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The experimental solubility limit of Zr in Al is well known. AZr has a stable structure DQand a
metastable one Lil Consequently there is a metastable solubility limit for which only few experimental data
are available. The purpose of this study is to obtainabynitio calculations, the solubility limit of Zr in Al for
stable as well as metastable phase diagrams. The formation energies of several ordered comgoynds Al
all based on a fcc underlying lattice, were calculated using the FP-LNflilDpotential linear-muffin-tin-
orbital) method. Taking into account all the relaxations allowed by the symmetry, we found thesb@rture
to be the stable one for gZr. This set of results was then used with the cluster expansion in order to fit a
generalized Ising model through the inverse method of Connolly and Williams. Different ways to consider
volume relaxations were examined. This allowed us to calculate, in the Bragg-Williams approximation, the
configurational free energy at finite temperature. According to the previous FP-LMTO calculations the free
energy due to electronic excitations can be neglected. For the vibrational free energy of ordered structures, we
compared results obtained from a calculation of the elastic constants used with the Debye model and results
obtained from a calculation of the phonon spectrum. All these different steps lead to a calculation of the
solubility limit of Zr in Al which is found to be lower than the experimental one. The solubility limit in the
metastable phase diagram is calculated in the same way, and thus can be compared to the stable one.
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[. INTRODUCTION mined from resistivity, microhardness and lattice constant
measurements as well as metallograpfye solubilities re-

The development of methods based on density-functiongported in these last studies are higher than the ones of the
theory? and computer power has allowed one to conceiveassessed phase diagram.
calculations of phase diagram from first principléss an Supersaturated solid solution of Zr {Al) containing as
alternative to laboratory experimentation. Traditionally, onlymuch as 3-at. % Zr can be prepared by rapid solidification. A
substitutional effects were considered, which was goodoherent metastable phase;Al precipitates from the super-
enough to reproduce the t0p0|ogy of most phase diagram§_aturated SOlUtiOF'IZ. This phase has a structure }Wthh is
So as to obtain a more quantitative agreement with experisimple cubic with four atoms per unit celFig. 1). This
mental data, it was shown more recently that electronidnetastable phase can also form from the melt as a primary
excitations as well as lattice vibratiofi$ could play impor-
tant parts in the relative stability of different phases. We
chose to test the ability of these first-principles methods to
predict the solubility limit of Zr in an aluminum solid solu-
tion, this part of the Al-Zr phase diagram being interesting
because of the presence of a metastable phase.

The Al-richest intermediate phase of the Al-Zr phase
diagrani® is Al;Zr. This compound has a D@ structure,
which is body-centered-tetragonal with eight atoms per unit
cell. Some of these atoms are allowed by symmetry to move
along the main axis of the unit cdlFig. 1). It is stable up to
1580+10 °C.

The solubility limit of Zr in Al (fcc) is very low, the
maximum solubility being 0.083 at. % at the peritectic reac-
tion, liquid+ZrAl;— (Al). The solubilities of Zr in both lig-
uids and solids were definitively determined by Fink and
Willey,® and the assessed phase diagram is based on their
data. The solid solubility was determined from resistivity
data, and checked by metallography. Solid solubilities were
also reported by Glazoet al.® Drits et al1° (solubilities de-
termined by means of microstructural analysis and electric
resistivity measurements and Kuznetsovet al!! (deter- FIG. 1. Definition of the structures D@(left) and L1, (right).
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TABLE |. Equilibrium volume V,, bulk modulusB, and formation energf ™ for relaxed Al-Zr
compounds calculated with the LDA.

Pearson Structure Vo B gform
symbol type (A 3/atom) (GPa (mRy/atom?

Al (fcc) cF4 Cu 15.82 80.78 0

Al,Zr cP32 2 15.99 82.56 ~3.04
Al eZr cl32 ? 16.10 84.27 —6.99
AlgZr 1118 VaZns 16.25 86.24 ~9.77
Al.Zr (D1) cF32 CgGe 16.30 87.32 —-14.33
AlZr (D1 1110 MoNi, 16.58 92.10 —21.12
AlsZr (L1,) cP4 CuAu 16.12 99.59 —39.00
Al,Zr (DO, 18 AlTi 16.60 99.65 —39.04
AlLZr (DOy) 1116 Al Zr 16.35 100.05 —40.72
AlLZr (a) hP3 Cd 18.01 87.16 ~11.73
AlLZr (B) t16 MoSi, 17.13 96.40 ~26.19
AlLZr (7) 0l6 MoPt, 17.15 96.51 —26.08
AIZr (L1) tP4 AuCu 18.15 103.33 ~37.07
AIZr (L1,) hR32 CuPt 19.04 93.29 ~16.50
AlZr (CH40 t18 NbP 18.52 100.48 —33.56
AlZr (D4) cF32 ? 18.49 92.58 —14.78
AlZr (Z2) tP8 ? 18.63 99.70 —-21.03
ZrAl (@) hP3 Cd 20.38 98.10 ~10.72
ZrAl (B) 116 MoSi, 19.53 104.84 —24.78
ZrAl () 0l6 MoPb 19.44 104.05 ~26.36
ZrAl (L1,) cP4 CuAu 19.71 107.67 —27.11
ZrAl (DO, 118 AlTi 19.88 105.14 —23.49
Zr,Al (DO 1116 AlyZr 19.80 102.77 ~25.18
Zr,Al (D1, t110 MoNi, 20.31 99.85 ~16.30
Zr;Al (D1) cF32 CaGe 20.93 101.66 —7.96
Zr (fcc) cF4 Cu 21.70 98.74 0

*The reference phases are(f&t) and Zfcc).

phase during rapid solidificatiolf:1* Al,Zr acts as a nucleon tained. For stable structures these can be compared to experi-
for solidification of (Al), and Zr can thus work as a grain mental data.
refiner of Al. This metastable phase is also responsible for Using this whole set of calculations we applied the cluster
the effectiveness of Zr to control recrystallization in Al-basedexpansion to deduce the energy of any structure based on the
alloys: it leads to a more uniform distribution of fine precipi- same underlying lattice in the Al-Zr system, carefully exam-
tates that pins grains and subgrains boundaries. Moreovéhing the way to include volume relaxations. At finite tem-
this phase is quite stable against coarsening and redissolQerature, the electronic excitations, vibrational free energy,
tion, all this making it highly desirable. As few experimental and configurational entropy have to be taken into account.
data are available for this phase, it is hard to fit a thermodyHaving done this, we are able to obtain a thermodynamic
namic model for it. In such a case, a first-principles calcula‘model written in the same way as in a Calphad approach, and
tion of the phase diagram should allow us to obtain properare able to calculate corresponding solubility limits.
ties that are not available experimentally.

