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Scaling laws for the two-dimensional eight-state Potts model with fixed boundary conditions
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We study the effects of frozen boundaries in a Monte Carlo simulation near a first-order phase transition.
Recent theoretical analysis of the dynamics of first-order phase transitions has enabled us to state the scaling
laws governing the critical regime of the transition. We check these new scaling laws performing a Monte
Carlo simulation of the two-dimensional, eight-state spin Potts model. In particular, our results support a
pseudocriticalB(L) finite-size scaling of the fornB(s«)+a, /L +a,/L?, instead ofB(x)+ 6, /L4+ 6, /L2,
Moreover, we obtain a latent heAig-=0.294(11), which does not coincide with the latent heat analytically
derived for the same model if periodic boundary conditions are assuliigd=0.4863% . . ..
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[. INTRODUCTION cal simulation and the results that we have obtained. In Sec.
IV we analyze our results in the light of the scaling laws
The introduction of computer simulation methods haspresented in Sec. Il. Finally, in Sec. V we give some con-
been a breakthrough in the study of phase transitions in la€luding remarks.
tice models. The rapid increase in computer power has en-
abled us to analyze with great accuracy the scaling laws, Il. FIXED BOUNDARY CONDITIONS
governed by the critical exponents, and even the corrections
to these scaling laws. In such an analysis, finite-size effects
must be taken into account carefullone of these effects, Recently, so-calledonihedric spin modelsave been pro-
the disturbance from the boundary, has usually been digosed as a laboratory to study discrete versions of string
missed by the adoption of periodic boundary conditionstheories? All these simulations have been performed impos-
(PBC'y. Nevertheless, in some situations the adoption ofng standard periodic boundary conditions on a three-
periodic lattices may not be adequate, either for practical odimensional lattice. Nevertheless, in some cases three inter-
theoretical reasons. This is the case of the free boundarsecting inner planes of spins were fixed to break the large
conditions used in the analysis of free surfaces or the scenergy degeneracy of the HamiltonfahDue to the period-
called boundary fields used in the analysis of wetting pheicity of the boundaries, this is equivalent to fixing the spins
nomena. In the present paper we will focus on a particulabelonging to the six planes of the 2D boundary of the 3D
election of the boundary conditions, the so-called fixedcube formed by the spins. Since for a certain range of the
boundary conditiong§FBC’s), which have been recently ap- coupling parameter, in particular far=0, the transition is
plied to spin modefs® and gauge modefs. clearly of first order, the analysis of the finite-size effects
Second-order phase transitions exhibit universality. Foshould have been done using the scaling laws presented in
this reason, all the details of the system near the phase trathis paper. We expect that the application of the FBC scaling
sition point become irrelevant for the critical exponents. Bylaws may overcome some anomalies recently observed in the
contrast, first-order phase transitions are not universal and@nalysis of this transitio’
hence, all details of a simulation must be considered care- Another situation where knowledge of the FBC scaling
fully. This includes, in particular, the choice of boundary laws seems to be crucial is the issue of the triviality of lattice
conditions. What are the appropriate set of scaling laws for &ED. Indeed, it has been claimed that the formation of arti-
first-order phase transition with FBC's? This is the questiorficial monopole structures, which close over the boundaries,
we address in this paper. Starting from the theoretical analyin a simulation of the 4D (1) gauge model may be respon-
sis of Borgs and Kotecky and the work of Medved'on the  sible for turning the phase transition of this model from sec-
dynamics of first-order transitions, we present the finite-sizeond to first ordet! To avoid this problem, originated prob-
scaling laws applicable to the case of FBC's and we checlably by an incorrect choice of the boundaries, it was
them performing a numerical simulation of the two- suggested to perform Monte Carlo simulations on a lattice
dimensional(2D) eight-state spin Potts modekith FBC's. with the topology of a sphere. Along these lines, Baig and
The paper is divided as follows. In Sec. Il a brief sum- Fort* proposed the adoption of FBC's to simulate a spherical
mary of some recent simulations where FBC’s have beetopology. Effectively, to fix all variables belonging to the 3D
adopted serves as motivation for a detailed analysis of thborder to unity is the higher-dimensional equivalent of con-
finite-size scaling laws which are also presented and disverting a 2D plane square lattice to the 2D surface of a
cussed. Section Il is devoted to a discussion of our numerisphere by collapsing the lines of the border to a single point.

