d(uH) may then be written as a convo-
Laplacians do not contribute in the lindt— 3. Therefore, in  lution integral over the torus. At the origin, the expression
the evaluation of the above graphs, only the temperatureeads

17
(4.9 7
%, yA+ uH

dependent piece8!,G], ... are relevant. 0
The first contribution to the free energy density, which is dG(x _ _J de1 B
of orderp?, comes from tree graph 2. It does not depend on A(uH) ‘0 Td yG(=y)G(y)- (4.1
temperature and is given by ]
Inserting Laplace operators at intermediate steps, we obtain
z,= -3 uH. (4.7  the more general result
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IG(X) J'
(m+n) — dd+1 AmG _ AnG ,
) Y (—y)A"G(y)
(4.17
such that Eq(4.14) can be written as
2|§ ,9G(X)
Zov= 4.1

For the temperature-dependent part of graph 9b, we then ge

9453 g KHnA

Z00= — ——> 170 9/22

6473252y 11/2 &

(4.19

Finally, at ordemp'®, two-loop graphs with insertions from

L% show up. Graph 10a contributes with

2
Z]_Oa: - 3_212(8|1+ 6|2+ 5'3)GAGA

21,
— 5 G1[A%G(—X) o

52 (4.20
The evaluation of graph 10b amounts to
2l 5
Zlob=§Gl[A G(=X)Ix=0. (4.21

and cancels the second term gy, . For the temperature-

dependent part of ordgr'® we thus end up with

3(8l,+6l,+5l5) g~ KHNB

128733255

Zig= — |§ } . (4.22

PHYSICAL REVIEW B55 094430

e~ ()

_E_

4
9b
:
4] Qm_
102 10¢

FIG. 3. Feynman graphs occurring in the low-energy expansion
of the two-point function for an () ferromagnet up to ordep®.
The numbers specifying individual graphs correspond to the power
of momentum in the derivative expansion.

V. INTERLUDE:
FREE MAGNONS VERSUS INTERACTING MAGNONS

Consider the formula for the free energy density of a gas
of noninteracting bosons,

T ;
3 _ a—o(R)/T
77)3.[ d°kIn(1—e ), (5.1

wherez; is the energy density of the vacuum. With the lead-
ing term of the dispersion relation

2
Y= ?1

we readily reproduce the dominant one-loop contribution
zi= T2 in the free energy density of the(® ferromagnet.
In order to account for subleading terms in the dispersion

w(k)=yk2+ uH+O(k|*),

Collecting terms, the result for the free energy density upelation, we have to evaluate higher-order contributions to

to orderp'® becomes

_ 1 5/2 o emine
Z——E/LH—87T3/273/2T nzl 52
= uHng
18 7,22 #8105
16#3/22 ,y7/2 =1 n7/2 32773/22 ,}/9/2
2 ® HnB
" ol B 9/22 e ~#mn
2y3,
3(8l,+6l,+5l g wHng) 2
_ 3(8l3+6l,+5l5) ™ > 4.23
1287T322’)/5 =1 n5/2

the two-point function (0| T{u(x,x,)u’(y,ys)}/0) of the
magnon field. The relevant graphs are shown in Fig. 3. De-
picted are all contributions up to ordpt®. Instead of listing
individual results for the two-point function, we give the
final expression for the dispersion relation originating from
these graphs:

.1 - . .
w(k)=E(F2k2+2,uH—2l3k4+2c1k6). (5.2
The two new terms correspond to graph 7, graph 9a, and
graph 9b of Fig. 3. Note that one-loop graph 8 does not
contribute to the dispersion relation. The effect of the three
remaining one-loop graphs of ordpt® will be discussed in
a moment.

