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First-principles study of the solubility of Zr in Al
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The experimental solubility limit of Zr in Al is well known. Al3Zr has a stable structure DO23 and a
metastable one L12. Consequently there is a metastable solubility limit for which only few experimental data
are available. The purpose of this study is to obtain, byab initio calculations, the solubility limit of Zr in Al for
stable as well as metastable phase diagrams. The formation energies of several ordered compounds AlxZr(12x) ,
all based on a fcc underlying lattice, were calculated using the FP-LMTO~full-potential linear-muffin-tin-
orbital! method. Taking into account all the relaxations allowed by the symmetry, we found the DO23 structure
to be the stable one for Al3Zr. This set of results was then used with the cluster expansion in order to fit a
generalized Ising model through the inverse method of Connolly and Williams. Different ways to consider
volume relaxations were examined. This allowed us to calculate, in the Bragg-Williams approximation, the
configurational free energy at finite temperature. According to the previous FP-LMTO calculations the free
energy due to electronic excitations can be neglected. For the vibrational free energy of ordered structures, we
compared results obtained from a calculation of the elastic constants used with the Debye model and results
obtained from a calculation of the phonon spectrum. All these different steps lead to a calculation of the
solubility limit of Zr in Al which is found to be lower than the experimental one. The solubility limit in the
metastable phase diagram is calculated in the same way, and thus can be compared to the stable one.

DOI: 10.1103/PhysRevB.65.094105 PACS number~s!: 64.75.1g, 65.40.Gr
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I. INTRODUCTION

The development of methods based on density-functio
theory1,2 and computer power has allowed one to conce
calculations of phase diagram from first principles3,4 as an
alternative to laboratory experimentation. Traditionally, on
substitutional effects were considered, which was go
enough to reproduce the topology of most phase diagra
So as to obtain a more quantitative agreement with exp
mental data, it was shown more recently that electro
excitations5 as well as lattice vibrations6,7 could play impor-
tant parts in the relative stability of different phases. W
chose to test the ability of these first-principles methods
predict the solubility limit of Zr in an aluminum solid solu
tion, this part of the Al-Zr phase diagram being interesti
because of the presence of a metastable phase.

The Al-richest intermediate phase of the Al-Zr pha
diagram55 is Al3Zr. This compound has a DO23 structure,
which is body-centered-tetragonal with eight atoms per u
cell. Some of these atoms are allowed by symmetry to m
along the main axis of the unit cell~Fig. 1!. It is stable up to
1580610 °C.

The solubility limit of Zr in Al ~fcc! is very low, the
maximum solubility being 0.083 at. % at the peritectic rea
tion, liquid1ZrAl3↔(Al). The solubilities of Zr in both liq-
uids and solids were definitively determined by Fink a
Willey,8 and the assessed phase diagram is based on
data. The solid solubility was determined from resistiv
data, and checked by metallography. Solid solubilities w
also reported by Glazovet al.,9 Drits et al.10 ~solubilities de-
termined by means of microstructural analysis and elec
resistivity measurements!, and Kuznetsovet al.11 ~deter-
0163-1829/2002/65~9!/094105~13!/$20.00 65 0941
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mined from resistivity, microhardness and lattice const
measurements as well as metallography!. The solubilities re-
ported in these last studies are higher than the ones of
assessed phase diagram.

Supersaturated solid solution of Zr in~Al ! containing as
much as 3-at. % Zr can be prepared by rapid solidification
coherent metastable phase Al3Zr precipitates from the super
saturated solution.12 This phase has a structure L12 which is
simple cubic with four atoms per unit cell~Fig. 1!. This
metastable phase can also form from the melt as a prim

FIG. 1. Definition of the structures DO23 ~left! and L12 ~right!.
©2002 The American Physical Society05-1
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TABLE I. Equilibrium volume V0, bulk modulusB, and formation energyEf orm for relaxed Al-Zr
compounds calculated with the LDA.

Pearson Structure V0 B Ef orm

symbol type ~Å 3/atom! ~GPa! ~mRy/atom!a

Al ~fcc! cF4 Cu 15.82 80.78 0
Al31Zr cP32 ? 15.99 82.56 23.04
Al15Zr cI32 ? 16.10 84.27 26.99
Al8Zr tI18 V4Zn5 16.25 86.24 29.77
Al7Zr ~D1! cF32 Ca7Ge 16.30 87.32 214.33
Al4Zr (D1a) tI10 MoNi4 16.58 92.10 221.12
Al3Zr (L12) cP4 Cu3Au 16.12 99.59 239.00
Al3Zr (DO22) tI8 Al3Ti 16.60 99.65 239.04
Al3Zr (DO23) tI16 Al3Zr 16.35 100.05 240.72
Al2Zr (a) hP3 CdI2 18.01 87.16 211.73
Al2Zr (b) tI6 MoSi2 17.13 96.40 226.19
Al2Zr (g) oI6 MoPt2 17.15 96.51 226.08
AlZr (L10) tP4 AuCu 18.15 103.33 237.07
AlZr (L11) hR32 CuPt 19.04 93.29 216.50
AlZr ~CH40! tI8 NbP 18.52 100.48 233.56
AlZr ~D4! cF32 ? 18.49 92.58 214.78
AlZr ~Z2! tP8 ? 18.63 99.70 221.03
Zr2Al ( a) hP3 CdI2 20.38 98.10 210.72
Zr2Al ( b) tI6 MoSi2 19.53 104.84 224.78
Zr2Al ( g) oI6 MoPt2 19.44 104.05 226.36
Zr3Al (L1 2) cP4 Cu3Au 19.71 107.67 227.11
Zr3Al (DO22) tI8 Al3Ti 19.88 105.14 223.49
Zr3Al (DO23) tI16 Al3Zr 19.80 102.77 225.18
Zr4Al (D1 a) tI10 MoNi4 20.31 99.85 216.30
Zr7Al ~D1! cF32 Ca7Ge 20.93 101.66 27.96
Zr ~fcc! cF4 Cu 21.70 98.74 0

a
The reference phases are Al~fcc! and Zr~fcc!.
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phase during rapid solidification:13,14Al3Zr acts as a nucleon
for solidification of ~Al !, and Zr can thus work as a grai
refiner of Al. This metastable phase is also responsible
the effectiveness of Zr to control recrystallization in Al-bas
alloys: it leads to a more uniform distribution of fine precip
tates that pins grains and subgrains boundaries. Moreo
this phase is quite stable against coarsening and redis
tion, all this making it highly desirable. As few experiment
data are available for this phase, it is hard to fit a thermo
namic model for it. In such a case, a first-principles calcu
tion of the phase diagram should allow us to obtain prop
ties that are not available experimentally.

