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Long-range isotropic and dipolar spin-spin interactions in the square planar rotator model
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The simultaneous presence of a long-range isotropic antiferromagnetic interaction decayiny(afdre
r is the spin-spin distang@nd of a dipolar interaction in the square planar rotator model is studied. The pure
isotropic antiferromagnetic interaction does not support long-range order, at variance with the pure dipole
interaction. The model is investigated analytically at low temperature and by Monte (@&E)osimulations at
higher temperature. The Luttinger-Tisza method provides a ground-state configuration affected by continuous
degeneracy. Thermal fluctuations accounted for by the linear spin-wave approximation lift the degeneracy and
lead toorder by thermal disorderDifferent kinds of order are found going from a pure antiferromagnetic to a
pure dipole interaction. The mechanism that restores long-range order is understood by using the renormalized
spin-wave theory. The accidental soft mode related to the continuous degeneracy of the ground state is replaced
by a temperature-dependent gap. Temperature-driven first-order phase transitions between different ordered
phases are investigated via a Landau functional. The phase diagram of the model is obtained by study of the
order parameter, specific heat, and staggered magnetization evaluated by MC simulations.
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I. INTRODUCTION

a rerf
f“ﬁ(r)——3<3n 5 —50(,;;). 1.2
The planar rotator model is a very peculiar system. Indeed r
it has no quantum counterpart and the absence of a third spi . . . . . .
component prevents any dynamical feature. However, thi 0>0is thg isotropic anu_ferromagneuc'|nteract|o_n strength,
model plays an important role in statistical physics. Indeeoa is the lattice constany is the magnetic momen,labels
many actual magnetic systems with strong planar anisotrop{fi€ Sites of a square latticejs a generic lattice vector, 8
are expected to share thermodynamic properties with the pldabelx,y componentssi is a two-component classical vector
nar rotator model. When the spin-spin interaction in thelocalized on sité, and»=(u?/a%)/(Jy+ n?/a%). As one can
model is restricted to nearest neighlfNiN) long-range order see»=0 corresponds to a pure long-range isotropic antifer-
(LRO) is absent at any nonzero temperattikgyt the topo-  romagnetic interaction ang=1 corresponds to a pure di-
logical Kosterlitz-ThoulessKT) phase transitichfrom a pole interaction.
low-temperature phase characterized by divergent suscepti- Linear spin-wav@ (LSW) and renormalized spin-waVe
bility to the paramagnetic phase is believed to occur on théRSW) approximations suggest that no LRO is expected
basis of high-temperature series expanéloenormallzatlon when =0, in agreement with MC simulatidhA spin-wave
group (RG) analysis? and Monte CarldMC) simulations? argument suggests the existence of a low-temperature phase
Different scenarios appear when long-range interactionsvhere LRO is absent but the susceptibility is divergent. The
are accounted for. The dipole interaction is a long-range inscenario changes when the long-range isotropic interaction is
teraction of particular interest because it is occurs in anyerromagnetic. For such a model renormalization group
magnetic system. When the exchange interaction is strong, asalysis® as well as MC simulatios proves that LRO is
for transition-metal compounds, the dipole interaction isassured. A pure dipole interaction is believed to support LRO
simulated by a single-ion effective anisotrdp¥his cannot  on the basis of spin-wave analysand MC simulation$:**
be done when exchange and dipole interactions are of the The ground state of the model Hamiltoniéh1) is ob-
same order of magnitude as it is for the rare-earth metalained by the Luttinger-Tis?a (LT) method in Sec. Il. The
compounds of theRBa,Cu;0, family’ whereR is a rare-  ground state is affected by a continuous degeneracy. Indeed
earth metal ion. In this paper we study a square planar rotatdr is an antiferromagnetic two-sublattice” &leconfiguration
model with both long range isotropic antiferromagnetic andwhere the direction of the sublattice magnetization is arbi-
dipole interactions. In particular, we assume an antiferromagtrary for 0< <0.210. At =0.210 one finds a change of
netic coupling decaying asrf/wherer is the spin-spin dis- the ground state leading to the same configuration found in
tance. the model with pure dipole interactiénindeed for 0.210
The Hamiltonian of the model is <7y<1 a four-sublattice configuration appears where the
spins of an elementary squaftplaquett¢ make angless,

B ag —60, m+ 60, m— 6 with the x axis, § being arbitrary. The
H=- 2 ‘]0+ E 2 f (r)S |+r’ (L.D  columnar phase correspondsée 0,77/2. The LSW approxi-
r#O mation provides contrasting indications about the effects of
thermal fluctuations. Indeed the presence of a soft mode in
where the LSW energy spectrum, related to the continuous degen-
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eracy of the ground state, leads to a divergent number of spin N wu?

deviations so that no LRO is found. On the other hand, the U=—g|Jot aT) > (Sisssssy)

LSW spectrum isf dependent so that the “harmonic” free amxy

energy isf dependent as shown in Sec. Ill. Order by thermal WSS o G oy S¢
disordet? is strongly suggested. The minimum of the free v e ome e "
energy for 6<%<<0.210 is found at¥=0(7/2), which cor- v Wioc Woo Wor Wiy S5 @2.1)
responds to the antiferromagneti8F) Neel configuration WEE WS WSS iy S5 ’ ’
with magnetic moments pointing along the(y) axis. The e a e e o
rotational invariance of the pure isotropic model is destroyed 01 1 10 00 4

by any dipole interaction. The column@®) phase is selected \here

for 0.210< 9<0.464 and for 0.7678 n<1. For 0.464& 7

<0.7675 a vortical(V) configuration characterized by 1

XX __

= /4 is selected. The columnar configuration found in the Win=
model with a pure dipole interactiGh®is recovered.

