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Bloch walls in strongly driven easy-plane ferromagnets
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We show that the action of strong rapidly oscillating transverse magnetic field in easy-plane ferromagnet
gives rise to the appearance of effecthiaxial magnetic anisotropgnd new soliton solutions in the form of
Bloch and Nel domain walls Exact analytical expressiordescribing the conversion of a Blewall into the
stationary Bloch wall under dissipation are derived on the ground of the adiabatic approximation which are in
goodagreement with the numerical simulations of the basic strongly perturbed Landau-Lifshitz equation.
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[. INTRODUCTION pends on the amplitude of the dc magnetic field and the ratio
of the ac magnetic field amplitude to the driving frequency.
Strong and rapid perturbations can be a source of drastic The outline of the paper is as follows. In Sec. Il, the
change in the nonlinear system behavior and can lead t@odel for EPFM’s is introduced. In Sec. Il the multiple-
dynamical stabilization via the appearance of new solitorfime-scale approach is used to derive the averaged Hamil-
solutions. This phenomenon seems to be a general charactenian. Section 1V is devoted to the properties of new solu-
in different fields of condensed matter physics. As an exdiions in the form of Bloch walls. In Sec. V numericql and
ample Josephson junctions under external ac force can suphalytical results concerning the transformation of thelNe
port stable propagation of localized fluxons synchronizedvall into a stationary Bloch wall under damping and addi-
with a rotating backgrountiln a nonlinear optical medium tional dc magnetic field are presented. The conclusions are
with quasi-phase-matched quadratic nonlinearity, averagingummarized in Sec. VI.
over rapid periodic modulations of nonlinear susceptibility
induces Kerr effects, such as self- and cross-phase Il. MODEL
modulations’ In view of the above-mentioned phenomenon
magnetic systems leave much room for study.
Ferromagnets strongly driven by a transverse magnetic
field were the subject of special interest for a long time after H=-12, S-S 1+A>, (92—, S-H, ()
the discovery of spin-wave instabilities by SdHhince then ! ' '
many papers dealing with truncated spin-wave mode modelgnere S stands for the classical spin vector measured in

have been publishedor a review see Ref. 4 and the recent yits of the Bohr magnetopg, at theith site along the chain,
paper in Ref. 5 The regime far above the spin-wave insta-j e ' along thez axis. The first term describes the nearest-
bilities remains an open question. _neighbor ferromagnetic exchange interaction of strenhth

The dynamics of nonlinear excitations as well as their- o~ 1he parametera andH are the easy-plane anisotropy
equilibrium and thermodynamical properties in quasi-oneqnstant and the magnetic field along sheirection, respec-
dimensional easy-plane ferromagndBPFM'S has been oy For the quasi-one-dimensional ferromagnet CsNiF
widely investigated over the last few decade¥The exis- o parameters take the valuds 23.6 K andA=45 K
tence of freem kinks in EPFM’s under a rapidly oscillating ,pich corresponds to a magnetic field of 18 kG.

mean-zero magnetic field has been shown in Ref. 10 in the 1,4 spin dynamics is governed by the LLE with the phe-
frame of the sine-Gordon equatiqsGB.! The equation nomenological Gilbert damping term:

governing a nonlinear spin dynamics is known to be the

Landau-Lifshitz equatiodLLE) which can be mapped onto ) SH « _

the sGE only in the limit of low magnetic fields and small S=-—vS XE— §S><S , 2
off-easy-plane spin excursioh.

It is well known that a magnetic field applied within the whereS= S(cosgsin 6,sin¢ sin 6,cosé), — §H/ S is the ef-
easy plane breaks the integrability of the system. Neverthefective magnetic field at sitg y=gug is the gyromagnetic
less, in the case of strong and rapidly oscillating magneti¢atio anda is the dissipation strength.
fields one expects the averaged nontrivial dynamics to reveal A continuum model of EPEM’s can be derived in the
integrability. usual way; see Ref. 14. Let us put for simplicBz=1 and

In this paper we study strongly driven EPFM’s. Multi- rescale the variables as-S, t—2Ayt, z2—z°2A/Ja?, and
scale expansion is employed to derive the averaged Landag+— H/2A.