In order to assess the metastable phase diagram, with
same tools and approximations we studied the L12 and DO23
phases: this allowed us first to check the agreement betw
the obtained stable phase diagram and experimental data
then to compare the stable phase diagram to the metas
phase diagram.

First we study the stability of ordered compounds ba
on a fcc underlying lattice in the Al-Zr system. The energ
of different structures were calculated using anab initio
method, the full-potential linear-muffin-tin-orbital~FP-
LMTO!. Equilibrium parameters, such as the volume,
shape of the unit cell, and the positions of atoms, were
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tained. For stable structures these can be compared to ex
mental data.

Using this whole set of calculations we applied the clus
expansion to deduce the energy of any structure based o
same underlying lattice in the Al-Zr system, carefully exa
ining the way to include volume relaxations. At finite tem
perature, the electronic excitations, vibrational free ene
and configurational entropy have to be taken into accou
Having done this, we are able to obtain a thermodynam
model written in the same way as in a Calphad approach,
are able to calculate corresponding solubility limits.

II. GROUND STATES OF ORDERED COMPOUNDS

Formation energies were calculated at absolute zero t
perature for 26 compounds in the Al-Zr binary system,
based on a fcc lattice. Calculations were carried out usin
FP-LMTO method15–17in the version developed by Methfes
sel and Van Schilfgaarde.18 The basis used contained 2
energy-independent muffin-tin orbitals~MTO’s! per Al and
Zr site: threek values for the orbitalss and p and two k
values for the orbitalsd, where the corresponding kineti
energies werek250.01 Ry (spd), 1.0 Ry~spd!, and 2.3 Ry
(sp). A second panel with a basis composed of 22 ene
5-2
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TABLE II. Calculated volumesV0 , c8/a ratios (c85c/2 for the DO22 phase andc85c/4 for the DO23

phase!, atomic displacements~normalized byc8), and ground-state energies relative to the DO23 phase for
Al3Zr compared to previous calculations and experimental data.

Method V0 c8/a Atomic DE
~Å 3/atom! displacements ~mRy/atom!

L12 Present work 16.12 1.71
FP-LMTO ~Ref. 22! 0.64

VASP ~Ref. 23! 17.4 2.3
Experiments~Ref. 24! 17.14 1.69

DO22 Present work 16.60 1.141 1.68
FP-LMTO ~Ref. 22! 2.63

VASP ~Ref. 23! 17.7 1.141 1.9
DO23 Present work 16.35 1.087 dAl520.0021 0

dZr520.0273
FP-LMTO ~Ref. 22! 16.28 1.09 dAl510.003 0

dZr520.026
VASP ~Ref. 23! 17.5 1.079 dAl510.0003 0

dZr520.0101
Experiments~Ref. 22! 17.25 1.0775 dAl510.0004

dZr520.0272
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independent MTO’s with the same kinetic energies was u
to make a correct treatment of the 4p semicore states of Zr
The same uniform mesh of points was used to make
integrations in the Brillouin zone for valence and semico
states. The number of divisions along reciprocal vectors
chosen to be large enough to ensure a convergence o
total energy of the order of 0.1 mRy/atom for each structu
The radii of the muffin-tin spheres were chosen to hav
compactness of 47.6% for Al sites and 58.4% for Zr sit
Inside the muffin-tin spheres, the potential is expanded
spherical harmonics up tol 56 and in the interstitial region
spherical Hankel functions of kinetic energiesk251 Ry and
3.0 Ry were fitted up tol 56. The calculations were per
formed in the local density approximation~LDA !,1,2 and the
parametrization used was the one of von Barth and Hed19

Jomardet al.20 showed that generalized-gradient correctio
have to be included in order to obtain a correct description
the stability of the different phases of pure Zr, but as we w
interested only in the Al-rich part of the phase diagram
did not include these gradient corrections.

Ground-state energies at equilibriumE0, equilibrium vol-
umes per atomV0, and bulk moduliB were obtained by
fitting the Rose equation of state21 to the energies calculate
for different volumes around the minimum,

E~r !5E0S 11
r 2r 0

d DexpS 2
r 2r 0

d D , ~1!

wherer is the Wigner-Seitz radius associated with the atom
volumeV andd is related to the bulk modulusB through the
relation

B5
2E0

12pr 0d2
. ~2!
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For the different compounds, the energies were optimi
with respect to the volume and all other degrees of freed
allowed by the symmetry, like the shape of the unit cell
some atomic positions. The equilibrium volumesV0, bulk
moduli B, and formation energiesEf orm relative to the fcc
phases of both pure Al and Zr are presented in Table I.
note that all the formation energies are negative, and t
they characterize Al-Zr as an ordering system.

We examined the stability of the phases L12 , DO22, and
DO23 of Al3Zr more closely according to relaxations. L12
being cubic, its energy was optimized with respect to
atomic volume only, whereas in the tetragonal DO22 phase
optimization was additionally performed with respect to t
c/a ratio and in the tetragonal DO23 phase with respect to th
c/a ratio and to the atomic displacementsdAl and dZr (dAl
anddZr are defined in Fig. 1!.

