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Long-range isotropic and dipolar spin-spin interactions in the square planar rotator model
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The simultaneous presence of a long-range isotropic antiferromagnetic interaction decaying as 1/r 3 ~where
r is the spin-spin distance! and of a dipolar interaction in the square planar rotator model is studied. The pure
isotropic antiferromagnetic interaction does not support long-range order, at variance with the pure dipole
interaction. The model is investigated analytically at low temperature and by Monte Carlo~MC! simulations at
higher temperature. The Luttinger-Tisza method provides a ground-state configuration affected by continuous
degeneracy. Thermal fluctuations accounted for by the linear spin-wave approximation lift the degeneracy and
lead toorder by thermal disorder. Different kinds of order are found going from a pure antiferromagnetic to a
pure dipole interaction. The mechanism that restores long-range order is understood by using the renormalized
spin-wave theory. The accidental soft mode related to the continuous degeneracy of the ground state is replaced
by a temperature-dependent gap. Temperature-driven first-order phase transitions between different ordered
phases are investigated via a Landau functional. The phase diagram of the model is obtained by study of the
order parameter, specific heat, and staggered magnetization evaluated by MC simulations.

DOI: 10.1103/PhysRevB.65.094412 PACS number~s!: 75.10.Hk, 75.30.Ds, 75.40.Mg
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I. INTRODUCTION

The planar rotator model is a very peculiar system. Ind
it has no quantum counterpart and the absence of a third
component prevents any dynamical feature. However,
model plays an important role in statistical physics. Inde
many actual magnetic systems with strong planar anisotr
are expected to share thermodynamic properties with the
nar rotator model. When the spin-spin interaction in t
model is restricted to nearest neighbor~NN! long-range order
~LRO! is absent at any nonzero temperature,1 but the topo-
logical Kosterlitz-Thouless~KT! phase transition2 from a
low-temperature phase characterized by divergent susc
bility to the paramagnetic phase is believed to occur on
basis of high-temperature series expansion,3 renormalization
group~RG! analysis,2 and Monte Carlo~MC! simulations.4,5

Different scenarios appear when long-range interacti
are accounted for. The dipole interaction is a long-range
teraction of particular interest because it is occurs in a
magnetic system. When the exchange interaction is stron
for transition-metal compounds, the dipole interaction
simulated by a single-ion effective anisotropy.6 This cannot
be done when exchange and dipole interactions are of
same order of magnitude as it is for the rare-earth m
compounds of theRBa2Cu3O7 family7 where R is a rare-
earth metal ion. In this paper we study a square planar rot
model with both long range isotropic antiferromagnetic a
dipole interactions. In particular, we assume an antiferrom
netic coupling decaying as 1/r 3 wherer is the spin-spin dis-
tance.

The Hamiltonian of the model is

H52
1

2 S J01
m2

a3 D (
i ,rW

rWÞ0

(
ab

f ab~rW !Si
aSi 1rW

b , ~1.1!

where
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f ab~rW !5
a3

r 3 S 3h
r ar b

r 2
2da,bD . ~1.2!

J0.0 is the isotropic antiferromagnetic interaction streng
a is the lattice constant,m is the magnetic moment,i labels
the sites of a square lattice,rW is a generic lattice vector,a,b
labelx,y components,SW i is a two-component classical vecto
localized on sitei, andh5(m2/a3)/(J01m2/a3). As one can
seeh50 corresponds to a pure long-range isotropic antif
romagnetic interaction andh51 corresponds to a pure d
pole interaction.

Linear spin-wave8 ~LSW! and renormalized spin-wave9

~RSW! approximations suggest that no LRO is expec
whenh50, in agreement with MC simulation.8 A spin-wave
argument suggests the existence of a low-temperature p
where LRO is absent but the susceptibility is divergent. T
scenario changes when the long-range isotropic interactio
ferromagnetic. For such a model renormalization gro
analysis10 as well as MC simulations8,9 proves that LRO is
assured. A pure dipole interaction is believed to support L
on the basis of spin-wave analysis9 and MC simulations.9,11

The ground state of the model Hamiltonian~1.1! is ob-
tained by the Luttinger-Tisza12 ~LT! method in Sec. II. The
ground state is affected by a continuous degeneracy. Ind
it is an antiferromagnetic two-sublattice Ne´el configuration
where the direction of the sublattice magnetization is ar
trary for 0,h,0.210. At h50.210 one finds a change o
the ground state leading to the same configuration found
the model with pure dipole interaction.9 Indeed for 0.210
,h,1 a four-sublattice configuration appears where
spins of an elementary square~plaquette! make anglesu,
2u, p1u, p2u with the x axis, u being arbitrary. The
columnar phase corresponds tou50,p/2. The LSW approxi-
mation provides contrasting indications about the effects
thermal fluctuations. Indeed the presence of a soft mod
the LSW energy spectrum, related to the continuous deg
©2002 The American Physical Society12-1
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eracy of the ground state, leads to a divergent number of
deviations so that no LRO is found. On the other hand,
LSW spectrum isu dependent so that the ‘‘harmonic’’ fre
energy isu dependent as shown in Sec. III. Order by therm
disorder13 is strongly suggested. The minimum of the fr
energy for 0,h,0.210 is found atu50(p/2), which cor-
responds to the antiferromagnetic~AF! Néel configuration
with magnetic moments pointing along thex (y) axis. The
rotational invariance of the pure isotropic model is destroy
by any dipole interaction. The columnar~C! phase is selected
for 0.210,h,0.464 and for 0.7675,h,1. For 0.464,h
,0.7675 a vortical~V! configuration characterized byu
5p/4 is selected. The columnar configuration found in t
model with a pure dipole interaction14,15 is recovered.