02 [(M+211)%+ (n+21,)%]%2

For »=0 and »=1 the RSW approach confirms the ab- (m+21,)2
sence of LRO in the former case and provides LRO in the X|3ny m+ 212+ (n+ 2] )2—1} (2.2
latter® The soft mode forp=0 is related to the invariance ( 1 2
under rotation of the model so that it survives thermal fluc-and
tuations and leads to a divergent number of spin deviations.
On the contrary the accidental soft mode present in the LSW 1
spectrum forp=1 is replaced by a temperature-dependent W= 2 213
gap in the RSW approximation. LRO is assured even though 12 [(M+214)"+ (n+215)7]
an interesting nonanalytic behavior is found for vanishing (N+21,)2
temperature. An analogous result fox@<0.464 and for X 37’(m+2ll)2+(n+2lz)2_1}' 2.3

0.7675< <1 is found in Sec. IV. We believe that the ap-
pearence of a temperature dependent gap occurs also fgthenm=n=0 the term in the sum with;=1,=0 has to be
0.464< 7<0.7675 although the RSW approximation is un- excluded. Owing to the symmetry relationsiig = WYY |
tractable for vortical configurations since in this case thethe eigenvalues of the two matrices appearing in(d) are
ground-state configuration cannot be described by a simplghe same. The dipole interaction matrix can be easily diago-
helix. nalized because it has the same eigenvectors as the group of

In Sec. V a Landau functional to describe the temperaturepermutations, (t=1,2,3,4) for four element$®,=1 (iden-
driven first-order columnar-vortical and vortical-columnar tity), P,=(1,2)(3,4), Ps=(1,4)(2,3), andP,=(1,3)(2,4).
phase transition is proposed. A very small specific heat jumrhe unnormalized eigenvectors are
is found crossing the columnar-vortical or vortical-columnar
phase boundary.

In Sec. VI the phase diagram of the model in thgT)
plane is given as obtained by MC simulations. The order q(1)=
parameter, specific heat, and staggered susceptibility are
evaluated for selected values pf Critical exponents of the
order parameter and of the staggered susceptibility are ob-
tained by size scaling analysis of the MC data. The phase 1 1
diagram consists of four regions corresponding t@INAF),
columnar(C), vortical (V), and columnatC) ordered phases. q(3)=
The model withnp=0 appears to be an “isolated” point of -1’
the phase diagram. Indeed for amy-0 the dipole interac- -1 1
tion supports long-range order and the order-disorder transi-
tion temperature is finite. Section VII contains a summaryand a generic spin configuration can be written
and conclusions.

1

e
e
=
)
SN—"
|

(2.9

S
Il. GROUND STATE >
_ _ =a,0(1)+b,q(2)+c,a(3)+d,q(4), (2.9
We apply the Luttinger-Tisza methtfto the planar rota- S;
tor model in order to get the ground-state spin configuration. Sy

We consider a square of four spins as basic array, the vertices

of which are labeled 1,2,3,4. If is the group of translations With a@=x,y under the “weak” condition on the spin
l,au,+1,au, of the lattice and’2 the subgroup of transla- magnitude:

tions 2,au,+2l,au,, we consider the spin configurations

obtained by applyllng“zl to our baS|_c arrays of spins. The 2 (ai+b§+ci+d§)=82. (2.6)
energy of a generic spin configuration can be written as a=xy
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The ground-state energy is obtained in correspondence to thehereE, is given by Eq.(2.11) for 0< <0.210 and by Eq.
maximum eigenvalue of the dipole interaction matrix. Note(2.12) for 0.210< »<1. The bilinear contribution reads
that no demagnetization corrections are to be considered be-
cause in two-dimensiond&PD) models such corrections are
proportional to the inverse of the linear dimension of the
macroscopic sample. The eigenvalues are

1
HZZE

2
Mm
Jo—l—?

X X ATy, (62
q s¢
e where wés) is the spatial Fourier transform of the angular
A1 =Woot+ Wor+ Wiy +Wip=13.545-9.030, (2.7  deviation of the spin on thesth sublattice. For &7
o <0.210(Neel phasg the elements of the symmetric matrix
No=Wgo— Wi+ Wii—Wig= —3.969+ 2.646, (2.9 A are

Ng=Woo— Woi— Wi+ Wip=4.163+0.935, (29 Al'= AZ= A¥= AY= W(0) — W(0) — WK(0) + W(0)