Our results for Al3Zr agree very well with the experimen
tal ones~Table II!. The equilibrium volumes obtained for th
L12 and DO23 phases are lower than the experimental on
but this is a known feature of the LDA. This can be im
proved by adding gradient corrections: Colinet and Pastur23

using the generalized-gradient approximation instead of
LDA, found a better agreement with experimental data
these equilibrium volumes. After relaxing all the degrees
freedom, we see that DO23 is the stable phase. As show
previously by Amadoret al.,22 also using the FP-LMTO
technique, it is not enough to consider only the relaxation
the shape of the unit cell (c/a ratio! of the phase DO23 to
stabilize it, the atomic displacementsdAl anddZr allowed by
the symmetry also have to be relaxed, otherwise L12 will
still have a lower energy. This was confirmed by Colinet a
Pasturel23 with calculations in the pseudopotential metho
and we observed such a behavior too. The values obta
after relaxation for these displacements are close to th
measured by neutron diffraction by Amadoret al.:22 the sign
5-3



to
on
ch

la
se

w
a
,

u
b

he
ew
m
r
o

v

a

l b
-

-

tio
tio
t
n

le
-

-
i.e.,
as
his
of

g
nd
-

trun-
ters,
can

y to

a-
on

s
e
tion

he

i-

ons

e-
tly

ted
ns.
in

d

e

EMMANUEL CLOUET, J. M. SANCHEZ, AND C. SIGLI PHYSICAL REVIEW B65 094105
of dAl is wrong, but this relative displacement is too close
0 to be really significant. The enthalpy of transformati
from the L12 to DO23 structure was measured by Des
et al.24 The experimental value (DH521.69 mRy/atom)
agrees very well with the value obtained from our calcu
tions (DH521.72 mRy/atom), which was not the ca
with previous calculations.

For Zr3Al, we found the phase L12 to have the lowest
formation energy compared to the two other structures
investigated. This is in agreement with the experimental f
that L12 is the stable phase of Zr3Al. For other compositions
the experimentally stable structures are not based on an
derlying fcc lattice; therefore, no direct comparison can
made with our calculations.

III. CLUSTER EXPANSION
OF THE FORMATION ENERGY

The FP-LMTO method only allows one to calculate t
energy of perfectly ordered systems which contain a f
atoms per unit cell. Disordered or partially ordered syste
can be modeled by supercells, but this requires a too la
computational time. Moreover, to compute the free energy
these systems, one needs to calculate the energy of e
configuration. This cannot be done directly withab initio
calculations, and a cluster expansion has to be used. Th
why in the following we will directly use the FP-LMTO
calculations only for the perfectly ordered compounds Al3Zr
in the structures L12 and DO23, and for the solid solution
Al-Zr we will make a cluster expansion.

A. Formalism

Considering a binary crystal ofN sites on a rigid lattice,
its configuration can be described through an Ising mode
the vectors5$s1 ,s2 , . . . ,sN% where the pseudospin con
figuration variablesp is equal to61 if an A or B atom
occupies the sitep. Any structure is then defined by its den
sity matrix rs, rs(s) being the probability of finding the
structures in the configurations.

With any cluster ofn lattice pointsa5$ i 1 ,i 2 , . . . ,i n% we
associate the multisite correlation function

za
s 5Tr rs)

i Pa
s i5

1

2N (
s

rs~s!)
i Pa

s i , ~3!

where the sum has to be performed over the 2N possible
configurations of the lattice.

Clusters related by a translation or a symmetry opera
of the point group of the structure have the same correla
functions. Denoting byDa the number of such equivalen
clusters per lattice site, or degeneracy, any configuratio
function f s can be expanded in the form25

f s5(
a

Da f aza
s , ~4!

where the sum has to be performed over all nonequiva
clusters, and the coefficientsf a are independent of the struc
ture.
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The usefulness of expansion~4! rests on the fast conver
gence of these coefficients with the size of the clusters,
with the number of points included in the cluster as well
the maximal distance between points inside the cluster. T
allows one to truncate the sum using only a finite number
clusters. Knowing the value of the functionf s for a finite set
of structures, the coefficientsf a can then be obtained usin
the inverse method proposed by Connolly a
Williams,26i.e., by a matrix inversion if the number of struc
tures is the same as the number of clusters used in the
cated expansion. Here we used more structures than clus
and obtained the coefficients by a least-squares fit. We
thus check the convergence of the expansion by its abilit
reproducef s.

Rather than performing the fit directly on the configur
tional functionf s, we did it on the associated excess functi
which is defined as

D f s5 f s2
11z1

s

2
f A2

12z1
s

2
f B, ~5!

wherez1
s is the point correlation andf A and f B are the values

of the function f s for a lattice occupied by only atom
A(z151) andB (z1521), respectively. In the case of th
energy, this excess function is nothing else but the forma
energy. Using expansion~4!, we obtained

D f s5 (
a,uau>2

Da f aFza
s 2

11~21! uau

2
2z1

s 12~21! uau

2 G ,
~6!

where uau denotes the number of points contained in t
clustera.

Applying the Connolly-Williams method to expression~6!
rather than to Eq.~4! allows one easily to impose the cond
tion thatD f s should be equal to zero for pureA and pureB.
Thus we obtain the coefficientsf a only for clusters contain-
ing more than one point, the coefficientsf 0 and f 1 of the
empty and point clusters then being obtained by the relati

f 05
f A1 f B

2
2 (

a,uau>2

11~21! uau

2
Da f a , ~7a!

f 15
f A2 f B

2
2 (

a,uau>2

12~21! uau

2
Da f a . ~7b!

B. Relaxations

The volume of a structure, like any other property, d
pends on its configuration. But this volume enters direc
into the cluster expansion as the coefficientsf a have to be
calculated for a given volume. As we are generally interes
in the equilibrium properties, this leads to some relaxatio
In this study we will consider these volume relaxations
two different ways, globally and totally relaxe
expansions.27,28

We first can make the cluster expansion explicitly volum
dependent, writing
5-4
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FIRST-PRINCIPLES STUDY OF THE SOLUBILITY OF . . . PHYSICAL REVIEW B65 094105
f s~V!5(
a

Da f a~V!za
s , ~8!

where the coefficientsf a(V) are obtained by calculating th
propertyf s for different structures at the same volumeV, the
other degrees of freedom~shape of the unit cell and position
of atoms! being relaxed, and then by using the Connol
Williams method. Doing such a cluster expansion for t
energy, we can then deduce the equilibrium volume ass
ated with a given configuration by minimizing with respe
to the volume its energy as given by expression~8!. This is
known as the globally relaxed scheme, and is based on
assumption that the volume occupied by every cluster is
dependent on its configuration. Such an assumption is q
tionable in cases where there is a significant difference
tween the atomic volumes of the constituent elements a
the Al-Zr system.