For h50 andh51 the RSW approach confirms the a
sence of LRO in the former case and provides LRO in
latter.9 The soft mode forh50 is related to the invarianc
under rotation of the model so that it survives thermal flu
tuations and leads to a divergent number of spin deviatio
On the contrary the accidental soft mode present in the L
spectrum forh51 is replaced by a temperature-depend
gap in the RSW approximation. LRO is assured even tho
an interesting nonanalytic behavior is found for vanish
temperature. An analogous result for 0,h,0.464 and for
0.7675,h,1 is found in Sec. IV. We believe that the a
pearence of a temperature dependent gap occurs als
0.464,h,0.7675 although the RSW approximation is u
tractable for vortical configurations since in this case
ground-state configuration cannot be described by a sim
helix.

In Sec. V a Landau functional to describe the temperatu
driven first-order columnar-vortical and vortical-column
phase transition is proposed. A very small specific heat ju
is found crossing the columnar-vortical or vortical-column
phase boundary.

In Sec. VI the phase diagram of the model in the (h,T)
plane is given as obtained by MC simulations. The or
parameter, specific heat, and staggered susceptibility
evaluated for selected values ofh. Critical exponents of the
order parameter and of the staggered susceptibility are
tained by size scaling analysis of the MC data. The ph
diagram consists of four regions corresponding to Ne´el ~AF!,
columnar~C!, vortical ~V!, and columnar~C! ordered phases
The model withh50 appears to be an ‘‘isolated’’ point o
the phase diagram. Indeed for anyhÞ0 the dipole interac-
tion supports long-range order and the order-disorder tra
tion temperature is finite. Section VII contains a summa
and conclusions.

II. GROUND STATE

We apply the Luttinger-Tisza method12 to the planar rota-
tor model in order to get the ground-state spin configurati
We consider a square of four spins as basic array, the ver
of which are labeled 1,2,3,4. IfG is the group of translations
l 1aux1 l 2auy of the lattice andG2 the subgroup of transla
tions 2l 1aux12l 2auy , we consider the spin configuration
obtained by applyingG2 to our basic arrays of spins. Th
energy of a generic spin configuration can be written as
09441
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U52
N

8 S J01
m2

a3 D (
a5x,y

~S1
aS2

aS3
aS4

a!

3S W00
aa W10

aa W11
aa W01

aa

W10
aa W00

aa W01
aa W11

aa

W11
aa W01

aa W00
aa W10

aa

W01
aa W11

aa W10
aa W00

aa

D S S1
a

S2
a

S3
a

S4
a

D , ~2.1!

where

Wmn
xx 5 (

l 1 ,l 2

1

@~m12l 1!21~n12l 2!2#3/2

3F3h
~m12l 1!2

~m12l 1!21~n12l 2!2 21G ~2.2!

and

Wmn
yy 5 (

l 1 ,l 2

1

@~m12l 1!21~n12l 2!2#3/2

3F3h
~n12l 2!2

~m12l 1!21~n12l 2!221G . ~2.3!

Whenm5n50 the term in the sum withl 15 l 250 has to be
excluded. Owing to the symmetry relationshipWmn

xx 5Wnm
yy ,

the eigenvalues of the two matrices appearing in Eq.~2.1! are
the same. The dipole interaction matrix can be easily dia
nalized because it has the same eigenvectors as the gro
permutationsPt (t51,2,3,4) for four elements:P15I ~iden-
tity!, P25(1,2)(3,4), P35(1,4)(2,3), andP45(1,3)(2,4).
The unnormalized eigenvectors are

q~1!5S 1

1

1

1

D , q~2!5S 1

21

1

21

D ,

q~3!5S 1

1

21

21

D , q~4!5S 1

21

21

1

D , ~2.4!

and a generic spin configuration can be written

S S1
a

S2
a

S3
a

S4
a

D 5aaq~1!1baq~2!1caq~3!1daq~4!, ~2.5!

with a5x,y under the ‘‘weak’’ condition on the spin
magnitude:

(
a5x,y

~aa
21ba

21ca
21da

2 !5S2. ~2.6!
2-2
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The ground-state energy is obtained in correspondence to
maximum eigenvalue of the dipole interaction matrix. No
that no demagnetization corrections are to be considered
cause in two-dimensional~2D! models such corrections ar
proportional to the inverse of the linear dimension of t
macroscopic sample. The eigenvalues are

l15W00
xx1W01

xx1W11
xx1W10

xx513.545h29.030, ~2.7!

l25W00
xx2W01

xx1W11
xx2W10

xx523.969h12.646, ~2.8!

l35W00
xx2W01

xx2W11
xx1W10

xx54.163h10.935, ~2.9!

l45W00
xx1W01

xx2W11
xx2W10

xx526.970h10.935,
~2.10!

so that the ground-state energyE0 is

E052
NS2

2 S J01
m2

a3 Dl2 ~2.11!

for 0,h,0.210 and

E052
NS2

2 S J01
m2

a3 Dl3 ~2.12!

for 0.210,h,1. For h50.210 one hasW11
xx5W10

xx so that
l25l3. The spin configuration for 0,h,0.210 is a Ne´el
two-sublattice antiferromagnetic one:

S SW 1

SW 2

SW 3

SW 4

D 5ScosuS 1

21

1

21

D ux1SsinuS 1

21

1

21

D uy .

~2.13!

For 0.210,h,1 the spin configuration is a four-sublattic
one where the spins make anglesu, 2u, p1u, p2u, with
the x axis

S SW 1

SW 2

SW 3

SW 4

D 5ScosuS 1

1

21

21

D ux1SsinuS 1

21

21

1

D uy .

~2.14!