Lifshitz equation describing the dynamics obixial ferro- In the new variables LLE with driving magnetic field
magnet possessing a stationary Walker solution in the{(t/e)=H +h sin(t/e) takes the form

presense of damping.We also study the dissipative time

evolution of a Nel wall into the stationary state which de- s=5X[s,,—~s*€"+H(t/e)€]—asX s, (3)

The Hamiltonian for a ferromagnetic chain has the ffrm
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where subscriptst(@andz) denote derivative8with respect to By using the rescaled slowly varying spin components
time t and spacez coordinatey € and € are unit vectors (10) we obtain averaged LLE's up to terms of the order
along thez and x axes, respectively, superscripts denote the?(A?2) which can be written as follows:

indicated components of spin vecwande=1/v<1, andw

is the dimensionless driving frequency. S=(95;,-59)) —(1-2A)9'S,
IIl. MULTIPLE-TIME-SCALE TECHNIQUE §=5'S,,~S'S;,+(1-A)S'S*+ SH,
In order to find an averaged equation we employ the =99, - 9IS, AS'Y—IH, (12)

multiple-time-scale expansion technigtféiVe introduce the ) o
multiple time scales(a fast time variabler=wt=t/¢ and WhereA=(gh)?/2. We do not write the dissipation term on
slow time variableg,=¢"t, with n=0,1,2 . . .) asfollows: the right-hand sidédRHS) of these equationfthis term is
simply reduced to- «(1—2A)SXS].
g 1 49 d , 0 The Hamiltonian of the averaged system from Ed4)

s ar (9T0+8,7T1+8 ﬁTz+ T expressed in the original variablesz, andH is
Jx dz
+ R
= a

=S 45+ +8y +5,) XS, + Sy, S+
§=S,t 81, +e(S 8w, + S, T (S, T S, T Syt Ssr) X{AA[(S)2—(S)2]}+ O(A?). (12

B © This is exactly the total energy of a biaxial ferromagnet. Let
where we introduce the slowly varying envelope functionus choose a new system of coordinates such that the old
S(t,), which depends on the slow timés. The fast oscil-  system &,y,z) goes into the new systenz,k,y). The biax-
lating components,(S,7) (n=1,2,...)depend onS and ial ferromagnet in the new parametrization has two easy axes
fast timer. x and z with easy-axis anisotropy constants equalAt(l

To separate the fast oscillations from the slowly varying—2A) andA(1—A), respectively.
field, we substitute expressio4) and (5) into Eq. (3) and
expand in powers of by the proper avoiding secular terms. IV. BLOCH WALLS
For the leading order ofe), we have

© 2
s=Stestelstoo, @ eaff dzz J7a35+A(sZ>2—SXH

—o0

+ ..

Now after averaging one integrable system, the uniaxial

StO=S><(SZZ— S+ He) — aSx So, (6) ferromagnet under rapid perturbation, we treat another inte-
grable system, the biaxial ferromagnet which is rather well
s, =hsinTSxe&—aSxs;,. (7)  studied*®” This system is known to be completely inte-
. grable in the absence of damping and an external magnetic
From Eq.(7) we find field 18
;= —h CoSH(SX & — aSX[SX &]):; ) There are two degenerate spin configurations which mini-

mize the energy12): uniform configurations with all spins
here, we assume that<1, since dissipation is small in fer- pointing either along the positive or along the negatie
romagnets of high purity. Therefore we can neglect all termslirection. Due to the effective easy-axis anisotropy in Eq.
proportional toa? and a?h2e? since they are small in com- (12), the transition region will have a finite width and form a

parison with thex ones. Bloch wall (or soliton). A static Bloch wall connects the
In the next ordeg?, we find $,=0 and anisotropy minimagp=0 and ¢ = 7r within the easy plane.
Now let us consider moving Bloch wall configurations.
ss=hsin(S?)?—(9)?], We use dimensionless variables for convenience. In the ab-
sence of damping and a static magnetic field the exact
h? Walker solution for averaged system can be express€d as
s)=hsinrS*'Y - ?Sycos 2r,
S*= —tanhu,
h2
ss=—hsinrS*S*— ?Szcos 2r. 9) $’'=cose sechu,
S*= —sin¢ sechu, (13

