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Exact trace formulas for two-dimensional electron magnetism
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We study in this paper the possible occurrence of orbital magnetism for two-dimensional electrons confined
by a harmonic potential in various regimes of temperature and magnetic field. We give exact expressions for
the thermodynamical potential, the magnetic moment, and the average number of electrons. The derivation of
involved trace formulas is based on residue series in the complex plane. The results yield a full description of
the phase diagram of the magnetization.
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[. INTRODUCTION In the next section, we shall give a short review of the

Fock-Darwin problem. The eigenvalues of the Hamiltonian

In a recent paper, Ishikawa and Fukuyérdascribe the will be derived through an algebraic approach. In Secs. Il
possible orbital magnetism for two-dimensional electronswve establish the exact trace formulas for the thermodynami-
confined by a harmonic potential and submitted to a constar@! potential. In Sec. IV, the magnetic moment and the aver-
normal magnetic fieldthe so-called Fock-Darwin modgl ~ @ge number of electrons are calculated. We discuss their be-
By exploring various regimes of temperature and magneti@avior in different temperature and magnetic-field regions. In
field, they afford a quite large complement of information in the conclusion we give some remarks and comments on the
regard to a previous papedevoted to the same subject. Ac- possible extension of our approach to other systems of physi-

cording to the range of values assumed by the relative ratiogal interest.

between the three characteristic energy scales present in the

model, namely the thermodynamical ukiT, the magnetic Il. HAMILTONIAN AND ITS EIGENVALUES
quantunviw., and the harmonic quantufiw,, they explain The Hamiltonian for two-dimensional spinless electrons
the existence of the different magnetic regimes. As a mattegonfined by an isotropic harmonic potential and submitted to
of fact, they distinguish between the “mesoscopic fluctua-a constant perpendicular magnetic field is written as

tion” regime [kBTSh(\/wC2+4wO2—wc)/ZEﬁw_], the 5
“Landau  diamagnetism” regime [kgT=%(\/ w2+ 4w} H= ! P+ EA +£mew§R2, 2.1)
+w.)/2=hw.], and the “de Haas—van Alphen” regime. 2me c 2

Their studies rest upon an approximate expression for thgnere Coulomb interactions are neglected and the symmetric
thermOdynamical pOtentiEﬂl which is derived from a stan- gaugeA: %HX R will be app“ed in our studies. The classi-
dard Poisson summation formula and from which they area| radiusR,, of the system is classically defined as
able to get the magnetic moment.

We present in this paper expressions for the thermody- 1,5,
namical potential and the magnetic moment for the above 5 MaoRy=p, (2.2
model. Our expressions are exact, in contrast to those in Ref.
1, and our results y|e|d a full description of the phase dia.Whel'e,u is the chemical potential of the considered electron
gram of the magnetization. Our derivation crucially restsgas. The Hamiltonian can be solved by the following alge-
upon the observation that the Fermi-Dirac function is a fixedPraic approach in which two bosonic annihilation operators
point of the Fourier transform. Exact series expansions ensu@& andag are introduced:
by simple application of the residue theorem. Our results for

the thermodynamical potential, the orbital magnetic moment, a :1 (§+ I_OP +il = I + l_OP ” 2.3
. T d y x| | .
the subsequent magnetic susceptibility, and the average num- 21\l % lo 7
ber of electrons are easily tractable and analyzable.
Since the pioneering work of Landau in 1930, orbital 1 i_l_op L Z+|_op 2.4
magnetism of electron gases has been the subject of consid- =3 lo A Y : lo & X 24

erable attention, especially during the last decades with the
advent of experimental opportunities, more precisely withWhere lo=y2%/mw. We define the number operatoh
the availability of two-dimensional electronic devices, quan-=a4aq andNg=ala, . The Hamiltonian is split into the sum
tum boxes, or mesoscopic finite-size objects. One can find iaf two independent harmonic oscillators and written as
Refs. 4 @ 5 a good account of recent theoretical investiga-

tions on the subject, especially from a semiclassical point of H=to,

1
. Ng+ >
View.

