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Exact trace formulas for two-dimensional electron magnetism
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We study in this paper the possible occurrence of orbital magnetism for two-dimensional electrons confined
by a harmonic potential in various regimes of temperature and magnetic field. We give exact expressions for
the thermodynamical potential, the magnetic moment, and the average number of electrons. The derivation of
involved trace formulas is based on residue series in the complex plane. The results yield a full description of
the phase diagram of the magnetization.
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I. INTRODUCTION

In a recent paper, Ishikawa and Fukuyama1 describe the
possible orbital magnetism for two-dimensional electro
confined by a harmonic potential and submitted to a cons
normal magnetic field~the so-called Fock-Darwin model2!.
By exploring various regimes of temperature and magn
field, they afford a quite large complement of information
regard to a previous paper3 devoted to the same subject. A
cording to the range of values assumed by the relative ra
between the three characteristic energy scales present i
model, namely the thermodynamical unitkBT, the magnetic
quantum\vc , and the harmonic quantum\v0, they explain
the existence of the different magnetic regimes. As a ma
of fact, they distinguish between the ‘‘mesoscopic fluctu
tion’’ regime @kBT&\(Avc

214v0
22vc)/2[\v2#, the

‘‘Landau diamagnetism’’ regime @kBT*\(Avc
214v0

2

1vc)/2[\v1#, and the ‘‘de Haas–van Alphen’’ regime
Their studies rest upon an approximate expression for
thermodynamical potentialV which is derived from a stan
dard Poisson summation formula and from which they
able to get the magnetic moment.

We present in this paper expressions for the thermo
namical potential and the magnetic moment for the ab
model. Our expressions are exact, in contrast to those in
1, and our results yield a full description of the phase d
gram of the magnetization. Our derivation crucially re
upon the observation that the Fermi-Dirac function is a fix
point of the Fourier transform. Exact series expansions en
by simple application of the residue theorem. Our results
the thermodynamical potential, the orbital magnetic mome
the subsequent magnetic susceptibility, and the average n
ber of electrons are easily tractable and analyzable.

Since the pioneering work of Landau in 1930, orbi
magnetism of electron gases has been the subject of co
erable attention, especially during the last decades with
advent of experimental opportunities, more precisely w
the availability of two-dimensional electronic devices, qua
tum boxes, or mesoscopic finite-size objects. One can fin
Refs. 4 or 5 a good account of recent theoretical investig
tions on the subject, especially from a semiclassical poin
view.
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In the next section, we shall give a short review of t
Fock-Darwin problem. The eigenvalues of the Hamiltoni
will be derived through an algebraic approach. In Secs.
we establish the exact trace formulas for the thermodyna
cal potential. In Sec. IV, the magnetic moment and the av
age number of electrons are calculated. We discuss their
havior in different temperature and magnetic-field regions
the conclusion we give some remarks and comments on
possible extension of our approach to other systems of ph
cal interest.

II. HAMILTONIAN AND ITS EIGENVALUES

The Hamiltonian for two-dimensional spinless electro
confined by an isotropic harmonic potential and submitted
a constant perpendicular magnetic field is written as

H5
1

2me
S P1

e

c
AD 2

1
1

2
mev0

2R2, ~2.1!

where Coulomb interactions are neglected and the symm
gaugeA5 1

2 H3R will be applied in our studies. The class
cal radiusRm of the system is classically defined as

1

2
mv0

2Rm
2 5m, ~2.2!

wherem is the chemical potential of the considered electr
gas. The Hamiltonian can be solved by the following alg
braic approach in which two bosonic annihilation operat
ad andag are introduced:

ad5
1

2 F S X

l 0
1

l 0

\
PyD1 i S 2

Y

l 0
1

l 0

\
PxD G , ~2.3!

ag5
1

2 F S X

l 0
2

l 0

\
PyD1 i S Y

l 0
1

l 0

\
PxD G , ~2.4!

where l 05A2\/mv. We define the number operatorsNd

5ad
†ad andNg5ag

†ag . The Hamiltonian is split into the sum
of two independent harmonic oscillators and written as

H5\v1S Nd1
1

2D1\v2S Ng1
1

2D , ~2.5!
©2002 The American Physical Society27-1
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where vc is the cyclotron frequency eH/mc, w
5Avc

214v0
2, andv65(v6vc)/2. The eigenvalues of the

Hamiltonian hence read as

Endng
5\v1S nd1

1

2D1\v2S ng1
1

2D , ~2.6!

where the quantum numbersnd andng are non-negative in-
tegers.

