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Fictitious flux in doped antiferromagnets
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In a tight-binding model of charged spbelectrons on a square lattice, a fully polarized ferromagnetic spin
configuration generates an apparéftl) flux given by 2r times the skyrmion charge density of the ferro-
magnetic order parameter. We show here that for an antiferromagnet, there are two “fictitious” magnetic fields,
one staggered and one unstaggered. The staggered topological flux per unit cell can be varied -between
<®d =<1 with a negligible change in the value of the effective nearest-neighbor coupling constant whereas the
magnitude of the unstaggered flux is strongly coupled to the magnitude of the second-neighbor effective
coupling.
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GENERAL PROPERTIES OF SPIN GENERATED FLUXES simple form for the effective antiferromagnetic interaction in
mean-field theory. We have explored changing the prefactor
It is well known that in the theory of the quantum Hall of this term but it does not substantially change our results.
problem spin textures can generate an effectiv@)Ulux  Since (;)?=n; for zero or single occupancy, an interaction
which acts as an effective magnetic field leading to an assf the form (ni—nj)2 yields precisely this interaction term
ciation between topological and electrical chatge. this  aside from a term which only modifies the chemical poten-
paper we investigate to what extent this effect can be genetial. Depending on the prefactor, such an interaction serves to

alized to the antiferromagnet. either suppress or promote charge inhomogeneities. As long
For definiteness, we consider the] model on a square as the prefactor of;n; is negative, charge fluctuations are
lattice. This model is described by the Hamiltonian suppressed and the precise magnitude of the term does not

appear to be importantFor a general reference, see Rej. 2.
To make explicit the connection between spin rotations
(@ and effective couplings, we introduce a local change of spin
. _ coordinates(see, for instance, Ref.)3choosing the local
where the summation runs over nearest-neighbor gai)s  gpin quantization axis at siiealong(); . The action of this
andS|=ciTacraﬂciB and o denotes the vector of Pauli matri- |ocal SU?2) transformation orc; is written
ces. All states containing doubly occupied sites have been

- - 1
H:% —(tcl cj,+ H.c.)+J"(S-SJ-— 2Nin;

excluded from the Hilbert spacé¢For a general reference, c,—Uac, @
see Ref. 2. h
The t-J model is the simplest model that clearly repre—W ere
sents the competition between the electronic kinetic ener .6z
P 9y UaoUf =00, @3)

and antiferromagnetism that we are exploring. Hopping of
electrons via the first term to nearest-neighbor sites can occ I P .
in an antiferromagnet through two mechanisms. An eIectro:jIhe specification off}; fixes Ug, only up to an overall
can hop to a nearest neighbor which is occupied by an opotation about the new localz axis. Choosing G;
posite spin and thereby create a doubly occupied intermedi=exd —i%a;();- o] makesUé)_:GiU@i also satisfy the de-
ate state. Or an electron can hop to an empty neighbor Slt‘ﬁning relation, Eq.(3). To fix tlhis remaining degree of free-

In our investigation_, we are intere_sted_ in electron hoppingdom, we arbitrarily choos&J to correspond to a rotation
that does not exploit doubly occupied sites and therefore the axis lying in the sp;n y plane. Defining the unit

t-J model in which all states containing doubly occupiedabOUt "im )

sites have been implicitly excluded from the Hilbert space isvector w; = ({; X z) = (sin ¢ ,—c0s¢;,0) we have

the ideal model to study. . 1 1
Nearest-neighbor hopping may in principle be sufficient L e R B [ I o

to represent the physics of the)l model but since the hop- Ua,=exq | 2 Oiw;- 0| =cog 5 0, +1sin 2 0| wi-0,

2
ping between antiferromagnetically aligned sites is severely (4)
suppressed, a second-neighbor hopping may become com- ~ A
paratively important. We choose to incorporate this explicitlyVNere cogi=z-(;. . o .
in the present model even though a more sophisticated cal- e then find the following Hamiltonian in the new spin
culation could in principle generate such a term effectively toco0rdinate system,
higher orders in the interaction.

