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Scaling laws for the two-dimensional eight-state Potts model with fixed boundary conditions
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Matemàtica Aplicada, DEE, Universitat Pompeu Fabra, 08028 Barcelona, Spain

~Received 30 July 2001; published 19 February 2002!

We study the effects of frozen boundaries in a Monte Carlo simulation near a first-order phase transition.
Recent theoretical analysis of the dynamics of first-order phase transitions has enabled us to state the scaling
laws governing the critical regime of the transition. We check these new scaling laws performing a Monte
Carlo simulation of the two-dimensional, eight-state spin Potts model. In particular, our results support a
pseudocriticalb(L) finite-size scaling of the formb(`)1a1 /L1a2 /L2, instead ofb(`)1u1 /Ld1u2 /L2d.
Moreover, we obtain a latent heatLFBC50.294(11), which does not coincide with the latent heat analytically
derived for the same model if periodic boundary conditions are assumed,LPBC50.4863 58 . . . .
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I. INTRODUCTION

The introduction of computer simulation methods h
been a breakthrough in the study of phase transitions in
tice models. The rapid increase in computer power has
abled us to analyze with great accuracy the scaling la
governed by the critical exponents, and even the correct
to these scaling laws. In such an analysis, finite-size eff
must be taken into account carefully.1 One of these effects
the disturbance from the boundary, has usually been
missed by the adoption of periodic boundary conditio
~PBC’s!. Nevertheless, in some situations the adoption
periodic lattices may not be adequate, either for practica
theoretical reasons. This is the case of the free bound
conditions used in the analysis of free surfaces or the
called boundary fields used in the analysis of wetting p
nomena. In the present paper we will focus on a particu
election of the boundary conditions, the so-called fix
boundary conditions~FBC’s!, which have been recently ap
plied to spin models2,3 and gauge models.4

Second-order phase transitions exhibit universality.
this reason, all the details of the system near the phase
sition point become irrelevant for the critical exponents.
contrast, first-order phase transitions are not universal
hence, all details of a simulation must be considered c
fully. This includes, in particular, the choice of bounda
conditions. What are the appropriate set of scaling laws fo
first-order phase transition with FBC’s? This is the quest
we address in this paper. Starting from the theoretical an
sis of Borgs and Kotecky5,6 and the work of Medved’7 on the
dynamics of first-order transitions, we present the finite-s
scaling laws applicable to the case of FBC’s and we ch
them performing a numerical simulation of the tw
dimensional~2D! eight-state spin Potts model8 with FBC’s.

The paper is divided as follows. In Sec. II a brief sum
mary of some recent simulations where FBC’s have b
adopted serves as motivation for a detailed analysis of
finite-size scaling laws which are also presented and
cussed. Section III is devoted to a discussion of our num
0163-1829/2002/65~9!/094428~7!/$20.00 65 0944
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cal simulation and the results that we have obtained. In S
IV we analyze our results in the light of the scaling law
presented in Sec. II. Finally, in Sec. V we give some co
cluding remarks.

II. FIXED BOUNDARY CONDITIONS

A. Motivation for FBC’s

Recently, so-calledgonihedric spin modelshave been pro-
posed as a laboratory to study discrete versions of st
theories.9 All these simulations have been performed impo
ing standard periodic boundary conditions on a thr
dimensional lattice. Nevertheless, in some cases three in
secting inner planes of spins were fixed to break the la
energy degeneracy of the Hamiltonian.2,3 Due to the period-
icity of the boundaries, this is equivalent to fixing the spi
belonging to the six planes of the 2D boundary of the
cube formed by the spins. Since for a certain range of
coupling parameter, in particular fork50, the transition is
clearly of first order, the analysis of the finite-size effec
should have been done using the scaling laws presente
this paper. We expect that the application of the FBC sca
laws may overcome some anomalies recently observed in
analysis of this transition.10

Another situation where knowledge of the FBC scali
laws seems to be crucial is the issue of the triviality of latt
QED. Indeed, it has been claimed that the formation of a
ficial monopole structures, which close over the boundar
in a simulation of the 4D U~1! gauge model may be respon
sible for turning the phase transition of this model from se
ond to first order.11 To avoid this problem, originated prob
ably by an incorrect choice of the boundaries, it w
suggested to perform Monte Carlo simulations on a latt
with the topology of a sphere. Along these lines, Baig a
Fort4 proposed the adoption of FBC’s to simulate a spheri
topology. Effectively, to fix all variables belonging to the 3
border to unity is the higher-dimensional equivalent of co
verting a 2D plane square lattice to the 2D surface o
sphere by collapsing the lines of the border to a single po
©2002 The American Physical Society28-1
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M. BAIG AND R. VILLANOVA PHYSICAL REVIEW B 65 094428
Nevertheless, to discriminate between a first- or second-o
nature for a transition, an accurate analysis of the data
duced is necessary, and, in particular, this will be only p
sible if one knows for certain the applicable scaling laws