Na=Wgo+ Woi— Wii—Wig= —6.970n+o.935,(2 " — WE(a)cos 60— Wg(q)sin’ -+ Wg(q)sin(26),
' 3.3
so that the ground-state energy is (339
NS 2 A= AY'= W) sin? 6+ WiY(q) cos o— WiY(q)sin(26),
Eoz - J0+ - )\2 l .
> N (2.10 (330
for 0<<0.210 and A= AZ'= — W) sinfo—WIY(G) cos -+ WiY(G)sin(26),
(3.30
NSZ 2
E0=_ _(‘]0+ M_S )\3 (212 14 23 XX/ 2N s VY -~ Xy >\
2 a A;=A; =W5i(q)sir? 0+ W3(q)cos o—W3Y(q)sin(26).
for 0.210< »<1. For »=0.210 one ha®Vj;=W}} so that (3.30
A,=\3. The spin configuration for € <0.210 is a Nel For 0.216< »<1 (columnar phasethe elements of the sym-
two-sublattice antiferromagnetic one: metric matrixA ; are
é AJ;1:A§3: XX XY —WEX(0) — W0
il 1 1 q q 00(0) +Win(0) 01(0) 11(0)
S -1 -1 -~ . s
?2 =Scos|  |uc+Ssing| |uy. —WE(q)cos 60— Wey(q)sin? 0+ Wgi(q)sin(26),
S . . (3.43
Sy N B R
(2.13 A§2=A§4=Wig(q)sinZe—W{g(q)cosza, (3.4b)
For 0.216< »<<1 the spin configuration is a four-sublattice 13 . . .
one where the spins make angs— 6, =+ 6, 7— 6, with A =Wii(q)sin 6+ Wii(g)cos' 6— Wii(q)sin(26),
the x axis (3.40
S, 1 1 A34=A§3= —WEX(q)siPo+W¥(q)cos.  (3.4d
%2 —Scosd 1 U, +Ssing -1 uy. The matr_ix elementd =A% are obtai_ned fr_omlk(lil chang-
S; -1 -1 ing the sign of the last term on the right side. Analogously
g -1 1 A§4 is obtained fromAé3 changing the sign of the last term.
A

(2.149 The coefficientsw,f“n’?,(ci) are defined as follows:

Note that the coefficients satisfy the “strong” condition on
the spin magnitude. As one can see from E@13 and W (q)= > cod (m+21)ag,Jcod (n+212)aq,]
(2.14 the ground-state configuration is affected by continu- PP [(m+21,)%+(n+21,)%]%?
ous degeneracy becauseis arbitrary as happens for pure
dipole interaction$:

(m+2l,)?
ez a2 ) @39

Ill. SPIN-WAVE THEORY:

ORDER BY THERMAL DISORDER cog (m+2l,)ag,]cog (n+2l,)aq,]

Following Ref. 14 the Hamiltoniafl.1) can be expanded 1.2 [(Mm+211)2+(n+21,)2]%2
in a series of spin deviations (n+2l,)2

(m+21)2+(n+20,)%2

X

37

l}, (3.6
H:E0+H2+H3+H4+~-~, (31)
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FIG. 1. Eigenvaluesff) given by Egs(3.9) and(3.10 vs wave vector measured in reciprocal lattice units alongtt@, (0,1), and(1,1)
directions fory=0.1 andfd=0. The spins are arranged in the antiferromagn@f€) Neel configuration.

xy oy Si(m+2ly)agsin(n+21,)aq,]
Wmn(q) |§2 [(m+2|1)2+(n+2|2)2]3/2

(m+21)(n+2l,)
T+ 21)%+ (n+21,)2"

3.7

Whenm=n=0 the term in the sum with,=1,=0 has to be
excluded. The eigenvalu&%s) of the matrixA ; provide the
LSW energy spectrunv: was) for ay,q, ranging from
—r/2a to m/2a:

2
)
J0+¥

1
e_=
ﬁwq

5 szxgs) (s=1,2,34. (3.9

For 0< %<0.210 the four eigenvalues%s) are given hy
NE2= Wig(0) — WEK(0) — WE(0) + WXK(0)
—[Wg(a) +WiY(q)]cos’ 6
—[Wg5(a) +Wii(q)]sir?e
+[Wgg(a) +WiY(a)Isin(26)
F{Wi5(a) + Wi(q)]sir?e
+[Wi¥(a) + W(a)]cos 6

—[W3§(a)+W5(q)]sin(26)}, (3.9

A =Wg5(0) ~ Wi5(0) — W(0) + Wii(0)

~[WE(a)—W{(a)]cos'e

—[Wg§(a) — Wi(a) ]sir? 6+ Wij(d) —WiY(a) ]

X sin(26) +{[Wi5(q) — Wgi(q)]sirP 0
+[WiH(9) — W{(a)Jcos' e

—[Wi(a)— Wsi(a)]sin(26)}. (3.10

As one can see the eigenvaly89) and(3.10 are functions

of the wave vectoﬁ and depend on the angtethat charac-
terizes the continuous degeneracy of the ground state. Figure

1 shows the eigenvalues(ﬁs) versusﬁ along some directions

of high symmetry forp=0.1 and6=0.
For 0.216< <1 the eigenvaluesff) become

NP~ WH(0) + WEH(0) ~ WEK(0) ~Wi(0)
~[WE(@) +WYi(q)]cos 6 [Wig(a) + WiK(a)]
X sin? 05 {[ (Wi5(q) + Wgi(q))sir’6
— (W{(a) + WH(q))cos 6]

+WE(Q) + Wi(q)1%sir(20)} 12 (3.11)
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FIG. 2. Eigenvalueags) given by Eqs(3.11) and(3.12 vs wave vector forp=0.6 andd= w/4. The spins are arranged in the vortical
(V) phase.