In order to assess the m_etastable ph_ase diagram, with the GROUND STATES OF ORDERED COMPOUNDS
same tools and approximations we studied the &rid DG4
phases: this allowed us first to check the agreement between Formation energies were calculated at absolute zero tem-
the obtained stable phase diagram and experimental data, apdrature for 26 compounds in the Al-Zr binary system, all
then to compare the stable phase diagram to the metastalilased on a fcc lattice. Calculations were carried out using a
phase diagram. FP-LMTO method®*’in the version developed by Methfes-

First we study the stability of ordered compounds basedel and Van Schilfgaard€. The basis used contained 22
on a fcc underlying lattice in the Al-Zr system. The energiesenergy-independent muffin-tin orbita{MTO’s) per Al and
of different structures were calculated using ab initio  Zr site: threex values for the orbitals and p and two «
method, the full-potential linear-muffin-tin-orbitalFP-  values for the orbitalgl, where the corresponding kinetic
LMTO). Equilibrium parameters, such as the volume, theenergies wer&?=0.01 Ry Gpd), 1.0 Ry(spd, and 2.3 Ry
shape of the unit cell, and the positions of atoms, were ob{sp). A second panel with a basis composed of 22 energy
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TABLE II. Calculated volumed/,, c¢'/a ratios (¢’ =c/2 for the DQ, phase andt’ =c/4 for the DQ3
phasg, atomic displacementsiormalized byc’), and ground-state energies relative to the,pghase for
Al;Zr compared to previous calculations and experimental data.

Method Vo c'/a Atomic AE
(A 3/atom displacements (mRy/atom
L1, Present work 16.12 1.71
FP-LMTO (Ref. 22 0.64
VASP (Ref. 23 17.4 2.3
ExperimentdRef. 24 17.14 1.69
DO,, Present work 16.60 1.141 1.68
FP-LMTO (Ref. 22 2.63
VASP (Ref. 23 17.7 1.141 1.9
DO,, Present work 16.35 1.087 Sn=—0.0021 0
6,=—0.0273
FP-LMTO (Ref. 22 16.28 1.09 S =+0.003 0
62,=—0.026
VASP (Ref. 23 17.5 1.079 &a=+0.0003 0
8,=—0.0101
ExperimentsRef. 22 17.25 1.0775 Sa=+0.0004
8z=—0.0272

independent MTO's with the same kinetic energies was used For the different compounds, the energies were optimized
to make a correct treatment of the 4emicore states of Zr. with respect to the volume and all other degrees of freedom
The same uniform mesh of points was used to make thellowed by the symmetry, like the shape of the unit cell or
integrations in the Brillouin zone for valence and semicoresome atomic positions. The equilibrium volumésg, bulk
states. The number of divisions along reciprocal vectors wagoduli B, and formation energieE™™ relative to the fcc
chosen to be large enough to ensure a convergence of thgases of both pure Al and Zr are presented in Table |. We
total energy of the order of 0.1 mRy/atom for each structurenote that all the formation energies are negative, and thus
The radii of the muffin-tin spheres were chosen to have ahey characterize Al-Zr as an ordering system.
compactness of 47.6% for Al sites and 58.4% for Zr sites. We examined the stability of the phases,|.1DO,,, and
Inside the muffin-tin spheres, the potential is expanded iIDO,; of Al;Zr more closely according to relaxations. 4.1
spherical harmonics up tio=6 and in the interstitial region peing cubic, its energy was optimized with respect to the
spherical Hankel functions of kinetic energie$=1 Ry and  atomic volume only, whereas in the tetragonal H@hase
3.0 Ry were fitted up td=6. The calculations were per- optimization was additionally performed with respect to the
formed in the local density approximati¢ghDA),*and the  ¢/a ratio and in the tetragonal D@phase with respect to the
parametrization used was the one of von Barth and H&din. ¢/a ratio and to the atomic displacementg and 85, (S
Jomardet al?° showed that generalized-gradient correctionsang 55, are defined in Fig. )L
have to be included in order to obtain a correct deSCfiption of Our results for AéZr agree very well with the experimen_
the stability of the different phases of pure Zr, but as we wergg| ones(Table Il). The equilibrium volumes obtained for the
interested only in the Al-rich part of the phase diagram weL 1, and DG, phases are lower than the experimental ones,
did not include these gradient corrections. but this is a known feature of the LDA. This can be im-
Ground-state energies at equilibrigg, equilibrium vol-  proved by adding gradient corrections: Colinet and Pagturel
umes per atonV,, and bulk moduliB were obtained by ysing the generalized-gradient approximation instead of the
fitting the Rose equation of stéfeto the energies calculated | DA, found a better agreement with experimental data for

for different volumes around the minimum, these equilibrium volumes. After relaxing all the degrees of
freedom, we see that DQis the stable phase. As shown
r—ro r—ro previously by Amadoret al,?? also using the FP-LMTO
E(r)= EO( 1+ — )exp( s ) (1) technique, it is not enough to consider only the relaxation of

the shape of the unit cellc(a ratio) of the phase D& to

wherer is the Wigner-Seitz radius associated with the atomicstabilize it, the atomic displacementg and &, allowed by

volumeV and § is related to the bulk modulu8 through the ~ the symmetry also have to be relaxed, otherwise il
relation still have a lower energy. This was confirmed by Colinet and