B. Scaling laws

Although speaking properly no critical exponents can
defined for first-order phase transitions, it is usual to defin
set of characteristic exponents, together with a set of sca
laws borrowed from those of second-order phase transiti
The pioneering work of Privman and Fisher,12 Binder and
Landau,13 and Challaet al.,14 provided a phenomenologica
understanding of the scaling for first-order transitions.
more rigorous theoretical justification for these first-ord
scaling laws was presented by Borgs and Kotecky.5,15 The
formulation of its applicability to finite-size scaling expre
sions in terms of the lattice size was the work of Borg
Kotecky and Miracle-Sole´16 and, independently, of Janke.17

But in all these developments the existence of perio
boundary conditions was assumed. Recently, though, B
and Kotecky6 have extended their analysis to include surfa
effects in addition to the standard volume effects which g
ern first order transitions. Following this work, Medved’7 has
deduced the scaling laws for the spin Potts model in
presence of surface effects, in particular adopting bound
conditions other than the periodic ones.

Following the general analysis of Medved’,7 finite-size
scaling laws in terms of the lattice size for the case of fix
boundary conditions can easily be deduced. They are s
marized in Table I, together with the standard laws for pe
odic conditions. In the rest of this paper we will check the
modified scaling laws with the results of our numerical sim
lation.

It should be noticed that the suggestion that in the cas
free boundary conditions every transition is shifted by a 1L
correction term caused by surface effects is quite o
Binder,18 for instance, reports on a series of experimen
results19 supporting this conclusion.
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III. NUMERICAL SIMULATION

To test the scaling laws of Table I, we have performed
numerical simulation of the 2D eight-state spin Potts mo
defined by the partition function

Zpotts5(
$s i %

e2bE, ~1!

where the energy is

E52(̂
i j &

ds is j
~s i51, . . . ,8!, ~2!

with b5J/kT in natural units. It is well known that this
model exhibits a first-order phase transition20 and for this
reason it has been chosen as a test model in several pre
studies.

Fixed boundary conditions have been implemented al
the lines stated by Baig and Fort.4 In a 2D grid with points
labeled by (nx ,ny), all spins corresponding to the lattic
points (1,ny) and (nx,1) for nx ,ny51, . . . ,L have been
fixed during the entire simulation at its initial valuess51.

TABLE I. Scaling laws for periodic and fixed boundary cond
tions.

PBC FBC

bc
peaks~L!5bc~`!1

u1

Ld
1OS 1

L2dD bc~`!1
a1

L
1OS 1

L2D
Cmax~L!5g01g2L

d1OS 1

LdD c01c2L
d1O~Ld21!

xmax~L!5d01d2L
d1OS 1

LdD e01e2L
d1O~Ld21!

Bmin~L!5F01
F1

Ld
1OS 1

L2dD B01
B1

L
1OS 1

L2D
ken

TABLE II. Monte Carlo parameters of the simulation.L2 is the lattice size,ntherm the number of Monte

Carlo sweeps during thermalization, andnprod the number of production runs. Measurements were ta
everynflip58 Monte Carlo sweeps for all the simulations.

L bMC ntherm nprod te te
int

ntherm/nflip

te

nprod/nflip

2 te

70 1.3343 100 000 6 000 000 144 128~12! 87 2604
84 1.3363 100 000 6 000 000 208 240~25! 60 1803
100 1.3378 150 000 8 000 000 357 394~38! 53 1441
126 1.33909 250 000 8 000 000 883 847~122! 35 567
150 1.3398 400 000 10 000 000 1320 1341~215! 38 474
200 1.3407 900 000 12 000 000 4664 5434~1582! 24 161
226 1.34102 1 200 000 16 000 000 7287 6991~1476! 21 138
250 1.341205 1 600 000 18 000 000 9072 9700~2454! 22 124
278 1.34138 2 200 000 18 800 000 11743 16969~5058! 23 100
300 1.34146 3 000 000 22 000 000 15429 27765~12969! 24 89
350 1.34162 4 000 000 32 700 000 25632 53623~29055! 20 80
8-2
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With this precaution, the structure of the program, wh
implements PBC’s, assures the persistence of the fro
boundary.