Our t-J model includes both an antiferromagnetic termH:E
and the term-— %ninj . The latter term is commonly used in i
the literature on thé-J model since it leads to a particularly (5)

acBAij 1
SISJQ _—ninj

—(tcf Ml e+ H.c)+ 0 )

[e3
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where we have introduced’! =(U@_)TU@J_, Q" =R51RQJ, K S
1 i ’ 4
and Rg)ij=cos#d;+(1-cost)wjw;+Z,sin Heijkwk is the 3, 5
SQ(3) rotation operator induced byo.  TTTTTTS g -~ /-
Until this point, the discussion has been completely gen- o B

eral. In order to make further progress, we neglect spin fluc-
tuations and make the restriction that a site is occupied by at

most one spin and that the electron which occupiesi $ites B o
its spin pointing along the local positive axis, {};. This ~ ~ =~~~ K 0 > ST
contraint reduces Ed5) to ,/ K
B B 2 Z=2(0+B)
Herr= <2> [—(T”CiTCj +H.c)+K"Ynin;], (6) FIG. 1. The close to ferromagnetic spin configuration is shown
ij

in spin space. All sides in this spherical parallelogram correspond to
with 71 =tiMY, | KT =2131({);- Qi —1), andc;=c;;. Atthis ~ an opening anglé. 3, denotes the sum of the angles within the path
point we have an effective model describing “spinless” fer- 0—1—2-3-0.
mions on a lattice with hopping amplitudes and interaction
strengths being functions of position. In this way we have A :<Q|a |Q)=i szfa b
automatically solved the constraint of no double occupancies K’ K’ 2
at the expense of treating the spins as classical variables aighich is the vector potential due to a magnetic monopole of
ignoring their quantum spin fluctuations. strength— 3. The local U1) degree of freedom, represented
_Let us now turn to the properties af . First we note that py the G's, corresponds to a gauge transformation of the
7= (7")*. The complex phase of' cannot in general be topological vector potential,, .
gauged away by a local transformatiop- €' ¢icj if the spin
configurations are noncoplanar. When we defined the local The case of the ferromagnet
transformatiorU@i, we noted that it was only specified up to _ A A A
a rotation about the loca axis, Ug—GUg . The effect of Let us now consider the plaquett€)§,(1,,2;,Q3) in
such a local rotation on the effective hopping cannot be disSPin space, drawn as in Fig. 1, the parallelogram representing
a patch of the surface of the sphere. To simplify the argument

tinguished from a local gauge transformation-e'(V?“ic ' O SiT
which does not affect the physics. Hence the set of physifU'ther, we restrict ourselves to the cd3g €3 =cosé for all

cally inequivalent choices oblg belong to SW2)/U(1) nearest-neighbor paiKsj ) i_n the plaquett_e, so that the rela_l—
' ive angle between the spins on each side of the squaie is

~q2 i
=5 an_d we conclude that in th_e absence of an externa}& straightforward application of spherical geometry yields
magnetic field, there are two physical degrees of freedom P&he relation’ A= (a+ B) — m wherea and are the interior

site (or plaquett¢ which determine the effective coupling surface angles of the spherical parallelogram. However, since

constants. e :
. . . 6 is fixed on all sides, we cannot freely choogeand .
To understand more precisely which portions of the eﬁec'Rather, we solve fob=1 A in terms ofa— 8 and # and

::\Clﬁlgrop?;n%;tt:rgf ltlhlg ?;Eg: 'ggﬁrs'g:itﬁ nglo?)li(n?st ?aEZIre dthen derive expressions for the nearest-neighbor coupling
plad ' gorp constantsT and K in terms of the same variables. Using

counterclockwise asy, rq, ro, andrs and with associated : :
spins pointing in theQ); directions. The flux through the standard formulas from spherical geometry together with Eq.

plaquette is given by (4) we find
(bplaquettezlmIn(TrOrlTrlrzTrzr?’Trsro)- (7) |Tnn|:C05(%9)y
Topological ~ arguments  show  that ®pjaquette ® =2 arcsiftar?(6)cos t(a—B)]}, ©

=1 A(90.01.0,,05), half the solid angle enclosed by the
shortest path on the sphere connecting the veéfar}‘, ie., K =31J(cosf—1),

the flux corresponding to the plaquette is equal totHnes  \ hare - s the effective nearest-neighbor hopping ampli-
the skyrmion charge represented by the plaquette. Generaliz- 7nn g ppIng P

is qgi =1 92co0dL(qp—
ing a result of Wen, Wilczek, and Zéeyho computed the tude. We note tha® is given by ® =3 ¢°cog;(a—p)] for
imaginary part of the formula below, one may show that forSmall ¢.
a plaquette consisting of exactly three sites,
The case of antiferromagnetic order

Aol a2 folo= 3[(Q0+ O +0,)2-1]+ '_QO. (Q,xQ,). Let us now consider the analogous calculations for a spin