Note that the coefficients satisfy the ‘‘strong’’ condition o
the spin magnitude. As one can see from Eqs.~2.13! and
~2.14! the ground-state configuration is affected by contin
ous degeneracy becauseu is arbitrary as happens for pur
dipole interactions.9,16

III. SPIN-WAVE THEORY:
ORDER BY THERMAL DISORDER

Following Ref. 14 the Hamiltonian~1.1! can be expanded
in a series of spin deviations

H5E01H21H31H41•••, ~3.1!
09441
he

e-

-

whereE0 is given by Eq.~2.11! for 0,h,0.210 and by Eq.
~2.12! for 0.210,h,1. The bilinear contribution reads

H25
1

2 S J01
m2

a3 DS2(
qW

(
ss8

c
2qW
(s)

AqW
ss8cqW

(s8) , ~3.2!

where cqW
(s) is the spatial Fourier transform of the angul

deviation of the spin on thesth sublattice. For 0,h
,0.210 ~Néel phase! the elements of the symmetric matr
A qW are

AqW
11

5AqW
22

5AqW
33

5AqW
44

5W00
xx~0!2W10

xx~0!2W01
xx~0!1W11

xx~0!

2W00
yy~qW !cos2u2W00

xx~qW !sin2u1W00
xy~qW !sin~2u!,

~3.3a!

AqW
12

5AqW
34

5W10
xx~qW !sin2u1W10

yy~qW !cos2u2W10
xy~qW !sin~2u!,

~3.3b!

AqW
13

5AqW
24

52W11
xx~qW !sin2u2W11

yy~qW !cos2u1W11
xy~qW !sin~2u!,

~3.3c!

AqW
14

5AqW
23

5W01
xx~qW !sin2u1W01

yy~qW !cos2u2W01
xy~qW !sin~2u!.

~3.3d!

For 0.210,h,1 ~columnar phase! the elements of the sym
metric matrixA qW are

AqW
11

5AqW
33

5W00
xx~0!1W10

xx~0!2W01
xx~0!2W11

xx~0!

2W00
yy~qW !cos2u2W00

xx~qW !sin2u1W00
xy~qW !sin~2u!,

~3.4a!

AqW
12

5AqW
34

5W10
xx~qW !sin2u2W10

yy~qW !cos2u, ~3.4b!

AqW
13

5W11
xx~qW !sin2u1W11

yy~qW !cos2u2W11
xy~qW !sin~2u!,

~3.4c!

AqW
14

5AqW
23

52W01
xx~qW !sin2u1W01

yy~qW !cos2u. ~3.4d!

The matrix elementsAqW
22

5AqW
44 are obtained fromAqW

11 chang-
ing the sign of the last term on the right side. Analogou
AqW

24 is obtained fromAqW
13 changing the sign of the last term

The coefficientsWmn
ab(qW ) are defined as follows:

Wmn
xx ~qW !5 (

l 1 ,l 2

cos@~m12l 1!aqx#cos@~n12l 2!aqy#

@~m12l 1!21~n12l 2!2#3/2

3F3h
~m12l 1!2

~m12l 1!21~n12l 2!2 21G , ~3.5!

Wmn
yy ~qW !5 (

l 1 ,l 2

cos@~m12l 1!aqx#cos@~n12l 2!aqy#

@~m12l 1!21~n12l 2!2#3/2

3F3h
~n12l 2!2

~m12l 1!21~n12l 2!2 21G , ~3.6!
2-3
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FIG. 1. EigenvalueslqW
(s) given by Eqs.~3.9! and~3.10! vs wave vector measured in reciprocal lattice units along the~1,0!, ~0,1!, and~1,1!

directions forh50.1 andu50. The spins are arranged in the antiferromagnetic~AF! Néel configuration.
gure
Wmn
xy ~qW !52 (

l 1 ,l 2

sin@~m12l 1!aqx#sin@~n12l 2!aqy#

@~m12l 1!21~n12l 2!2#3/2

33h
~m12l 1!~n12l 2!

~m12l 1!21~n12l 2!2 . ~3.7!

Whenm5n50 the term in the sum withl 15 l 250 has to be
excluded. The eigenvalueslqW

(s) of the matrixA qW provide the

LSW energy spectrum\vqW
(s) for qx ,qy ranging from

2p/2a to p/2a:

\vqW
(s)

5
1

2 S J01
m2

a3 DS2lqW
(s)

~s51,2,3,4!. ~3.8!

For 0,h,0.210 the four eigenvalueslqW
(s) are given by

lqW
(1,2)

5W00
xx~0!2W10

xx~0!2W01
xx~0!1W11

xx~0!

2@W00
yy~qW !1W11

yy~qW !#cos2u

2@W00
xx~qW !1W11

xx~qW !#sin2u

1@W00
xy~qW !1W11

xy~qW !#sin~2u!

7$@W10
xx~qW !1W01

xx~qW !#sin2u

1@W10
yy~qW !1W01

yy~qW !#cos2u

2@W10
xy~qW !1W01

xy~qW !#sin~2u!%, ~3.9!
09441
lqW
(3,4)

5W00
xx~0!2W10

xx~0!2W01
xx~0!1W11

xx~0!

2@W00
yy~qW !2W11

yy~qW !#cos2u

2@W00
xx~qW !2W11

xx~qW !#sin2u1@W00
xy~qW !2W11

xy~qW !#

3sin~2u!7$@W10
xx~qW !2W01

xx~qW !#sin2u

1@W10
yy~qW !2W01

yy~qW !#cos2u

2@W10
xy~qW !2W01

xy~qW !#sin~2u!%. ~3.10!

As one can see the eigenvalues~3.9! and~3.10! are functions
of the wave vectorqW and depend on the angleu that charac-
terizes the continuous degeneracy of the ground state. Fi
1 shows the eigenvalueslqW

(s) versusqW along some directions
of high symmetry forh50.1 andu50.

For 0.210,h,1 the eigenvalueslqW
(s) become

lqW
(1,2)

5W00
xx~0!1W10

xx~0!2W01
xx~0!2W11

xx~0!