We have performed the lattice updating applying a we
tested heat bath algorithm. During the simulation we
corded time series files for the energyE and the magnetiza
tion M defined as

M5
q max$ni%2Ld

q21
, ~3!

whereq58 andni is the number of spins in a given orien
tation.

Table II summarizes the details of the simulations t
have been performed fromL570 up toL5350. The number
of production Monte Carlo sweeps varies fromnprod
56 000 000 for L570, to nprod532 700 000 forL5350.
Since we took measurements only everynflip58 sweeps, the
number of total measurements per run isnmeas5nprod/nflip .
We left at least 20nflipte thermalization sweeps before takin
measurements.21–23 To estimate the autocorrelation time
the energy measurements,te, we have applied two differen
methods. First, we use the fact thatte enters the error esti
mate eJK5A2 te/nmeasenaive for the mean energŷE& of
nmeascorrelated energy measurements of variance

FIG. 1. Energy time series forL5300 andbMC51.341 46.
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j 51

nmeas

~^E&2Ej !
2/~nmeas21!.

The ‘‘true’’ error estimateeJK is obtained splitting the energ
time series into 50 bins, which were in their tur
jackknived24,25 to decrease the bias in the analysis. The s
ond way of obtainingte is by a direct computation of the
integrated autocorrelation time

te
int5

1

2
1 (

j 51

kmax21

~12 j /kmax!

3

1

kmax2~ j 21! (
i 51

kmax2( j 21)

~Ei2^E&!~Ei 1 j2^E&!

^E2&2^E&2
,

where kmax is a suitable cutoff21 around 6te
int,kmax

,10te
int . The corresponding error inte

int is derived from the
a priori formula A2 (2 kmax11)/nmeaste

int .
In Fig. 1 we present the energy time series for theL

5300 and bMC51.341 46 simulation runs. The expecte
characteristic behavior for a first-order phase transition
be clearly seen. The system remains in one of the two co

FIG. 2. Energy histograms forL5100 andbMC
PBC51.342 027

andbMC
FBC51.3378.
TABLE III. Extrema for the~finite lattice! specific heatCmax, the susceptibilityxmax, and the energetic
Binder parameterBmin together with their respective pseudocritical inverse temperatures.

L bmax
C Cmax bmax

x xmax bmin
B Bmin

70 1.334469~53! 89.26~96! 1.334212~52! 95.3~1.2! 1.333966~52! 0.660221~74!

84 1.336360~46! 124.6~1.4! 1.336215~45! 143.8~1.7! 1.336040~46! 0.660441~71!

100 1.337705~34! 171.3~1.9! 1.337620~33! 210.5~2.5! 1.337492~33! 0.660657~69!

126 1.339124~33! 268.4~4.1! 1.339081~33! 355.8~5.7! 1.339000~33! 0.660774~94!

150 1.339905~25! 391.5~7.4! 1.339881~25! 550~11! 1.339821~25! 0.66058~12!

200 1.340747~23! 757~16! 1.340739~22! 1144~25! 1.340704~22! 0.66006~15!

226 1.341046~18! 1006~27! 1.341042~18! 1554~43! 1.341014~18! 0.65981~19!

250 1.341229~15! 1285~29! 1.341225~15! 2033~47! 1.341203~15! 0.65950~17!

278 1.341379~12! 1695~42! 1.341377~12! 2735~69! 1.341358~12! 0.65900~20!

300 1.341493~12! 2083~51! 1.341491~12! 3413~86! 1.341475~12! 0.65856~21!

350 1.3416496~92! 3176~77! 1.3416490~92! 5338~130! 1.3416373~92! 0.65754~23!
8-3
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isting phases for a long period of time. The energy histogr
for the full series is also presented in this figure. The sim
height of the two peaks confirms that the simulation w
performed very near the pseudocritical inverse temperat

It is instructive to compare the energy histograms cor
sponding to the adoption of fixed or periodic boundary co
ditions. To this end we have performed two different Mon
Carlo runs, close to the respective pseudocritical inve
temperatures, which arebMC