Pasture®® with calculations in the pseudopotential method,
and we observed such a behavior too. The values obtained
—Eq ; ;
= 9 (2)  after relaxation for these displacements are close to those
1271 462 measured by neutron diffraction by Amadatral:?* the sign
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of 8, is wrong, but this relative displacement is too close to  The usefulness of expansi@d) rests on the fast conver-
0 to be really significant. The enthalpy of transformationgence of these coefficients with the size of the clusters, i.e.,
from the L1, to DO,; structure was measured by DeschWith the number of points included in the cluster as well as
et al?* The experimental valueAH=—1.69 mRy/atom) the maximal distance between points inside the cluster. This
agrees very well with the value obtained from our calcula-allows one to truncate the sum using only a finite number of
tions (AH=—1.72 mRy/atom), which was not the case clusters. Knowing the value of the functiéh for a finite set
with previous calculations. of structures, the coefficienfs, can then be obtained using
For Zr;Al, we found the phase Lilto have the lowest the inverse method proposed by Connolly and
formation energy compared to the two other structures wdVilliams*%.e., by a matrix inversion if the number of struc-
investigated. This is in agreement with the experimental factures is the same as the number of clusters used in the trun-
that L1, is the stable phase of Z&l. For other compositions, ~Ccated expansion. Here we used more structures than clusters,
the experimentally stable structures are not based on an uahd obtained the coefficients by a least-squares fit. We can
derlying fcc lattice; therefore, no direct comparison can bethus check the convergence of the expansion by its ability to

made with our calculations. reproducefs.
Rather than performing the fit directly on the configura-

ll. CLUSTER EXPANSION tional functionf®, we did it on the associated excess function
OF THE FORMATION ENERGY which is defined as

The FP-LMTO method only allows one to calculate the 1+ 1-4
energy of perfectly ordered systems which contain a few Afs:fs—T A—TfB, ()
atoms per unit cell. Disordered or partially ordered systems
can be modeled by supercells, but this requires a t0o larggnere/s is the point correlation antf* andf® are the values
computational time. Moreover, to compute the free energy of¢ ihe function f$ for a lattice occupied by only atoms
these systems, one needs to calculate the energy of eVeRfs,=1) andB (¢,=—1), respectively. In the case of the

configur_ation. This cannot be done directly wilb initio energy, this excess function is nothing else but the formation
calculations, and a cluster expansion has to be used. Thaté?1ergy. Using expansiof#), we obtained

why in the following we will directly use the FP-LMTO

calculations only for the perfectly ordered compoundgZAl 1+(—1)l 1—(—1)l
in the structures L1 and DQy3, and for the solid solution Afs= Dofol {6~ 2 -1 2 :
Al-Zr we will make a cluster expansion. a|a|=2 ®)
A. Formalism where |a| denotes the number of points contained in the

Considering a binary crystal df sites on a rigid lattice, Clustera.
its configuration can be described through an Ising model by Applying the Connolly-Williams method to expressit6)
the vectore={cy,0,, . .. o} Where the pseudospin con- r_ather than to Eq(4) allows one easily to impose the condi-
figuration variableo, is equal to+1 if an A or B atom  tion thatAf* should be equal to zero for pureand pureB.
occupies the sitp. Any structure is then defined by its den- Thus we obtain the coefficients, only for clusters contain-
sity matrix pS, p%(o) being the probability of finding the ing more than one point, the coefficierts and f; of the

structures in the configurationo. empty and point clusters then being obtained by the relations
With any cluster of lattice pointsa={i,i,, ...,i,} we w
associate the multisite correlation function _fatfp 1+(=1)
fo= - ——F— D, f.. (78
2 a,|a|=2 2
1
=Tl o= X (o]l o, 3 ]
lea 2 o lea fA_fB 1_(_1)
f=—F5—— ; ——D.f.. (7b)
where the sum has to be performed over the pssible afa|=2

configurations of the lattice.
Cluste_rs related by a translation or a symmetry operati_on B. Relaxations
of the point group of the structure have the same correlation .
functions. Denoting byD,, the number of such equivalent ~ 'n€ volume of a structure, like any other property, de-

clusters per lattice site, or degeneracy, any configurationa_{?ends on its configurat_ion. But this vo_Iu_me enters directly
function f* can be expanded in the fofm into the cluster expansion as the coefficiefijshave to be

calculated for a given volume. As we are generally interested
. < in the equilibrium properties, this leads to some relaxations.
f5=2 D, L5, (4 In this study we will consider these volume relaxations in
“ two different ways, globally and totally relaxed
where the sum has to be performed over all nonequivalergxpansiong’-?®
clusters, and the coefficientg are independent of the struc-  We first can make the cluster expansion explicitly volume
ture. dependent, writing
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fS<V>=§ D.fu(V)Z3, 8 s

o @ ®
where the coefficient$, (V) are obtained by calculating the
propertyf® for different structures at the same voluMgthe
other degrees of freedo(shape of the unit cell and positions (a) (b) (¢) (d)
of atomg being relaxed, and then by using the Connolly-
Williams method. Doing such a cluster expansion for the {31} {32} {33} {3,4}
energy, we can then deduce the equilibrium volume associ-
ated with a given configuration by minimizing with respect ®
to the volume its energy as given by expresdi®n This is O ®
known as the globally relaxed scheme, and is based on the
assumption that the volume occupied by every cluster is in-
dependent on its configuration. Such an assumption is ques-

tionable in cases where there is a significant difference be- (e) €3] (g) (h)
tween the atomic volumes of the constituent elements as in
the Al-Zr system. {3,5} {3,6} {37} {4,1}

