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Bloch walls in strongly driven easy-plane ferromagnets

A. S. Kirakosyan, F. Kh. Abdullaev, and R. M. Galimzyanov
Theoretical Division of the Physical-Technical Institute, Uzbek Academy of Sciences,

G. Mavlyanova Str. 2B, Tashkent 700084, Uzbekistan
~Received 5 September 2001; published 6 February 2002!

We show that the action of strong rapidly oscillating transverse magnetic field in easy-plane ferromagnet
gives rise to the appearance of effectivebiaxial magnetic anisotropyand new soliton solutions in the form of
Bloch and Ne´el domain walls.Exact analytical expressionsdescribing the conversion of a Ne´el wall into the
stationary Bloch wall under dissipation are derived on the ground of the adiabatic approximation which are in
goodagreement with the numerical simulations of the basic strongly perturbed Landau-Lifshitz equation.
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I. INTRODUCTION

Strong and rapid perturbations can be a source of dra
change in the nonlinear system behavior and can lea
dynamical stabilization via the appearance of new soli
solutions. This phenomenon seems to be a general char
in different fields of condensed matter physics. As an
ample Josephson junctions under external ac force can
port stable propagation of localized fluxons synchroniz
with a rotating background.1 In a nonlinear optical medium
with quasi-phase-matched quadratic nonlinearity, averag
over rapid periodic modulations of nonlinear susceptibil
induces Kerr effects, such as self- and cross-ph
modulations.2 In view of the above-mentioned phenomen
magnetic systems leave much room for study.

Ferromagnets strongly driven by a transverse magn
field were the subject of special interest for a long time a
the discovery of spin-wave instabilities by Suhl.3 Since then
many papers dealing with truncated spin-wave mode mo
have been published~for a review see Ref. 4 and the rece
paper in Ref. 5!. The regime far above the spin-wave inst
bilities remains an open question.

The dynamics of nonlinear excitations as well as th
equilibrium and thermodynamical properties in quasi-o
dimensional easy-plane ferromagnets~EPFM’s! has been
widely investigated over the last few decades.6–9 The exis-
tence of freep kinks in EPFM’s under a rapidly oscillating
mean-zero magnetic field has been shown in Ref. 10 in
frame of the sine-Gordon equation~sGE!.11 The equation
governing a nonlinear spin dynamics is known to be
Landau-Lifshitz equation~LLE! which can be mapped ont
the sGE only in the limit of low magnetic fields and sma
off-easy-plane spin excursions.12

It is well known that a magnetic field applied within th
easy plane breaks the integrability of the system. Never
less, in the case of strong and rapidly oscillating magn
fields one expects the averaged nontrivial dynamics to re
integrability.

In this paper we study strongly driven EPFM’s. Mult
scale expansion is employed to derive the averaged Lan
Lifshitz equation describing the dynamics of abiaxial ferro-
magnet possessing a stationary Walker solution in
presense of damping.13 We also study the dissipative tim
evolution of a Ne´el wall into the stationary state which de
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pends on the amplitude of the dc magnetic field and the r
of the ac magnetic field amplitude to the driving frequenc

The outline of the paper is as follows. In Sec. II, th
model for EPFM’s is introduced. In Sec. III the multiple
time-scale approach is used to derive the averaged Ha
tonian. Section IV is devoted to the properties of new so
tions in the form of Bloch walls. In Sec. V numerical an
analytical results concerning the transformation of the N´el
wall into a stationary Bloch wall under damping and ad
tional dc magnetic field are presented. The conclusions
summarized in Sec. VI.

II. MODEL

The Hamiltonian for a ferromagnetic chain has the form14

H52J(
i

Si•Si 111A(
i

~Si
z!22(

i
Si•H, ~1!

where Si stands for the classical spin vector measured
units of the Bohr magnetonmB at thei th site along the chain
i.e., along thez axis. The first term describes the neare
neighbor ferromagnetic exchange interaction of strengtJ
.0. The parametersA andH are the easy-plane anisotrop
constant and the magnetic field along thex direction, respec-
tively. For the quasi-one-dimensional ferromagnet CsNi3,
the parameters take the valuesJ523.6 K andA54.5 K,
which corresponds to a magnetic field of 18 kG.