PBC51.342 027 and bMC
FBC

51.3378 for a lattice sizeL5100. These simulations hav
been done using 8 000 000 production sweeps, withnflip58,
discarding the initial 250 000(150000) sweeps in the cas
of PBC’s ~FBC’s! for the thermalization of the system. Bot
histograms can be seen in Fig. 2. They show the chara
istic two-peak structure. Nevertheless, the latent heat, i.e.
separation between the maximum of the two peaks, is cle
smaller for fixed boundary conditions. This qualitative obs
vation suggests that a simple analysis of the energy hi
grams of a true first-order phase transition simulated w
fixed boundary conditions might be misleading. Effective
if the lattice size is not large enough, the energy histogr
could show~apparently! a single peak and, in consequenc
one can get the erroneous conclusion that the model exh
a second-order phase transition. Nevertheless, even
FBC’s the evolution of the energy histograms when the s
of the system increases shown in Fig. 2 (L5100) and in Fig.
1 (L5300) exhibits the expected behavior of a first-ord
transition. This observation may be relevant in the interp
tation of the analysis of Baig and Fort,4 where a disappear
ance of a two-peak structure was observed when FBC’s w
imposed on the system.26

In addition to the qualitative analysis of the histogram
we have computed the specific heat, magnetic susceptib
and the Binder kurtosis parameter at nearby values ofbMC
by means of standard reweighting techniques.27 They are de-
fined as

C~b!5
b2

L2
~^E2&2^E&2!, ~4!

FIG. 3. Finite-size scaling analysis of the pseudocriticalbmax
x in

the rangeL584–350 by means of the ansatzbmax
x (L)5bc1e1 /L

1e2 /L2. The infinite-volume critical point obtained from the fit i
bc51.342 478(38), with a goodness of fitQ50.13.
094428-4
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TABLE V. Fits on the extrema ofCmax, xmax, andBmin .

RangeL ’s Cmax(L)5c01c1 L1c2 L2 xmax(L)5e01e1 L1e2 L2 Bmin(L)5B01B1 /L1B2 /L2

Q c0 c1 c2 Q e0 e1 e2 Q B0 B1 B2

100–350 0.012 254~25! 24.24(35) 0.0342~11! 0.011 0.65461~40! 1.52~13! 292.1(9.2)
126–350 0.15 427~65! 26.14(75) 0.0389~29! 0.033 766~101! 211.9(1.2) 0.0691~31! 0.11 0.65295~72! 2.19~28! 2153(24)
150–350 0.38 1262~203! 216.7(2.1) 0.0798~49!
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b2

L2
~^M2&2^M &2!, ~5!

B~b!512
^E4&

3^E2&2
. ~6!

In Table III we show the extrema of the magnitudes d
fined above, together with their pseudocritical inverse te
peratures. The error bars of these quantities have been
mated splitting the time-series data into 50 bins, which w
jackknived to decrease the bias in the analysis of reweigh
data.

IV. SCALING LAWS ANALYSIS

Once we have the results from the numerical simulat
on finite lattices, we can proceed to analyze the data imp
ing the scaling laws of Table I.

A. Analysis of the pseudocritical inverse temperature

In Table IV we present the results of fitting the pseu
ocritical betas ofCmax, xmax, and Bmin to the ansatzbc
1a1 /L1a2 /L2 suggested by the finite-size scaling law
presented in Table I. Notice that we have performed two s
of fits: one for the full range 84<L<350 and a second in
cluding only results from the lattice sizes 100<L<350. No-
tice that the fits are extremely good even for the initial ran
84<L<350, but they improve slightly ifL584 is discarded.
Remember that reasonable fits should have a goodnes
fit,28 Q above 0.05. Figure 3 depicts the fit forbx

max(L) in the
range 84<L<350. Theexactcritical inverse temperature fo
the 2D eight-state Potts model isbc(exact)5 ln@11A(8)]
51.342 454 . . . . Our results of Table IV are in perfec
agreement with this value.

We have also fitted our data to the ansatzbc
peaks5b(`)

1u1 /L21u2 /L4 corresponding to the PBC finite-size sca
ing law. Even though the goodness of fitQ obtained does no
allow one to discard the fits, the infinite volumebc(`) re-
sulting from them does not coincide with the exactly know
value, showing that this ansatz is unsuitable. I.e., for
bmax

C (L) in the range 84<L<350, the fit producesQ50.10
and bc(`)51.342 063(11) and forbmax

x (L) in the range
100<L<350, the results areQ50.21 and bc(`)
51.342 079(13).
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B. Analysis of Cmax , xmax , and Bmin

The results of the fits to the specific heat and suscept
ity maximaCmax andxmax, together with the kurtosis mini-
mum, are summarized in Table V. As before, we show
fits for two ranges of lattice sizes. Notice that the line
correction coefficientsc1 ande1 are two orders of magnitude
larger than the coefficientsc2 ande2 of the dominant contri-
bution L2. This makes it necessary to adjust the data to
ansatzCmax(L)5c01c1 L1c2 L2 and allows us to estimate th
corrections to the leading term.