III. THERMODYNAMICAL POTENTIAL

We will work in a grand canonical ensemble. In Ferm
Dirac statistics the thermodynamical potential is given by

V52
1

b
Tr log~11e2b(H2m)! ~3.1!

with b51/(kBT). The magnetic momentM is calculated by
taking the derivative of2V with respect to the magneti
field H and it yields

M52S ]V

]H D
m

52
2mB

v
Tr

~Nd11/2!v12~Ng11/2!v2

11eb(H2m)

~3.2!

52
2mB

v (
nd50

`

(
ng50

`
~nd11/2!v12~ng11/2!v2

11eb\(v1nd1v2ng1v/2)2bm
,

~3.3!

where mB5\e/(2mc) is the Bohr magneton. The averag
number of electrons is given by taking the derivative o
2V with respect to the chemical potentialm:

^Ne&52S ]V

]m D ~3.4!

5Trf ~H!5 (
nd50

`

(
ng50

`

f ~Endng
!, ~3.5!

where f (E)51/(11eb(E2m)) is the Fermi-Dirac distribu-
tion. Despite their concise appearance, the computatio
the double series in Eq.~3.3! and in Eq.~3.5! is not easily
tractable on a numerical level. Fortunately, the complete
tegrability of the model allows us to give this double serie
simpler form. In the next subsection we will present gene
trace formulas which allow us to give a more appropri
form to the physical quantitiesV, M, and^Ne&.

A. Fermi-Dirac trace formulas

It is well known that, like the Gaussian function, the fun
tion sechx51/coshx is a fixed point for the Fourier trans
form in the Schwartz space:

1

coshAp

2
x

5
1

A2p
E

2`

1` e2 ixy

coshAp

2
y

dy. ~3.6!
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Hence, for a HamiltonianH, we can write for the corre-
sponding Fermi-Dirac operator

f ~H![
1

11eb(H2m)
5E

2`

1`e2( ik11) ~b/2!(H2m)

4 cosh
p

2
k

dk.

~3.7!

Similarly, we can write for the thermodynamical potenti
operator

2
1

b
ln~11e2b(H2m)!52

1

bE2`

1` e2( ik11) (b/2) (H2m)

S 2 cosh
p

2
kD ~ ik11!

dk.

~3.8!

Therefore, the average number of fermions and the ther
dynamical potential can be written~at least formally! as fol-
lows:

^N&5Trf ~H!5E
2`

1`e( ik11)bm/2

4 cosh
p

2
k

Q~k!dk, ~3.9!

V5TrS 2
1

b
ln~11e2b(H2m)! D

52
1

bE2`

1` e( ik11)bm/2

S 2 cosh
p

2
kD ~ ik11!

Q~k!dk, ~3.10!

whereQ designates the function

Q~k!5Tr~e2( ik11)(b/2)H!. ~3.11!

Observe that (2m11)i , mPZ are ~simple! poles for the
function 1/cosh(p/2)k and i is a pole for the functionsQ(k)
and 1/(ik11). These Fourier integrals can be evaluated
using residue theorems if the integrand functio
F1(k)5Q(k)/cosh(p/2)k and F2(k)5Q(k)/@( ik
11)cosh(p/2)k# satisfy the Jordan lemma, that i
F1(Reiu)<g(R), F2(Reiu)<h(R), for all uP@0,p#, and
g(R) andh(R) vanish asR→`. The quantitieŝ N& andV
are then formally given by

2p i Fa21~ i !1 (
m51

`

a21@~2m11!i #1(
n

a21~kn!G ,

~3.12!

where a21(•••) denotes the residue of the involved int
grand at pole (•••), and thekn’s are the poles~with the
exclusion of the polei ) of Q(k) in the complexk plane.

B. Exact expressions for the thermodynamical potential

We now determine the thermodynamical potential in
precise way by applying the formulas~3.10! and ~3.12! to
our Hamiltonian given in Eq.~2.5!. The functionQ(k) de-
fined by Eq.~3.11! takes the following closed form:
7-2
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Q~k!5Tr~e2( ik11)(b/2)H!