2@W00
yy~qW !1W11

yy~qW !#cos2u2@W00
xx~qW !1W11

xx~qW !#

3sin2u7$@~W10
xx~qW !1W01

xx~qW !!sin2u

2~W10
yy~qW !1W01

yy~qW !!cos2u#2

1@W00
xy~qW !1W11

xy~qW !#2sin2~2u!%1/2 ~3.11!
2-4
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FIG. 2. EigenvalueslqW
(s) given by Eqs.~3.11! and~3.12! vs wave vector forh50.6 andu5p/4. The spins are arranged in the vortic

~V! phase.
ng-
e

he
ap-
lqW
(3,4)

5W00
xx~0!1W10

xx~0!2W01
xx~0!2W11

xx~0!

2@W00
yy~qW !2W11

yy~qW !#cos2u

2@W00
xx~qW !2W11

xx~qW !#sin2u7$@~W10
xx~qW !

2W01
xx~qW !!sin2u2~W10

yy~qW !2W01
yy~qW !!cos2u#2

1@W00
xy~qW !2W11

xy~qW !#2sin2~2u!%1/2. ~3.12!

Figure 2 shows the eigenvalueslqW
(s) for h50.6 andu5p/4.
09441
Figure 3 shows the same quantities forh51 andu50. Note
the existence of a soft mode forqW→0 in Figs. 1–3. One
branch in each figure goes to zero quadratically in the lo
wavelength limit. This peculiarity is true for any value of th
angleu.

In order to test the effect of thermal fluctuations on t
spin configuration we evaluate the free energy in LSW
proximation strictly following Ref. 14:

F52
1

2
l2

1

2
T ln

T

2p
1

1

2
T f~h,u!, ~3.13!
FIG. 3. EigenvalueslqW
(s) given by Eqs.~3.11! and~3.12! vs wave vector forh51 andu50. The spins are arranged in the columnar~C!

phase.
2-5
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FIG. 4. The free energy
u-dependent term given by Eq
~3.14! vs u for selected values of
h ~a! AF configuration and~b! co-
lumnar and vortical configuration
e

-

s

whereF is the reduced free energy per spin andT is reduced
temperature in units (J01m2/a3)S2, l5l2 for 0,h
,0.210,l5l3 for 0.210,h,1, and

f ~h,u!5
a2

p2E
0

p/aE
0

p/a

dqxdqyln~detAqW !

5
a2

p2E
0

p/aE
0

p/a

dqxdqy(
s51

4

ln lqW
(s) . ~3.14!
09441
In Figs. 4 and 5,f (h,u) is shown as a function ofu for
different values ofh. As one can see the minimum of th
free energy occurs atu50 for 0,h,0.464 and 0.7675
,h,1, at u5p/4 for 0.464,h,0.7675. The correspond
ing spin configurations are AF configuration@u50 in Eq.
~2.13!# for 0,h,0.210, C configuration@u50 in Eq.
~2.14!# for 0.210,h,0.464 and 0.7675,h,1, V configu-
ration @u5p/4 in ~2.14!# for 0.464,h,0.7675. This is a
strong indication oforder by thermal disorder.13 Anyway the
existence of one branch that vanishes quadratically aqW
r
FIG. 5. The same as Fig. 4 fo
values ofh ~a! in the neighbor-
hood of the first-order C-V phase
transition occurring ath50.464
~b! and in the neighborhood of the
first-order V-C phase transition
occurring ath50.7675.
2-6
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LONG-RANGE ISOTROPIC AND DIPOLAR SPIN-SPIN . . . PHYSICAL REVIEW B65 094412
→0 for any h in the LSW spectrum leads to a diverge
mean-square angular displacement as for the pure dipol
teraction (h51).9 To understand the contrasting indicatio
based on the free energy~3.13! and on the magnetizatio
evaluated by the LSW approximation one has to go bey
the harmonic approximation.

For h50.210 andu50 ~the angle selected by therm
fluctuations! the eigenvalueslqW

(s) of the AF phase@Eqs.~3.9!
and ~3.10!# coincide with those of the columnar phase@Eqs.
~3.11! and ~3.12!#. Two very low quasidegenerate branch
occur along the~0,1! direction. These two branches vanis
quadratically for qW→0 and reach their maximumlM

50.0161 at the zone boundaryqW 5(2p/a)(0,1/4). The exis-
tence of two soft modes forh50.210 requires a self
consistent treatment of the anharmaonic contributions
shown in the next section.

IV. RENORMALIZED SPIN-WAVE THEORY

The LSW spectrum is\vqW5 1
2 (J01m2/a3)S2eqW where

eqW5Dxx~QW !2Dyy~QW 2qW ! ~4.1!

for qx ,qy ranging from2p/a to p/a. Now the unit cell in
the reciprocal lattice is the ‘‘chemical’’ cell which is 4 time
larger than the ‘‘magnetic’’ cell. Of courseeqW given by Eq.
~4.1! reproduces the four branches given by Eqs.~3.9! and
~3.10! for the AF phase and by Eqs.~3.11! and~3.12! for the
C phase when the folding of the chemical cell is perform

Note that the LSW spectrum vanishes atqW 5(0,0) in the

AF phase whereQW 5(2p/a)( 1
2 , 1

2 ) and at qW 05(2p/a)

3( 1
2 , 1

2 ) in the C phase whereQW 5(2p/a)(0,1
2). This fact

implies the order parameter to be zero at any finite temp
ture. In analogy with the pure dipole case17 we extend the
RSW approximation to the casehÞ1 in order to find a
temperature-dependent gap that replaces the soft mode f
in the LSW approximation.

The ground state of the AF phase for 0,h,0.210 and of
the C phase for 0.210,h,0.464 and for 0.7675,h,1 can

be described by a regular helix of pitchQW 5(2p/a)( 1
2 , 1

2 )

andQW 5(2p/a)(0,1
2 ), respectively. This fact greatly simpli

fies the evaluation of the RSW spectrum. We apply the R
approach to Hamiltonian~1.1! strictly following Ref. 17
where only the pure dipole interaction (h51) was consid-
ered. Note that the cumulant expansion17 selects the exac
low-temperature leading contribution, so that the kind
LRO obtained by this approach is reliable. Equations~2.4!–
~2.20! of Ref. 17 are directly extended tohÞ1, replacing
Hamiltonian ~2.1! of Ref. 17 by Hamiltonian~1.1! of the
present paper.