8 4 configuration which is close to antiferromagnetic. Let us de-

®) note the local antiferromagnetic spin é$ as before. Denote

Assuming smooth field®(r) and ¢(r) one finds in the by /= _—Qi the antipodal points. Noting that in the case of
continuum limit that the fictitious flux corresponds to a Berry & spherical parallelogram, great circles which connect the
gauge field four sides of{();} intersect in the point$(}/}, we find that
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r 2 P that an antiferromagnetic skyrmion generates an effective
7777777 ;L{jmmwgﬁy 0 3’ e 0 staggered flux of exactlyr per plaquette. Dug to the curva-
S B o B ture of the sphere, such a texture cannot in general be ex-
tended to the plane.
- B o B @ no, P
WO o 2z oy 1
3 - g 0 Next-nearest-neighbor hopping

T=4m+2(B— . . . . .
o) When we include second-neighbor hopping, the situation

FIG.. 2. The close to antiferromagnetic spin conflgurfi\tlon iSpecomes much more complicated for the antiferromagnet.
shown in spin space. The left part corresponds to the péits ¢ square plaquette has four gauge invariant fluxes, corre-
while the right part corresponds to the antipodal polis. It is  sponding to each triangle defined by the removal of one ver-
seen how thex angles become exterior rather than interior leadingiey from the four corners of the square. When the spins are
to a completely differen® as compared to the ferromagnetic case.a”gned close to ferromagnetically, the shortest path in spin

R . . . . space connecting the two diagonal spins lies wholly within
the path()y— Q71— Q,— 03—, connecting the antiferro- the region defined by the corner spins. Hence the flux
magnetic spins has the geometry sketched in Fig. 2. Figure irough each triangular subplaquette is very closely propor-
shows another illustration of the path taken in spin spaceional to the area of each subtriangle in real space, and the
when going around a plaquette in an antiferromagnetic backsum of flux through a pair of subtriangles that cover the
ground. By using Eq(4) the anglesx have become exterior square is precisely equal to the flux through the entire
rather than interior angles in the path. This gives us the replaquette. As a consequence, the effective phase of each of
lations the interactions is extremely well approximated by spreading

a constant effective magnetic field corresponding to the local
| 7hnl =SiN(3 6), skyrmion density throughout the entire real space plaquette
and assigning the effective phase on the links by a conven-
O =7—(a—p), (100 tional choice of gauge.
In the case of a configuration close to antiferromagnetic,
K =-%J(cosf+1), the four subtriangles cover the entire sphere in spin space
o a A _ (see Fig. 3 Taking into account the orientation of each of
where in this case cat=—();-(),,. Comparing to Eq(9)  the bounding paths, we find the following relation between

we see that the connection betweénand ® has disap- the flux through each of the triangles for both the ferromag-
peared. By extending the same argument to the adjacent ceflet and antiferromagnet:

we reproduce the arguments, however, all paths are traversed

in the opposite sense and the flux becomes negative com- & (0,Q,,Q,) +P(0e0,03)— (041 Qs0)
pared to the first cell. The flux is therefore staggered, with a .

+ sign depending on the sign of the sublattice associated —® (01, Q5035)=27n, (11

Wltlhnt(r:]c?n?rlggtu:)tttie case of the ferromagnet, we find that theren=0 for the ferromagnet and= =1 for the antifer-
gnet, omagnet. Note that Eq11) is valid in general, i.e., it does

can change the effective staggered flux for the electron gas, I h j f herical llel
Eq. (6), from — 7 to = without affecting the magnitude of nqt rely on the assumpno_n of a spnerical paralielogram.

g 19), . . .|t is also easy to see that it is valid in the presence of an
the local values of the effective nearest-neighbor couplin

constants. In fact. for the most symmetric case 8. we find Lxternal electromagnetic flux. If we assume a spherical
' ' y B parallelogram we can also note from Fig. 2 that

0 0 0
n 0 T
/2 —®/2 /2 —-®/2
0 n 0
0 0 0
0 n 0
—-D/2 /2 —D/2 @/2
n 0 T
0 0 0
n 0 b4
/2 —-®72 /2 -®/2
0 n 0
0 0 0

FIG. 3. The path taken in spin space when going around a FIG. 4. A particular choice of gauge for the staggered flux phase
plaquette 6-1’'—2—3"—0 in an antiferromagnetic background. (*®) with next-nearest-neighbor hopping is indicated through the
All paths follow great circles on the sphere. phases associated with each link in the lattice.
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8D (0001, 03)=®(Q1.0,05)=3d. It therefore follows CONCLUSION

that ®(Q1,Q,00)=P(QeQ,03)=32P+nm. Hence, for The main conclusion from this paper is that in contrast to

the antiferromagnet, links connecting sites within the samehe ferromagnet, antiferromagnetic spin textures naturally

sublattice pick up a phase if they belong to sublatticé, generate a staggered fluon the basic nearest-neighbor

and zero if they belong to sublatti@ or vice vers&. plaquettes. However, in contrast to case of the ferromagnet,
In Fig. 4 is drawn a X3 subset of a two-dimensional the amount of flux per plaquette is weakly related to the