5e2( ik11)(b/4)\v
1

12e2( ik11)(b/2)\v1

3
1

12e2( ik11)(b/2)\v2
. ~3.13!

The Fourier integral representation for the thermodynam
potential consequently reads as

V52
1

bE2`

1`e2( ik11)b/2[(\v/2)2m]

2 cosh
p

2
k

S 1

ik11D

3S 1

12e2( ik11)(b/2)\v1
D S 1

12e2( ik11)(b/2)\v2
D dk.

~3.14!

As indicated in the formula~3.11!, this Fourier integral is
given as a series by using the residue theorem. One
easily see that the numbers (2m11)i , mPZ are simple
poles of sech(p/2)k, i is a double pole ofQ(k), and i
14pm/(b\v1), i 14pm/(b\v2), andmPZ* are simple
or double poles ofQ(k) according to whether or notv1 and
v2 are uncommensurable~see Fig. 1!. In order to fulfill the
requirements of the Jordan lemma, one has to consider
following two cases:m<\v/2 and m>\v/2. In the first
case we take an integration path lying in the lower half-pla
and involving only the simple poles (2m11)i , m,0. It
leads to the result
:

T
za
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V5
1

4b (
m51

`
~21!m

m

ebmm

sinhS b

2
\v1mD sinhS b

2
\v2mD .

~3.15!

In the second case, an integration path in the upper h
plane is chosen. It encircles all the other poles: (2m11)i ,
m>0, i 14pm/(b\v1), i 14pm/(b\v2), andmPZ* , as
shown in Fig. 1. We present the result in a manner which w
render apparent the various regimes:

FIG. 1. Poles of the Fourier representation of the thermo
namical potentialV. The poles lying on the imaginary axis ar
simple except for the pointi which is of order 4. The poles lying on
the linek5 i in the complexk plane (i is excluded! may be simple
or double depending on whether or notv1 andv2 are uncommen-
surable.
~3.16!
r.
The first term is at the origin of the Landau diamagnetism

VL5
m

24S vc

v0
D 2

52
1

2
xLH2, ~3.17!

wherexL52 1
3 m(mB /\v0)2[2 1

3 D0mB
2 is the Landau dia-

magnetic susceptibility. The coefficientD05m/(\v0)2 can
be interpreted as the density of states at Fermi energy.
second term, which gives no contribution to the magneti
tion, is written as

V0152
m

6 F S m

\v0
D 2

1p2S kBT

\v0
D 2

2
1

2G . ~3.18!
he
-

The third term is given as

V025
1

4b (
m51

`
~21!m

m

expS 2
m

kBT
mD

sinhS \v1

2kBT
mD sinhS \v2

2kBT
mD .

~3.19!

It becomes negligible at a low-temperature regimekBT!m.
The last termVosc is responsible for the oscillatory behavio
We need to distinguish between irrational values ofv1 /v2

and rational ones.
7-3
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For the casev1 /v2¹Q,

Vosc5
1

2b (
m51

`
~21!m

m F sinS 2m

\v2
pmD

sinSv1

v2
pmDsinhS2kBT

\v2
p2mD 1

sinS 2m

\v1
pmD

sinSv2

v1
pmDsinhS2kBT

\v1
p2mDG[Vosc

2 1Vosc
1 . ~3.20!

For the casev1 /v25p/qPQ, gcd(p,q)51, v1 /p5v2 /q52l /(\b)PR,

Vosc5
1

2b F (
m51, m[” 0modq

`
~21!m

m

sinS 2m

\v2
pmD

sinS v1

v2
pmD sinhS 2kBT

\v2
p2mD

1 (
m51, m[” 0modp

`
~21!m

m

sinS 2m

\v1
pmD

sinS v2

v1
pmD sinhS 2kBT

\v1
p2mD

1
1

lpq (
k51

`
~21!(p1q)k

k sinhS p2

l
kD H m

kBT
cosS mpk

kBTl D2FpcothS p2

l
kD1

l

pkGsinS mpk

kBTl D J G . ~3.21!