The first term is temperature independent and originates Inserting the above dispersion relation into form(8al),
from tree graph 2. Contributions which involve half integer we reproduce all contributions to the free energy density
powers of the temperatureF¥? T2 and T%2  which are associated with one-loop graphs: graphs 5, 7, 9a,
respectively—arise from one-loop graphs and are all relatednd 9b of Fig. 2. These contributions are all related to non-
to the free energy density of noninteracting magnons. Reinteracting magnons—the corresponding coefficients in the
markably, there is only one term in the above series, thalispersion relation are independent of the temperature.
order T° contribution coming from two-loop graph 10a, As far as the evaluation of the three one-loop graphs of
which is due to the magnon-magnon interaction. orderp®? (Fig. 3) is concerned, the situation is the following:
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in the sum of these contributions, only one term remains. It 15, * @ rHNB
originates from graph 10a and leads to an additional term in 1= T 5
the dispersion relation 167%%5y"?i=1 n

(8I1+6I2+5I3) SR 5.3 - 105 ol3 - ) * g HHNB

32 Ga 27 3oz B2\ 23 L e

However, in dimensional regularization, the quan@y, as © —uHng\ 2
we have seen, vanishes, such that the dispersion relation is ho 2(8lit 6l 5y s ¢ " 5.6
not affected by the graphs of ordpt®. 3 128733245 =1 n°? '

Nevertheless, we can mimic the magnon-magnon interac- o o
tion by allowing some of the coefficients of the dispersion!n the limit (wH/T)—0, these coefficients become tempera-
relation to become temperature dependent If we rem&:e ture Independent and the sums reduce to Riemann zeta func-
by GX in Eqg. (5.3, we obtain an interaction term propor- 40ns,
tional toT5 in the free energy density. Moreover, we see that
the leading order coupling constagptis not renormalized at Bo— 1 (5
leading order ¢GIK?, i.e., orderp® in the free energy den- 0 gd2y32 0 2
sity), but only at next-to-leading order<GLk?, i.e., order
p'%in the free energy densityThis observation, implying ~ 15, ;
that the two-loop graph 8 does not contribute to the disper- hy=—— =5 ((2),
. X . 167375 y
sion relation, was already made in Ref. 30.
In this section, we have split the free energy density into a

2
piece corresponding to free magnons and a piece represent- Fro= 105 93 —er|e(®)
ing the magnon-magnon interaction, 2 3273125, 4912\ 29%, tpstelh
= + Zinter - .
2= Ziree™ Zinter (5.4 ~ _3(8|1+6|2+5|3) s

The free part can be obtained from the free Bose gas formula hy= 128733245 2)- 5.7

Ziroe= zo+(2 3J’ 43k In(1—e~ (/). VI. SPONTANEOUS MAGNETIZATION

a

. - _ _ _ With the above representation for the free energy density,
with the modified dispersion relation the low-temperature series for some relevant thermodynamic
quantities can readily be derived. Since the system is homo-
1 . .
o\ T E2p2 o 4 -6 geneous, the pressure is given by the temperature dependent
(k) E{F K"+ 2 uH =215k +20,k7. part of the free energy density,
The coupling constants, 3, |5, andc, are all independent P=2z,—2z, (6.2
of the temperature. The interaction part originates from two- _
loop graph 10a which involves a four-magnon vertex fromand the low-temperature expansion amounts to

L,
et P=hoT52+h, T"2+h,T¥2+ h3 TS+ O(TY), (6.2

Zinter= —

3(8l1+6l,+5l13) 2 e Hinp with coefficientsh; given in Eqs.(5.6).
12873325 = 5/2 The first contribution represents the free Bose gas term
which originates from one-loop graph 5. Subsequent terms
In order to make the structure of the low-temperature exexhibiting half integer powers of the temperature are related
pansion for the free energy density of ari3Dferromagnet to the shape of the dispersion curve and represent effects due

more transparent, we rewrite the series in the form to the discreteness of the cubic lattice. Remarkably, there is
no T term in this series: two-loop graph 8 does not contrib-
z=2y—hoT>?—h,;T?—h,T%—h,T5+ O(T'*?), ute. In the low-temperature expansion for the pressure, the

(5.5 interaction among ferromagnetic spin waves only starts
manifesting itself at ordeT®.