N ! h
d+_+ w_ 2

. . @9
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where w. is the cyclotron frequencyeH/mc, w Hence, for a Hamiltoniart{, we can write for the corre-
= Jw?+ 40?3, andw. = (w* wy)/2. The eigenvalues of the sponding Fermi-Dirac operator
Hamiltonian hence read as

+og (Ik+1) (BI2)(H-p)
1 1 f(H)= = f dk.
= — — + B(H—p) — 0 s
Endng hw+ ng+ 2 +ho_ ng+ 1R (26) 1+e 4 COShzk
where the quantum numbeng andny are non-negative in- 3.7
tegers. Similarly, we can write for the thermodynamical potential
operator
11l. THERMODYNAMICAL POTENTIAL
1 1 [+ @ (ik+1) (B12) (H—p)
We will work in a grand canonical ensemble. In Fermi- — = |n(1+e A~ #)= — —J dk.
Dirac statistics the thermodynamical potential is given by - (2 coshzk (ik+1)
2
(3.8

1
Q=——Trlog(1+e AH-~) (3.9
B Therefore, the average number of fermions and the thermo-
with 8= 1/(kgT). The magnetic momen¥ is calculated by dynamical potential can be writteat least formally as fol-
taking the derivative of-Q with respect to the magnetic OWS:

field H and it yields +oglik+1)Bpi2

(NY=Trf(H)= —0(k)dk, (3.9
Q 2 Ng+1/2 —(Ng+12)w_ —o T
:_((9_ - '“BTr( ot 1o, —(Ngt 12w 4 cosh=k
H/ w 1+ eB(H—u) 2
(3.2 .
o w =Trl = Zin(1+e AH-—w
 2up (Ng+ 12w, —(Ng+1/2)0_ Q Tr( ghn(ite ))
T o Ng=0 ng=0 14 effi(oingto_ngtwl2)-pu ’ 1 [+ glik+1)Bul2
(3.3 =- ,Ej - 0(k)dk, (3.10
where ug=#e/(2mc) is the Bohr magneton. The average (2 coshy k| (ik+1)
number of electrons is given by taking the derivative of
—Q with respect to the chemical potentjat where® designates the function
(N (aﬂ 34 O (k)=Tr(e~ (k+1B2H), (3.1)
) I . Observe that (1+1)i, meZ are (simple poles for the
o W function 1/coshf/2)k andi is a pole for the function® (k)
_ _ and 1/fk+1). These Fourier integrals can be evaluated by
—TI’f(H)—nd§=:0 ngZ’o f(E”d”g)’ (39 using residue theorems if the integrand functions

Eon . o @, (k) =0(k)/cosh@/2)k and D,(k)=0(k)/[(ik
where f(E)=1/(1+e"5~#) is the Fermi-Dirac distribu- +1)cosh@/2)k] satisfy the Jordan lemma, that is,
tion. Despite their concise appearance, the computation af  (Ré?) <g(R), ®,(Reé?)<h(R), for all #[0,7], and

the double series in Eq3.3) and in Eq.(3.5) is not easily  g(R) andh(R) vanish asR— . The quantitiegN) and Q
tractable on a numerical level. Fortunately, the complete inzre then formally given by

tegrability of the model allows us to give this double series a

simpler form. In the next subsection we will present general *
trace formulas which allow us to give a more appropriate 2| a_4(i)+ 2 a_4[(2m+ 1)i]+2 a_q¢(k,) |,
form to the physical quantitie®, M, and(Ny). m= v
(3.12
A. Fermi-Dirac trace formulas wherea_4(---) denotes the residue of the involved inte-

It is well known that, like the Gaussian function, the func-9rand at pole (- -), and thek,’s are the polegwith the
tion sechk=1/coshx is a fixed point for the Fourier trans- €Xclusion of the pole) of ©(k) in the complexk plane.
form in the Schwartz space:

B. Exact expressions for the thermodynamical potential
1 _ 1 (+= e We now determine the thermodynamical potential in a
- - \/;j_x - dy. (3.6 precise way by applying the formuld8.10 and (3.12 to
cosh\ﬁx cosh \/:y our Hamiltonian given in Eq(2.5. The function® (k) de-
2 2

fined by Eq.(3.11) takes the following closed form:

094427-2



EXACT TRACE FORMULAS FOR TWO-DIMENSIONA . .. PHYSICAL REVIEW B 65 094427

@(k):Tr(e—(ik+l)(B/2)H)
1 7
— g (k+1)(BA)iw complex k-plane
1— e (ik+1)(BI)ho 5
1 3
Xl_ef(ikJrl)(B/Z)ﬁw_' (3.13 )
® O © Oe [~ *® O . T o e o 0 @ o e
The Fourier integral representation for the thermodynamical -8 —4 —i 4 8
potential consequently reads as
-3
1 [+ee (K+D)BR2[(hol2)=u] | 1 iy
Q=—-— .
B —o0 T |k+1
2 coshEk -7
1 1
X 1— e K+ 1)(BRYw, | | 1 _ g (k+1)(B2)ho_ dk. FIG. 1. Poles of the Fourier representation of the thermody-

namical potential(). The poles lying on the imaginary axis are
(3.149 simple except for the pointwhich is of order 4. The poles lying on
the linek=i in the complexk plane { is excludedl may be simple

As indicated in the formuld3.11), this Fourier integral is ©F double depending on whether or ot andw.. are uncommen-

given as a series by using the residue theorem. One caprable.

easily see that the numbersniz-1)i, meZ are simple 12 (—pm eBum

poles of sechf/2)k, i is a double pole of®(k), andi 0O=— 2 )
+47m/(Bhw,), i+4mm/(Bhw_), andme 7* are simple 4Bm=1 m sinf(ﬁﬁ“’ m)Sinl-(Ehw m)

or double poles 00 (k) according to whether or naé, and 2" 2

w_ are uncommensurablsee Fig. 1 In order to fulfill the (3.15

requirfements of the Jordan lemma, one has to consjder tha the second case, an integration path in the upper half-
following two casesiu<7%iw/2 and u=fiw/2. In the first  plane is chosen. It encircles all the other polesm(21)i,
case we take an integration path lying in the lower half-planen=0, i + 47m/(Bfw.), i+ 47m/(Bhw_), andme Z* , as
and involving only the simple poles (2+1)i, m<O. It  shown in Fig. 1. We present the result in a manner which will

leads to the result render apparent the various regimes:
|
Q= (QL+QOl) + QOZ + Qosc
—f— - ~
=2 i i+ > 2m+1i] + D T )
=21 a_1(i = a_[(Zm i] o a*l\l ﬁﬁwimi, . (3.16

|
The first term is at the origin of the Landau diamagnetism: The third term is given as

2
_ ,LL wC _ E 2
Q'-_24(11)0) = .17 s m exr{—im)
n-t s D ksT
where x, = — S u(ug/fiwg)?=—$Douj is the Landau dia- 4 ar o mo (he, | [ho_ |
magnetic susceptibility. The coefficieBty= /(% wy)? can sin 2kBTm sin 2kBTm
be interpreted as the density of states at Fermi energy. The (3.19

second term, which gives no contribution to the magnetiza-

tion, Is written as It becomes negligible at a low-temperature regikpd < w.

) The last term(} 4. is responsible for the oscillatory behavior.
kBT) 3 E} (319  We need to distinguish between irrational valuesoaf/w -

hwg 2] and rational ones.

2

901:__ +7T2
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For the casev, /w_ & (),

sin(z—'u wm) sin( 24 mm
1 & (=™ hao hao, P
Qosc_ﬁ mZ:1 m s o [2kgT + -  [2ksT =0sct Qose- (3.20
sinl— mm|sinh—— #m|  sinl— 7m|sin m?m
w_ ho_ W, hw,
For the casev, /o_=p/ge), gcd(p,q)=1, w,/p=w_Ilq=21/(LB)eR,
[ 2n
o 1 o (—1ym sin| 2 —am
05¢ 28| m=1 ftomoy M ,(w+ ) ) F(ZkBT ) )
sinl — arm/|sin T°m
w_ how_
[ 2
oe (—1ym sin Foo Tm
m=1, m#0mocp M ,(w_ ) . P(ZkBT 5 )
sinl — arm|sin T°m
W, ho.,
1 & (—1)erak ik w? I | (umk
+ﬁk:1 —2—_ - kB—Tco _kBTI —| rcot I_k +ﬁsm _kBTI . (3.2
k sin I_k

IV. AVERAGE NUMBER OF ELECTRONS AND MAGNETIC MOMENT

In this section, we will exploit the formula8.15—(3.21) to obtain the exact expressions of the average number of electrons
and the magnetization. We will restrict ourselves to the more realistic gaskw/2.
The average number of electrons is easily derived from(&4) and is found to be