A. Motivation for FBC’s
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Nevertheless, to discriminate between a first- or second-order TABLE I. Scaling laws for periodic and fixed boundary condi-
nature for a transition, an accurate analysis of the data prdions.

duced is necessary, and, in particular, this will be only pos
sible if one knows for certain the applicable scaling laws. PBC FBC

i peak b1 1 a 1
B. Scaling laws i fL)=IBC(oc)+F+o e ﬂc(oo)+t+o %

Although speaking properly no critical exponents can be

defined for first-order phase transitions, it is usual to define &__(L)=y,+,L9+0 i) Co+CLd+O(Ld Y
set of characteristic exponents, together with a set of scaling L

laws borrowed from those of second-order phase transitions. 1

The pioneering work of Privman and FisHérBinder and  XmafL)=8+&L+0 —d) eptel+oLe )
Landau®® and Challaet al,** provided a phenomenological L

understanding of the scaling for first-order transitions. A Dy 1 B: 1
more rigorous theoretical justification for these first-orderB”““(L):q)OJrF+O ﬁ) Bot T 0 L_Z)

scaling laws was presented by Borgs and KotéckyThe
formulation of its applicability to finite-size scaling expres-
sions in terms of the lattice size was the work of Borgs,
Kotecky and Miracle-Sof¢ and, independently, of Janké.
But in all these developments the existence of periodic To test the scaling laws of Table I, we have performed a
boundary conditions was assumed. Recently, though, Borgaumerical simulation of the 2D eight-state spin Potts model
and Kotecky have extended their analysis to include surfacedefined by the partition function

effects in addition to the standard volume effects which gov-

ern first order transitions. Following this work, Medvétias zpottSZE e FE (1)
deduced the scaling laws for the spin Potts model in the {oi}

presence of surface effects, in particular adopting boundarypere the energy is

conditions other than the periodic ones.

Following the general analysis of Medvedfinite-size
scaling laws in terms of the lattice size for the case of fixed E=-2 a0 (oi=1,....8, 2
boundary conditions can easily be deduced. They are sum- )
marized in Table |, together with the standard laws for peri-with 8=J/KT in natural units. It is well known that this
odic conditions. In the rest of this paper we will check thesemodel exhibits a first-order phase transitdmnd for this
modified scaling laws with the results of our numerical simu-reason it has been chosen as a test model in several previous
lation. studies.

It should be noticed that the suggestion that in the case of Fixed boundary conditions have been implemented along
free boundary conditions every transition is shifted byla 1/ the lines stated by Baig and Fértn a 2D grid with points
correction term caused by surface effects is quite oldlabeled by ,,n,), all spins corresponding to the lattice
Binder?® for instance, reports on a series of experimentapoints (1py) and (0,1) for n,,n,=1,... L have been
results® supporting this conclusion. fixed during the entire simulation at its initial values=1.

IlI. NUMERICAL SIMULATION

TABLE Il. Monte Carlo parameters of the simulatidr? is the lattice sizeNyem the number of Monte
Carlo sweeps during thermalization, ang,q the number of production runs. Measurements were taken
everyng,=8 Monte Carlo sweeps for all the simulations.

L Buc Ntherm Nprod Te Tg“ Nherm! Nfiip Nprod/ Nfiip
T 2T
70 1.3343 100 000 6 000 000 144 128 87 2604
84 1.3363 100 000 6 000 000 208 229 60 1803
100 1.3378 150 000 8 000 000 357 399 53 1441
126 1.33909 250 000 8 000 000 883 8112 35 567
150 1.3398 400 000 10 000 000 1320 13A15) 38 474
200 1.3407 900 000 12 000 000 4664 5382 24 161
226 1.34102 1 200 000 16 000 000 7287 699176 21 138
250 1.341205 1 600 000 18 000 000 9072 92264 22 124
278 1.34138 2 200 000 18 800 000 11743 169693 23 100
300 1.34146 3 000 000 22 000 000 15429 2718969 24 89
350 1.34162 4 000 000 32 700 000 25632 53892855 20 80
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FIG. 1. Energy time series fdr=300 and =1.34146. ;
9y Buc FIG. 2. Energy histograms fot =100 and Bfjec=1.342 027

_ _ _ ~andpiEf=1.3378.
With this precaution, the structure of the program, which

implements PBC’s, assures the persistence of the frozen Nmeas
boundary. €= > ((E)=E)(Nmeas—1).
We have performed the lattice updating applying a well- e =3 (B)-E, meas

tested heat bath algorithm. During the simulation we re- . , . . . "
. e : The “true” error estimatee i is obtained splitting the energy

corded time series files for the enerByand the magnetiza- .. . . ; . ; .

