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Fictitious flux in doped antiferromagnets
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In a tight-binding model of charged spin-1
2 electrons on a square lattice, a fully polarized ferromagnetic spin

configuration generates an apparentU(1) flux given by 2p times the skyrmion charge density of the ferro-
magnetic order parameter. We show here that for an antiferromagnet, there are two ‘‘fictitious’’ magnetic fields,
one staggered and one unstaggered. The staggered topological flux per unit cell can be varied between2p
<F<p with a negligible change in the value of the effective nearest-neighbor coupling constant whereas the
magnitude of the unstaggered flux is strongly coupled to the magnitude of the second-neighbor effective
coupling.
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GENERAL PROPERTIES OF SPIN GENERATED FLUXES

It is well known that in the theory of the quantum Ha
problem spin textures can generate an effective U~1! flux
which acts as an effective magnetic field leading to an as
ciation between topological and electrical charge.1 In this
paper we investigate to what extent this effect can be ge
alized to the antiferromagnet.

For definiteness, we consider thet-J model on a square
lattice. This model is described by the Hamiltonian

H5(̂
i j &

F2~ t i j cis
† cj s1H.c.!1Ji j S Si•Sj2

1

4
ninj D G , ~1!

where the summation runs over nearest-neighbor pairs^ i j &
andSi5cia

† sW abcib andsW denotes the vector of Pauli matr
ces. All states containing doubly occupied sites have b
excluded from the Hilbert space.~For a general reference
see Ref. 2.!

The t-J model is the simplest model that clearly repr
sents the competition between the electronic kinetic ene
and antiferromagnetism that we are exploring. Hopping
electrons via the first term to nearest-neighbor sites can o
in an antiferromagnet through two mechanisms. An elect
can hop to a nearest neighbor which is occupied by an
posite spin and thereby create a doubly occupied interm
ate state. Or an electron can hop to an empty neighbor
In our investigation, we are interested in electron hopp
that does not exploit doubly occupied sites and therefore
t-J model in which all states containing doubly occupi
sites have been implicitly excluded from the Hilbert space
the ideal model to study.

Nearest-neighbor hopping may in principle be sufficie
to represent the physics of thet-J model but since the hop
ping between antiferromagnetically aligned sites is seve
suppressed, a second-neighbor hopping may become
paratively important. We choose to incorporate this explic
in the present model even though a more sophisticated
culation could in principle generate such a term effectively
higher orders in the interaction.

Our t-J model includes both an antiferromagnetic te
and the term2 1

4 ninj . The latter term is commonly used i
the literature on thet-J model since it leads to a particularl
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simple form for the effective antiferromagnetic interaction
mean-field theory. We have explored changing the prefa
of this term but it does not substantially change our resu
Since (ni)

25ni for zero or single occupancy, an interactio
of the form (ni2nj )

2 yields precisely this interaction term
aside from a term which only modifies the chemical pote
tial. Depending on the prefactor, such an interaction serve
either suppress or promote charge inhomogeneities. As
as the prefactor ofninj is negative, charge fluctuations a
suppressed and the precise magnitude of the term does
appear to be important.~For a general reference, see Ref. 2!

To make explicit the connection between spin rotatio
and effective couplings, we introduce a local change of s
coordinates~see, for instance, Ref. 3!, choosing the local
spin quantization axis at sitei along V̂ i . The action of this
local SU~2! transformation onci is written

c
i
→UV̂ i

c
i
, ~2!

where

UV̂ i
szUV̂ i

†
5V̂ i•sW . ~3!

The specification ofV̂ i fixes UV̂ i
only up to an overall

rotation about the new localz axis. Choosing Gi

5exp@2 i 1
2 a iV̂ i•sW # makesUV̂ i

8 5GiUV̂ i
also satisfy the de-

fining relation, Eq.~3!. To fix this remaining degree of free
dom, we arbitrarily chooseUV̂ i

to correspond to a rotation

about an axis lying in the spinx-y plane. Defining the unit

vector v̂ i5(V̂ i3 ẑ)̂5(sinfi ,2cosfi,0) we have

UV̂ i
5expS i

1

2
u iv̂ i•sW D5cosS 1

2
u i D1 i sinS 1

2
u i D v̂ i•sW ,

~4!

where cosui5ẑ•V̂i .
We then find the following Hamiltonian in the new sp

coordinate system,

H5(̂
i j &

F2~ t i j cia
† Mab

i j cj b1H.c.!1Ji j S Si
aSj

bQab
i j 2

1

4
ninj D G ,

~5!
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STELLAN ÖSTLUND AND MARTIN ANDERSSON PHYSICAL REVIEW B65 094408
where we have introducedMi j 5(UV̂ i
)†UV̂ j