IV. AVERAGE NUMBER OF ELECTRONS AND MAGNETIC MOMENT

In this section, we will exploit the formulas~3.15!–~3.21! to obtain the exact expressions of the average number of elec
and the magnetization. We will restrict ourselves to the more realistic casem>\v/2.

The average number of electrons is easily derived from Eq.~3.4! and is found to be

^Ne&52
1

24S vc

v0
D 2

1
1

2 F S m

\v0
D 2

1
p2

3 S kBT

\v0
D 2

2
1

6G1
1

4 (
m51

`

~21!m
e2bmm

sinhS b

2
\v1mD sinhS b

2
\v2mD

2p (
m51

`

~21!mF kBT

\v2

cosS 2m

\v2
pmD

sinS v1

v2
pmD sinhS 2kBT

\v2
p2mD 1

kBT

\v1

cosS 2m

\v1
pmD

sinS v2

v1
pmD sinhS 2kBT

\v1
p2mD G

[^Ne&L1^Ne&011^Ne&021^Ne&osc
2 1^Ne&osc

1 , ~4.1!

where we suppose thatv1 andv2 are uncommensurable.
The magnetic moment is decomposed into four parts and is expressed in Bohr magneton units:

M5xLH22mBS ]V02

]\vc
D

m

22mBS ]Vosc

]\vc
D

m

[2mB~ML1M01M osc
2 1M osc

1 !, ~4.2!

where

ML5
2m

12\v0
S vc

v0
D[

1

2mB
xLH, ~4.3!

M05
1

8v (
m51

`

~21!me2bmm
@v1coth~b\v1m/2!2v2coth~b\v2m/2!#

sinh~b\v1m/2!sinh~b\v2m/2!
, ~4.4!
094427-4
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and, for the irrational casev1 /v2¹Q,

M osc
2 52

kBT

\v (
m51

`
~21!m sin@2pmm/~\v2!#

sin~pmv1 /v2!sinh@2p2mkBT/~\v2!#

3F pm

\v2
cotS2pm

m

\v2
D2 pv1

v2
cotSpm

v1

v2
D2 p2kBT

\v2
cothS2p2m

kBT

\v2
DG, ~4.5!

M osc
1 5

kBT

\v (
m51

`
~21!m sin@2pmm/~\v1!#

sin~pmv2 /v1!sinh@2p2mkBT/~\v1!#

3F pm

\v1
cotS 2pm

m

\v1
D2

pv2

v1
cotS pm

v2

v1
D2

p2kBT

\v1
cothS 2p2m

kBT

\v1
D G . ~4.6!
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We will not give the expressions ofM osc
6 in the rational case

because the magnetization is a continuous function ofvc and
its behavior can be fully understood from the irrational on

V. DISCUSSION

The temperature scale is compared to the two nat
modesv6 of the system and draws three possible intrin
regimes: the high-temperature regimekBT.\v1 , the low-
temperature regimekBT,\v2 , and the intermediate
temperature regime\v2,kBT,\v1 . Remember that we
work in the large electron number regionm.\v/2.

A. High-temperature regime: kBTÌ\v¿Ì\vÀ

This inequality implies the following constraint on th
field:

vc

v0
,

kBT

\v0
2

\v0

kBT
'

kBT

\v0
. ~5.1!

We can see thatM0 is the dominant term for the magnet
moment in regard toMosc because of the smallness of arg
ments of the sinh~in the denominator! and coth~in the nu-
merator! functions. Hence,M'2mB(ML1M0), which
shows mainly Landau diamagnetism. Similarly, we in
from Eq. ~4.1! that ^Ne&'^Ne&L1^Ne&011^Ne&02.

B. Low-temperature regime: kBTË\vÀ

The magnetic field is restricted by the inequality

vc

v0
,

\v0

kBT
2

kBT

\v0
'

\v0

kBT
. ~5.2!

Now the M0 term becomes excessively small due to t
rapidly decreasing exponential factor and the large ar
ments of the hyperbolic functions present in the express
The magnetization is hence approximately determined by
three termsML , Mosc

1 , and Mosc
2 and exhibits oscillating

behavior.
09442
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1. Strong fieldsvcšv0

We make the following approximations:

v1'vcF11S v0

vc
D 2G , v2'

v0
2

vc
,

v1

v2
'S vc

v0
D 2

.