The spin dynamics is governed by the LLE with the ph
nomenological Gilbert damping term:

Ṡi52gSi3
dH
dSi

2
a

S
Si3Ṡi , ~2!

whereS5S(cosfsinu,sinf sinu,cosu), 2dH/dSi is the ef-
fective magnetic field at sitei, g5gmB is the gyromagnetic
ratio anda is the dissipation strength.

A continuum model of EPFM’s can be derived in th
usual way; see Ref. 14. Let us put for simplicityS51 and
rescale the variables ass→S, t→2Agt, z2→z22A/Ja2, and
H→H/2A.

In the new variables LLE with driving magnetic fiel
H(t/e)5H1h sin(t/e) takes the form

st5s3@szz2szez1H~ t/e!ex#2as3st , ~3!
©2002 The American Physical Society11-1
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where subscripts (t andz) denote derivatives~with respect to
time t and spacez coordinates!, ez and ex are unit vectors
along thez andx axes, respectively, superscripts denote
indicated components of spin vectors ande51/v!1, andv
is the dimensionless driving frequency.

III. MULTIPLE-TIME-SCALE TECHNIQUE

In order to find an averaged equation we employ
multiple-time-scale expansion technique.15 We introduce the
multiple time scales~a fast time variablet5vt5t/« and
slow time variablestn5«nt, with n50,1,2, . . . ) asfollows:

]

]t
5

1

«

]

]t
1

]

]t0
1«

]

]t1
1«2

]

]t2
1•••,

s5S1«s11«2s21•••, ~4!

st5St0
1s1t1«~St1

1s1t0
1s2t!1«2~St2

1s1t1
1s2t0

1s3t!

1•••, ~5!

where we introduce the slowly varying envelope functi
S(tn), which depends on the slow timestn . The fast oscil-
lating componentssn(S,t) (n51,2, . . . ) depend onS and
fast timet.

To separate the fast oscillations from the slowly varyi
field, we substitute expressions~4! and ~5! into Eq. ~3! and
expand in powers of« by the proper avoiding secular term

For the leading order of («0), we have

St0
5S3~Szz2Szez1Hex!2aS3St0

, ~6!

s1t5h sintS3ex2aS3s1t . ~7!

From Eq.~7! we find

s152h cost~S3ex2aS3@S3ex# !; ~8!

here, we assume thata!1, since dissipation is small in fer
romagnets of high purity. Therefore we can neglect all ter
proportional toa2 anda2h2e2 since they are small in com
parison with thea ones.

In the next order«1, we findSt1
50 and

s2
x5h sint@~Sz!22~Sy!2#,

s2
y5h sintSxSy2

h2

2
Sycos 2t,

s2
z52h sintSxSz2

h2

2
Szcos 2t. ~9!

Let us write the formula fors2, expressed in componen
of slowly varying spinS up to terms of orderO(D2), and
average over the oscillation time period of the driving ma
netic field. Thus we get (Sx)21(11D)@(Sy)21(Sz)2#51.
From this we find it necessary to rescaleS components pro-
vided the conservation of the spin length holds:

Sx→Sx, Sy→A11DSy, Sz→A11DSz. ~10!
09441
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By using the rescaled slowly varying spin compone
~10! we obtain averaged LLE’s up to terms of the ord
O(D2) which can be written as follows:

St
x5~SySzz

z 2SzSzz
y !2~122D!SySz,

St
y5SzSzz

x 2SxSzz
z 1~12D!SzSx1SzH,

St
z5SxSzz

y 2SySzz
x 2DSxSy2SyH, ~11!

whereD5(«h)2/2. We do not write the dissipation term o
the right-hand side~RHS! of these equations@this term is
simply reduced to2a(122D)S3St].

The Hamiltonian of the averaged system from Eqs.~11!
expressed in the original variablest, z, andH is

Eav5E
2`

` dz

a FJa2

2
Sz

21A~Sz!22SxHG1E
2`

` dz

a

3$AD@~Sy!22~Sz!2#%1O~D2!. ~12!

This is exactly the total energy of a biaxial ferromagnet. L
us choose a new system of coordinates such that the
system (x,y,z) goes into the new system (z,x,y). The biax-
ial ferromagnet in the new parametrization has two easy a
x and z with easy-axis anisotropy constants equal toA(1
22D) andA(12D), respectively.