)\%3,4): XX(0)+W(0) — WEX(0) — W(0) Figure.3 shows the same quantitLes pr 1 gnd0=0. Note
) ) the existence of a soft mode fg—0 in Figs. 1-3. One
—[WE¥(q) —WYJ(q)Jcog o branch in each figure goes to zero quadratically in the long-
_ . _ wavelength limit. This peculiarity is true for any value of the
—[Wes(a) — Wii(a) ]sin? 6+ {[ (Wi5(q) angle.
o e . . 5 In order to test the effect of thermal fluctuations on the
—Wgi(q))sir? 6— (Wi¥(q) —Wi(q))cos 4] spin configuration we evaluate the free energy in LSW ap-
- - proximation strictly following Ref. 14:
+[Wgd(a) — Wii(a) 1sin(26)} 2 (3.12
1 1 T 1
Figure 2 shows the eigenvaluk%s) for »=0.6 andg= =/4. F=mghm g Ting 245 TH(.0), 313
18 e 1 e e 12 e T
10 - — 10 - — 10 —
I . of o .
@ C C C
o 6 — 6 — 61—
< C ] C C
- . g - .
2 . ds 2 .
P P P P eyt IO O IO 0 oA I T
G 005 0.1 0.15 0.2 025 0 005 0.1 015 0.2 0.25 0 005 0.1 0.15 0.2 025
(1,0) (0,1) (1,1)

FIG. 3. Eigenvalueaxgs) given by Egs(3.11) and(3.12 vs wave vector fomp=1 and#=0. The spins are arranged in the colum(@r
phase.
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(b)

n=1

FIG. 4. The free energy

/

n=0.6 ¢-dependent term given by Eq.
(3.14 vs 0 for selected values of
7 (a) AF configuration andb) co-

- —0 45 lumnar and vortical configuration.

;

n=0.3

0.2 0.4 0.6

V)

[=}

whereF is the reduced free energy per spin dni$ reduced In Figs. 4 and 5,f(#,6) is shown as a function of for
temperature in units Jo+ u?/a®)S?, A=\, for 0<z different values ofy. As one can see the minimum of the
<0.210,A=\5 for 0.210< <1, and

£(6,m)

Il
©
IS
o
o)

a_2 wla [ mla
f(n,0)=?f0 Jo daydgyIn(detAy)

0.804

0.802

0.800

0.798

0.798

0.794

free energy occurs ab=0 for 0<%<0.464 and 0.7675
<yp<l1, at 0=7/4 for 0.464< n<<0.7675. The correspond-
ing spin configurations are AF configuratip®=0 in Eq.
(2.13] for 0<%<0.210, C configuration =0 in Eq.
(2.14] for 0.210< < 0.464 and 0.7675 <1, V configu-
ration [ 0= m/4 in (2.14)] for 0.464< n<0.7675. This is a

a2 wla [ mla 4 indi H ; 3
_ ?fo fo dqdeySZl n )\%s)_ (314 Stong indication obrder by thermal disordet® Anyway the
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FIG. 5. The same as Fig. 4 for
values of » (a) in the neighbor-
hood of the first-order C-V phase
transition occurring aty=0.464
(b) and in the neighborhood of the
first-order V-C phase transition
occurring atyp=0.7675.
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—0 for any » in the LSW spectrum leads to a divergent 1 . .. 1
mean-square angular displacement as for the pure dipole in-  2ar(0)=1; > [D*(Q-K)-D¥(Q- k1
teraction (7=1).° To understand the contrasting indications K k

based on the free enerd®.13 and on the magnetization 2 DY(Q—K) 2
evaluated by the LSW approximation one has to go beyond +— e 4.3
the harmonic approximation. N ¢ €k

For »=0.210 andf#=0 (the angle selected by thermal
fluctuation$ the eigenvaluesff) of the AF phas¢Egs.(3.9)
and(3.10] coincide with those of the columnar phd&egs.
(3.11) and (3.12]. Two_ very low quasidegenerate branches 1 1
occur along the€0,1) direction. These two branches vanish Sc(do) = 5 > [Dxx((§+ﬁo—IZ)—Dyy((§—I2)];

k

The renormalized gap in the C phdsétained forg= g, and
Q=(27/a)(0.3)] is

qguadratically for 5]%0 and reach their maximum, K

=0.0161 at the zone boundamy= (27/a)(0,1/4). The exis- 1 o L

tence of two soft modes fom=0.210 requires a self- +NZ D*¥(Q—-K)[D™(Q—Kk)
K

consistent treatment of the anharmaonic contributions as
shown in the next section.

>

. 1
+DY(Q—k+0qg)]—

€k €k—qq

(4.9
IV. RENORMALIZED SPIN-WAVE THEORY
Note that the soft modes ig; at k=0 in Eqg. (4.3 and atk

=(qg in Eq. (4.4) do not make the sums divergent because of
€= D*XQ)— DVV(Q—ﬁ) (4.1)  the simultaneous vanishing of the numerators. The self-
) ) ) energy(4.3) goes to zero ag— 0 as expected because in the
for qx.qy ranging from—/a to m/a. Now the unit cell in  |ong-range isotropic antiferromagnetic system no gap exists
the reciprocal lattice is the “chemical” cell which is 4 times owing to the presence of a genuine Goldstone mode related
larger than the “magnetic” cell. Of course; given by Eq. g the rotational invariance of the Hamiltonian. However, a
(4.1) reproduces the four branches given by E@9 and  temperature-dependent gap is expected form#y because
(3.10 for the AF phase and by Eqf3.11) and(3.12 for the  of the symmetry breaking caused by the dipole interaction.
C phase when the folding of the chemical cell is performed . i siance we obtaig,=0.102 at 7=0.1. At =0.210

Note that the LSW spectrum vanishesgat (0,0) in the one more soft mode appears&at(Zw/a)(O,l/Z) in the AF