Another way to consider relaxations of the volume is
calculate the coefficientsf a from the equilibrium values
f s(V0

s), where everything including the volume is allowed
relax. The coefficientsf a are then volume independent, an
the values predicted by the expansion are directly the one
equilibrium. Such a treatment is called a totally relaxed
pansion. This expansion is still rigorous from a mathemat
point of view, since the relaxations are themselves functi
of the configuration, so the relaxed structures will also b

C. Results

1. Total relaxations

We first made a cluster expansion of the equilibrium v
ume, the bulk modulus, and the formation energy for
Al-Zr system on a fcc lattice: we are thus performing thr
different totally relaxed expansions. To perform the lea
squares fit of the expansion, we used the 26 structures
which these equilibrium properties were obtained from o
FP-LMTO calculations~Table I!. The best agreement be
tween ourab initio calculations and their expansion was o
tained when using 17 clusters: the empty cluster$0%, the
point cluster$1%, the pairs from first to seventh nearest neig
bors$2,1% . . . $2,7%, seven triangles$3,1% . . . $3,7% presented
in Figs. 2~a!–2~g! and the tetrahedron of first nearest neig
bors$4,1% @Fig. 2~h!#. The values of the coefficients obtaine
for these three totally relaxed expansions are presente
Table III, and the errors compared to the direct calculat
for the 25 structures in Table IV.

Looking at the cluster expansion of the formation ener
it can be seen that the maximum difference between the
ergy given by the expansion and the one directly obtai
from the FP-LMTO calculations is 4.0 mRy/atom, and th
the standard deviation is 1.4 mRy/atom. We did not man
to find a better set of clusters producing a smaller error
we still had more structures than clusters to fit, we tried
include more clusters like the pair to the eighth-near
neighbor, but this did not improve the difference between
FP-LMTO calculations and their expansion. Such an er
does not allow one to reproduce the relative stability betw
different ordered compounds at a same concentration,
instance between the phases L12 , DO22, and DO23 of Al3Zr.
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However, as we are interested in using the cluster expan
only for the solid solution Al-Zr, this is not a problem: fo
perfectly ordered compounds we can directly use the res
of our ab initio calculations.

For the equilibrium volume, we can compare the accura
of the cluster expansion with the one of the Vegard’s l
which assumes a linear relation between the atomic volu
and the concentration. The standard deviation of the Vega
law is 0.427 Å/atom. Such an important error occurs
none of the considered structures and we have thus obta
an important improvement by not considering only t
empty and point clusters, as one does in Vegard’s law.

FIG. 2. Definition of the three- and four-point clusters on the f
lattice used for the expansion.

TABLE III. Cluster expansion of the equilibrium volume~coef-
ficientsVa), bulk modulus (Ba), and formation energy (Ja) in the
total relaxation scheme.

Va Ba Ja

Cluster Da ~Å 3/atom! ~GPa! ~mRy/atom!

$0% 1 18.587 98.15 2625.05
$1% 1 23.230 211.12 419.87
$2,1% 6 0.149 21.12 3.69
$2,2% 3 20.128 1.88 23.86
$2,3% 12 20.013 20.09 0.07
$2,4% 6 20.027 20.11 20.15
$2,5% 12 20.037 0.07 0.16
$2,6% 4 0.009 20.30 0.93
$2,7% 24 0.014 20.17 0.18
$3,1% 8 0.013 20.14 1.74
$3,2% 12 20.031 20.40 20.45
$3,3% 24 20.001 20.14 20.55
$3,4% 6 0.023 0.21 20.31
$3,5% 24 0.004 0.21 20.33
$3,6% 24 0.010 0.14 0.22
$3,7% 24 0.005 0.06 0.54
$4,1% 2 0.030 20.55 0.88
5-5
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EMMANUEL CLOUET, J. M. SANCHEZ, AND C. SIGLI PHYSICAL REVIEW B65 094105
the bulk modulus, the accuracy of our FP-LMTO being
the order of 1 GPa, here too we can consider the converg
of the cluster expansion to be good.

2. Global relaxations

Using the same sets of clusters and structures, we
panded the ground-state energy in 21 different volumes
tween 14 and 24 Å3/atom. For each structure, these 21 e
pansions gave the ground-state energy of the rela
structures at the corresponding fixed volume. We then u
these results to obtain the volume, the bulk modulus, and
ground-state energy at equilibrium by fitting the Rose eq
tion of state.21

The maximal and standard deviations between the p
erties deduced from the expansion and the ones directly
tained from the FP-LMTO calculations are shown in Tab
V. They are close to what we previously obtained in the to
relaxation scheme. Actually, we did not obtain any import
difference between the results obtained according to the
volume relaxations are considered. For each structure
deviation is quite the same in both cases, this being true
the formation energy as well as for the equilibrium volum

TABLE IV. Deviations for the cluster expansion of the equilib
rium volume (dV0), the bulk modulus (dB), and the formation
energy (dEf orm) in the total relaxations scheme.

dV0 dB dEf orm

~Å 3/atom! ~GPa! ~mRy/atom!

Al ~fcc! 0 0 0
Al31Zr 0.052 0.30 0.42
Al15Zr 0.035 0.83 21.02
Al8Zr ~NbNi8) 0.157 21.05 4.01
Al7Zr ~D1! 0.018 0.31 0.87
Al4Zr (D1a) 20.012 21.62 1.96
Al3Zr (L12) 20.109 20.02 20.21
Al3Zr (DO22) 20.029 0.63 20.58
Al3Zr (DO23) 20.079 0.73 22.10
Al2Zr (a) 20.017 0.10 20.36
Al2Zr (b) 20.028 0.52 21.11
Al2Zr (g) 20.041 0.60 21.38
AlZr (L1 0) 0.219 21.18 1.96
AlZr (L1 1) 0.323 20.86 0.60
AlZr ~CH40! 0.077 20.11 0.56
AlZr ~D4! 20.348 0.64 21.20
AlZr ~Z2! 0 0.41 0.49
Zr2Al ( a) 0.011 0.03 0.16
Zr2Al ( b) 20.007 0.46 20.71
Zr2Al ( g) 0.002 0.49 20.59
Zr3Al (L1 2) 20.095 1.21 20.32
Zr3Al (DO22) 20.038 2.01 21.29
Zr3Al (DO23) 20.061 22.03 20.69
Zr4Al (D1 a) 20.012 21.62 1.96
Zr7Al ~D1! 0.085 0.32 1.78
Zr ~fcc! 0 0 0
Standard deviation 0.116 0.91 1.33
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and the bulk modulus. Such a result could not have b
easily predicted as the size difference between Al and Z
quite important: the atomic volumes given by our calcu
tions for the fcc structures of Al and Zr are 15.82 a
21.70 Å3 ~Table I!, respectively. This proves that the glo
bally and locally relaxed expansions are equivalent. As
totally relaxed expansion only gives us one set of coefficie
for the whole range of volumes, it is more convenient; w
will use this expansion in the following.