The so-obtained RSW spectrum is\ṽqW5 1
2 (J0

1m2/a3)S2ẽqW where

ẽqW5eqW2TS~qW !. ~4.2!

The renormalized gap in the AF phase@obtained forqW 50

andQW 5(2p/a)( 1
2 , 1

2 )] is
09441
in-

d

s

.

a-

nd

f

SAF~0!5
1

N (
kW

@Dxx~QW 2kW !2Dyy~QW 2kW !#
1

ekW

1
2

N (
kW

FDxy~QW 2kW !

ekW
G2

. ~4.3!

The renormalized gap in the C phase@obtained forqW 5qW 0 and

QW 5(2p/a)(0,1
2 )] is

SC~qW 0!5
1

N (
kW

@Dxx~QW 1qW 02kW !2Dyy~QW 2kW !#
1

ekW

1
1

N (
kW

Dxy~QW 2kW !@Dxy~QW 2kW !

1Dxy~QW 2kW1qW 0!#
1

ekW

1

ekW2qW 0

. ~4.4!

Note that the soft modes inekW at kW50 in Eq. ~4.3! and atkW

5qW 0 in Eq. ~4.4! do not make the sums divergent because
the simultaneous vanishing of the numerators. The s
energy~4.3! goes to zero ash→0 as expected because in th
long-range isotropic antiferromagnetic system no gap ex
owing to the presence of a genuine Goldstone mode rel
to the rotational invariance of the Hamiltonian. However
temperature-dependent gap is expected for anyhÞ0 because
of the symmetry breaking caused by the dipole interacti
For instance we obtainẽ050.102T at h50.1. At h50.210
one more soft mode appears atqW 5(2p/a)(0,1/2) in the AF
phase and atqW 5(2p/a)(1/2,0) in the C phase. The two so
modes found ath50.210 belong to the two soft branche
discussed at the end of Sec. III. These two soft modes ca
a divergence in the first sum of Eqs.~4.3! and ~4.4!, respec-
tively. This is a signature of a nonanalytic behavior of t
thermally renormalized gap as a function of temperature
the neighborhood ofh50.210. Perturbation theory fails an
a self-consistent approach is required to solve the puz
The self-consistent renormalized gap for the AF phase is

ẽ052TSAF~0,ẽ0!, ~4.5!

whereSAF(0,ẽ0) is obtained from Eq.~4.3! replacingekW by
ekW1 ẽ0. In the range 0,T,0.08 the numerical solution o
Eq. ~4.5! is well fitted by the interpolation formula

ẽ0520.356T20.635T ln T. ~4.6!

The self-consistent renormalized gap for the columnar ph
at h50.21 is

ẽqW 0
52TSC~qW 0 ,ẽqW 0

!, ~4.7!

whereSC(qW 0 ,ẽqW 0
) is given by Eq.~4.4! replacingekW by ekW

1 ẽqW 0
. In the range 0,T,0.03 the interpolation formula is

ẽqW 0
522.879T21.793T ln T. ~4.8!
2-7



ap
a
s

si

o

-
d

tu
is

ol

d
r
e
es
te

on
r

e
th

a
he

rd
o

n
as
a
u

oos-

rgy

ed
o-
t

r

r

r

f
-
ce

E. RASTELLI, S. REGINA, A. TASSI, AND A. CARBOGNANI PHYSICAL REVIEW B65 094412
Away from h50.210 the values of the renormalized g
obtained by the self-consistent or the perturbation appro
are the same. Forh50.3 the perturbation theory provide
ẽqW 0

50.652T. At the C-V transition (h50.464) the

temperature-dependent gap becomes very small,ẽqW 0

50.0053T. An analogous softening occurs at the V-C tran
tion (h50.7675) with ẽqW 0

50.0114T. For h50.9 we have
ẽqW 0

50.210T. Finally, for h51 ~pure dipole interaction! we
recover the result of Ref. 17, namely,ẽqW 0

50.575T. A calcu-
lation of the renormalized spectrum in the neighborhood
the wave vector corresponding to the gap gives

ẽqW.e
GAP

~h!1cx~h!qx
21cy~h!qy

2 , ~4.9!

where e
GAP

(h) is ẽ0 for the AF phase andẽqW 0
for the C

phase;cx ,cy are finite for anyh and are temperature inde
pendent at low temperature. The mean-square angular
placement becomes

^c i
2&5

T

N (
kW

1

ẽkW
.2

1

2p

1

Acxcy

T ln@e
GAP

~h!#1•••,

~4.10!

where the ellipsis means regular terms linear in tempera
coming from the regular contribution to the sum. Th
nonanalytic behavior was found also for the pure dip
interaction.17 The order parameter

^cosc i&5cos~QW •rW i !e
2^c i

2&/ 2 ~4.11!

has an infinite slope asT→0. In this limit the energy cost to
create a spin wave of the wave vector in the neighborhoo
the gap wave vector is vanishing so that a large numbe
spin waves can be excited. However, the interaction betw
spin waves originates a gap in the spectrum that increas
increasing temperature and LRO is restored. An isola
point existsh50 for which e

GAP
(0)50 where LRO is ab-

sent as expected on the basis of the LSW approximati8

The actual thermal decreasing of the order paramete
strongly related to the LSW dispersion curve throughcx and
cy as it appears in Eqs.~4.10! and ~4.11!. For h→0.210
where two branches become very soft, we expect a decr
ing of the order-disorder transition temperature in spite of
fact that the renormalized gap increases as2T ln T instead of
T.