1(we\? 1[[ w \? 72 [kgT\2 1] 1 & - g Arm
0=~ galoe] 3l 1) + Tl 8 E 1z
sinh zAw,.m|sinh zAw_m
2 2
2u 2u
i | KeT 7w ™M KeT O Fw, ™M
7Tm:1( ) ho_  [wy o[ 2kgT ) +ﬁw+ fw_ o[ 2kgT )
SINf —m | Ssin 7 m SINf —7m | Ssin 7 m
w _ hw_ w hw+
E<Ne>L+<Ne>01+<Ne>02+<Ne>;sc+<Ne>gscv (4-1)

where we suppose that, andw_ are uncommensurable.
The magnetic moment is decomposed into four parts and is expressed in Bohr magneton units:

‘9902 aQosc — +
M=x H-2ug —2pg| | =2ug(M+ Mo+t M gt M 59, (4.2
dho, " dhwg u
where
M o)1
M= 12 wq ( wo) B ZMBXLH’ “3

[}

1 _— m[w+cotr(,8hw+m/2)—w,cotr(,Bﬁw,mIZ)]
Mo=g, mz:l(_l) e M Sinh Bfiw . mi2)sinh Bhw_mi2)

(4.9
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and, for the irrational case . /w_ ¢ (),

Mo kgT (—1)Msi2amu/(hw_)]
¢ o @71 sin(mme, lo_)sinH 277migT/(hw_)]
a0y TW ) ks T T
| 2 cof 2mm—— | — T2 cof mm—t |- ks cot 2ﬂ2mk'; , (4.5
ho_ ho_ w_ w_ ho_ ho_
Mt kT o (=)™ si2mmul(hw,)]
¢ fio m=1 sin(mmo_ lw . )sind 272mks T/ (Ao, )]
TW_ w_ kg T kgT
x| T cof 2am | - co wm—)— ®_coth 2m2ms——I |. (4.6)
ho., ho ., W, W, hw., ho.,
|
We will not give the expressions d¥1 ;.. in the rational case 1. Strong fieldsw >,
because the magnetization is a continuous functian.cind We make the following approximations:
its behavior can be fully understood from the irrational one.
wq 2 wg w we)?
V. DISCUSSION W, ~wd 1+ _) } w_~— _+~(_C) _
we [OR w_ wq
The temperature scale is compared to the two natural (5.3

modesw.. of the system and draws three possible intrinsic

regimes: the high-temperature regikgl >#% w . , the low-
temperature regimekgT<Zw_, and the intermediate-
temperature regiméw_<kgT<fw,. Remember that we
work in the large electron number regi@in># w/2.

A. High-temperature regime: kKgT>Aw . >ho_

This inequality implies the following constraint on the
field:

We kBT h(,!)o kBT
w_0<hw0 kBTNfL(DOI

(5.9

We can see thaiM, is the dominant term for the magnetic
moment in regard toV .. because of the smallness of argu-
ments of the sinkin the denominatgrand coth(in the nu-
meratoj functions. Hence,M=~2ug(M,+ M), which
shows mainly Landau diamagnetism. Similarly, we infer
from Eq. (4.2) that(Ng)~(Ng). +(Ng)o1+(Ng)o2-

B. Low-temperature regime: kg T<fiw_

The magnetic field is restricted by the inequality

wc<hw0 ksT ‘fiwg
w_o kBT ﬁwONkBT.

(5.2

Now the M, term becomes excessively small due to the

We assume also that.<2wq/(u/%)%—1 to ensure the va-
lidity of u=%w/2. One can see that the denominatondf.
contains the product of sin and two sinh’s with a small argu-
ment and, henceyl ~2ug(M, + M_). In particular, after
replacingw ;. by w, in the sinus argument of the numerator
of Mg, we find that the magnetization is periodic with
respect to the inverse of the magnetic field, a characteristic
fact of the “de Haas—van Alphen” regime. A similar behav-

ior holds for the electron number(Ng)~(Ng)_
2 +
+(plfhwo) 2+ <Ne>050'
3.0 T T T T T T T T T T T T T
25 | kgT= 70, -
20} Landau . -
,:m L dlamagnet!g,m"
< 15+ i de Haas-van Alphen -
oscillation
1.0 | E
] k,T= 10
" Mesoscopic fluctuaton T
0.0 I 1 L ] L 1 L 1 1 1 L ] L 1
0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0
o /o

FIG. 2. Qualitative phase diagram of the magnetization. In a
high-temperature and low magnetic-field region, the system shows

rapidly decreasing exponential factor and the large argupangau diamagnetism: in a low-temperature and low magnetic-field
ments of the hyperbolic functions present in the expressionegion, mesoscopic fluctuations appear; and in a strong magnetic-
The magnetization is hence approximately determined by thge|q region, the system experiences the de Haas—van Alphen oscil-

three termsM , Mg, and M, and exhibits oscillating
behavior.