IV. FINITE-TEMPERATURE PROPERTIES

At finite temperature, the vibrational and electronic co
tributions as well as the configurational entropy have to
included in the description of the system. Considering t
different time scales, a slow one for the configurational
fects and a much faster for vibrations and electro
excitations,4 we define vibrational and electronic free ene
gies,Fv ib(s) andFel(s), both depending on the configura
tion. Using the variational principle, the free energy is o
tained by minimizing the functional

F@r#5^E0&1^Fv ib&1^Fel&1kBT^ ln r&, ~9!

wherekB is the Boltzmann constant andr the density matrix.
The cluster expansion of the formation energy atT

50 K gives us an expression for the cohesive part of
functional of Eq.~9!. We do not have to take into accoun
any variation of the lattice parameter with temperature, as
choose to work in the harmonic approximation: Ozolin¸š and
Asta7 showed on the solubility limit of Sc in Al that ther
was only a small improvement when going from the h
monic approximation to the quasiharmonic approximatio
Similar expressions have to be found for the electronic a
vibrational parts of Expression~9!. The minimization of
F@r# with respect tor will then be done in the Bragg
Williams approximation.

A. Electronic free energy

At a temperature of 0 K, all electronic states of ener
below the Fermi levele f are occupied, whereas the on
above are empty. At finite temperature, the electrons clos
the Fermi levels can be promoted to states of higher ener
according to the Fermi-Dirac distributionf (e,T). The elec-
tronic excitations induce a change of the charge density
thus of the effective potential of the one electron Ham
tonian. This leads the electronic density of states~DOS! n(e)
to be temperature dependent. But the changes induced o
total energy and on the entropy by this temperature dep

TABLE V. Deviations for the cluster expansion of the equilib
rium volume (dV0), the bulk modulus (dB), and the formation
energy (dEf orm) obtained in the global relaxations scheme.

dV0 dB dEf orm

(Å 3/atom) ~GPa! ~mRy/atom!

Maximal deviation 20.351 22.26 5.15
Standard deviation 0.120 0.94 1.44
5-6
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dence of the electronic DOS are small.5 We thus assumed th
electronic DOS to be temperature independent and equ
the one obtained atT50. The energy changeDEel(T) and
the entropySel(T) due to electronic excitations are then

DEel5E
2`

`

en~e!@ f ~e,T!2 f ~e,0!#de, ~10a!

Sel52kBE
2`

`

n~e!$ f ~e,T!ln@ f ~e,T!#

1@12 f ~e,T!# ln@12 f ~e,T!#%de. ~10b!
We calculated the electronic contribution to the free e

ergy, Fel5DEel2TSel, for the structures Al~fcc!, Zr ~fcc!,
Al 3Zr (L12), and Al3Zr (DO23) ~Fig. 3!. In the range of
temperature of interest, i.e., below 1000 K, this electro
contribution is smaller than 1 mRy/atom, and so is the exc
free energy associated. This is the same range of order a
accuracy of the cluster expansion of the formation ene
We thus chose to neglect this contribution to the free ene

B. Vibrational free energy

We studied the vibrational effects in the harmonic a
proximation, comparing the ability of the Debye model wi
a phonon calculation to predict the thermodynamic prop
ties.

1. Phonon calculation

A calculation of the phonon DOSn(v) allows one to
compute the vibrational free energy. For temperatures hig
than 300 K, it is enough to consider only its hig
temperature expression

Fv ib5kBTF23 ln~kBT!1E
0

`

ln~\v!n~v!dvG1OS 1

TD .

~11!

Phonon DOS’s were calculated for Al~fcc!, Zr ~fcc!,
Al 3Zr (L12), and Al3Zr (DO23) in the linear-response theor

FIG. 3. Electronic free energyFel5DEel2TSel.
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framework.29 We used energy-independent MTO’s as a ba
for representing the first-order correction to the one elect
wave functions in the implementation developed
Savrasov.30,31These calculations were performed in the LD
using the parametrization of Moruzzi, Janak, and Williams32

The radii of the muffin-tin spheres were taken to be equa
the ones of the band structure calculation. For valence sta
the basis used was the same, whereas the 4s and 4p states of
Zr were treated in two different panels with respective
netic energiesk2 of 2.7 and 1.1 mRy. For fcc structure
phonon frequencies were calculated on a grid of 83838

wave vectorsqW leading to 29 points in the irreducible Bril
louin zone~IBZ!, for L12 a grid of 53535 leading to ten
points in the IBZ was used, and for DO23 a grid of 434
34 wave vectors leading to 13 points.

The calculated phonon dispersion for Al fcc is compar
in Fig. 4 to the measurements of Refs. 33 and 34 for th
different high-symmetry directions. We see that our calcu
tion overestimates the phonon frequency. Other phonon
culations for Al fcc,35–37 also using linear-response theor
obtained a better agreement with experimental data. The
used a plane-wave basis in the pseudopotential framew
but the use of an energy-independent MTO as a basis d
not seem to be the reason of the discrepancy with experim
tal data in our case, as Savrasov showed for Nb~Ref. 30! as
well as for NbC and Si~Ref. 31! that this basis was well-
suited to obtain phonon dispersion.