IV. BLOCH WALLS

Now after averaging one integrable system, the uniax
ferromagnet under rapid perturbation, we treat another in
grable system, the biaxial ferromagnet which is rather w
studied.16,17 This system is known to be completely inte
grable in the absence of damping and an external magn
field.18

There are two degenerate spin configurations which m
mize the energy~12!: uniform configurations with all spins
pointing either along the positive or along the negativex
direction. Due to the effective easy-axis anisotropy in E
~12!, the transition region will have a finite width and form
Bloch wall ~or soliton!. A static Bloch wall connects the
anisotropy minimaf50 andf5p within the easy plane.

Now let us consider moving Bloch wall configuration
We use dimensionless variables for convenience. In the
sence of damping and a static magnetic field the ex
Walker solution for averaged system can be expressed a19

Sx52tanhu,

Sy5cosw sechu,

Sz52sinw sechu, ~13!

where w5w05const andu5qE(w)(z2vt)/2. The param-
eter q is the topological charge of soliton and is defined
q5 1

2 @Sx(z5`)2Sx(z52`)#. In this paper we conside
further only the case withq51. The velocity and energy o
the Bloch wall are given by

v5~12D!sin 2w/E~w!, ~14!
1-2
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BLOCH WALLS IN STRONGLY DRIVEN EASY-PLANE . . . PHYSICAL REVIEW B65 094411
E~w!52Asin2w1D cos2w. ~15!

The static Bloch and Ne´el walls correspond tow050 and
p/2, respectively.

The maximum velocity of the Bloch wall isvmax51
2AD which is finite and the width of the soliton shrink
with increasing velocity. There are two branches in theE(v)
curves. We refer to solitons withE,E(vmax) and E
.E(vmax), whereE(vmax)52D1/4, as belonging to the lowe
and upper branches, respectively. Solitons in the up
branch have smaller width than in the lower one at the sa
velocity as is evident from Eq.~15!. The bloch wall in the
lower branch resembles outwardly thep kink of the sGE.
The essential distinction between sGE theory and the L
one is thatp kinks of the sGE~Ref. 10! do not exist in the
upper branch.

We have performed numerical simulations of the LLE
making use of the implicit finite-difference method for int
gration.

In order to obtain initial conditions let us substitute Blo
wall solution ~13! into Eqs.~8!, ~9!, and ~4!. After straight-
forward calculations we get an equation which connects s
vector s with its slowly varying componentS. In order to
recover spin lengthS conservation we should divide the e
pressions forsy and sz by a factor ofA11D2. It is valid
because we work with an accuracy up to terms of or
O(D2). After some simple algebra we arrive at

sx~0,z!52tanhu~0,z!,

sy~0,z!5cos~w2eh!/coshu~0,z!,

sz~0,z!52sin~w2eh!/coshu~0,z!. ~16!

We determine the Bloch wall velocity from the zero cros
ing of the Sx spin component. We can use this numeric
definition for the soliton velocity as long as strong asymm
ric shape distortions are absent. Figure 1 shows the m
energy versus the mean velocityE(v). The coincidence be
tween the analytical and numerical data is surprisingly go
for smaller D, when corrections to Eq.~11! of the order
O(D2) are negligible.

We also compare the propagation of two different solito
in the lower and upper branches of the energy curve for
same velocityv50.5 and D50.125. Both solitons move
equally and begin to substantially deviate from the init
solution ~13! after a time of the order of 3/D in dimension-
less variables. Note that the soliton in the upper branch
gins to be destroyed under strong radiation slightly fas
than the one in the lower branch. It is clear from this fact t
the upper branch is more unstable to all appearances. Sim
branches ofE(v) curves arise also in the soliton dynamics
EPFM’s in static magnetic fields without driving12,20 which
is a distinctive feature of the LLE.

V. DISSIPATIVE CONVERSION OF A NÉ EL WALL INTO A
STATIONARY BLOCH WALL

The most interesting case concerns stationary mov
Bloch walls13 generated by strong and rapidly oscillatin
09441
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non-mean-zero magnetic fields under damping.
A steady state can exist only in the lower branch of t

E(v) curve. The parameters of the stationary Walker solut
up to orderw2 have the form

w05H/@~123D!a#,

E52AD1w0
2, v52H/@a~122D!E#. ~17!

From Eq. ~17! we conclude that a steady state exists p
vided the stationary velocity is not too close to the maximu
velocity and the static magnetic fieldH is smaller than (1
2D)a. From this we get the conditionD.w0

2. At the same
time D should not be so large, since we neglect terms
orderD2.

The results of numerical simulations are presented in F
2. We compare parameters obtained from the simulations
different values ofD at fixed H with the theoretical values
calculated from Eqs.~17!.