The corresponding expressions for the energy density
for the entropy densitys, and for the heat capacity, are

where the temperature-dependent coefficinere given by

Z0=~2pH, readily worked out from the thermodynamic relations
ho= i e JP du _ds
832,32 1= $= 7 u=Ts—P, Cv=o7 _Tﬁ (6.3
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Reordering powers of the temperature and taking the limitw,—they involve the coupling constarfs>.,l4, ... occur-
(uH/T)—0, we get ring in the derivative expansion of the effective Lagrangian
~ ~ ~ ~ L2, Lai, and L, which phenomenologically param-
u= §hoT%?+ $h; T+ 7h, 792+ 4h, T+ O(TH3), etrize the microscopic detail.
After Dyson’s work, various authors tried to derive his
s=5hoT%%+ 20, T2+ $h, T2+ 5h, T4+ O(T%?), results with alternative methods within the microscopic
framework of the Heisenberg model. In particular, there was
cy=hoT32+ 28R, T2+ &h,T724 200, T4+ O(T?), emerging interest in  simplifying his complicated

(6.4) calculation®® In the course of these investigations, however,
not all authors could confirm Dyson’s findings and, surpris-

with coefficientsh; given in Eqgs.(5.7). ingly, a new term in the temperature expansion for the spon-
Let us now consider the low-temperature expansion fotaneous magnetization started to haunt the literature: various
the spontaneous magnetization, author$® ended up with an interaction term of ord@F.
However, theT? contribution turned out to be a spurious
3(T)=— lim 9z _ (6.5) effect® It emerged due to the approximation methods used
H_od(uH) in these involved microscopic calculations: random phase

) _ ) approximation and decoupling approximation in the method
With the expressior(5.9 for the free energy density, we of double-time temperature-dependent Green functions.
obtain the following series: We would like to emphasize that there are no such ap-

R S o S /2 proximations in the effective Lagrangian framework. The
2(MIE=1=agT = ag T - ap T = ag T+ O(T™). method applies to any system where the Goldstone bosons

6.6 are the only excitations without energy gap. In the effective
The coefficientse, are independent of the temperature andLagrangian perspective, the problem is approached from a
given by unified and model-independent point of view, based on the
symmetries inherent in the underlying theory. In the present
1 . case of a ferromagnet, it is the spontaneously broken internal
ao—%y—wé(z), symmetry O(3)—0(2) of the Heisenberg model and the

nonzero value for the spontaneous magnetization, which dic-
tate the structure of the low-temperature series considered in

153 this paper.

5
“ 16773/22277/25(2)’ Our calculation clearly shows that there is Tid term in
the low-temperature expansion for the spontaneous magneti-
105 |§ zation of a cubic @) ferromagnet. Using effective language

a,= —cl)g(%), this translates into the statement that the contribution from

32732529 273 two-loop graph 8 of Fig. 2 to the free energy density van-
ishes. As we have pointed out, the reason is due to space

3(8ly+6l,+5l3) . . _rotati(_)n symmetry of the Ieading_—ord_er effective Lagrangian,

az= PYRCSEN: £(2)4(3). (6.7 implying that single space derivatives of the propagator,

evaluated at the origin, are zero.
Here comes the appropriate place where we would like to The argument is not restricted to cubic lattices. Consider
compare our result with Dyson’s microscopic calculation. Inthe leading-order Lagrangian of theg3D ferromagnet:
fact, one of the main motivations for his analysis was the
following question: at what order in the low-temperature ex- 2

; : : : : : : Loi=2
pansion does the spin-wave interaction manifest itself in the eff 1+ U
spontaneous magnetization? Before his rigorous analysis, in
which he showed that the spin-wave interaction only startd.et us replace the last term, which is invariant under space
contributing at ordeiT*, there appeared to be an amazingrotations, by the more general expression
mess in the literature. At least three different answers were PR Lo o :
available, all of them in contradiction with each other and, as ~ —2F191U'd;U'—3F3d,U"'d,U"' = 3F395U'd5U",
it turned out, also in contradiction with Dyson’s result: the (6.8
authors' obtained a term proportional @ and the tWo iy order to account for anisotropies of the crystal lattice. The
r_eferences 32 and 33 ended up with two different contribuyy,ggified equation for the thermal propagator,
tions of orderT”4,

Within the effective Lagrangian framework we clearly g 5 5 5

confirm Dyson’s finding: in the spontaneous magnetization, . Y1917 v202~ vadst uH | G(X) = 8(x), (6.9
the leading contribution coming from the magnon-magnon 4
interaction is of ordef. Any microscopic information, such again, allows us to eliminate all terms in the evaluation of
as the specification of the type of the cubic lattice, is com-graph 8 up to contributions which involve single space de-
prised in the numerical values of the effective coefficientsrivatives of the propagator at the origin,

eandoU3UP .
A S UHUR- 1F%4,U'5, U,
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z8=§ ol 3G (¥) Tx=ol 3G (X) Ix=o,  P=1,2,3.
(6.10