Another way to consider relaxations of the volume is to
calculate the coefficient§, from the equilibrium values
f5(V3), where everything including the volume is allowed to
relax. The coefficient$,, are then volume independent, and
the values predicted by the expansion are directly the ones Atowever, as we are interested in using the cluster expansion
equilibrium. Such a treatment is called a totally relaxed ex-only for the solid solution Al-Zr, this is not a problem: for
pansion. This expansion is still rigorous from a mathematicaperfectly ordered compounds we can directly use the results
point of view, since the relaxations are themselves function§f our ab initio calculations.

of the configuration, so the relaxed structures will also be. ~ For the equilibrium volume, we can compare the accuracy
of the cluster expansion with the one of the Vegard’s law

which assumes a linear relation between the atomic volume

and the concentration. The standard deviation of the Vegard's
1. Total relaxations law is 0.427 A/atom. Such an important error occurs for

We first made a cluster expansion of the equilibrium vol-N°N€ of the considered structures and we have thus obtained

ume, the bulk modulus, and the formation energy for the?? Important improvement by not considering only the
Al-Zr system on a fcc lattice: we are thus performing three®MPty and point clusters, as one does in Vegard's law. For

different totally relaxed expansions. To perform the least-
squares fit of the expansion, we used the 26 structures for TABLE Ill. Cluster expansion of the equilibrium volunmeoef-
which these equilibrium properties were obtained from ourficientsV,), bulk modulus B,), and formation energyd(,) in the
FP-LMTO calculations(Table ). The best agreement be- total relaxation scheme.
tween ourab initio calculations and their expansion was ob-
tained when using 17 clusters: the empty clus@; the \Z B. Ja
point clustef1}, the pairs from first to seventh nearest neigh-Cluster D. (A 3/atom) (GPa (mRy/atom
_bor;{Z,l} ... {2,7,, seven triangle$3,1} . . ._{3,7} presentepl 0} 1 18.587 98.15 _625.05
in Figs. 2a)—2(g) and the tetrahedron of first nearest nelgh-{l} 1 _3.930 Z11.12 410.87
bors{4,1} [Fig. 2(h)]. The values of the coefficients obtained ' ' '
for these three totally relaxed expansions are presented rﬁg 2 0.149 —112 3.69
{2,3

FIG. 2. Definition of the three- and four-point clusters on the fcc
lattice used for the expansion.

C. Results

Table Ill, and the errors compared to the direct calculatio —0.128 1.88 —3.86
for the 25 structures in Table IV. 12 —0.013 —0.09 0.07

Looking at the cluster expansion of the formation energy,{2’4} 6 —0.027 —0.11 —0.15
it can be seen that the maximum difference between the en:5 12 —0.037 0.07 0.16
ergy given by the expansion and the one directly obtained2.6 4 0.009 —0.30 0.93
from the FP-LMTO calculations is 4.0 mRy/atom, and that{2.7} 24 0.014 -0.17 0.18
the standard deviation is 1.4 mRy/atom. We did not managé3,1t 8 0.013 -0.14 1.74
to find a better set of clusters producing a smaller error: a$3,2 12 —0.031 —0.40 —0.45
we still had more structures than clusters to fit, we tried to{3,3 24 —0.001 -0.14 —-0.55
include more clusters like the pair to the eighth-neares{3,4 6 0.023 0.21 -0.31
neighbor, but this did not improve the difference between ouf3,5 24 0.004 0.21 —-0.33
FP-LMTO calculations and their expansion. Such an errot3,6} 24 0.010 0.14 0.22
does not allow one to reproduce the relative stability betweerg 7 24 0.005 0.06 0.54
different ordered compounds at a same concentration, fog, 11 2 0.030 —055 0.88

instance between the phases,|. DO,,, and DQ; of Al3Zr.
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TABLE IV. Deviations for the cluster expansion of the equilib- TABLE V. Deviations for the cluster expansion of the equilib-
rium volume (©V,), the bulk modulus §B), and the formation rium volume V,), the bulk modulus §B), and the formation
energy GET'™) in the total relaxations scheme. energy GE™) obtained in the global relaxations scheme.

Vo 5B SEform Vo 5B SEform
(A 3/atom (GPa (mRy/atom (A 3/atom) (GPa (mRy/atom
Al (fcc) 0 0 0 Maximal deviation -0.351 —-2.26 5.15
Al g Zr 0.052 0.30 0.42 Standard deviation 0.120 0.94 1.44
Al Zr 0.035 0.83 -1.02
AlgZr (NbNiy) 0.157 -1.05 4.01
AlZr (D) 0.018 031 0.87 and the bulk modulus. Such a result could not have been
Al,Zr (D1 —0.012 162 1.96 easily predicted as the size difference between Al and Zr is
Al,Zr (L1,) 0.109 _0.02 _0.21 quite important: the atomic volumes given by our calcula-
Al,Zr (DO,y) 0.029 0.63 _058 tions forgthe fcc structureg of Al gnd Zr are 15.82 and
B B 21.70 A3 (Table I), respectively. This proves that the glo-
Al,Zr (DO 0.079 0.73 2.10 . .
bally and locally relaxed expansions are equivalent. As the
AlLZr (a) -0.017 0.10 -0.36 . ) >
totally relaxed expansion only gives us one set of coefficients
AlLZr (B) —0.028 0.52 -1.11 > .
ALz 0041 0.60 _138 for the whole range of volumes, it is more convenient; we
221 (7) : : : will use this expansion in the following.
AlZr (L1,) 0.219 -1.18 1.96
AlZr (L1,) 0.323 -0.86 0.60
AIZr (CH40) 0077 o011 0.56 IV. FINITE-TEMPERATURE PROPERTIES
AlZr (D4) —0.348 0.64 -1.20 At finite temperature, the vibrational and electronic con-
AlzZr (Z2) 0 0.41 0.49 tributions as well as the configurational entropy have to be
ZrAl (a) 0.011 0.03 0.16 included in the description of the system. Considering two
Zr,Al (B) —0.007 0.46 -0.71 different time scales, a slow one for the configurational ef-
ZrAl () 0.002 0.49 —0.59 fects and a much faster for vibrations and electronic
Zr,Al (L1,) —0.095 1.21 ~0.32 excitations‘f we define vibrational and electronic free ener-
Zr;Al (DO,,) —0.038 2.01 ~1.29 gies,FU®(o) andF®'(a), both depending on the configura-
Zr;Al (DO —0.061 —203 —0.69 tion. Using the variational principle, the free energy is ob-
Zr4AI (Dla) ~0.012 ~1.62 1.96 tained by mlnllelng the functional
Zr,Al (D1) 0.085 0.32 1.78 _ vib ol
oo . , ; Flpl=(Eo)+ (F"®) +(F*) +kgT(Inp),  (9)
Standard deviation 0.116 0.91 1.33 wherekg is the Boltzmann constant apdthe density matrix.