, Qi j 5RV̂ i

21
RV̂ j

,

and (RV̂) i j 5cosudij1(12cosu)vivj1(ksinueijkv
k is the

SO~3! rotation operator induced byUV̂ .
Until this point, the discussion has been completely g

eral. In order to make further progress, we neglect spin fl
tuations and make the restriction that a site is occupied b
most one spin and that the electron which occupies sitei has
its spin pointing along the local positivez axis, V̂ i . This
contraint reduces Eq.~5! to

Heff5(̂
i j &

@2~t i j ci
†cj1H.c.!1Ki j ninj #, ~6!

with t i j 5t i j M11
i j , Ki j 5 1

4 Ji j (V̂ i•V̂ j21), andcj[cj 1. At this
point we have an effective model describing ‘‘spinless’’ fe
mions on a lattice with hopping amplitudes and interact
strengths being functions of position. In this way we ha
automatically solved the constraint of no double occupan
at the expense of treating the spins as classical variables
ignoring their quantum spin fluctuations.

Let us now turn to the properties oft i j . First we note that
t i j 5(t j i )* . The complex phase oft i j cannot in general be
gauged away by a local transformationcj→eif jcj if the spin
configurations are noncoplanar. When we defined the lo
transformationUV̂ i

, we noted that it was only specified up

a rotation about the localz axis, UV̂→GUV̂ . The effect of
such a local rotation on the effective hopping cannot be
tinguished from a local gauge transformationc

i
→ei (1/2)a ic

i

which does not affect the physics. Hence the set of ph
cally inequivalent choices ofUV̂ i

belong to SU(2)/U(1)

>S2 and we conclude that in the absence of an exte
magnetic field, there are two physical degrees of freedom
site ~or plaquette! which determine the effective couplin
constants.

To understand more precisely which portions of the eff
tive hoppingt i j are U~1! gauge invariant, we look at a pa
ticular plaquette of the lattice, consisting of points labe
counterclockwise asr 0 , r 1 , r 2, andr 3 and with associated
spins pointing in theV i directions. The flux through the
plaquette is given by

Fplaquette5Im ln~t r 0r 1t r 1r 2t r 2r 3t r 3r 0!. ~7!

Topological arguments show that Fplaquette

5 1
2 A(V̂0 ,V̂1 ,V̂2 ,V̂3), half the solid angle enclosed by th

shortest path on the sphere connecting the vectors$V̂ i%, i.e.,
the flux corresponding to the plaquette is equal to 2p times
the skyrmion charge represented by the plaquette. Gener
ing a result of Wen, Wilczek, and Zee,4 who computed the
imaginary part of the formula below, one may show that
a plaquette consisting of exactly three sites,

t r 0r 1t r 1r 2t r 2r 05
1

8
@~V̂01V̂11V̂2!221#1

i

4
V̂0•~V̂13V̂2!.

~8!

Assuming smooth fieldsu(r ) and f(r ) one finds in the
continuum limit that the fictitious flux corresponds to a Ber
gauge field
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Am5^V̂u]muV̂&5 i sin2
u

2
]mf,

which is the vector potential due to a magnetic monopole
strength2 1

2 . The local U~1! degree of freedom, represente
by the G’s, corresponds to a gauge transformation of t
topological vector potentialAm .

The case of the ferromagnet

Let us now consider the plaquette (V̂0 ,V̂1 ,V̂2 ,V̂3) in
spin space, drawn as in Fig. 1, the parallelogram represen
a patch of the surface of the sphere. To simplify the argum
further, we restrict ourselves to the caseV̂ i•V̂ j5cosu for all
nearest-neighbor pairŝi j & in the plaquette, so that the rela
tive angle between the spins on each side of the squareu.
A straightforward application of spherical geometry yiel
the relation1

2 A5(a1b)2p wherea andb are the interior
surface angles of the spherical parallelogram. However, s
u is fixed on all sides, we cannot freely choosea and b.
Rather, we solve forF5 1

2 A in terms ofa2b and u and
then derive expressions for the nearest-neighbor coup
constantst and K in terms of the same variables. Usin
standard formulas from spherical geometry together with
~4! we find

utnnu5cos~ 1
2 u!,

F 52 arcsin$tan2~ 1
2 u!cos@ 1

2 ~a2b!#%, ~9!

K 5 1
4 J~cosu21!,

wheretnn is the effective nearest-neighbor hopping amp

tude. We note thatF is given byF5 1
2 u2cos@ 1

2(a2b)# for
small u.