09442

lation phase. The two curvekgT=%w, andkgT=%w_, give a
gualitative indication about the phase borders.
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FIG. 3. Magnetization curves versus the magnetic field at different temperatures. We represent the cyclotron fregugoojtsrand
the magnetization in 2g units. The chemical potential is set up at 1000w,. () w. is less than 0.8,. Temperatures are chosen to be
(i) 0.00%: wy, (ii) 0.24 wy, (iii) 0.5% wg, and(iv) 1.0k w,, respectively. Please note different scales are used for the magnetizatiofbaxes.
w. is between 1.8, and 3.1v,. Temperatures are chosen to(De0.01% wy, (i) 0.1% wy, (i) 0.5% wq, and(iv) 1.0k wq, respectively(c) w,
is between 4.8, and 15.@®,. Temperatures are chosen to([e0.1% w, (i) 0.5 wy, (i) 1.0hwg, and(iv) 5.0k w, respectively(d) w, is
greater than 15&,. Temperatures are chosen to [0e0.00% w,, (i) 0.5 w,, (iii) 1.0k wy, and(iv) 5.0k w,, respectively. Please note the
scales of the axes @) are enlarged in order to show the detail of the magnetization curve. We can see that mesoscopic fluctuations mix with
the de Haas—van Alphen oscillation in extreme low temperature 61
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T C. Intermediate temperatures: iw_<kgT<fiw,

T T T T — T T
e [per0ann,] 4
p=100.0 2e_| . . . .
A, T=0.005 o, 1 These inequalities imply the constraint

/

1200

1000

S~

800 |1/ - we_|hwg  KgT
Fk,T=0.01%0,

1 —>
—. (O] kBT ﬁwo

-

) (5.7

600

400

=TT

] The weak-field case occurs only whiegil approached w.

In this case, one may think that the oscillatory termfy,.
and M. give their contribution tVl as we have seen in the
previous subsection. But, in fact, the hyperbolic sinus func-
tions of the denominators have large arguments:

A
200 k,T=0.1 1o,

Magnetization/2p,

o sinh(2m°mkg T/ ) ~sinh(19.74m)~0.5 exg 19.74n),

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

@ oo, and so overcomes the algebraic contribution of the sinus
500000 functions. The system hence goes to the Landau diamagnetic

- regime. On the other hand, for a strong field, we return to the

LE

I

I

400000 %—kBT=o.oo1hwn . approximationM %2,uB(M,_+M§SC) and the system shows

1 d

¥

|

|

1

the de Haas—van Alphen effect.
7 We have repeated in Fig. 2 the phase diagram of magne-
[l 1k, T=0.005 #a, T tization proposed by Ishikawa and Fukuyama. Let us how-
2000 L To0.01h0 T ever mention that the two intrinsic frequencies. do not
K ° 1 represent the exact borders between the different magnetic
phases. In consequence this diagram should be taken in a
qualitative sense only. In order to justify this, we choose the
chemical potential equal to 10@&.&, and make temperature
i o vary through the different magnetic-field regimes. Figure
-100008.000 ' o.oloz ' 0.604 I o.oloe I o.oloa I 0.o|1o I o.o|12 . o.ol14 . o.$1e.o.ol1a I 0.020 3(8‘) illustrates the weak-field regime. OI"]e C.an see th_at at low
(b) oo, temperaturd<BT=O.OOJhwo the magn'etlzatlon experiences
strong fluctuations, called mesoscopic fluctuations.TAs-

FIG. 4. Detailed plots ofa) magnetization anb) susceptibility =~ creases KgT=0.12wy and kgT=0.51w,), the strength of
curves in a very weak magnetic-field regime. Temperature variethese fluctuations decreases. As the temperature gets higher
from kg T=0.1% w, to kg T=0.00% w, while the chemical potential  (for example kgT=1.0h wg), the fluctuations disappear and
w is chosen as 1004, The system exhibits a paramagnetic be- we reach the Landau diamagnetism. In Fi¢h)3the mag-
havior asw./w, is very near zero and turns to appear diamagneticmetic field lies between 1&md/e and 3.lvgmdc/e. When
when the field becomes stronger. While the temperature approach@g T=0.01%: w,, the system shows large fluctuations. One can
zero, the diamagnetic curve gives an asymptotic susceptibilitsee that if the magnetic field increases, the fluctuations di-