FIG. 1. Mean Bloch wall energy against mean velocity withH
50, a50 for different D. Scatter graph with crossed circles
obtained by numerical solution of the LLE. Solid curves correspo
to analytical expression forE(v): Eqs. ~14! and ~15!. ~1! sine-
Gordon limit; D 5 0.005 ~2!, 0.02 ~3!, 0.045 ~4!, 0.08 ~5!, and
0.125 ~6!. The figure is symmetric with respect to transformati
^v&→2^v&. LabelsA, B, andC correspond to initial state on th
upper branch, the state with maximum velocity, and final station
state on the lower branch~see Figs. 2 and 3!.

FIG. 2. The ratios ofE/Eth andv/v th vs D, whereEth , v th are
calculated by Eqs.~17!. H51024 (h),1023 (s),1022 (L), and
231022 (n). The dampinga50.1.
1-3
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By solving the LLE with initial conditions~16! in the
upper branch we observed the transformation of the N´el
wall into a stationary Bloch wall. The damping plays a fu
damental role in this process. The energy and velocity of
soliton gradually approach their stationary values due to
sipation.

A typical picture of conversion is depicted in Fig. 3. W
represented the time evolution of the space distribution
the slowly varyingSx spin component. This component c
incides withsx with an accuracy up toO(D2).

The soliton with an initial velocity of 0.18 passes from th
upper to the lower branch and broadens its width unti
approaches the stationary state with a velocity of about 0
The analytical expression~17! gives v'0.33, but the true
value is 0.32 in accordance with Fig. 2. We can calculate
time evolution of the soliton energy for the case with mea
zero magnetic field̂H&50 assuming that switching occur
adiabatically. The time dependence of the energy for
switching process has the form

E~ t !5D21/4Acoshn~ t !/coshh~ t !, ~18!

v~ t !50.5~12D!D21/4/Acoshn~ t !coshh~ t !, ~19!

where h(t)5 ln(tanf0)2a(123D)t, n(t)50.5 ln(D)2h,
andf05f(0). Analytical and numerical results are in goo
agreement despite the strong shape distortions of the so
during switching~see Fig. 4!.

FIG. 3. Profile of the spin componentSx as a function of space
and time describing switching between Ne´el and Bloch domain
walls. Initial velocity of the soliton is 0.18 in dimensionless uni
Soliton passes from the upper~A! to the lower branch~C! going
through the state with maximum velocity~B! and approaches its
stationary state with velocity 0.375. See also Figs. 1 and 2. S
magnetic fieldH51022, D50.08, anda50.1.
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Besides, one-soliton solutions, two- and many-soliton
lutions are also possible in this averaged integrable syst

As far as applications of the obtained results are c
cerned, one acquires a posssibilty to manage the effec
easy-axis anisotropy constant by making use of strong d
ing magnetic fields applied to easy-plane ferromagnets.

We give some estimates for realistic physical parame
relevant to the experimental situation with domain walls. T
driving frequency and amplitude arev;1010 Hz and h
;10 G. The parameterD;0.01–0.1. The static magneti
field and domain wall width areH;1 G and z
;0.1–10 mm, respectively.

VI. CONCLUSIONS

In this paper, based on multiscale expansion of
Landau-Lifshitz equation with rapid perturbation we ha
shown that strong rapidly ocillating transverse magne
fields in easy-plane ferromagnets induce biaxial magn
symmetry and lead to the appearance of new solutions in
form of Bloch and Ne´el walls. The parameters of average
biaxial systems were calculated. We have found a n
switching effect which may occur when the Ne´el wall con-
verts into a stationary Walker solution in the presence
damping. This is a consequence of the almost integrable
eraged system. We have described this phenomenon an
cally based on the adiabatic approximation. The time evo
tion of the energy and the velocity of the soliton is derive
Analytical results have been confirmed by numerical simu
tions of the fully perturbed Landau-Lifshitz equation wi
damping and external magnetic fields. A stability analysis
the derived solutions requires a separate investigation.
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FIG. 4. Wall energy and velocity vs time for the switching
mean-zero magnetic field. Solid and dotted lines correspond
E(t), v(t) calculated from Eqs.~18!, ~19! and from numerical simu-
lations of LLE, respectively.D50.005, a50.1, and initial soliton
velocity v050.2.
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