V. TEMPERATURE-DRIVEN FIRST-ORDER PHASE
TRANSITION

The temperature-driven first-order phase transition w
investigated by a Landau functional in the frame of t
q-state Potts model in two dimensions withq510.18 We
adopt an analogous approach to investigate the first-o
columnar-vortical phase transition in the neighborhood
h50.464 andh50.7675 where the transition occurs at va
ishing temperature. We are interested into the C-V ph
boundary, in particular into the jump of the specific he
which could be peculiar since the C and V phases are s
09441
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ported by thermal fluctuations.
The free energy contribution for the Ne`el, columnar, and

vortical phases can be simulated by a Landau theory ch
ing a sixth-order functional

F5F01TS r

2
u22

u

4
u41

v
6

u6D , ~5.1!

where

r 5r 01r 1T1r 2~h2h0!, u,v.0. ~5.2!

andh0 is the value at which a columnar-vortical~C-V! phase
transition takes place in the low-temperature limit,r 1 is the
coefficient of the anharmonic contribution to the free ene
which is beyond the LSW approximation, andF0 is the free
energy contribution independent of the angleu characteriz-
ing the four-sublattice spin configuration. We have assum
the leadingu-dependent contribution to the free energy pr
portional to the temperatureT in agreement with the resul
~3.13! obtained by LSW theory. Minimization ofF with re-
spect tou provides the equilibrium spin configurations fo
the set of parametersr 0 ,r 1 ,r 2 ,u,v.

For r ,0 the free energy~5.1! shows two minima atu0

56@(u1Au224vr )/2v#1/2 corresponding to a noncollinea
phase we will identify with the vortical phase (u056p/4)
and a maximum atu50 corresponding to the columna
phase.

For 0,r ,u2/4v the maximum atu50 becomes a mini-
mum so that the free energy exhibits three minima atu50
~columnar phase! and u056@(u1Au224vr )/2v#1/2 ~vorti-
cal phase! and two maxima at uM56@(u
2Au224vr )/2v#1/2. The simultaneous occurrence o
minima atu50 andu5u0 is a minimal requirement to de
scribe a first-order C-V phase transition which takes pla
whenF(u50)5F(u5u0), namely, forr 53u2/16v. In the
low-temperature limit and forh close toh0 the above con-
dition and Eq.~5.2! give

r 05
3u2

16v
, Tc52

r 2

r 1
~hc2h0!. ~5.3!

For r .u2/4v the only minimum of Eq.~5.1! occurs atu
50 and corresponds to the columnar phase.

The C-V phase boundaryTc5Tc(hc) has a negative or
positive slope depending on the sign of the ratior 2 /r 1 and
whetherhc is greater or lesser thanh0.

The dimensionless specific heatc5C/kBL2 of the colum-
nar and vortical phase is

cI~u50!52T
]2F 0

]T2 ~5.4!

and

cII ~u5u0!52T
]2F 0

]T2 2r 1T
u1Au224vr

2v
1

r 1
2T2

2Au224vr
,

~5.5!
2-8



.
d

LONG-RANGE ISOTROPIC AND DIPOLAR SPIN-SPIN . . . PHYSICAL REVIEW B65 094412
FIG. 6. ~a! Specific heat ath
51 and T50.75 for samples of
size 16316 ~crosses!, 24324
~vertical crosses!, and 32332
~diamonds! as a function ofN,
whereN is the number of configu-
rations taken in the MC average
~b! The same for the staggere
susceptibility. Error bars are
shown only for the lattice of size
32332.
u

-
n

at
respectively. AtT5Tc , namely, for r (Tc)53u2/16v and
u05A3u/4v, the specific heat undergoes a jump discontin
ity of magnitude

Dc5cII 2cI.r 2

3u

4v
~hc2h0!. ~5.6!

The set of parametersr 0 ,r 2 ,u,v are evaluated by fitting the
sixth-order polynomial~5.1! with the free energy contribu
tion ~3.14! obtained by the LSW approximation and show
09441
-
in Fig. 5. The first-order C-V phase transition takes place
h050.464 for vanishing temperature withr 5r 0 andu5u0.
In order to haveu05p/4 one has to putu/v5p2/12. The
free energy barrier

@F~uM !2F~p/4!#T5Tc
5@F~uM !2F~0!#T5Tc

5Tcu
p4

13824
~5.7!

has to be compared with the LSW free energy~3.14! shown
in Fig. 5 leading tou50.0227. Forh close toh0 the free
e

FIG. 7. Specific heat forh

50.6 as a function of temperatur
for lattice sizes of 16316, 24
324, and 32332 .
2-9



r

E. RASTELLI, S. REGINA, A. TASSI, AND A. CARBOGNANI PHYSICAL REVIEW B65 094412
FIG. 8. The same as Fig. 7 fo
h51.
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MC
energy difference between the vortical and columnar phas

F~u0!2F~0!5T
p2

32
r 2~h2h0!. ~5.8!

A comparison with the LSW free energy differenc
f (h,p/4)2 f (h,0) shown in Fig. 5 givesr 2.20.94, Dc
.0.58(h02hc), and Tc50.94/ur 1u(h02hc). Note that the
only unknown parameter isr 1 which is related to the anhar
monic contribution to the free energy. Anywayr 1 must be
negative in order to have a specific heat increasing with t
perature in the low-temperature limit in agreement with
Monte Carlo simulation as we will see in the next sectio
The C-V phase boundary has a negative slope; namely
C-V phase transition takes place forhc,h0 and specific hea
shows a jump discontinuity at the transition.

Analogous fitting ath050.7675 givesu50.047 andr 2
.0.65 so that the jump discontinuity of the specific hea
Dc.0.40(hc2h0) and the V-C phase boundary isTc
50.65/ur 1u(hc2h0). In this case the V-C phase bounda
has a positive slope; namely, the phase transition takes p
for hc.h0 and the specific heat shows a jump discontinu
at the transition.