~5.3!

We assume also thatvc<2v0A(m/\)221 to ensure the va-
lidity of m>\v/2. One can see that the denominator ofMosc

1

contains the product of sin and two sinh’s with a small arg
ment and, hence,M'2mB(ML1Mosc

1 ). In particular, after
replacingv1 by vc in the sinus argument of the numerat
of Mosc

1 , we find that the magnetization is periodic wit
respect to the inverse of the magnetic field, a character
fact of the ‘‘de Haas–van Alphen’’ regime. A similar beha
ior holds for the electron number ^Ne&'^Ne&L

1(m/\v0)2/21^Ne&osc
1 .

FIG. 2. Qualitative phase diagram of the magnetization. In
high-temperature and low magnetic-field region, the system sh
Landau diamagnetism; in a low-temperature and low magnetic-fi
region, mesoscopic fluctuations appear; and in a strong magn
field region, the system experiences the de Haas–van Alphen o
lation phase. The two curves,kBT5\v1 and kBT5\v2 , give a
qualitative indication about the phase borders.
7-5



e
es.

e
mix with

J. P. GAZEAU, P. Y. HSIAO, AND A. JELLAL PHYSICAL REVIEW B65 094427
FIG. 3. Magnetization curves versus the magnetic field at different temperatures. We represent the cyclotron frequency inv0 units and
the magnetization in 2mB units. The chemical potentialm is set up at 100.0\v0. ~a! vc is less than 0.8v0. Temperatures are chosen to b
~i! 0.001\v0, ~ii ! 0.1\v0, ~iii ! 0.5\v0, and~iv! 1.0\v0, respectively. Please note different scales are used for the magnetization ax~b!
vc is between 1.9v0 and 3.1v0. Temperatures are chosen to be~i! 0.01\v0, ~ii ! 0.1\v0, ~iii ! 0.5\v0, and~iv! 1.0\v0, respectively.~c! vc

is between 4.0v0 and 15.0v0. Temperatures are chosen to be~i! 0.1\v0, ~ii ! 0.5\v0, ~iii ! 1.0\v0, and~iv! 5.0\v0, respectively.~d! vc is
greater than 15.0v0. Temperatures are chosen to be~i! 0.001\v0, ~ii ! 0.5\v0, ~iii ! 1.0\v0, and~iv! 5.0\v0, respectively. Please note th
scales of the axes of~i! are enlarged in order to show the detail of the magnetization curve. We can see that mesoscopic fluctuations
the de Haas–van Alphen oscillation in extreme low temperature 0.001\v0.
094427-6
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FIG. 3. ~Continued.!
094427-7
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2. Weak fieldsvc™v0

In this case the two characteristic frequencies and t
ratios are approximated to

v6'v0F16
1

2

vc

v0
1

1

8 S vc

v0
D 2G , v6

v7
'16

vc

v0
1

1

2 S vc

v0
D 2

.

~5.4!

Now Mosc
2 andMosc

1 have the same order of contribution du
to the presence in their denominators of

@sinh~2p2mkBT/\v7!#2'@sinh~2p2mkBT/\v0!#2

~5.5!

and of the strongly oscillating functions

@sin~pmv6 /v7!#2'@sin~pmvc /v0!#2. ~5.6!

Consequently, the system is considered as lying in the m
scopic phase. Similar conclusions can be reached for the
havior of the average electron number.

FIG. 4. Detailed plots of~a! magnetization and~b! susceptibility
curves in a very weak magnetic-field regime. Temperature va
from kBT50.1\v0 to kBT50.001\v0 while the chemical potentia
m is chosen as 100.0\v0. The system exhibits a paramagnetic b
havior asvc /v0 is very near zero and turns to appear diamagn
when the field becomes stronger. While the temperature approa
zero, the diamagnetic curve gives an asymptotic susceptib

which is about2(mB)2@
1
3 (m/\v0)31

1
2 (m/\v0)2#.
09442
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C. Intermediate temperatures: \vÀËkBTË\v¿

These inequalities imply the constraint

vc

v0
.U\v0

kBT
2

kBT

\v0
U. ~5.7!