tion M defined as time series into 50 bins, which were in their turn

jackknived*?°to decrease the bias in the analysis. The sec-
ond way of obtainingr, is by a direct computation of the

d
M= gmaxini}— L , (3)  integrated autocorrelation time
q ! kmaxfl

whereg=8 andn; is the number of spins in a given orien- 7-'e”t=§+ E (1= j/Kmay
tation. =1

Table Il summarizes the details of the simulations that 1 Kmas— (i—1)
have been performed froln=70 up toL =350. The number ———— (Ei—(E))(Ei1;—(E))
of production Monte Carlo sweeps varies fromy,q y Kmax=(1=1) i
=6000000 forL=70, to nyee=32700000 forlL =350. (E2)—(E)? '
Since we took measurements only evaefy, =8 sweeps, the _
number of total measurements per rUMjgae=Nproa/Npip -~ Where Kng is @ suitable cutoff around 67¢'<kmax

We left at least 20, 7, thermalization sweeps before taking <10 7. The corresponding error i is derived from the

measurements:2* To estimate the autocorrelation time of a priori formula y2 (2 Kmaxt 1)/Nmeas™ -

the energy measurements, we have applied two different In Fig. 1 we present the energy time series for the
methods. First, we use the fact thatenters the error esti- =300 and 8y,c=1.34146 simulation runs. The expected
mate €3x= V2 Te/Nmeas€naive TOr the mean energyE) of  characteristic behavior for a first-order phase transition can
NmeasCoOrrelated energy measurements of variance be clearly seen. The system remains in one of the two coex-

TABLE lll. Extrema for the(finite lattice specific heatC,,,, the susceptibilityyax, @and the energetic
Binder parameteB,,;, together with their respective pseudocritical inverse temperatures.

C X B
L Briax Cmax max Xmax Brin Bmin

70 1.33446653) 89.2696)  1.33421252) 95.31.20  1.33396652  0.66022174)
84 1.33636(046) 124.61.4  1.33621%45  143.81.7) 1.33604046)  0.66044171)
100 1.3377084)  171.31.9  1.33762033)  210.52.5  1.33749233)  0.66065769)
126 1.33912B3)  268.44.1)  1.33908133)  355.85.7)  1.33900033)  0.66077494)

150 1.339905  391.57.4  1.33988125  550(11) 1.33982125)  0.6605812)
200 1.34074R3)  757(16) 1.34073%22)  114425) 1.34070422)  0.6600615)
226 1.341046l8 100627 1.34104218) 155443 1.34101418)  0.6598119)
250 1.34122@15 128529 1.34122%15) 203347 1.34120815)  0.6595017)
278 1.34137@2) 169542 1.34137712) 273569 1.34135812)  0.6590020)
300 1.34149@2 208351 1.34149112)  341386) 1.34147%12)  0.6585621)
350 1.341649@2) 317677) 1.341649092) 533§130) 1.341637892)  0.6575423)
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FIG. 3. Finite-size scaling analysis of the pseudocritjggl, in
the rangeL=84-350 by means of the ansg8 (L)=B.t+e./L
+&,/L2 The infinite-volume critical point obtained from the fit is
B:.=1.342 478(38), with a goodness of ¢=0.13.

isting phases for a long period of time. The energy histogram
for the full series is also presented in this figure. The similar
height of the two peaks confirms that the simulation was
performed very near the pseudocritical inverse temperature.

It is instructive to compare the energy histograms corre-
sponding to the adoption of fixed or periodic boundary con-
ditions. To this end we have performed two different Monte
Carlo runs, close to the respective pseudocritical inverse
temperatures, which aregfic=1.342027 and BE
=1.3378 for a lattice sizé& =100. These simulations have
been done using 8 000 000 production sweeps, with=8,
discarding the initial 250 00q150000) sweeps in the case
of PBC's (FBC's) for the thermalization of the system. Both
histograms can be seen in Fig. 2. They show the character-
istic two-peak structure. Nevertheless, the latent heat, i.e., the
separation between the maximum of the two peaks, is clearly
smaller for fixed boundary conditions. This qualitative obser-
vation suggests that a simple analysis of the energy histo-
grams of a true first-order phase transition simulated with
fixed boundary conditions might be misleading. Effectively,
if the lattice size is not large enough, the energy histogram
could show(apparently a single peak and, in consequence,
one can get the erroneous conclusion that the model exhibits
a second-order phase transition. Nevertheless, even with
FBC's the evolution of the energy histograms when the size
of the system increases shown in Fig..25100) and in Fig.