The cluster expansion of the formation energy Tat
=0 K gives us an expression for the cohesive part of the
the bulk modulus, the accuracy of our FP-LMTO being of functional of Eqg.(9). We do not have to take into account
the order of 1 GPa, here too we can consider the convergeneay variation of the lattice parameter with temperature, as we

of the cluster expansion to be good. choose to work in the harmonic approximation: Ozskmd
Asta’ showed on the solubility limit of Sc in Al that there
2. Global relaxations was only a small improvement when going from the har-

) monic approximation to the quasiharmonic approximation.

Using the same sets of clusters and structures, we eXimilar expressions have to be found for the electronic and
panded the ground-state energy in 21 different volumes be&jinrational parts of Expressiof9). The minimization of
tween 14 and 24 A/atom. For each structure, these 21 ex-F[p] with respect top will then be done in the Bragg-

pansions gave the ground-state energy of the relaxegljiams approximation.
structures at the corresponding fixed volume. We then used
these results to obtain the volume, the bulk modulus, and the
ground-state energy at equilibrium by fitting the Rose equa-
tion of state’ At a temperature of 0 K, all electronic states of energy
The maximal and standard deviations between the progselow the Fermi levele; are occupied, whereas the ones
erties deduced from the expansion and the ones directly o@bove are empty. At finite temperature, the electrons close to
tained from the FP-LMTO calculations are shown in Tablethe Fermi levels can be promoted to states of higher energies
V. They are close to what we previously obtained in the totalaccording to the Fermi-Dirac distributioi{e, T). The elec-
relaxation scheme. Actually, we did not obtain any importantironic excitations induce a change of the charge density and
difference between the results obtained according to the wathus of the effective potential of the one electron Hamil-
volume relaxations are considered. For each structure th®nian. This leads the electronic density of stdi285) n(e)
deviation is quite the same in both cases, this being true faio be temperature dependent. But the changes induced on the
the formation energy as well as for the equilibrium volumetotal energy and on the entropy by this temperature depen-

A. Electronic free energy
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dence of the electronic DOS are sntae thus assumed the

29 . y .
electronic DOS to be temperature independent and equal ffamework™ We used energy-independent MTO's as a basis
the one obtained af=0. The energy changaE®(T) and for representing the first-order correction to the one electron

the entropyS®'(T) due to electronic excitations are then ~ Wave furg)%tions in the implementation developed by
Savrasov’*! These calculations were performed in the LDA

using the parametrization of Moruzzi, Janak, and Willig¥ns.

o [ The radii of the muffin-tin spheres were taken to be equal to
AE"= f_mfn(f)[f(f’-r) —f(e0)]de, (108 the ones of the band structure calculation. For valence states,
the basis used was the same, whereas shend 4p states of
o Zr were treated in two different panels with respective ki-
Se':—ka n(e){f(e,T)In[f(e,T)] netic energiesx? of 2.7 and 1.1 mRy. For fcc structures,

phonon frequencies were calculated on a grid of&8x8
+[1-f(e,T)]IN[1—f(e,T)]}de. (10  wave vectorsﬁ leading to 29 points in the irreducible Bril-
We calculated the electronic contribution to the free endouin zone(IBZ), for L1, a grid of 5X5X5 leading to ten
ergy, F¢'=AE®'— TS, for the structures Alfcc), Zr (fcc), points in the IBZ was used, and for DQa grid of 4x4
AlsZr (L1,), and AkZr (DO,3) (Fig. 3). In the range of x4 wave vectors leading to 13 points.
temperature of interest, i.e., below 1000 K, this electronic The calculated phonon dispersion for Al fcc is compared
contribution is smaller than 1 mRy/atom, and so is the excesg Fig. 4 to the measurements of Refs. 33 and 34 for three
free energy associated. This is the same range of order as thgferent high-symmetry directions. We see that our calcula-
accuracy of the cluster expansion of the formation energion overestimates the phonon frequency. Other phonon cal-
We thus chose to neglect this contribution to the free energ}éL”ations for Al fcc?5_37 also using |inear-response theory,
obtained a better agreement with experimental data. They all
B. Vibrational free energy used a plane-wave basis in the pseudopotential framework,
but the use of an energy-independent MTO as a basis does

We studied the vibrational effects in the harmonic ap_not seem to be the reason of the discrepancy with experimen
roximation, comparing the ability of the Debye model with . )
P paring y y tal data in our case, as Savrasov showed for(Rié&f. 30 as

fi\eps)honon calculation to predict the thermodynamic properweII as for NbC and S{Ref. 31 that this basis was well-

suited to obtain phonon dispersion.