Let us write the formula fos?, expressed in components
of slowly varying spinS up to terms of ordeD(A?), and  where ¢ = @y=const andu=q&(¢)(z—vt)/2. The param-
average over the oscillation time period of the driving mag-eter g is the topological charge of soliton and is defined as
netic field. Thus we get)2+ (1+A)[(S)%+(SH)?]=1. q=3[S(z=*)—S,(z=—=)]. In this paper we consider
From this we find it necessary to resc@l&omponents pro- further only the case witikj=1. The velocity and energy of

vided the conservation of the spin length holds: the Bloch wall are given by
=8, Y—-VJ1+AY, S—J1+AS. (10 v=(1-A)sin2¢/&(), (14
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E(@)=2\sirfp+A coSe. (15)

The static Bloch and N& walls correspond ta,=0 and
/2, respectively.

The maximum velocity of the Bloch wall i® =1
—+/A which is finite and the width of the soliton shrinks
with increasing velocity. There are two branches in f(e)
curves. We refer to solitons withf<&(vma and &
> E(V may)» Where&(v may) = 2A%Y4 as belonging to the lower
and upper branches, respectively. Solitons in the upper
branch have smaller width than in the lower one at the same
velocity as is evident from Eq15). The bloch wall in the
lower branch resembles outwardly the kink of the sGE.
The essential distinction between sGE theory and the LLE <V>
one is thatw kinks of the sGERef. 10 do not exist in the FIG. 1. Mean Bloch wall energy against mean velocity with
upper branch. . . . =0, a=0 for different A. Scatter graph with crossed circles is

We have performed _m_Jm_e,”C""l .S|mulat|ons of the LL_E byobtained by numerical solution of the LLE. Solid curves correspond
making use of the implicit finite-difference method for inte- analytical expression fof(v): Egs. (14) and (15). (1) sine-

gration. o - ) Gordon limit; A = 0.005 (2), 0.02 (3), 0.045(4), 0.08 (5), and

In order to obtain initial conditions let us substitute Bloch g 125 (6). The figure is symmetric with respect to transformation
wall solution (13) into Egs.(8), (9), and(4). After straight-  (y)— —(v). LabelsA, B, andC correspond to initial state on the
forward calculations we get an equation which connects spiipper branch, the state with maximum velocity, and final stationary
vector s with its slowly varying componen§. In order to  state on the lower brandisee Figs. 2 and)3
recover spin lengtls conservation we should divide the ex-

pressions fors¥ and s_Z by a factor of y1+AZ. It is valid non-mean-zero magnetic fields under damping.
becazuse we work with an accuracy up to terms of order A steady state can exist only in the lower branch of the
O(A%). After some simple algebra we arrive at £(v) curve. The parameters of the stationary Walker solution

<¢‘3>/8o -1

$%(02) = —tanhu(0.2) up to orderg? have the form
s%(0,z)= —sin(¢— eh)/coshu(0,z). (16)
We determine the Bloch wall velocity from the zero cross- E=2VyA+ ey v=2H/[a(1-2A)¢]. (17)

ing of the S, spin component. We can use this numerical

definition for the soliton velocity as long as strong asymmet-From Eq.(17) we conclude that a steady state exists pro-
ric shape distortions are absent. Figure 1 shows the meafded the stationary velocity is not too close to the maximum
energy versus the mean velocifyv). The coincidence be- yelocity and the static magnetic field is smaller than (1
tween the analytical and numerical data is surprisingly good- A) . From this we get the condition > @3. At the same

for szmallerA, when corrections to Eqll) of the order time A should not be so large, since we neglect terms of
O(A“) are negligible. orderAZ2.