1 (L=300) exhibits the expected behavior of a first-order
transition. This observation may be relevant in the interpre-
tation of the analysis of Baig and Fdriyhere a disappear-
ance of a two-peak structure was observed when FBC'’s were
imposed on the systeff.

In addition to the qualitative analysis of the histograms,
we have computed the specific heat, magnetic susceptibility
and the Binder kurtosis parameter at nearby valuegnf
by means of standard reweighting technigtfeBhey are de-
fined as

ﬂZ
C(B)=F(<E2>—<E>2), (4)
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TABLE IV. Pseudocritical inverse temperature fit§. is the goodness of fit. Recall that the exact critical inverse temperature for the mogkldsact)=In[1++/(8)]

1.3424% . . ..
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Betay IL+ay/L?

Ewa)&l-) =

Be
1.3424838)

B
1.3424126)

Betay IL+ay/L?

ﬁé(wax(l-):

Be
1.3424789)

1.3424086)

Betay IL+ay/L?

%ax(l-):

Be
1.3424939)
1.3424285)

B

Range L's

a;

a

a

a

a

a

—28.3(1.1)
—31.3(1.6)

—0.210(15)
—0.180(18)

0.13
0.73

—27.2(1.1)
—30.3(1.6)

—0.208(15)
—0.177(18)

0.13
0.73

—25.5(1.1)
—28.6(1.6)

—0.219(15)
—0.187(19)

0.11
0.72

84-350
100-350
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TABLE V. Fits on the extrema o€, 2, Xmax: @NdBin -

Rangel’s CrmadL)=Co+C; L+c, L? XmadL)=€o+e; L+e,L? Bumin(L)=Bg+B; /L+B,/L?

Q Co Cy C2 Q €o €1 € Q Bo B, B,
100-350 0.012 2525 —4.24(35) 0.034011) 0.011 0.6546M0) 1.5213) —92.1(9.2)
126-350 0.15 42B5 —6.14(75) 0.038@9) 0.033 766101 —11.9(1.2) 0.069@1) 0.11 0.6529672) 2.1928) —153(24)
150-350 0.38 126203 —16.7(2.1) 0.079&9)

B. Analysis of Caxs Xmax» &nd Bin

BZ
x(B)= F(<M2>_<M>2)' (5 The results of the fits to the specific heat and susceptibil-
ity maximaC,,.x and xmax. together with the kurtosis mini-
mum, are summarized in Table V. As before, we show the

(E%) fits for two ranges of lattice sizes. Notice that the linear
B(B)=1— >z (6) correction coefficients, ande; are two orders of magnitude
3(E%) larger than the coefficients, ande, of the dominant contri-

bution L2. This makes it necessary to adjust the data to the

In Table Ill we show the extrema of the magnitudes de_ansatzc_imaxL)=co+c1L_+cz L?and allows us to estimate the
corrections to the leading term.

fined above, together with their pseudocritical inverse tem- In simulati h PBC’s. th . he leadi
peratures. The error bars of these quantities have been esti- ' Simulations wit S, the correction to the leading

. 2 . . g .
mated splitting the time-series data into 50 bins, which werd€M™ iS of the ordety, /L=. If we fit our specific heat datazln
fhe rangeL=126-350 to the ansatCpa(L)=vtn/L

jackknived to decrease the bias in the analysis of reweighte > o \

data. +1v, L%, the goodness of fit iQ=0.0003 with an absurdly
high value fory,. On the other hand, if we do not allow for

a correction term and fit the data @,,,(L)= v+, L? the

IV. SCALING LAWS ANALYSIS goodness of fit turns out to be 0.

) ) . The work of Medved shows that the coefficient df? in
Once we have the results from the numerical simulationthe finite-size scaling o, is related to the latent heat
on finite lattices, we can proceed to analyze the data imposk _, . via c,= (Aggc B./2)% In fact, it is the same relation-

ing the scaling laws of Table I. ship that holds for periodic boundary conditids®’If we

use our estimatiorc,=0.0389(29) from Table V ang3.