Even though the thermal propagator is no longer space rota
tion symmetric, it is still invariant under parity, such that
single space derivatives, evaluated at the origin, vanish. Wk
conclude that, also for anisotropic lattices, described by the
new contributiong6.8) in the effective Lagrangian, there is
no interaction term of ordeF2 in the low-temperature series
for the spontaneous magnetization. (]

[+]

VIl. ORDER PARAMETERS . o .
OF FERRO- AND ANTIFERROMAGNETS:

SPONTANEOUS VERSUS STAGGERED FIG. 4. Feynman graphs occurring in the low-temperature ex-
MAGNETIZATION pansion for the partition function of an ®f antiferromagnet up to

orderp®. The numbers attached to the vertices refer to the piece of
The low-energy behavior of an(@) ferromagnet is deter- the effective Lagrangian they come from. Vertices associated with
mined by the spin waves which represent the Goldstongnhe leading term of 4f; are denoted by a dot. The numbers speci-
bosons of this nonrelativistic system. These low-energy exfying individual graphs correspond to the power of momentum in
citations obey aquadratic dispersion relation. As is well the derivative expansion. Note that, in the counting scheme for
known, the spin waves of aantiferromagneton the other antiferromagnetic magnons, two powers of momentum correspond
hand, follow alinear dispersion law. Accordingly, the low- to two powers of energy or temperature.
temperature properties of these two systems are quite
different—the difference reveals itself, e.g., in the low-at leading order ¢p?) two coupling constantsF and 3¢
temperature expansion for the corresponding order paranvccur; at next-to-leading order@*) we have five such con-
eters. In this section we are going to address the two systenssantse;, e,, k;, k,, andks.
within the effective Lagrangian perspective. The essential point here is the fact that a term involving a
The low-temperature analysis of an K)( antiferromag-  single time derivative does not show up in the effective La-
net, exhibiting a spontaneously broken internal symmetngrangian: this topological contribution is proportional to the
O(N)—O(N—1), was the object of Ref. 17. Here, we only spontaneous magnetization which, in the case of an antifer-
want to point out some basic ingredients in order to compareomagnet, vanishes. Hence, the corresponding equation of
the system with the ferromagnet. motion is of second order both in space and in time, its
In the underlying theory, the @) symmetry of the relativistic structure determining the number of independent
Heisenberg model is explicitly broken by an external anisotimagnon states: the Fourier decomposition contains both
ropy fieldh. It is convenient to collect theN— 1) Goldstone ~ Positive and negative frequencies, such that a single re_al field
fields U2 in an N-dimensional vectot)'=(U% U®) of unit  suffices to describe one particle. Accordingly, there ebast
length, different types of spin-wave excitations in an
antiferromagnet—as is the case in Lorentz-invariant theories,
Ui(x)Ui(x)=1, (7.0 Goldstone fields and Goldstone particl_es.are in one—tq-one
correspondence. These low-energy excitations follow a linear

and to take the constant external field along the zeroth axiglispersion relation. As a consequence, in the power counting

hi=(h,0,...,0). TheEuclidean form of the effective La- Scheme for antiferromagnetic magnons, powers of momen-
grangian for an O) antiferromagnet up to ordgs* then  tum are on the same footing as powers of energy or tempera-
read® ture: k2o w?, T2
Let us now turn to the evaluation of the partition function
AF_ 112 i i hil)i_ [ 2 of an O(N) antiferromagnetN=2. The relevant graphs are
Ler=2770,U0,U - XU~ e(9,U9,U7) depicted in Fig. 4. Lorentz invariance ensures that only even
_ _ o powers of momentum occur and that loop graphs are sup-
—82((9MUI&VUI)2+ kl—Z(h'U')(aMUkaﬂUk) pressed bywo powers of momentum. Shown are all contri-
F butions to the free energy density up to orgéror, equiva-
52 52 lently, T®. Note the striking difference with respect to Fig. 2,
—ky— (h'U")2—kgy—h'h'. (7.2)  Which displays the Feynman graphs relevant for the evalua-
Fh F4 tion of the partition function of an 3) ferromagnet.