_ We also compare the propagation of two different solitons - the results of numerical simulations are presented in Fig.
in the lower and upper branches of the energy curve for the e compare parameters obtained from the simulations for

same velocityp=0.5 andA=0.125. Both solitons move jfferent values ofA at fixed H with the theoretical values
equally and begin to substantially deviate from the initial c4)cylated from Eqs(17).

solution (13) after a time of the order of 3/ in dimension-
less variables. Note that the soliton in the upper branch be-

gins to be destroyed under strong radiation slightly faster l 14 .

than the one in the lower branch. It is clear from this fact that IX/A——"A X

the upper branch is more unstable to all appearances. Simile g *®r = 4 s12] |

branches of(v) curves arise also in the soliton dynamics in © 0% % 2

EPFM’s in static magnetic fields without drivitf® which 0% > 10 :

is a distinctive feature of the LLE. 0.88] ¢ —
; 000 005 Q10 0800 o oo

V. DISSIPATIVE CONVERSION OF A NE EL WALL INTO A A A

STATIONARY BLOCH WALL
FIG. 2. The ratios of/&;, andv/vy, vs A, where&y,, vy, are

The most interesting case concerns stationary movingalculated by Eqg17). H=10"* (0),10°% (0),1072 (¢), and
Bloch walls® generated by strong and rapidly oscillating 2x10°2 (A). The dampingx=0.1.
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® 0 \ 120 &(t), v(t) calculated from Eqg18), (19) and from numerical simu-
;.é«‘ 80 100 lations of LLE, respectivelyA =0.005, =0.1, and initial soliton
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‘ 20 +*

-20 . . . .
Besides, one-soliton solutions, two- and many-soliton so-

FIG. 3. Profile of the spin compone8 as a function of space lutions are also possible in this averaged integrable system.
and time describing switching between élleand Bloch domain As far as applications of the obtained results are con-
walls. Initial velocity of the soliton is 0.18 in dimensionless units. cerned, one acquires a posssibilty to manage the effective
Soliton passes from the uppeh) to the lower branchC) going  easy-axis anisotropy constant by making use of strong driv-
through the state with maximum velocit3) and approaches its ing magnetic fields applied to easy-plane ferromagnets.
stationa_ry _state with \Z{elocity 0.375. See also Figs. 1 and 2. Static \ye give some estimates for realistic physical parameters
magnetic fieldH=10"%, A=0.08, anda=0.1. relevant to the experimental situation with domain walls. The
driving frequency and amplitude ar@~10" Hz and h
~10 G. The parametea ~0.01-0.1. The static magnetic
field and domain wall width areH~1 G and ¢
~0.1-10 um, respectively.

By solving the LLE with initial conditions(16) in the
upper branch we observed the transformation of thelNe
wall into a stationary Bloch wall. The damping plays a fun-
damental role in this process. The energy and velocity of the
soliton gradually approach their stationary values due to dis- VI. CONCLUSIONS
sipation.

A typical picture of conversion is depicted in Fig. 3. We  In this paper, based on multiscale expansion of the
represented the time evolution of the space distribution fot-andau-Lifshitz equation with rapid perturbation we have
the slowly varyingS, spin component. This component co- Shown that strong rapidly ocillating transverse magnetic
incides withs, with an accuracy up t@(A?). fields in easy-plane ferromagnets induce biaxial ‘magnetic

The soliton with an initial velocity of 0.18 passes from the Symmetry and lead to the appearance of new solutions in the
upper to the lower branch and broadens its width until itform of Bloch and Nel walls. The parameters of averaged
approaches the stationary state with a velocity of about 0.3Xiaxial systems were calculated. We have found a new
The analytical expressiofl7) gives v~0.33, but the true SWwitching effect which may occur when the &lavall con-
value is 0.32 in accordance with Fig. 2. We can calculate th¥€rts into a stationary Walker solution in the presence of
time evolution of the soliton energy for the case with mean-damping. This is a consequence of the almost integrable av-
zero magnetic fieldH)=0 assuming that switching occurs eraged system. We have described this phenomenon analyti-

switching process has the form tion of the energy and the velocity of the soliton is derived.

Analytical results have been confirmed by numerical simula-

1a tions of the fully perturbed Landau-Lifshitz equation with

E(t)=A~*Jcoshw(t)/coshy(t), (18)  damping and external magnetic fields. A stability analysis of
the derived solutions requires a separate investigation.

v(1)=0.51—A)A~ Y4 Jcoshu(t)coshy(t), (19
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