AF phase whereQ:(Zw/a)(%,%) and at qo=(27/8)  phase and aj=(27/a)(1/2,0) in the C phase. The two soft
X(3,3) in the C phase wher®=(27/a)(0,3). This fact modes found aty=0.210 belong to the two soft branches
implies the order parameter to be zero at any finite temperadiscussed at the end of Sec. Ill. These two soft modes cause
ture. In analogy with the pure dipole caSeve extend the a divergence in the first sum of Eqg.3) and(4.4), respec-
RSW approximation to the casg#1 in order to find a tively. This is a signature of a nonanalytic behavior of the
temperature-dependent gap that replaces the soft mode foutftermally renormalized gap as a function of temperature in
in the LSW approximation. the neighborhood ofy=0.210. Perturbation theory fails and

The ground state of the AF phase fox3<0.210 and of a self-consistent approach is required to solve the puzzle.
the C phase for 0.2X07<0.464 and for 0.7678 <1 can  The self-consistent renormalized gap for the AF phase is

be described by a regular helix of pit€=(2=/a)(%,2 5 _
andQ=(27/a)(0,}), respectively. This fact greatly simpli- €0=—T2ar(0,€0), (4.9
fies the evaluation of the RSW spectrum. We apply the RSW,heres , (0%,) is obtained from Eq(4.3) replacinge; by

approach to Hamiltoniar(1.1) stictly following Ref. 17 €it€o. In the range 8:T<0.08 the numerical solution of

where only the pure dipole interactiom€ 1) was consid- ; : : X
ered. Note that the cumulant expansioselects the exact Eq. (4.5) is well fitted by the interpolation formula

low-temperature leading contribution, so that the kind of ~
LRO obtained by this approach is reliable. Equatithg)— €0=—0.356T-0.635T InT. (4.6

(2.20 of Ref. 17 are directly extended t9+1, replacing  The self-consistent renormalized gap for the columnar phase
Hamiltonian (2.1) of Ref. 17 by Hamiltonian(1.1) of the 7=0.21is

present paper.
The so-obtained RSW spectrum ish:ua: 3(Jo ’;aoz _Tzc(ao ’;‘io)’ 4.7
+p?la®) S%e; where

The LSW spectrum i¢ ;= 3 (Jo+ n?/a®) S?e; where

B ) where3 ¢(q ,Nedo) is given by Eq.(4.4) replacingeg by e;
€g= €5~ T2(q). (4.2) +~edo. In the range 8 T<0.03 the interpolation formula is

The renormalized gap in the AF phagsbtained forﬁ=0 ~
andQ=(2w/a)(3,3)] is €q,= —2.879r—1.793TInT. (4.9

212
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Away from 7=0.210 the values of the renormalized gap ported by thermal fluctuations. .

obtained by the self-consistent or the perturbation approach The free energy contribution for the Ble columnar, and
are the same. Fop=0.3 the perturbation theory provides vortical phases can be simulated by a Landau theory choos-
€5,=0.652T. At the C-V transition (=0.464) the ing a sixth-order functional

temperature-dependent gap becomes very smza(lild

=0.0053". An analogous softening occurs at the V-C transi- F=Fo+T
iion (7=0.7675) with €g,=0.0114r. For »=0.9 we have 2
€q,=0.210T. Finally, for n=1 (pure~dipole interactionwe
recover the result of Ref. 17, namelsq0=0575l'. A calcu-
lation of the renormalized spectrum in the neighborhood of r=ro+riT+ro(n—179), u,v>0. (5.2
the wave vector corresponding to the gap gives

r u v
—0>— — 9%+ — @b
0 40 +60 , (5.2

where

and 7, is the value at which a columnar-vortid&-V) phase
”edze (7)) +c )2+ cy( 702, (4.9  transition takes place in the low-temperature limit,is the
CAP Y coefficient of the anharmonic contribution to the free energy
where e_ (7) is ‘6o for the AF phase a”&do for the ¢ Which is beypnd.the.LSW approximation, ar{ is the frge
phaseic,,c, are finite for anyn and are temperature inde- energy contrlbutlon_ mdependen_t of the angleharacteriz-
pendent at low temperature. The mean-square angular di 1g the four-sublattice spin configuration. We have assumed
placement becomes e leading#-dependent contribution to the free energy pro-
portional to the temperatur€ in agreement with the result
T 1 (3.13 obtained by LSW theory. Minimization of with re-
<¢i2>= — > —=—a———TlIn[e_ (p)]+---, spect tof provides the equilibrium spin configurations for
N e 27 e, AP the set of parameters,,ry,r,,u,v.
(4.10 For r<0 the free energy5.1) shows two minima a#,

_ 1/2 ; ;
where the ellipsis means regular terms linear in temperaturg = [(U+ yu®=4uvr)/2v ] corresponding to a noncollinear
coming from the regular contribution to the sum. This Phase we will identify with the vortical phas@d= + m/4)
nonanalytic behavior was found also for the pure dipole""ﬂd a maximum at)=0 corresponding to the columnar

interaction’ The order parameter phase. ) _ .
For 0<r<u‘/4v the maximum a®¥=0 becomes a mini-
(cos:,b-)zcos((j F-)e*<‘/’i2>’2 (4.10) mum so that the free energy exhibits three minima&t0
I | "