The phonon DOS’s obtained from these calculations
Al ~fcc!, Zr ~fcc!, Al3Zr (L12), and Al3Zr (DO23) are pre-
sented in Fig. 5. For Al~fcc!, we compared our calculate
phonon DOS with experimental ones. Experimental DO
~Refs. 34, 38, and 39! were obtained by means of a Born
von Karman model. Force constants were fitted up to
eighth-nearest neighbors in order to reproduce the pho
measurements in high-symmetry directions of Refs. 33
34, the Born–von Karman model being used then to comp
the frequency distribution. We can also see in the phon
DOS that our calculated frequencies are slightly too hi
Nevertheless, the shape of the frequency distribution is
rect.

FIG. 4. Calculated phonon dispersions for Al fcc~solid line!
compared to experimental data~Ref. 33 and 34! ~crosses!.
5-7
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FIG. 5. Phonon densities o
states.~a! Al ~fcc!: experimental
density ~a! is from Refs. 34 and
38, and~b! from Refs. 34 and 39.
~b! Zr ~fcc!. ~c! Al3Zr (L12). ~d!
Al3Zr (DO23).
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2. Debye model

The Debye model assumes a linear dispersion between
phonon frequency and its wave vector. This leads to the
lowing high-temperature expression of the vibrational fr
energy

Fv ib5kBTF2113 lnS uD

T D G1OS 1

TD , ~12!

where the Debye temperatureuD is obtained from the elastic
constants of the structures.40

The elastic constants were obtained by means of
LMTO calculations using the same set of parameters as
the formation energy calculations. The unit cell of the crys
was deformed around its equilibrium position in order
obtain the second derivative of the energy at its minimu
which can be then related to the elastic tensor.41,42 During
this deformation, no relaxation was allowed. For the DO23
structure, thec/a ratio and the positiondAl and dZr of the
atoms were frozen at their equilibrium value. For some of
deformations, we checked that these relaxations did
much change the values of the elastic constants. Moreo
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as we are lowering the symmetry of the structure by defo
ing it, some new degrees of freedom can appear; howeve
did not consider these either.

The elastic constants calculated with the FP-LMTO a
compared to the experimental ones in Table VI. The discr
ancy between the calculated and experimental constants
the order of 10%. This leads to some differences between
Debye temperatures obtained from these calculated cons
and the ones obtained from the experimental constants,
the relative positions of these temperatures are correctly
dicted.

In Table VII, we show the Debye temperatures obtain
from a calculation of the elastic tensor for cubic structu
fcc, D1, and L12 of the Al-Zr system. Structure D4 of AlZr is
also cubic, but this phase was found to be mechanically
stable through a Bain deformation path and cannot be use
calculate a Debye temperature.

3. Comparison for ordered compounds

As we calculated the phonon spectrum for Al3Zr for the
stable structure DO23 and the metastable one L12, we were
ri-
,

TABLE VI. Elastic constantCi j ~in GPa! calculated with the FP-LMTO method, compared to expe
mental values for Al~fcc!, Al3Zr (DO23), and Zr ~hcp!, and Debye temperatureuD . Debye temperatures
obtained by calorimetric measurements of the specific heat, when available, are given in brackets.

C11 C33 C12 C13 C44 C66 uD ~K!

Al ~fcc! FP-LMTO 101.5 ••• 70.4 ••• 31.7 ••• 385
expt. ~Refs. 45 and 46! 114.3 ••• 61.9 ••• 31.6 ••• 431 ~428!43

Al3Zr (DO23) FP-LMTO 215.3 228.2 54.1 33.3 103.2 123.5 616
expt. ~Ref. 47!a 208.8 208.3 70.5 49.1 87.2 102.2 575

Zr ~hcp! FP-LMTO 153.1 171.2 63.4 76.5 22.4 44.9 262
expt. ~Refs. 45 and 48! 155.4 172.5 67.2 64.6 36.3 44.1 299~310!44

aMeasured at room temperature.
5-8
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able to compare the excess vibrational free energyDFv ib

obtained from the phonon DOS and the Debye model,
reference phases being Al~fcc! and Zr ~fcc! ~high-
temperature expressions are given in Table VIII!. We thus
see that the Debye model makes an important error in
dicting this excess free energy, as it overestimates it b
factor ;2. This error comes from the inability of the Deby
model to reproduce the phonon DOS, as shown in Fig
Moreover the phonon calculation shows that the two con
ered structures of Al3Zr should have the same vibration
free energy which is not correctly predicted by the Deb
model. This error of the Debye model would lead to a sta
lization of the phase L12 at high temperatures (T*905 K),
which is not true experimentally. In order to describe t
relative stability of these two ordered phases of Al3Zr cor-
rectly, we cannot use the Debye model; and we have to
the previous phonon calculations.

4. Cluster expansion for the disordered phase

For the vibrational free energy of the disordered pha
we made a cluster expansion of the vibrational free ener
of several ordered structures. As the Debye model only
quires a calculation of the elastic tensor, which is much fa
than a calculation of the whole phonon spectrum, we use
to calculate the vibrational free energy of these ordered c
pounds~the Debye temperatures used are in Table VII!. By
doing so we saw previously that we overestimateDFv ib, but
a calculation of the phonon spectrum is not conceivable fo
number of structures large enough to fit the cluster exp
sion. We then have to accept such an error.

Looking at the high-temperature expression of the vib
tional free energy given by the Debye model@Eq. ~12!#, we
can make the cluster expansion

TABLE VII. Elastic constantsCi j ~in GPa! for Al-Zr com-
pounds of cubic symmetry and Debye temperatureuD .

C11 C12 C44 uD ~K!

Al ~fcc! 101.5 70.4 31.7 385
Al7Zr ~D1! 136.5 62.7 45.8 449
Al3Zr (L12) 187.3 55.7 95.1 557
Zr3Al (L1 2) 163.8 79.3 86.5 388
Zr7Al ~D1! 136.3 84.4 56.6 300
Zr ~fcc! 121.4 87.1 45.7 249
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DaJaza , ~13!

which allows us to write the vibrational free energy as

Fv ib5kBTF(
a

DaJaza23 lnTG . ~14!

By doing so, the temperature dependence of the free en
is made very simple, and we do not have to make a clu
expansion of the free energy at every temperature.