(2D) antiferromagnetic lattice. The value of the local spinmagnitudeof the effective nearest-neighbor coupling. Incor-

generated phase Im M({I)E¢>ij is indicated on each link. porating second-neighbor interactions reveals the existence

Arrows indicate the direction— j. The gauge is chosen so of an additional independent effectivg1) fictitious flux on

that ¢, ,3x=0. The phasep, ;. ;=[(— 1)'/2]®. Along the  plaquettes of second-neighbor sites. Since the first-neighbor

diagonals, the phase of the coupling constant is coupling is severely suppressed in agNantiferromagnet, it
is quite possible that the effective second-neighbor interac-
o . . . -
&, r+9+;<:5[1+(_1)r], tions could be important; in the limit of weakly coupled ef-

fective nearest neighbors and strongly coupled second neigh-
- bors textures such as appear in the two layer quantum Hall
¢r+;1,+9=§[1—(—1)r]. (12 problem could be favoretiHowever, even in this case the
magnetic field energy generated by staggered orbital currents
The local gauge choice does not take account of the cureould suppress these textures.
vature of the spin space and in general, the sphere cannot be Using Eq.(13) we'® have numerically calculated energies
covered with parallelograms so the local choice of gaugef various uniform spin textures in the Hartree-Fock approxi-
cannot be extended to the whole sphere. Nevertheless, in tieation and for nonuniform stripe textures in the Hartree ap-
limit 6—0 the above formula is expected to be valid. proximation, with the goal of understanding if noncoplanar
An intriguing special choice fo® where it is possible to  spin textures which generate fictitious staggered flux have
cover the sphere by parallelograms is 6es-1/3. In this  lower energy than the coplanar “spiral” phases studied pre-
case, the spins reside on the vertices of a regular tetrahedroripusly by a number of authors*2Preliminary results are
and it is also possible to extend this mapping exactly over @onsistent with those that have been obtained previously by
square lattice. Considering that going around a plagquette imore elaborate means; spiral phases appear to have the low-
the real-space lattice, corresponds to encircling two of thest energy for the uniform phases but are thermodynamically
faces of the tetrahedron, it is obvious that this loop will coverunstable against phase separation. The noncoplanar phases
half of the spin sphere and hence the “tetrahedral phaseéll have staggered fictitious rather than the unstaggered flux
generates a staggered flaxr. which is known to lower the kinetic energy in an electron gas
Putting all this together, we find that given original near-and there does not appear to be any clear association between
est (,,) and next-nearest-neighbor hopping,(), the effec-  topological charge and doping, at least in a tight-binding
tive coupling constants for the remaining Fermionic degreesnodel dominated by nearest-neighbor interactiins.
of freedom are determined by the two free paramefieasd A general feature of all the thermodynamically favored
& which control the unstaggered and staggered fluxes, reroncoplanar phases are that they have fictitious uniform
spectively. In the general case with an external electromagstaggered fluxar per square. Since there is no distinction
netic flux we have 21 physical degrees of freedom per between staggered and unstaggered flux when the flux per
plaquette. This results in three independent fluxes per squarsguare is exactlyr, the thermodynamics favors either a pure
the only restriction being given by E¢l1). Using standard undoped antiferromagnetic region where the effective
formulas from spherical geometry, we find that with a suit-nearest-neighbor hopping is essentially zero, or a heavily
able choice of gauge, the effective nearest- and next-nearestoped striped region where the density is near 1/2. When

neighbor couplings are given by second-neighbor hopping is introduced in this Hartree-Fock
calculation, the results are largely unchanged for relative
Ton =t,,Sin(20), small values of second hopping, although the striped region

does tend to widen from the very narrow stripes found for
pure nearest-neighbor terris.
By neglecting quantum spin fluctuations as we have done,
i(—1) ®/2 our numerical simulations of the nonuniform spin textures
' suffer from the same problem as others who similarly ignore
) spin fluctuations. The ordinary e antiferromagnet be-
cogd,*6_)=cog ) *[1-codd)]sinzP), (13  comes insulating, and this, together with the tendency to-
wards phase separation apparently does not favor noncopla-

Tr+x = Thn»

Trty = Thn€

Trr+x+y =(—1)""tpyc086.), nar spin textures with any nontrivial topological properties. It
remains to be seen if properly accounting for quantum spin
Treyr+x =(=1)"tpnacod 6-). fluctuations can change this resuilt.
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