(columnar phaseand 6,= =[(u+ Ju?—4uvr)/2v]*? (vorti-
has an infinite slope a6— 0. In this limit the energy costto cal phasg and two maxima at Ay==[(u
create a spin wave of the wave vector in the neighborhood of- \/JuZ—4yr)/2v]*2  The simultaneous occurrence of
the gap wave vector is vanishing so that a large number ohinima at6=0 and 6= 6, is a minimal requirement to de-
spin waves can be excited. However, the interaction betweescribe a first-order C-V phase transition which takes place
spin waves originates a gap in the spectrum that increases when F(9=0)= F(0= 6,), namely, forr=3u?/16v. In the
increasing temperature and LRO is restored. An isolategobw-temperature limit and fow, close toz, the above con-
point existsy=0 for whiche_, (0)=0 where LRO is ab- dition and Eq.(5.2) give
sent as expected on the basis of the LSW approximétion.
The actual thermal decreasing of the order parameter is 3u? ro
strongly related to the LSW dispersion curve througtand Mo~ 716" Te=- a( e 7o)
c, as it appears in Eq94.10 and (4.11). For »—0.210
where two branches become very soft, we expect a decreaBer r>u?/4v the only minimum of Eq.(5.1) occurs até
ing of the order-disorder transition temperature in spite of the=0 and corresponds to the columnar phase.

(5.3

fact that the renormalized gap increases-asin T instead of The C-V phase boundary.=T.(7.) has a negative or
T. positive slope depending on the sign of the ratjdr, and
whether, is greater or lesser thamn,.
V. TEMPERATURE-DRIVEN FIRST-ORDER PHASE The dimensionless specific heat C/kBL2 of the colum-
TRANSITION nar and vortical phase is
The temperature-driven first-order phase transition was PF,
investigated by a Landau functional in the frame of the c,(6=0)=—TW (5.9

g-state Potts model in two dimensions with=101 We
adopt an analogous approach to investigate the first-ord
columnar-vortical phase transition in the neighborhood of

n=0.464 andp=0.7675 where the transition occurs at van- Py I e (272
ishing temperature. We are interested into the C-V phasq:”(e: 90)=—T—29—f1 uTvu v + 1
boundary, in particular into the jump of the specific heat aT 2v 2JuZ—4pr’
which could be peculiar since the C and V phases are sup- (5.5

094412-8
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(a) (b)

I I | I i o5 | | |
115 <}> a i + j
L e R0~ 7] FIG. 6. (a) Specific heat aty
- e . L 4 =1 and T=0.75 for samples of
1.10 — — r aa] ] size 16<X16 (crossey 24x24
- 1 5= ] (vertical crossgs and 3232
F E L i (diamond$ as a function ofN,
O r . r . whereN is the number of configu-
- ] 1] i i rations taken in the MC average.
1.05 — — ~ 10— _ (b) The same for the staggered
r X %] - . susceptibility. Error bars are
- X : r XX X+ shown only for the lattice of size
i - [ X ] 32x32.
L ] s | ]
1.00 — X — r 7
TX ] I ]
oo ] i g 0 L vnd vvnd o
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N N

respectively. AtT=T,, namely, forr(T.)=3u?16v and in Fig. 5. The first-order C-V phase transition takes place at
6,=\/3u/dv, the specific heat undergoes a jump discontinu-70=0.464 for vanishing temperature with=r, and 6= 6.

ity of magnitude In order to haved,= /4 one has to puti/v=7%/12. The
free energy barrier
Ace= 3u 5.6 -
OO =gy (7= o). OO [Fow) ~F )1 = [FOw) = O r-1,=Teliizgs,

The set of parameterg),r,,u,v are evaluated by fitting the _ 5.7
sixth-order polynomial5.1) with the free energy contribu- has to be compared with the LSW free ene(@yl4 shown
tion (3.14 obtained by the LSW approximation and shownin Fig. 5 leading tou=0.0227. Fory close to, the free

L T T T T | T T T T T T T T T T T T | T T T T ]
L o i
14 - x16x16 & x |
L xi'x i
- 224x24 x Cux
L o i
- ©32x32 . PV
1.2 — b4 © —
i ox ]
i %: : FIG. 7. Specific heat fory
@) 1.0 — @ —] =0.6 as a function of temperature
B X é for lattice sizes of 1&16, 24
i ki X 24, and 3% 32 .
0.8 — R —
i 2 i
L & i
- & Q 4
08 - g " ]
]
C By Q| 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | n
0 0.2 0.4 0.8 0.8 1
T
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energy difference between the vortical and columnar phase section we evaluate the specific heat, order parameter, and
) staggered susceptibility for selected valuesnoin order to
T get the phase diagram of the model in thgT) plane.
F00) = HO) =T 551 2( 7= 10)- (58 We introduce a gauge tranformatiorior the Neel phase,

A comparison with the LSW free energy difference R

f(7,ml4)—f(7,0) shown in Fig. 5 gives,=—0.94, Ac M= (—1)"1"12[S,(Iy,1)u+S,(I3,1)u,], (6.2)

=0.58(170— 7¢), and T,=0.94/r|(77,— 7.). Note that the 1l

only unknown parameter is; which is related to the anhar-

monic contribution to the free energy. Anyway must be

negative in order to have a specific heat increasing with tem-

perature in the low-temperature limit in agreement with the  \j :2’ [(—1)'28(1 1l uy+ (— 1)1S, (11,1 )uy].
1-'2

and for the columnar and vortical phase,

Monte Carlo simulation as we will see in the next section.