The weak-field case occurs only whenkBT approaches\v0.
In this case, one may think that the oscillatory termsMosc

2

andMosc
1 give their contribution toM as we have seen in th

previous subsection. But, in fact, the hyperbolic sinus fu
tions of the denominators have large arguments:

sinh~2p2mkBT/\v7!'sinh~19.74m!'0.5 exp~19.74m!,

and so overcomes the algebraic contribution of the si
functions. The system hence goes to the Landau diamagn
regime. On the other hand, for a strong field, we return to
approximationM'2mB(ML1Mosc

1 ) and the system show
the de Haas–van Alphen effect.

We have repeated in Fig. 2 the phase diagram of mag
tization proposed by Ishikawa and Fukuyama. Let us ho
ever mention that the two intrinsic frequenciesv6 do not
represent the exact borders between the different magn
phases. In consequence this diagram should be taken
qualitative sense only. In order to justify this, we choose
chemical potential equal to 100.0\v0 and make temperatur
vary through the different magnetic-field regimes. Figu
3~a! illustrates the weak-field regime. One can see that at
temperaturekBT50.001\v0 the magnetization experience
strong fluctuations, called mesoscopic fluctuations. AsT in-
creases (kBT50.1\v0 and kBT50.5\v0), the strength of
these fluctuations decreases. As the temperature gets h
~for example,kBT51.0\v0), the fluctuations disappear an
we reach the Landau diamagnetism. In Fig. 3~b! the mag-
netic field lies between 1.9v0mc/e and 3.1v0mc/e. When
kBT50.01\v0, the system shows large fluctuations. One c
see that if the magnetic field increases, the fluctuations
minish and the cycloidlike curve appears~de Haas–van Al-
phen oscillations!. At higher temperature, e.g.,kBT
50.1\v0, one can see clearly that the mesoscopic fluct
tions decrease and the phase turns almost to the de Haas
Alphen oscillations. At, for example,kBT50.5\v0, the mix-
ture of Landau diamagnetism and de Haas–van Alphen
cillations appears. If the temperature continues increas
~for example,kBT51.0\v0), the system will go from Lan-
dau diamagnetism to a mixture of Landau with de Haas–
Alphen. Figure 3~c! shows the de Haas–van Alphen phas
The position of the peak can be predicted from the sim
formula

vc

v0
5

2m

n\v0
2

n\v0

2m
,

wheren is some positive odd integer.
We also see that the de Haas–van Alphen oscillation

destroyed as the temperature increases. In Fig. 3~d! we see
that at extreme low temperature (kBT50.001\v0), the curve
shows many small fluctuations. This is an example of
Haas–van Alphen oscillations mixed with mesosco
fluctuations.
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Finally, we present in Figs. 4~a! and 4~b! a detail of the
magnetization and the corresponding magnetic susceptib
x5]M /]H in the region of very weak magnetic field. Tem
peratures are taken fromkBT50.1\v0 to 0.001\v0 in order
to show how the curves evolve. We notice that the syst
first exhibits a paramagnetic behavior all the more so sin
temperature and field are small. It turns to become diam
netic while the strength of the magnetic field increases. T
magnetic susceptibility in the latter region can be estima

to be2(mB)2@ 1
3 (m/\v0)311/2(m/\v0)2#.

VI. CONCLUSION

In this paper, we have established exact formulas for
thermodynamical potential of a two-dimensional gas of sp
less electrons, confined in an isotropic harmonic potent
and submitted to a constant perpendicular magnetic fie
From this it has become possible to study the magnetic m
ment and other thermodynamical quantities at different
gimes of temperature and field. This exhaustive study w
made possible thanks to the specific simplicity of the isot
09442
ity

m
e
g-
e
d

e
-
l,
d.
o-
-
s
-

pic harmonic potential. Of course, there exist other situatio
in which we could get similar exact expressions: anisotro
harmonic potential and harmonic groove, as indicated in R
3. In the near future, we shall deal with less tractable but s
integrable models~see, for instance, Ref. 6!, such as infinite
cylinder potential or quantum rings, cases in which expre
ing the trace~3.11! in a closed form is quite unexpected. W
shall also explore the behavior, at different temperature
field regimes, of other thermodynamical quantities of curre
experimental interest, such as the heat capacity.7 Finally, we
shall use coherent state techniques for a comprehensive
vestigation of the current density in the above model.
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