We only used four clusters in the truncated expansion:
empty cluster$0%, the point cluster$1%, the pair$2,1% of first-
nearest neighbors, and the triangle$3,1% of first-nearest
neighbors. The eight structures of Table VII were used to
the coefficients of the expansion. The results of this exp
sion are presented in Table IX~a!, and the deviations in Table
IX ~b!. Although only a few clusters were used in this expa
sion, the convergence is very good.

C. Bragg-Williams approximation

We thus obtained an expression for the different parts
the free energy functionalF@r# of expression~9!: the cohe-
sive part is given by the cluster expansion of the FP-LMT
calculations~coefficients in Table III!, the vibrational energy
by the expression~14! with the coefficients of Table IX~a!,
and the electronic contribution can be neglected. The fu
tional F@r# is minimized in the Bragg-Williams approxima
tion. This assumes that there is no short range order and
the correlation functions can be factorized over the me
values of the pseudo spin variable^sn& for the lattice sites
contained in the cluster,

za5K )
i Pa

s i L 5)
i Pa

^s i&. ~15!

TABLE VIII. Comparison of the high temperature expressio
of the vibrational free energy obtained with the phonon calculat
and the Debye model.

Al3Zr (L12) Phonons DFv ib50.85kBT1O(1/T)
Debye 51.44kBT1O(1/T)

Al3Zr (DO23) Phonons DFv ib50.85kBT1O(1/T)
Debye 51.74kBT1O(1/T)
TABLE IX. Cluster expansion of the functionf s53 ln uD21 for the vibrational free energy.

~a! Coefficients of the expansion. ~b! Deviationd f s of the expansion.
Cluster Da Ja f s d f s

$0% 1 17.385 Al~fcc! 16.86 0
$1% 1 0.874 Al7Zr ~D1! 17.32 20.08
$2,1% 6 20.197 Al3Zr (L12) 17.97 0.04
$3,1% 8 20.027 Zr3Al (L1 2) 16.88 0.04

Zr7Al ~D1! 16.11 20.08
Zr ~fcc! 15.55 0
5-9
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EMMANUEL CLOUET, J. M. SANCHEZ, AND C. SIGLI PHYSICAL REVIEW B65 094105
The Bragg-Williams approximation thus assumes that the
tice sites interact only through their mean occupancy
neglects all correlations between different sites. This can
improved by using the Cluster Variation Method~CVM!,49

but in the case of a low solubility, no really important im
provement is expected when going from the Bragg-Willia
approximation to the CVM. Moreover, the computation
time necessary to obtain the free energy by means of
CVM increases a lot with the size of the maximal cluster.
Zr has a really low solubility in Al~fcc! and as the long
range interactions of the cluster expansion of the forma
energy requires a too large cluster, we chose to work with
Bragg-Williams approximation.

Within the Bragg-Williams approximation, the configur
tional entropy has the following expression for a binary co
pound:

S@r#52kB(
n

~11^sn&!ln~11^sn&!

1~12^sn&!ln~12^sn&!. ~16!

1. Disordered phase

For a disordered state, all lattice sites are equivalent
symmetry. They thus have the same point correlationz1
52x21, wherex is the Zr atomic concentration. Cons
quently any correlation function can be written in terms
the point correlation:

za5z1
uau . ~17!

The cluster expansion of the functionf s, using expression
~6! of the excess functionD f s, can then be expressed as
function of the point correlation, or equally as a function
the concentration. This leads to an expression similar to
way the internal energy of a solid solution is written in
Redlich-Kister model, which is of common use in th
Calphad method,50

f s5x fA1~12x! f B1x~12x! (
n>0

Ln~2x21!n, ~18!

where the coefficientsLn are obtained from the coefficient
Ja by the relations

Ln524(
i>1

(
a

uau5n12i

Da f a . ~19!

Using expression~16! for the entropy, for the free energy o
the disordered fcc solid solution Al(12x)Zrx we obtain

F~x!5~12x!UAl, f cc1xUZr, f cc

1kBT@x ln x1~12x!ln~12x!#

1x~12x! (
n>0

Ln~2x21!n. ~20!
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The Redlich-Kister coefficients are obtained from t
cluster expansion of the formation energy and the clus
expansion of the vibrational free energy calculated in
Debye approximation:

L05289.09129.931023T mRy/atom,

L15214.3015.4731023T mRy/atom, ~21!

L2527.03 mRy/atom.

For a dilute solution (x!1), expression~20! is equivalent
to the free energy of a regular solution, the excess free
ergy then beingx(12x)V5x(12x)(L01L11L2). In Table
X we compare the value ofV obtained from our calculations
to the values obtained by a fit of the phase diagram thro
a Calphad approach.51,52

2. Line compounds

Al3Zr in DO23 or L12 structures can be considered as
line compound, i.e., perfectly ordered: both structures
composed of interpenetrating sublattices of pure Al and p
Zr. The configurational entropy of such line compounds c
be neglected and these structures only exist for a conce
tion x51/4. We checked with a calculation using previo
cluster expansions of the formation and vibrational energ
that this assumption was correct in the range of tempera
of interest when looking at equilibrium with the solid solu
tion. The free energy of these compounds is then sim
given by

FAl3Zr5
3

4
UAl, f cc1

1

4
UZr, f cc1DUAl3Zr, ~22!

whereDUAl3Zr ~in mRy/atom! is obtained from our previous
calculations of the formation energy~Table I! and of the
excess vibrational free energy calculated from the pho
DOS ~Table VIII!:

DUAl3Zr,L125239.0015.3831023T, ~23a!

DUAl3Zr,DO235240.7215.3831023T. ~23b!

D. Solubility limit of Zr in Al „fcc…

Using previous expressions for the free energies of
disordered phase and the line compounds Al3Zr, we obtained
the solubility limit of Zr in Al ~fcc!, both in the stable phas
diagram when considering the structure DO23 for Al3Zr and
in the metastable one when considering the structure L12. As

TABLE X. ParameterV ~in mRy/atom! of the excess free en
ergy for the fcc regular solid solution Al-Zr deduced fromab initio
calculations, and compared to values obtained by a fit of the exp
mental phase diagram.