A. Analysis of the pseudocritical inverse temperature =In[1+ ‘/(8)]' we obtain for the latent heat

In Table IV we present the results of fitting the pseud- Appc=0.29411). (7)
ocritical betas ofC, 2, Xmax» @nd B, to the ansatz8,
+a,/L+a,/L? suggested by the finite-size scaling laws Another way of estimating the latent heat is from the di-
presented in Table I. Notice that we have performed two seteect calculation, right at the transition, of the internal ener-
of fits: one for the full range 84L <350 and a second in- gies per site of the ordered and disordered phasgs,
cluding only results from the lattice sizes X00=<350. No-
tice that the fits are extremely good even for the initial range TABLE VI. Finite-size estimates,(L) and e4(L). They are
84<L =350, but they improve slightly if =84 is discarded. obtained by reweighting the energy histograms until both peaks
Remember that reasonable fits should have a goodness @ve equal heights. The infinite-volume ordered and disordered en-
fit, 28 Q above 0.05. Figure 3 depicts the fit fﬁﬁ'a)‘(L) inthe  €rgies are estimated from the ansefl)=eyq+k; /L andeq(L)
range 84<L =<350. Theexactcritical inverse temperature for =€t Kz /L.
the 2D eight-state Potts model j&.(exacty=In[1+/(8)]

=1.342 4% . ... Ourresults of Table IV are in perfect i e
agreement with this value. 100 —1.580(11) —1.4167(74)
We have also fitted our data to the ansgf£?*=B(=) 126 —1.586(10) —1.398(20)
+6,/L2+ 6,/L* corresponding to the PBC finite-size scal- 150 —1.587(18) —1.398(13)
ing law. Even though the goodness of(itobtained does not 226 —1.5965(93) —1.3623(91)
allow one to discard the fits, the infinite volun@® () re- 250 —1.5944(83) —1.362(14)
sulting from them does not coincide with the exactly knowno7g —1.5970(39) —1.350(17)
value, showing that this ansatz is unsuitable. l.e., for theygg —1.5960(27) —1.3452(98)
,Bﬁqa*(L) in the range 84 L =350, the fit produce®=0.10 359 —1.5958(31) —1.337(13)
and B.(»)=1.342063(11) and foB} (L) in the range : :
100<L =350, the results areQ=0.21 and B.(x») o —1.6032(48) —1.3114(92)

—1.342079(13).
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=Eq/V andegs=Eqs/V. Of course, the latent heat is just from the distance between peaks for FBC’s Although such
A=egs—€yq. Lee and Kosterlitz proposétito reweight a  differences could tend towards the same value withoe,
given energy histogram until both peaks have equal heigh@ur analysis indicates that in fact they do not.

The locations of the two maxima in the histogram can be Notice that, unlike the latent heat, the analytically known
taken as finite-size estimates,(L) and e4(L), for the infinite-volume critical inverse temperaturgd.=In[1
infinite-volume limits atB. of e,y andegs. The scaling of  ++(a)] for theg-state Potts model is derived~3using the
e,(L) andey(L) for fixed boundary conditiodsas well as self-duality property of the model, which is independent of
periodic boundary conditioR$is e (L) =e,q+O(1/L) and boundary conditions whebh—o. Let us recall that our esti-
eq(L) =egst O(1L). mations of 3. are consistent wittB.=1.3424% . . ..

We smoothetf our energy histograms to reduce the noise
and searched fog,(L) andey(L). Table VI shows the esti-
mations that we found. Fitting them to the ansatfL)
=egqtKi/L and ey(L)=eg4stko/L, we obtainedey = The first-order phase-transition finite-size scaling laws for
—1.6032(48) anay= — 1.3114(92), with goodness offit  fixed boundary condition lattices of Borgs, Kotecky, and
Q=1 andQ=0.9, respectively. Consequently another esti-Medved have been presented, tested, and shown to be the

V. CONCLUSIONS

mation for the latent heat is only ones that hold for the 2D eight-state Potts model.
It is clear from our analysis that Monte Carlo simulations
A=0.29210). @  for FBC's are necessarily going to be much more time con-
The agreement with our previous estimation could not béuming than those for PBC's, since for PBC's the system sets
better: it is quite comforting. into the finite-size scaling region a&(L)= B.()+ 6 /LY,

Baxter®®! derived an analytical expression for the latentWhile for FBC's it does it at the slower pace (L)
heat of theg-state Potts model assuming periodic boundary= Bc¢() +a; /L. Besides, we have found that the latent heat
conditions. Numerical evaluations of his expression are tabus affected by the boundaries.
lated in Wif® and Janké’ For q=8, the latent heat for the
Potts model with periodic boundary conditions spgc
=0.486 3B . .. .Obviously our estimations of the latent heat
do not coincide with this value, but it should not be so sur- It is a pleasure to thank W. Janke and A. Salas for very
prising in view of Fig. 2, where it can be seen that, for stimulating discussions. Financial support from CICYT Con-
=100, the distance between peaks for PBC's is so differentracts Nos. AEN98-0431 and AEN99-0766 is acknowledged.
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