The case of antiferromagnetic order

Let us now consider the analogous calculations for a s
configuration which is close to antiferromagnetic. Let us d
note the local antiferromagnetic spin asV̂ i as before. Denote
by V̂ i852V̂ i the antipodal points. Noting that in the case
a spherical parallelogram, great circles which connect
four sides of$V̂ i% intersect in the points$V̂ i8%, we find that

FIG. 1. The close to ferromagnetic spin configuration is sho
in spin space. All sides in this spherical parallelogram correspon
an opening angleu. S denotes the sum of the angles within the pa
0→1→2→3→0.
8-2
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FICTITIOUS FLUX IN DOPED ANTIFERROMAGNETS PHYSICAL REVIEW B65 094408
the pathV̂0→V̂18→V̂2→V̂38→V̂0 connecting the antiferro
magnetic spins has the geometry sketched in Fig. 2. Figu
shows another illustration of the path taken in spin sp
when going around a plaquette in an antiferromagnetic ba
ground. By using Eq.~4! the anglesa have become exterio
rather than interior angles in the path. This gives us the
lations

utnnu5sin~ 1
2 u!,

F 5p2~a2b!, ~10!

K 52 1
4 J~cosu11!,

where in this case cosu52V̂i•V̂i118 . Comparing to Eq.~9!
we see that the connection betweenu and F has disap-
peared. By extending the same argument to the adjacent
we reproduce the arguments, however, all paths are trave
in the opposite sense and the flux becomes negative c
pared to the first cell. The flux is therefore staggered, wit
6 sign depending on the sign of the sublattice associa
with the plaquette.

In contrast to the case of the ferromagnet, we find that
can change the effective staggered flux for the electron
Eq. ~6!, from 2p to p without affecting the magnitude o
the local values of the effective nearest-neighbor coup
constants. In fact, for the most symmetric casea5b, we find

FIG. 3. The path taken in spin space when going aroun
plaquette 0→18→2→38→0 in an antiferromagnetic background
All paths follow great circles on the sphere.

FIG. 2. The close to antiferromagnetic spin configuration

shown in spin space. The left part corresponds to the pointsV̂ i ,

while the right part corresponds to the antipodal pointsV̂ i8 . It is
seen how thea angles become exterior rather than interior lead
to a completely differentS as compared to the ferromagnetic cas
09440
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that an antiferromagnetic skyrmion generates an effec
staggered flux of exactlyp per plaquette. Due to the curva
ture of the sphere, such a texture cannot in general be
tended to the plane.

Next-nearest-neighbor hopping

When we include second-neighbor hopping, the situat
becomes much more complicated for the antiferromag
Each square plaquette has four gauge invariant fluxes, co
sponding to each triangle defined by the removal of one v
tex from the four corners of the square. When the spins
aligned close to ferromagnetically, the shortest path in s
space connecting the two diagonal spins lies wholly with
the region defined by the corner spins. Hence the fl
through each triangular subplaquette is very closely prop
tional to the area of each subtriangle in real space, and
sum of flux through a pair of subtriangles that cover t
square is precisely equal to the flux through the en
plaquette. As a consequence, the effective phase of eac
the interactions is extremely well approximated by spread
a constant effective magnetic field corresponding to the lo
skyrmion density throughout the entire real space plaqu
and assigning the effective phase on the links by a conv
tional choice of gauge.5

In the case of a configuration close to antiferromagne
the four subtriangles cover the entire sphere in spin sp
~see Fig. 3!. Taking into account the orientation of each
the bounding paths, we find the following relation betwe
the flux through each of the triangles for both the ferroma
net and antiferromagnet:

F~V̂0V̂18V̂2!1F~V̂0V̂2V̂38!2F~V̂0V̂18V̂38!

2F~V̂18V̂2V̂38!52pn, ~11!

wheren50 for the ferromagnet andn561 for the antifer-
romagnet. Note that Eq.~11! is valid in general, i.e., it does
not rely on the assumption of a spherical parallelogra
It is also easy to see that it is valid in the presence of
external electromagnetic flux. If we assume a spher
parallelogram we can also note from Fig. 2 th

a FIG. 4. A particular choice of gauge for the staggered flux ph
(6F) with next-nearest-neighbor hopping is indicated through
phases associated with each link in the lattice.

.
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8F(V̂0V̂18V̂38)5F(V̂18V̂2V̂38)5 1
2 F. It therefore follows

that F(V̂18V̂2V̂0)5F(V̂0V̂2V̂38)5 1
2 F1np. Hence, for

the antiferromagnet, links connecting sites within the sa
sublattice pick up a phasep if they belong to sublatticeA,
and zero if they belong to sublatticeB, or vice versa.6

In Fig. 4 is drawn a 333 subset of a two-dimensiona
~2D! antiferromagnetic lattice. The value of the local sp
generated phase Im ln(M11

i j )[f i j is indicated on each link
Arrows indicate the directioni→ j . The gauge is chosen s
that f r ,r 1 x̂50. The phasef r ,r 1 ŷ5@(21)r /2#F. Along the
diagonals, the phase of the coupling constant is

f r ,r 1 ŷ1 x̂5
p

2
@11~21!r #,

f r 1 x̂,r 1 ŷ5
p

2
@12~21!r #. ~12!