Present work V 52110.42135.3731023T
Saunders~Ref. 51! 5287.60122.8531023T
Murray et al. ~Ref. 52! 5285.08131.0131023T
5-10
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we are in the case of a dilute solid solution, the solubil
limit of Zr in Al ~fcc! is an analytical function of the
temperature:53

x5expS 4DUAl3Zr2V

kBT D . ~24!

The solubility we obtained is too low: at the melting tem
perature of the perictectic it is equal to 0.0016-at. %
whereas the one deduced from experimental data is 0
at. % Zr.52 When comparing the variation with respect to 1T
of ln x with experimental measurements, we obtain a stra
line having the same slope as the Fink and Willey data8 ~cf.
Fig. 6!. This shows that our calculations provide an appro
mation of the enthalpy difference between the solid solut
and the DO23 ordered compound which is consistent wi
Fink and Willey’s data, and that the discrepancy on the so
bility limit only arises from an error on the estimation of th
entropy difference. Computing the solubility limit of Sc i
Al, Asta et al.54 reached the same conclusion thatab initio
calculations correctly predict the enthalpy difference b
tween the ordered compound and the solid solution w
compared to experimental data. In our case, the error on
entropic terms may come from an overestimation of the
brational free energy of the disordered phase due to the
of the Debye model for this phase. As for the structures D23
and L12 of Al3Zr, the Debye model overestimates the exc
vibrational free energy by a factor;2 ~Table VIII!; we be-
lieve this leads to an error of the same range for the s
solution.

Leaving the enthalpic part unchanged, we correct the
tropic part of the parameterV defining the excess free en
ergy of the solid solution, so as to obtain a perfect agreem
with Fink data~cf. Fig. 6!, and we obtain

V52110.42110.0731023T mRy/atom. ~25!

We thus obtain a stable solubility limit that is consistent w
the Fink and Willey measurements, and we are now abl
predict the metastable limit using expression~25! to evaluate
the excess free energy of the solid solution~cf. Fig. 7!. As
the structures DO23 and L12 of Al3Zr have the same vibra

FIG. 6. Fit of the entropy of the solid solution so as to reprodu
Fink experimental data.
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tional free energy, the difference of solubility limit is onl
due to the difference of ground-state energies of these
phases. At the melting temperature of the peritectic, we
tain a maximal metastable solubility limit equal to 0.27
at. % Zr.

This is to be compared to the results obtained by
Calphad method. Murrayet al.52 modeled the metastabl
phase of Al3Zr as a line compound. They assumed that o
an enthalpy term, and no entropy term, contributes to
free-energy difference between the stable and metast
phases. This was done to guarantee that L12 does not be-
come stable at high temperature. Moreover, there is no
perimental data that allows one to estimate the entropy of
L12 phase. Our calculation of the vibrational free ener
shows that such an approximation was correct. The enth
difference between the two compounds was assumed to
from the coherency of the L12 phase with the matrix. From
the elastic properties of Al and an estimate of the compo
tion dependence of the lattice parameter, Murrayet al. cal-
culated an elastic energy of 1.52 mRy/atom. This estima
is quite close to our calculation (DH51.72 mRy/atom) as
well as to the experimental measurement of Deschet al.24

(DH51.69 mRy/atom). Murrayet al. thus obtained a solu
bility limit that is higher in the metastable phase diagra
than in the stable one, and their prevision is very close to
result: they predicted a maximal metastable solubility lim
equal to 0.21 at. %.

In another Calphad study, Saunders51 used the Gibbs en
ergy for the disordered Al~fcc! solution, as derived from the
stable equilibrium diagram, to construct the Gibbs energy
the ordered L12 phase in the Bragg-Williams approximation
He found a higher solubility limit for Zr in the metastab
phase diagram than Murrayet al., as he predicted a meta
stable solvus composition of 0.3-at. % Zr at the melting te
perature of the peritectic.

Our study thus allows one to estimate the free-energy
ference between the stable and metastable phases of Al3Zr, a
quantity which is not available experimentally and has to
guessed in these Calphad studies. One thus sees how
possible to improve the thermodynamic database availab
Calphad methods.

e FIG. 7. Calculated stable and metastable solubility limits of
in Al compared to experimental data~Refs. 8–11!.
5-11
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V. CONCLUSION

The equation of state for several compounds in the Al
system has been computed using the full-potential line
muffin-tin-orbital ~FP-LMTO! method. Theseab initio cal-
culations correctly predict the stability of the phase DO23 for
Al3Zr if we consider the cell internal relaxations.

We made a cluster expansion of the results ofab initio
calculations to predict the formation energy of any co
pound in the Al-Zr system based on an underlying fcc latti
We showed that despite the size difference between Al
Zr a totally or globally relaxed expansion for the volum
leads to the same result: there is no difference if we use
cluster expansion to predict the formation energy at the e
librium volume of each structure or at a fixed volume, t
energy then being minimized according to the volume.

For finite-temperature calculations, we showed that
electronic excitations can be neglected. The vibrational
ergy was studied in the harmonic model, using different l
els of the approximation: the Debye model was compare
results obtained from a calculation of the phonon spectr
for Al3Zr in DO23 and L12 structures, and it was found tha
the use of the Debye model leads to an overestimation of
vibrational free energy. Thus we preferred to use the res
from the phonon spectrum to calculate the vibrational f
energy of ordered compounds. For the disordered phase
r
,

n
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chose to make a cluster expansion of the vibrational f
energy. This was only possible with the Debye model, as
requires less computational time.

We were able to calculate the solubility limit of Zr in A
~fcc! in the the Bragg-Williams approximation. The solub
ity limit obtained is too low compared to experimental da
We showed that this discrepancy is due to an error in
estimation of the entropy in our thermodynamic model. T
may arise from an overestimation of the vibrational free
ergy of the disordered phase, due to the use of the De
model for this phase. Correcting the vibrational entropy
the solid solution so as to fit the experimental measurem
of Fink and Willey, we were able to predict the metasta
solubility limit which lies between the estimation of Murra
et al. and the one of Saunders, both obtained by a Calp
method. We thus showed how first-principles calculatio
can lead to an estimation of the phase diagram. This
proach has the advantage of not requiring any experime
input, and consequently it is not a problem to predict
stability of metastable phases.
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