VI. MONTE CARLO SIMULATION

We have performed MC simulations throughout the ran
0<h<1 going from a pure isotropic antiferromagnetic lon
range interaction to a pure dipole interaction. The appro
of periodic ‘‘images’’ is adopted.19 This approach, which is
based on a periodic arrangement of MC cells, seems to be
most convenient to treat systems with long range inter
tions. The limiting casesh50 andh51 have been studied
by MC simulations17 and LRO was proved to exist in th
former and prevented in the latter by performing a size s
ing analysis of the mean-square angular displacement. In
09441
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section we evaluate the specific heat, order parameter,
staggered susceptibility for selected values ofh in order to
get the phase diagram of the model in the (h,T) plane.

We introduce a gauge tranformation11 for the Néel phase,

MW 5 (
l 1 ,l 2

~21! l 11 l 2@Sx~ l 1 ,l 2!ux1Sy~ l 1 ,l 2!uy#, ~6.1!

and for the columnar and vortical phase,

MW 5 (
l 1 ,l 2

@~21! l 2Sx~ l 1 ,l 2!ux1~21! l 1Sy~ l 1 ,l 2!uy#.

~6.2!

In order to suppress unphysical global rotation of the st
gered magnetization due to the finite size of the sample
define the order parameter as

c5^uMW u&/L2, ~6.3!

whereL3L is the number of lattice sites and^•••& means
MC average. The order parameter~6.3! differs from that
given in Ref. 17 where the average of thex component of the
staggered magnetization was evaluated forh51. We have
tested the reliability of our MC data in the critical regio
evaluating the specific heat and staggered susceptibilit
fixed temperature and different sample sizes as a functio
the number of MC steps starting from the ground-state c
figuration as suggested by Ferrenberget al.20 In Figs. 6~a!
and 6~b! the specific heat and staggered susceptibility eva
ated forh51, T50.75, and different lattice sizes are show
as function ofN, whereN is the number of spin configura
tions used to evaluate the MC average. Each configuratio
taken every ten MC steps. All data points in Figs. 6~a! and
6~b! are obtained by an average over ten independent
2-10
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FIG. 9. Staggered susceptibi
ity for h50.6 as a function of
temperature for lattice sizes of 1
316, 24324, and 32332.
n
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on-
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om
igs.
runs. A plateau is obtained whenN is sufficiently large for
any lattice size. LargerN are required to reach saturatio
when the sample size increases. Asymptotic values of
specific heat and staggered susceptibility scale with
sample size as expected in the critical region of a continu
phase transition. A previous analysis is crucial in order to
information about the number of MC steps convenient
reach a good thermalization. In Figs. 7 and 8 we show
specific heat

c5b2~^H 2&2^H&2!/L2 ~6.4!
09441
e
e
s
t

o
e

versus temperature forh50.6 andh51 for different lattice
sizes. All data points are an average over eight indepen
MC runs each of which consists of 104 MC configurations
taken every ten MC steps. At each temperature 103 MC steps
are discarded for thermalization assuming as starting c
figuration the final configuration of the previous temperatu
This implies that a very long effective simulation is pe
formed for temperatures belonging to the critical region. T
pronounced peak of the specific heat shows a moderate
ing with the sample size whereas for temperatures far fr
the peak temperature MC data are size independent. In F
9 and 10 the staggered susceptibility
FIG. 10. The same as Fig. 9
for h51.
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FIG. 11. Order parameter fo
h50.6 as a function of tempera
ture for lattice sizes of 16316,
24324, and 32332.
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xst5~^uMW u2&2^uMW u&2!/L2 ~6.5!

for the same values ofh shows a sharp peak that scales w
the sample size at the same temperature where the sp
heat peak occurs. This is the signature of the occurrence
continuous phase transition. The behavior of the order
rameter~6.3! versus temperature shown in Figs. 11 and
supports the existence of this order-disorder transition.
location of the peaks of both specific heat and stagge
susceptibility is slightly size dependent.

We have performed the size scaling analysis of the s
gered susceptibility~6.5! and of the order parameter~6.3! for
09441
ific
f a
a-
2
e
d

g-

h51, h50.6, andh50.1, corresponding to columnar, vo
tical, and Ne´el phases, in order to get critical exponents. W
find thatn51 is consistent with the size scaling of the tem
perature at which the susceptibility reaches its maximu
The least-mean-squares method givesb50.2660.03 for all
values ofh andg51.6860.04 for h51 andh50.6 while
g51.6160.03 forh50.1. These values seem to be indepe
dent of the intensity of the isotropic exchange interactio
This is not surprising since the symmetry is the same for
hÞ0. Note that critical exponents forh51 amend the re-
sults of Ref. 17 since in the present paper we have assu
a different order parameter to avoid the influence of unphy
1
FIG. 12. The same as Fig. 1
for h51.
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FIG. 13. Phase diagram in th
(h,T) plane. AF, C, V, and P
mean Ne´el antiferromagnetic, co-
lumnar, vortical, and paramag
netic configurations. Horizonta
and vertical bars show the unce
tainty of the C-V and V-C phase
boundary locations.
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cal global rotations. In any case we obtain critical expone
not falling in any known universality class. This fact is co
sistent with the conjectured correspondence15 of the square
planar model with a pure dipole interaction to the squ
planar model with nearest-neighbor interaction in prese
of a fourfold-symmetry-breaking perturbation,21 the critical
exponents of which are believed to be dependent on the
turbation intensity.

In Fig. 13 the phase diagram of the model is shown in
(h,T) plane. The order-disorder phase boundary is draw
the temperatureTc(h) at which the specific heat and th
susceptibility show their maximum. We have used a
324 sample averaging overN5104 of MC configurations as
suggested by Fig. 6. The critical temperature undergoe
substantial decreasing in the neighborhood ofh50.210, as
expected on the basis of the analytic result of Sec. IV. Thi
not the case of the C-V phase transition ath50.464 and of
the V-C phase transition ath50.7675 where no sof
branches in the energy spectrum are found.