The C-V phase boundary has a negative slope; namely, the (6.2
C-V phase transition takes place fp¢< 7y and specific heat . ,
shows a jump discontinuity at the transition. In order to suppress unphysical global rotation of the stag-

Analogous fitting aty,=0.7675 givesu=0.047 andr, gered magnetization due to the finite size of the sample we
define the order parameter as

=0.65 so that the jump discontinuity of the specific heat is
Ac=0.40(p,— o) and the V-C phase boundary i§, _
=0.65/r|(n.— 70). In this case the V-C phase boundary y={(|M|)/L?, (6.3
has a positive slope; namely, the phase transition takes place

for 5.> 7, and the specific heat shows a jump discontinuitywhereL XL is the number of lattice sites ad- -) means

at the transition. MC average. The order paramet.3) differs from that
given in Ref. 17 where the average of theomponent of the
VI. MONTE CARLO SIMULATION staggered magnetization was evaluated #fer1. We have

tested the reliability of our MC data in the critical region

We have performed MC simulations throughout the rangeevaluating the specific heat and staggered susceptibility at
0= n=1 going from a pure isotropic antiferromagnetic long- fixed temperature and different sample sizes as a function of
range interaction to a pure dipole interaction. The approacthe number of MC steps starting from the ground-state con-
of periodic “images” is adopted® This approach, which is figuration as suggested by Ferrenbetgal? In Figs. 6a)
based on a periodic arrangement of MC cells, seems to be ttend Gb) the specific heat and staggered susceptibility evalu-
most convenient to treat systems with long range interacated forp=1, T=0.75, and different lattice sizes are shown
tions. The limiting case=0 and =1 have been studied as function ofN, whereN is the number of spin configura-
by MC simulation’ and LRO was proved to exist in the tions used to evaluate the MC average. Each configuration is
former and prevented in the latter by performing a size scaltaken every ten MC steps. All data points in Figé)éand
ing analysis of the mean-square angular displacement. In thi&b) are obtained by an average over ten independent MC

094412-10
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20 T T T T | T T T T | T T T T | T T T T T T T T
L x 16x16 . _
= O -
| B 24xX24 i
15— ©o32x32 © ]
: ° : FIG. 9. Staggered susceptibil-
i . ;
10 — Bo _ ity for =0.6 as a function of
L & i temperature for lattice sizes of 16
47 | & | X 16, 24X 24, and 3X 32.
~< o o
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T

runs. A plateau is obtained whehis sufficiently large for  versus temperature faj=0.6 andn=1 for different lattice

any lattice size. LargeN are required to reach saturation sizes. All data points are an average over eight independent
when the sample size increases. Asymptotic values of th¥IC runs each of which consists of 401C configurations
specific heat and staggered susceptibility scale with théaken every ten MC steps. At each temperatureMG steps
sample size as expected in the critical region of a continuougre discarded for thermalization assuming as starting con-
phase transition. A previous analysis is crucial in order to gefiguration the final configuration of the previous temperature.
information about the number of MC steps convenient toThis implies that a very long effective simulation is per-

reach a good thermalization. In Figs. 7 and 8 we show théormed for temperatures belonging to the critical region. The
specific heat pronounced peak of the specific heat shows a moderate scal-

ing with the sample size whereas for temperatures far from
the peak temperature MC data are size independent. In Figs.

c=B2((H? —(H)?)/L? (6.4 9 and 10 the staggered susceptibility

30 B T T T T | T T T T | T T T T | T T T T | T T T T | T T ]

L x 16x16 o ]
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L 0 32x32 © 1
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>"§ i N ] for p=1.
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B x - FIG. 11. Order parameter for
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7=0.6 as a function of tempera-
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T
Xst:(<|M|2>_<|M|>2)/L2 (6. n=1, n=0.6, and»=0.1, corresponding to columnar, vor-

tical, and Nel phases, in order to get critical exponents. We

for the same values Qf shows a Sharp peak that scales with find thatv=1 is consistent with the size Scaling of the tem-
the sample size at the same temperature where the specifigrature at which the susceptibility reaches its maximum.
heat peak occurs. This is the signature of the occurrence of Bhe least-mean-squares method giyes0.26+ 0.03 for all
continuous phase transition. The behavior of the order pavalues of» and y=1.68+0.04 for =1 and »=0.6 while
rameter(6.3) versus temperature shown in Figs. 11 and 12y=1.61+0.03 for »=0.1. These values seem to be indepen-
supports the existence of this order-disorder transition. Thelent of the intensity of the isotropic exchange interaction.
location of the peaks of both specific heat and staggeredhis is not surprising since the symmetry is the same for any
susceptibility is slightly size dependent. 7n#0. Note that critical exponents fay=1 amend the re-

We have performed the size scaling analysis of the stagsults of Ref. 17 since in the present paper we have assumed
gered susceptibility6.5) and of the order parametés.3) for  a different order parameter to avoid the influence of unphysi-
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i ! i boundary locations.
0z |- AF V —— C -
L | i
i i i ]
- | 4
OO | | | | | | 1 | | | L i | 1 | | | 1 I‘ | 1 | 1 |
0 0.2 0.4 0.6 0.8 1