300000 H,:

100000 H 1%

susceptibility/(2p,)*

which is about— (ug)?[ 3 (u/h we)3+ 3 (ul/hwe)?]. minish and the cycloidlike curve appedde Haas—van Al-
phen oscillations At higher temperature, e.g.kgT
2. Weak fieldsw <, =0.14wq, one can see clearly that the mesoscopic fluctua-

fions decrease and the phase turns almost to the de Haas—van
Alphen oscillations. At, for examplégT= 0.5 wg, the mix-

ture of Landau diamagnetism and de Haas—van Alphen os-
. we 1(%)2 cillations appears. If the temperature continues increasing

In this case the two characteristic frequencies and thei
ratios are approximated to

low 1{w\?
1+- —+ —( °)

> tg (for example kgT=1.0h wg), the system will go from Lan-
0

(5.9 dau diamagnetism to a mixture of Landau with de Haas—van
' Alphen. Figure &) shows the de Haas—van Alphen phases.

Now M .andM_ . have the same order of contribution due The position of the peak can be predicted from the simple

W+~ Wqo

wy/ |! ws T wy 2

to the presence in their denominators of formula
[Sinh(2 m2mks T/7 - ) ]2~ [SiInh(2 2mke T/ ) ]2 @o_ 2p  Nhog
(55) wqo nﬁ(l)o 2,lL !
and of the strongly oscillating functions wheren is some positive odd integer.
We also see that the de Haas—van Alphen oscillation is
[SiNmMw. [w:)]2~[sinN mmw./wg)]?. (5.6)  destroyed as the temperature increases. In Kid). \Be see

that at extreme low temperaturieg(T = 0.00% wg), the curve
Consequently, the system is considered as lying in the mesghows many small fluctuations. This is an example of de
scopic phase. Similar conclusions can be reached for the bétaas—van Alphen oscillations mixed with mesoscopic
havior of the average electron number. fluctuations.
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Finally, we present in Figs.(d4) and 4b) a detail of the pic harmonic potential. Of course, there exist other situations
magnetization and the corresponding magnetic susceptibilitin which we could get similar exact expressions: anisotropic
x=JM/dH in the region of very weak magnetic field. Tem- harmonic potential and harmonic groove, as indicated in Ref.
peratures are taken frokg T=0.1% wq to 0.00% wq in order 3. In the near future, we shall deal with less tractable but still
to show how the curves evolve. We notice that the systenntegrable modelgésee, for instance, Ref)6such as infinite
first exhibits a paramagnetic behavior all the more so Sinc@y”nder potentia] or quantum ringS, cases in which express-
temperature and field are small. It turns to become diamagng the trace(3.11) in a closed form is quite unexpected. We

netic while the strength of the magnetic field increases. Thena| also explore the behavior, at different temperature and
magnetic susceptibility in the latter region can be estimategig|q regimes, of other thermodynamical quantities of current

to be — (ug) [ 3(u/fiwe)*+ 1/2(u/fiwg)]. experimental interest, such as the heat capadtinally, we
shall use coherent state techniques for a comprehensive in-
VI. CONCLUSION vestigation of the current density in the above model.

In this paper, we have established exact formulas for the The authors are pleased to acknowledge Galliano Valent
thermodynamical potential of a two-dimensional gas of spin{LPTHE, Universities of Paris 6 and 7, FrancBemi Mos-
less electrons, confined in an isotropic harmonic potentialseri (CNRS, GPS, Universities of Paris 6 and 7, France
and submitted to a constant perpendicular magnetic fieldSorin Melinte (UPCPM, University of Louvain-la-Neuve,
From this it has become possible to study the magnetic moBelgium), and Yakov |. Granovski{Szczecin University, Po-
ment and other thermodynamical quantities at different reland for useful suggestions and comments. P.Y.H. is also
gimes of temperature and field. This exhaustive study wagrateful to the ICSC World Laboratory in Switzerland for
made possible thanks to the specific simplicity of the isotrofinancial support.
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