The tree graphs 4b and 6c are temperature independent
In the power counting scheme, the fidli{x) counts as a and hence merely renormalize the vacuum energy. One-loop
quantity of order one. For the antiferromagnet, derivativegyraph 6b exclusively contains a vertex which is quadratic in
correspond to one power of the momentuipyp, whereas the Goldstone boson field and thus only contributes to a
the external fielch counts as a quantity of ord@?. Hence, renormalization of the mag¥l =3 h/F? in the free Bose
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gas term related to graph 44To the orderp® considered with the speed of light replaced by the spin-wave velogity
here, we are thus left with only one candidate for the inter-The point is that we did not consider corrections proportional

action: two-loop graph 6a. _ to k* k8, ... in the dispersion relation in order to account
In the I'm:ct ﬁf a zero external field, the low-temperature ¢, the giscreteness of the lattice. Equivalently, we did not
expansion of the pressure amounts to consider terms in the subleading piec®S, L3, . .. of
PAF= L 72(N— 1) T+ O(T8). (7.3 the_effectlve Lagrangian Whlch,_alth(_)ugh space rotation in-
variant, are no longer Lorentz invariant. They would have
The T# contribution represents the free Bose gas term whictinanifested themselves as terms of or@éT®, ... in the
originates from one-loop graph 4a. The effective interactiorstaggered magnetization of the antiferromagnet. Like the
among the Goldstone bosons, remarkably, only manifests imnalogous terms of ordéf®2 T2 ... in the spontaneous

self through a term of ordéF®, which is beyond the scope of magnetization of the ferromagnet, these contributions merely
the present discussion. As it turns out, the contribution okorrespond to noninteracting magnons.

order p® coming from two-loop graph 6a is proportional to  What is remarkable, however, is the fact that the two-loop
the external field, such that, in the limit—0 considered contribution involving a four-magnon vertex from the lead-
here, it vanishes. _ _ing pieceL 3 of the effective Lagrangian vanishes in either

_ It is interesting to note that this two-loop graph, which case: in the low-temperature series for the staggered and
|n\2/0Ives a four-magnon-vertex from the leading Lagrangiany,ontaneous magnetization, the spin-wave interaction does
L5, does not contribute to the pressure of a)derro- ot manifest itself through this graph. Note that the reasons

magnet, either. The reason, however, is quite different. FOL o yitferent. For an QY) antiferromagnet, there is actually
the antiferromagnet, the contribution is only absent in zerq, .- proportional ta in the low-temperature seri¢g.4)

external field, whereas for the ferromagnet the contributior}or the order parameter. But for the particular chke3 we

lfor;)rrir:ygraph 8 vanishes because of space rotation symmetry e considering, the term does not show up in the staggered

magnetization—corrections associated with the magnon in-

Let us now turn to the order parameters. In the case of a ) 17
O(3) antiferromagnet this quantity is referred to as staggerege raction only appear at ordar®.*" On the other har!d, the
wo-loop contribution for the ferromagnet, proportional to

ization. Itis gi he | ithmi ivati f th X . .
magnetization. Itis given by the logarithmic derivative of t €T3, vanishes due to space rotation symmetry—corrections

partition function with respect to the external fi¢lcnd, for originating from the magnon interaction manifest themselves
an ON) antiferromagnet, the low-temperature expansion 9 9 9

amounts ta(for details see Ref. 17 through the Dyson term proportional to four powers of the

temperature.
Another striking difference concerns the fact that for the
34(T)/IZ4(0) . e
antiferromagnet, the low-temperature expansion is com-
N—1T2 (N-—1)(N-3) T pletely fixed by a single coupling constafitup to orderT*,
—1_ _ _ 6 . . . . . .
1 24 72 1157 4 +O(T®). i.e., including the first correction coming from the

interaction®® This is not the case for the ferromagnet, where
(7.4  the leading interaction term, i.e., the two-loop contribution

a3T#, involves coupling constants from the next-to-leading-
On the other hand, the low-temperature expansion for therder Lagrangian/:‘e‘ff. We conclude that, for Lorentz-
spontaneous magnetization of the3pferromagnet, derived noninvariant systems, the kinematics is much less

in the present paper, reads restrictive—less information is available via symmetry con-
oo . . . o siderations, such that more phenomenological input for the
3(T)/E(0)=1—aoT¥ =, T¥= a, T"?= a3 T*+O(T?%).  corresponding nonrelativistic system is required.