The local gauge choice does not take account of the
vature of the spin space and in general, the sphere cann
covered with parallelograms so the local choice of gau
cannot be extended to the whole sphere. Nevertheless, i
limit u→0 the above formula is expected to be valid.

An intriguing special choice foru where it is possible to
cover the sphere by parallelograms is cosu521/3. In this
case, the spins reside on the vertices of a regular tetrahe
and it is also possible to extend this mapping exactly ove
square lattice. Considering that going around a plaquett
the real-space lattice, corresponds to encircling two of
faces of the tetrahedron, it is obvious that this loop will cov
half of the spin sphere and hence the ‘‘tetrahedral pha
generates a staggered flux6p.

Putting all this together, we find that given original nea
est (tnn) and next-nearest-neighbor hopping (tnnn), the effec-
tive coupling constants for the remaining Fermionic degr
of freedom are determined by the two free parametersu and
F which control the unstaggered and staggered fluxes,
spectively. In the general case with an external electrom
netic flux we have 211 physical degrees of freedom p
plaquette. This results in three independent fluxes per squ
the only restriction being given by Eq.~11!. Using standard
formulas from spherical geometry, we find that with a su
able choice of gauge, the effective nearest- and next-nea
neighbor couplings are given by

tnn 5tnnsin~ 1
2 u!,

t r 1 x̂ 5tnn ,

t r 1 ŷ 5tnne
i (21)rF/2,

cos~u16u2!5cos~u!6@12cos~u!#sin~ 1
2 F!, ~13!

t r ,r 1 x̂1 ŷ 5~21!r 11tnnncos~u1!,

t r 1 ŷ,r 1 x̂ 5~21!r tnnncos~u2!.
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CONCLUSION

The main conclusion from this paper is that in contrast
the ferromagnet, antiferromagnetic spin textures natur
generate a staggered flux7 on the basic nearest-neighbo
plaquettes. However, in contrast to case of the ferromag
the amount of flux per plaquette is weakly related to t
magnitudeof the effective nearest-neighbor coupling. Inco
porating second-neighbor interactions reveals the existe
of an additional independent effective U~1! fictitious flux on
plaquettes of second-neighbor sites. Since the first-neigh
coupling is severely suppressed in a Ne´el antiferromagnet, it
is quite possible that the effective second-neighbor inter
tions could be important; in the limit of weakly coupled e
fective nearest neighbors and strongly coupled second ne
bors textures such as appear in the two layer quantum
problem could be favored.8 However, even in this case th
magnetic field energy generated by staggered orbital curr
could suppress these textures.9

Using Eq.~13! we10 have numerically calculated energie
of various uniform spin textures in the Hartree-Fock appro
mation and for nonuniform stripe textures in the Hartree
proximation, with the goal of understanding if noncoplan
spin textures which generate fictitious staggered flux h
lower energy than the coplanar ‘‘spiral’’ phases studied p
viously by a number of authors.3,11,12Preliminary results are
consistent with those that have been obtained previously
more elaborate means; spiral phases appear to have the
est energy for the uniform phases but are thermodynamic
unstable against phase separation. The noncoplanar ph
all have staggered fictitious rather than the unstaggered
which is known to lower the kinetic energy in an electron g
and there does not appear to be any clear association bet
topological charge and doping, at least in a tight-bindi
model dominated by nearest-neighbor interactions.13

A general feature of all the thermodynamically favor
noncoplanar phases are that they have fictitious unifo
staggered fluxp per square. Since there is no distinctio
between staggered and unstaggered flux when the flux
square is exactlyp, the thermodynamics favors either a pu
undoped antiferromagnetic region where the effect
nearest-neighbor hopping is essentially zero, or a hea
doped striped region where the density is near 1/2. W
second-neighbor hopping is introduced in this Hartree-F
calculation, the results are largely unchanged for relat
small values of second hopping, although the striped reg
does tend to widen from the very narrow stripes found
pure nearest-neighbor terms.10

By neglecting quantum spin fluctuations as we have do
our numerical simulations of the nonuniform spin textur
suffer from the same problem as others who similarly ign
spin fluctuations. The ordinary Ne´el antiferromagnet be-
comes insulating, and this, together with the tendency
wards phase separation apparently does not favor nonco
nar spin textures with any nontrivial topological properties
remains to be seen if properly accounting for quantum s
fluctuations can change this result.
8-4
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