The phonon DOS's obtained from these calculations for
_ Al (fcc), Zr (fcc), AlsZr (L1,), and AkZr (DO,q) are pre-

A calculation of the phonon DO®(w) allows one t0  sented in Fig. 5. For Alfcc), we compared our calculated
compute the vibrational free energy. For temperatures highgshonon DOS with experimental ones. Experimental DOS's
than 300 K, it is enough to consider only its high- (Refs. 34, 38, and 39were obtained by means of a Born—

1. Phonon calculation

temperature expression von Karman model. Force constants were fitted up to the
1 eighth-nearest neighbors in order to reproduce the phonon

FU— kTl — 3 In(kaT +f (A e)n(w)do!+0 _). measurements in high-symmetry dllrectlons of Refs. 33 and

B (keT) 0 (Aw)n(w)de T 34, the Born—von Karman model being used then to compute

(11)  the frequency distribution. We can also see in the phonon

DOS that our calculated frequencies are slightly too high.

Phonon DOS'’s were calculated for Afcc), Zr (fcc), Nevertheless, the shape of the frequency distribution is cor-
Al3Zr (L1,), and AkZr (DO,g) in the linear-response theory rect.
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2. Debye model as we are lowering the symmetry of the structure by deform-

The Debye model assumes a linear dispersion between t/ad it, some new degrees of freedom can appear; however we

phonon frequency and its wave vector. This leads to the foldid not consider these either. _
lowing high-temperature expression of the vibrational free The elastic constants calculated with the FP-LMTO are

energy compared to the experimental ones in Table VI. The discrep-
ancy between the calculated and experimental constants is on

vib 0p 1 the order of 10%. This leads to some differences between the
F'P=kgT| —1+3In T +0 T/ (12) Debye temperatures obtained from these calculated constants

and the ones obtained from the experimental constants, but
where the Debye temperatuéig is obtained from the elastic the relative positions of these temperatures are correctly pre-
constants of the structuré®. dicted.

The elastic constants were obtained by means of FP- |n Table VII, we show the Debye temperatures obtained
LMTO calculations using the same set of parameters as foffom a calculation of the elastic tensor for cubic structures
the formation energy calculations. The unit cell of the crystalfcc, D1, and L1, of the Al-Zr system. Structure D4 of AlZr is
was deformed around its equilibrium position in order toalso cubic, but this phase was found to be mechanically un-
obtain the second derivative of the energy at its minimumstable through a Bain deformation path and cannot be used to
which can be then related to the elastic tef$6f.During  calculate a Debye temperature.
this deformation, no relaxation was allowed. For the ,BO
structure, thec/a ratio and the positiors, and d,, of the
atoms were frozen at their equilibrium value. For some of the
deformations, we checked that these relaxations did not As we calculated the phonon spectrum fog2 for the
much change the values of the elastic constants. Moreovestable structure DEQ and the metastable one 4 1we were

3. Comparison for ordered compounds

TABLE VI. Elastic constaniC;; (in GP3 calculated with the FP-LMTO method, compared to experi-
mental values for Alfcc), Al;Zr (DO,3), and Zr(hcp), and Debye temperaturg, . Debye temperatures,
obtained by calorimetric measurements of the specific heat, when available, are given in brackets.

Cn Caszs Ciz Ciz3 Cy Ces 0p (K)
Al (fcc) FP-LMTO 1015 .- 704 .. 3.7 - 385
expt. (Refs. 45 and 46 1143 - 619 .- 316 .- 431 (428)43
Al3Zr (DO,3) FP-LMTO 2153 228.2 541 33.3 103.2 1235 616
expt. (Ref. 492 208.8 208.3 70.5 49.1 87.2 102.2 575
Zr (hcp FP-LMTO 153.1 171.2 634 76.5 22.4 449 262

expt. (Refs. 45 and 48 155.4 1725 67.2 64.6 36.3 44.1 299310*

aMeasured at room temperature.
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TABLE VII. Elastic constantsC;; (in GP3 for Al-Zr com- TABLE VIIl. Comparison of the high temperature expressions

pounds of cubic symmetry and Debye temperatige of the vibrational free energy obtained with the phonon calculation

and the Debye model.

Cu Cp Cus 0p (K) _

Al,Zr (L1,) Phonons AFYP=0.8%gT+O(1/T)
Al (fcc) 101.5 70.4 317 385 Debye = 1.44,T+O(1/T)
Al.Zr (D1) 136.5 62.7 45.8 449
AlZr (L1,) 187.3 55.7 95.1 557 Al,Zr (DO, Phonons AFViP=0.8%gT+O(1/T)
ZrzAl (L1,) 163.8 79.3 86.5 388 Debye =1.7&gT+O(1/T)
Zr;Al (D1) 136.3 84.4 56.6 300
Zr (fcc) 121.4 87.1 45.7 249

3IN6p—1= D, Juls, (13)
o

able to compare the excess vibrational free enekgy'®

obtained from the phonon DOS and the Debye mode|’ théVthh allows us to write the vibrational free energy as
reference phases being Alfcc) and Zr (fcc) (high-

temperature expressions are given in Table VWe thus vib _ _

see that the Debye model makes an important error in pre- P =keT ; Dadale=3InT]. 4
dicting this excess free energy, as it overestimates it by a _

factor ~2. This error comes from the inability of the Debye By doing so, the temperature dependence of the free energy
model to reproduce the phonon DOS, as shown in Fig. 5 mad(_a very simple, and we do not have to make a cluster
Moreover the phonon calculation shows that the two consid@Xpansion of the free energy at every temperature.

ered structures of AZr should have the same vibrational We only used four C|l_JSterS in the truncat_ed expansion: the
free energy which is not correctly predicted by the Debye®MPty clustei0}, the point clustefl;, the pairi2,1} of first-
model. This error of the Debye model would lead to a stabin€arest neighbors, and the trianglg,1j of first-nearest

lization of the phase Liat high temperaturesTe905 K),  heighbors. The eight structures of Table VII were used to fit
which is not true experimentally. In order to describe thethe coefficients of the expansion. The results of this expan-

relative stability of these two ordered phases 0§Zxl cor- sion are presented in Table (&, and the deviations in Table

rectly, we cannot use the Debye model; and we have to uslg_((b). Although only a f_ew clusters were used in this expan-
the previous phonon calculations. sion, the convergence is very good.