Comparing these formulas for the staggered and spontaneous
magnetization, respectively, the following issues are worth
pointing out.

Obviously, as far as the structure of the low-temperature The low-energy behavior of an(@) ferromagnet is deter-
expansion is concerned, the two series are quite differenfined by its low-energy excitations, the magnons or spin
The leading terms«T? for the antiferromagnetxT¥? for  waves, which represent the Goldstone bosons of the sponta-
the ferromagnetare an immediate consequence of the corneously broken internal symmetry O(3)0(2). Thesystem
responding dispersion laws: linear for the antiferromagnetymay be analyzed within the framework of nonrelativistic ef-
quadratic for the ferromagnet. They are both related to dective Lagrangians, which tackles the phenomenon of spon-
one-loop graph. taneous symmetry breaking from a unified point of view. The

Now we have to emphasize that the evaluation of themethod exploits the symmetry properties of the underlying
partition function for the antiferromagnet was performed in atheory, i.e., the Heisenberg model in the present case, and
Lorentz-invariant framework, EXthItlng a relativistic disper- formulates the dynamics in terms of Goldstone boson fields.
sion law At large wavelengths, the microscopic structure of con-

R densed matter systems does not play a significant role: in the
w’=v*M2+02k?, (7.5  corresponding effective Lagrangian, the specific properties

VIIl. CONCLUSIONS AND OUTLOOK
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of the system only manifest themselves in the numerical val- It is very instructive to compare the(8) ferromagnet and
ues of a few coupling constants. the Q3) antiferromagnet within the framework of effective
The low-energy excitations of an(8 ferromagnet obey a Lagrangians. Spin waves in antiferromagnets obey a linear
qguadratic dispersion relation. In the momentum power dispersion relation, implying that powers of momentum, en-
counting scheme, which provides us with a systematic exergy, and temperature are all on the same footing: the power
pansion of physical quantities in powers of inverse wave-counting is identical with the standard, Lorentz-invariant
length, two powers of momentum thus correspond to onlyscheme. Accordingly, the low-temperature properties of these
one power of energy or temperature. Remarkably, unlike in &wo systems are quite different as illustrated by the low-
Lorentz-invariant framework where loop corrections are suptemperature expansion for the pressure and for the corre-
pressed by two powers of momentum, loops involving ferro-sponding order parameters, the spontaneous and staggered
magnetic magnons are suppressed by three momentum powragnetization, respectively.
ers. Having established the power counting scheme for the
In this nonrelativistic framework, the evaluation of the ferromagnet, we have paved the way for further investiga-
partition function for an @) ferromagnet is presented up to tions of this nonrelativistic system within the effective La-
order p'% up to orderT® in the free energy density or, grangian perspective. In fact, the low-temperature expansion
equivalently, up to ordel* in the spontaneous magnetiza- for the partition function has already been carried to order
tion. In agreement with Dyson’s microscopic analysis, wep?l, where the first three-loop graphs show up. An outline of
find that, in the spontaneous magnetization, the spin-wavthe calculation, which goes beyond Dyson’'s microscopic
interaction only starts contributing at ord&f. Moreover, analysis, will be presented in a forthcoming pajler.
within the effective Lagrangian perspective we readily un-
derstand the absence ofTd term in the spontaneous mag-
netization. This spurious term, which was the object of vari-
ous microscopic investigations, vanishes because of space It is a pleasure to thank H. Leutwyler for numerous stimu-
rotation symmetry or parity of the leading order effective lating discussions and for his patient assistance throughout
Lagrangian. The effective Lagrangian method not onlythis work. Thanks also to S. Mallik, A.V. Manohar, D. Tou-
proves to be more efficient than the complicated microscopiblan, and J. Soto for their help. | am greatly indebted to the
analysis, but also addresses the problem from a modeHolderbank-Stiftung for support. Likewise, support by Sch-
independent point of view based on the symmetries of theveizerischer Nationalfonds and CONACY{Mexico) is
system. gratefully acknowledged.
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