The model withh50 seems to be an isolated point. I
deed the critical temperatureTc(h) of our finite sample with
L524 increases monotonically going fromh50.210 toh
50. On the other hand, our analytic calculation perform
for L→` provides a logarithmic divergence of the mea
square angular displacement as given by Eq.~4.10!. How-
ever, assuming a finite-size lattice the argument of the lo
rithm in Eq. ~4.10! should be replaced byeGAP(h)1L22

.hT1L22 so that values ofh not lower than 1022 have to
be used to get reliable MC simulations.

The location of the two first-order phase boundaries
tween columnar and vortical phases is very difficult to det
mine. We have explored the regions around the C-V and
phase transitions for several temperatures evaluatingu^Mx&u
and u^M y&u versush using a 32332 sample. Indeed on
should haveu^Mx&u.1 andu^M y&u.0 in the columnar phase
09441
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e
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e
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4
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C

and u^Mx&u.u^M y&u.1/A2 in the pure vortical phase forT
→0. In Figs. 14 and 15 we showu^Mx&u and u^M y&u for T
50.1 aroundh50.46 andh50.77, respectively. The chang
of the spin configuration is clearly obtained but the locati
of the phase transition is affected by an errorDh.0.05
aroundh50.46 andDh.0.08 aroundh50.77. Crosses and
diamonds representu^Mx&u and u^M y&u for increasingh
while squares and vertical crosses are the same for dec
ing h. As one can see metastability effects are more p
nounced aroundh50.77. Analogous behavior was found fo
T50.2,0.3, and 0.4. Horizontal bars in Fig. 13 show t
uncertainty of the phase boundary location.

In Figs. 16 and 17 we showu^Mx&u and u^M y&u versus
temperature forh50.44 andh50.8, respectively. The C-V
phase transition is obtained in both cases but it is not sh
and the uncertainty is shown by a vertical bar in Fig. 1
Similar behavior is found forh50.4. On the contrary for
h50.5,0.6,0.7,0.9 no C-V phase transition occurs. These
sults allow us to draw the V-C phase boundaries~dashed
lines! in Fig. 13. As one can see these phase boundaries
very steep. This implies a very small jump discontinuity
the specific heat across the phase boundaries on the ba
Eq. ~5.6! so that it is not surprising that no evidence of
first-order phase transition is obtained from any MC simu
tion of the specific heat. On the basis of our analytical c
culations proving the existence of ordered Ne´el, columnar,
and vortical phases in the low-temperature limit and
agreement with MC simulation, we think that the phase d
gram shown in Fig. 13 is reliable even though the ord
parameter data as a function ofh shown in Figs. 14 and 15
do not undergo a steep increase prevented by the finite
of the sample.

VII. SUMMARY AND CONCLUSIONS

The square planar rotator model with a long-range iso
pic interaction decaying as 1/r 3 and dipole interaction is
2-13
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FIG. 14. u^Mx&u ~crosses and squares! and
u^M y&u ~diamonds and vertical crosses! vs h at
T50.1 around the C-V phase boundary. Cross
and diamonds correspond to the scan obtained
increasingh. Squares and vertical crosses corr
spond to the scan with decreasingh.
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studied in the range 0,h,1 whereh measures the relativ
strength of the antiferromagnetic and dipole interaction. T
Luttinger-Tisza method provides the ground-state configu
tion which is Néel, columnar, vortical, and columnar-lik
sweeping fromh50 to h51. The ground state is affecte
by a continuous degeneracy corresponding to a free rota
of the sublattice magnetization with respect to the latti
The low-temperature region is studied by the linear a
renormalized spin-wave approximation. The continuous
generacy is lifted at any nonzero temperature for anyh and
long-range order is supported by thermal fluctuations exc
for h50 where no long-range order is found in agreem
with MC simulations and RG analysis.
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We have investigated the discontinuous columnar-vort
phase transition by a Landau functional simulating t
u-dependent free energy obtained by the LSW approach
sixth-order polynomial. We have obtained the specific h
jump Dc and the C-V phase boundary. Very smallDc is
expected but the actual slope of the C-V phase bound
depends on anharmonic contribution, which is beyond
analytical calculation.

We have performed MC simulations for selected values
h and we have evaluated the specific heat, staggered sus
tibility, and order parameter. Critical exponents not falling
any known universality class are found by size scaling ana
sis of the MC data. The phase diagram agrees with the
-C
FIG. 15. The same as Fig. 14 around the V
transition.
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FIG. 16. u^Mx&u ~crosses! and u^M y&u ~dia-
monds! vs T for h50.44.
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ful
dered phases found analytically in the low-temperature
gion. Size scaling of the specific heat and stagge
susceptibility indicates that the order-disorder phase tra
tion is continuous. The decreasing of the critical temperat
aroundh50.21 where the Ne´el-columnar phase transitio
occurs is well understood in terms of the existence of t
very low branches in the elementary excitation spectrum

The columnar-vortical and vortical-columnar pha
boundaries cannot be localized with the same precision a
the order-disorder phase boundary where a sharp peak i
specific heat and in the staggered suceptibility occurs.
columnar spin phase was observed in ErBa2Cu3O61x ,7 a
compound where dipole forces play a crucial role owing
the weakness of the exchange interactions. Unfortunately
09441
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critical exponents were not measured so that we cannot
the values ofb and g we have obtained by size scalin
analysis.

In summary a comprehensive study of the square pla
model with long-range spin-spin interaction is presented. T
long-range order is a consequence of thermal fluctuations
suppress unphysical Goldstone modes. MC simulations
vide the phase diagram which agrees with the lo
temperature analytic result.
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FIG. 17. The same as Fig. 16 forh50.8.
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