cal global rotations. In any case we obtain critical exponentand |<MX>|2|(My)|:1/\E in the pure vortical phase far
not falling in any known universality class. This fact is con- —0. In Figs. 14 and 15 we shof¢M,)| and[(M,)| for T
sistent with the conjectured correspondénas the square =0.1 aroundy=0.46 andy=0.77, respectively. The change
planar model with a pure dipole interaction to the squareof the spin configuration is clearly obtained but the location
planar model with nearest-neighbor interaction in presencef the phase transition is affected by an erfbyn=0.05
of a fourfold-symmetry-breaking perturbatiéhthe critical ~ around»=0.46 andA =0.08 aroundy=0.77. Crosses and
exponents of which are believed to be dependent on the pegiamonds represenM,)| and [(M,)| for increasing »
turbation intensity. while squares and vertical crosses are the same for decreas-
In Fig. 13 the phase diagram of the model is shown in thdg 7. As one can see metastability effects are more pro-
(7,T) plane. The order-disorder phase boundary is drawn gtounced around;=0.77. Analogous behavior was found for
the temperaturd () at which the specific heat and the T=0.2,(_).3, and 0.4. Horizontal bars in Fig. 13 show the
susceptibility show their maximum. We have used a 24uncertainty of the phase boundary location.
X 24 sample averaging ovdr=10* of MC configurations as In Figs. 16 and 17 we shoWM,)| and|(M,)| versus
suggested by Fig. 6. The critical temperature undergoes gmperature for=0.44 and,=0.8, respectively. The C-V

- - : phase transition is obtained in both cases but it is not sharp
substantial decreasing in the neighborhood;ef0.210, as .and the uncertainty is shown by a vertical bar in Fig. 13.

expected on the basis of the analytic'r'esult of Sec. IV. This ISimilar behavior is found forp=0.4. On the contrary for
not the case of the C-\_/.phase transitionsat 0.464 and of 7=0.5,0.6,0.7,0.9 no C-V phase transition occurs. These re-
the V-C phase transition aty=0.7675 where no soft g, ajlow us to draw the V-C phase boundaridashed
branches in the energy spectrum are found. _ lines) in Fig. 13. As one can see these phase boundaries are
The model with»=0 seems to be an isolated point. In- yery steep. This implies a very small jump discontinuity of
deed the critical temperatufig(#) of our finite sample with  the specific heat across the phase boundaries on the basis of
L =24 increases monotonically going from=0.210 ton  Eq. (5.6) so that it is not surprising that no evidence of a
=0. On the other hand, our analytic calculation performedirst-order phase transition is obtained from any MC simula-
for L—o provides a logarithmic divergence of the mean-tion of the specific heat. On the basis of our analytical cal-
square angular displacement as given by @ql0. How-  culations proving the existence of orderedelNecolumnar,
ever, assuming a finite-size lattice the argument of the logaand vortical phases in the low-temperature limit and in
rithm in Eq. (4.10 should be replaced bygap(7)+L 2 agreement with MC simulation, we think that the phase dia-
=~ yT+L "2 so that values of; not lower than 102 have to  gram shown in Fig. 13 is reliable even though the order
be used to get reliable MC simulations. parameter data as a function gfshown in Figs. 14 and 15
The location of the two first-order phase boundaries bed0 not undergo a steep increase prevented by the finite size
tween columnar and vortical phases is very difficult to deter©f the sample.
mine. We have explored the regions around the C-V and V-C
phase transitions for several temperatures evalu@ivg)|
and [(M,)| versusy using a 3% 32 sample. Indeed one  The square planar rotator model with a long-range isotro-
should have(M,)|=1 and|(M,)|=0 in the columnar phase pic interaction decaying as rf/ and dipole interaction is

VIl. SUMMARY AND CONCLUSIONS
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studied in the range@ »<<1 wheren measures the relative We have investigated the discontinuous columnar-vortical
strength of the antiferromagnetic and dipole interaction. Thghase transition by a Landau functional simulating the
Luttinger-Tisza method provides the ground-state configura#-dependent free energy obtained by the LSW approach by a
tion which is Nel, columnar, vortical, and columnar-like sixth-order polynomial. We have obtained the specific heat
sweeping from»=0 to »=1. The ground state is affected jump Ac and the C-V phase boundary. Very smalt is

by a continuous degeneracy corresponding to a free rotatioexpected but the actual slope of the C-V phase boundary
of the sublattice magnetization with respect to the latticedepends on anharmonic contribution, which is beyond our
The low-temperature region is studied by the linear andanalytical calculation.

renormalized spin-wave approximation. The continuous de- We have performed MC simulations for selected values of
generacy is lifted at any nonzero temperature for ggnd  » and we have evaluated the specific heat, staggered suscep-
long-range order is supported by thermal fluctuations exceptbility, and order parameter. Critical exponents not falling in
for =0 where no long-range order is found in agreementany known universality class are found by size scaling analy-

with MC simulations and RG analysis. sis of the MC data. The phase diagram agrees with the or-
10 T T T | T T T T | T T T T é T T
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dered phases found analytically in the low-temperature reeritical exponents were not measured so that we cannot test

gion. Size scaling of the specific heat and staggerethe values of3 and y we have obtained by size scaling

susceptibility indicates that the order-disorder phase transianalysis.

tion is continuous. The decreasing of the critical temperature In summary a comprehensive study of the square planar

around »=0.21 where the Na-columnar phase transition model with long-range spin-spin interaction is presented. The

occurs is well understood in terms of the existence of twdong-range order is a consequence of thermal fluctuationsthat

very low branches in the elementary excitation spectrum. suppress unphysical Goldstone modes. MC simulations pro-
The columnar-vortical and vortical-columnar phasevide the phase diagram which agrees with the low-

boundaries cannot be localized with the same precision as faemperature analytic result.

the order-disorder phase boundary where a sharp peak in the

specific heat. and in the staggered su_cept|bll|ty occgrs. The ACKNOWLEDGMENT

columnar spin phase was observed in BEB&0g,,," a

compound where dipole forces play a crucial role owing to  The authors thank Professor David P. Landau for helpful

the weakness of the exchange interactions. Unfortunately théiscussions.
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