4. Cluster expansion for the disordered phase C. Bragg-Williams approximation

For the vibrational free energy of the disordered phase, We thus obtained an expression for the different parts of
we made a cluster expansion of the vibrational free energie€'e free energy functionai[p] of expressior(9): the cohe-
of several ordered structures. As the Debye model only reSive partis given by the cluster expansion of the FP-LMTO
quires a calculation of the elastic tensor, which is much fastefalculations(coefficients in Table I}, the vibrational energy
than a calculation of the whole phonon spectrum, we used Y the expressioiil4) with the coefficients of Table 1),
to calculate the vibrational free energy of these ordered con@nd the electronic contribution can be neglected. The func-
pounds(the Debye temperatures used are in Table.\Bly t!onal F[p] is minimized in thg Bragg-Williams approxima-
doing so we saw previously that we overestimaf’'™®, but tion. This assumes that there is no short range order and that
a calculation of the phonon spectrum is not conceivable for 1€ correlation functions can be factorized over the mean
number of structures large enough to fit the cluster expan¥alues of the pseudo spin varialile,,) for the lattice sites

sion. We then have to accept such an error. contained in the cluster,

Looking at the high-temperature expression of the vibra-
tional free energy given by the Debye modEL. (12)], we £ = < H Ui> _ H (o). (15)
can make the cluster expansion “ \ice ica

TABLE IX. Cluster expansion of the functioff=23 In ¢,—1 for the vibrational free energy.

(a) Coefficients of the expansion. (b) Deviation & of the expansion.

Cluster D, J, fs Sfs

{0} 1 17.385 Al(fcc) 16.86 0

1 1 0.874 ALZr (D1) 17.32 —-0.08

2.1 6 —0.197 ALZr (L1,) 17.97 0.04

3,1 8 -0.027 ZBAl (L1),) 16.88 0.04
Zr;Al (D1) 16.11 —0.08
Zr (fcc) 15.55 0
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The Bragg-Williams approximation thus assumes that the lat- TABLE X. Parameter) (in mRy/atom of the excess free en-
tice sites interact only through their mean occupancy an@rgy for the fcc regular solid solution Al-Zr deduced frah initio
neglects all correlations between different sites. This can bealculations, and compared to values obtained by a fit of the experi-
improved by using the Cluster Variation Meth¢@VvM),*®  mental phase diagram.
but in the case of a low solubility, no really important im-
provement is expected when going from the Bragg-WilliamsPresent work 0 =-110.42- 35.37x10 °T
approximation to the CVM. Moreover, the computational SaundersRef. 51 =—87.60+22.85¢10°°T
time necessary to obtain the free energy by means of thiurray et al. (Ref. 52 =-85.08+31.01x 107 °T
CVM increases a lot with the size of the maximal cluster. As
Zr has a really low solubility in Al(fcc) and as the lon , ) . .
range interacti)(/)ns of the clu)s/ter expansion of the forngtion The Redlich-Kister coefficients are obtained from the
energy requires a too large cluster, we chose to work with th§/USter expansion of the formation energy and the cluster
Bragg-Williams approximation. expansion of _the ylbratlonal free energy calculated in the
Within the Bragg-Williams approximation, the configura- D€bye approximation:
tional entropy has the following expression for a binary com-
pound:

Lo=—89.09+29.9x 10 °T mRy/atom,

L,=—14.30+5.47< 10 3T mRy/atom,  (21)

Spl= —szn, (1+(an))IN(1+(an)) L,=—7.03 mRy/atom.

+(1=(on))In(1—(on)). (16) For a dilute solutionX<1), expressiori20) is equivalent
to the free energy of a regular solution, the excess free en-
1. Disordered phase ergy then beingk(1—x)Q=x(1-x)(Lo+L;+L,). In Table

we compare the value @@ obtained from our calculations
o the values obtained by a fit of the phase diagram through
a Calphad approact:*?

For a disordered state, all lattice sites are equivalent b
symmetry. They thus have the same point correlation
=2x—1, wherex is the Zr atomic concentration. Conse-
quently any correlation function can be written in terms of .
the point correlation: 2. Line compounds

AlsZr in DOy or L1, structures can be considered as a
gazg\la\. (17) line compound, i.e., perfectly ordered: both structures are
composed of interpenetrating sublattices of pure Al and pure
Zr. The configurational entropy of such line compounds can
be neglected and these structures only exist for a concentra-
tion x=1/4. We checked with a calculation using previous
luster expansions of the formation and vibrational energies
that this assumption was correct in the range of temperature
of interest when looking at equilibrium with the solid solu-
tion. The free energy of these compounds is then simply
given by

The cluster expansion of the functidéf, using expression
(6) of the excess functiorh f3, can then be expressed as a
function of the point correlation, or equally as a function of
the concentration. This leads to an expression similar to th
way the internal energy of a solid solution is written in a
Redlich-Kister model, which is of common use in the
Calphad method®

fS=xfA+(1—x)fB+ x(l—x)nz,O L,(2x—=1)", (18 FAIRZr — guAl,fcc+ %UZr,fcc+AUAI3Zr, (22)

where the coefficients, are obtained from the coefficients whereAUA's?" (in mRy/atom is obtained from our previous

J, by the relations calculations of the formation energifable ) and of the
excess vibrational free energy calculated from the phonon
DOS (Table VIII):

La=—4>, > D,f,. (19)
P b2 AUAZNE2= —39 00+ 5.38< 10 °T, (233
Using expression16) for the entropy, for the free energy of AUAISZ1D02= 40,72+ 5.38< 10 °T. (23b

the disordered fcc solid solution Al ,yZr, we obtain

Al fec 71 fee D. Solubility limit of Zr in Al (fcc)
F(X)=(1—x)U™""**+xuU" . . . .
(x)=( ) Using previous expressions for the free energies of the

+kgT[XINX+(1—=X)In(1—x)] disordered phase and the line compoundgZAlwe obtained
the solubility limit of Zr in Al (fcc), both in the stable phase