In simulations with PBC’s, the correction to the leadin
term is of the orderg1 /L2. If we fit our specific heat data in
the rangeL5126–350 to the ansatzCmax(L)5g01g1 /L2

1g2 L2, the goodness of fit isQ50.0003 with an absurdly
high value forg1. On the other hand, if we do not allow fo
a correction term and fit the data toCmax(L)5g01g2 L2, the
goodness of fit turns out to be 0.

The work of Medved7 shows that the coefficient ofL2 in
the finite-size scaling ofCmax is related to the latent hea
LFBC via c25(LFBCbc /2)2. In fact, it is the same relation
ship that holds for periodic boundary conditions.14,16,17If we
use our estimationc250.0389(29) from Table V andbc

5 ln@11A(8)], we obtain for the latent heat

LFBC50.294~11!. ~7!

Another way of estimating the latent heat is from the
rect calculation, right at the transition, of the internal en
gies per site of the ordered and disordered phases,eord

TABLE VI. Finite-size estimateseo(L) and ed(L). They are
obtained by reweighting the energy histograms until both pe
have equal heights. The infinite-volume ordered and disordered
ergies are estimated from the ansatzeo(L)5eord1k1 /L anded(L)
5edis1k2 /L.

L eo ed

100 21.580(11) 21.4167(74)
126 21.586(10) 21.398(20)
150 21.587(18) 21.398(13)
226 21.5965(93) 21.3623(91)
250 21.5944(83) 21.362(14)
278 21.5970(39) 21.350(17)
300 21.5960(27) 21.3452(98)
350 21.5958(31) 21.337(13)
A A A
` 21.6032(48) 21.3114(92)
8-5
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5Eord/V andedis5Edis/V. Of course, the latent heat is ju
L5edis2eord. Lee and Kosterlitz proposed29 to reweight a
given energy histogram until both peaks have equal hei
The locations of the two maxima in the histogram can
taken as finite-size estimates,eo(L) and ed(L), for the
infinite-volume limits atbc of eord andedis. The scaling of
eo(L) and ed(L) for fixed boundary conditions7 as well as
periodic boundary conditions29 is eo(L)5eord1O(1/L) and
ed(L)5edis1O(1/L).

We smoothed28 our energy histograms to reduce the no
and searched foreo(L) anded(L). Table VI shows the esti-
mations that we found. Fitting them to the ansatzeo(L)
5eord1k1 /L and ed(L)5edis1k2 /L, we obtainedeord5
21.6032(48) andedis521.3114(92), with goodness of fit28

Q51 andQ50.9, respectively. Consequently another es
mation for the latent heat is

L50.292~10!. ~8!

The agreement with our previous estimation could not
better: it is quite comforting.

Baxter30,31 derived an analytical expression for the late
heat of theq-state Potts model assuming periodic bound
conditions. Numerical evaluations of his expression are ta
lated in Wu20 and Janke.17 For q58, the latent heat for the
Potts model with periodic boundary conditions isLPBC
50.486 358 . . . .Obviously our estimations of the latent he
do not coincide with this value, but it should not be so s
prising in view of Fig. 2, where it can be seen that, forL
5100, the distance between peaks for PBC’s is so differ
J.

J.

;
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from the distance between peaks for FBC’s Although su
differences could tend towards the same value withL→`,
our analysis indicates that in fact they do not.

Notice that, unlike the latent heat, the analytically know
infinite-volume critical inverse temperaturebc5 ln@1
1A(q)# for theq-state Potts model is derived8,31–33using the
self-duality property of the model, which is independent
boundary conditions whenL→`. Let us recall that our esti-
mations ofbc are consistent withbc51.342 454 . . . .

V. CONCLUSIONS

The first-order phase-transition finite-size scaling laws
fixed boundary condition lattices of Borgs, Kotecky, a
Medved have been presented, tested, and shown to be
only ones that hold for the 2D eight-state Potts model.

It is clear from our analysis that Monte Carlo simulatio
for FBC’s are necessarily going to be much more time c
suming than those for PBC’s, since for PBC’s the system s
into the finite-size scaling region asbc(L)5bc(`)1u1 /Ld,
while for FBC’s it does it at the slower pace ofbc(L)
5bc(`)1a1 /L. Besides, we have found that the latent he
is affected by the boundaries.
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