+x(1-x) 2 L (2x—1)". (20) Qiagram when considering the structgre R@r Al;Zr and

n=0 in the metastable one when considering the structure A%
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FIG. 6. Fit of the entropy of the solid solution so as to reproduce FIG. 7. Calculated stable and metastable solubility limits of Zr
Fink experimental data. in Al compared to experimental da(Refs. 8—1)

we are in the case of a dilute solid solution, the solubilitytional free energy, the difference of solubility limit is only
limit of Zr in Al (fcc) is an analytical function of the due to the difference of ground-state energies of these two

temperaturé> phases. At the melting temperature of the peritectic, we ob-
AAUAZT— ) tain a maximal metastable solubility limit equal to 0.275-
. exp( ) (24 aL%Zr
kgT This is to be compared to the results obtained by a

3 S , Calphad method. Murraget al®?> modeled the metastable

The solubility we obtained is too low: at the melting tem- phase of AlZr as a line compound. They assumed that only
perature of the perictectic it is equal to 0.0016—at..% Znan enthalpy term, and no entropy term, contributes to the
Wherea?_)zthe one deduced from experimental data is 0.0§ree-energy difference between the stable and metastable
at. % Zr>> When comparing the variation with respect td@ 1/ phases. This was done to guarantee that ties not be-
of In x with experimental measurements, we obtain a straightome stable at high temperature. Moreover, there is no ex-
line having the same slope as the Fink and Willey Hata _perimental data that allows one to estimate the entropy of the
Fig. 6). This shows that our calculations provide an approxi-| 1, phase. Our calculation of the vibrational free energy
mation of the enthalpy difference between the solid solutionso\s that such an approximation was correct. The enthalpy
and the D@ ordered compound which is consistent with giference between the two compounds was assumed to arise
Fink and Willey’s data, and that the discrepancy on the solusgm the coherency of the Llphase with the matrix. From
bility limit only arises from an error on the estimation of the e ejastic properties of Al and an estimate of the composi-
entropy differglnce. Computing the solubility limit of Sc in jon dependence of the lattice parameter, Mureal. cal-
Al, Asta et al>" reached the same conclusion @t initio  ¢yjated an elastic energy of 1.52 mRy/atom. This estimation
calculations correctly predict the enthalpy difference be-g quite close to our calculatioPAH=1.72 mRy/atom) as
tween the ordered compound and the solid solution whege| as to the experimental measurement of Desthl?*
compa_red to experimental data. In our case, the error on t.I“(eAH =1.69 mRy/atom). Murragt al. thus obtained a solu-
entropic terms may come from an overestimation of the Viyjjiyy |imit that is higher in the metastable phase diagram
brational free energy of the disordered phase due to the Usgap in the stable one, and their prevision is very close to our

of the Debye model for this phase. As for the structuresPO regyit: they predicted a maximal metastable solubility limit
and L1, of Al3Zr, the Debye model overestimates the excesgqual to 0.21 at. %.

vibrational free energy by a facter2 (Table VII); we be- |5 gnother Calphad study, Saundérssed the Gibbs en-
lieve this leads to an error of the same range for the solig;qgy for the disordered Affcc) solution, as derived from the
solution. stable equilibrium diagram, to construct the Gibbs energy of

Leaving the enthalpic part unchanged, we correct the enfe ordered L3 phase in the Bragg-Williams approximation.
tropic part of the paramete defining the excess free en- e found a higher solubility limit for Zr in the metastable
ergy of the solid sonnon, so as to obtaqn a perfect agreemerﬂhase diagram than Murrast al, as he predicted a meta-
with Fink data(cf. Fig. 6), and we obtain stable solvus composition of 0.3-at. % Zr at the melting tem-

_ _3 perature of the peritectic.
1=-110.42-10.07<10"*T mRy/atom. (25 Our study thus allows one to estimate the free-energy dif-
We thus obtain a stable solubility limit that is consistent with ference between the stable and metastable phasesaif, Al
the Fink and Willey measurements, and we are now able tquantity which is not available experimentally and has to be
predict the metastable limit using expressi@h) to evaluate guessed in these Calphad studies. One thus sees how it is
the excess free energy of the solid solutioh Fig. 7. As  possible to improve the thermodynamic database available to
the structures D& and L1, of Al;Zr have the same vibra- Calphad methods.
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V. CONCLUSION chose to make a cluster expansion of the vibrational free

The equation of state for several compounds in the Al-zSNEry- This was only possible with the Debye model, as this

i o requires less computational time.
system has been computed using the full-potential linear- We were able to calculate the solubility limit of Zr in Al

o, Tesab Il 2 co i the the Bragg-Wiams spproxmato. Th o
AlLZr if we consider the cell internal relaxations ity limit obtained is too I_ow compar(_ed to experimental plata.
3\/Ve made a cluster expansion of the resultsz;lbfinitio We. sho_wed that this dlsqrepancy s due to an error in the
calculations to predict thl?a formation energy of any Com_esnmat_lon of the entropy n our thermodynamlq model. This
pound in the Al-Zr system based on an underlying foe Iatticemay arise from an overestimation of the vibrational free en-
We showed that despite the size difference between Al an. rgy of the qllsordered phase,_ due to t_he use of the Debye
odel for this phase. Correcting the vibrational entropy of

Zr a totally or globally r.elaxed.expan'slon for t.he VOIumethe solid solution so as to fit the experimental measurements
leads to the same result: there is no difference if we use th

cluster expansion to predict the formation energy at the equi& Fink and Willey, we were able to predict the metastable

ibrium volume of each structure or at a fixed volume thesolubility limit which lies between the estimation of Murray
lorium voiume. Cch structu . Ixed volume, et al. and the one of Saunders, both obtained by a Calphad
energy then being minimized according to the volume.

For finite-temperature calculations, we showed that th method. We thus showed how first-principles calculations

%an lead to an estimation of the phase diagram. This ap-
electronic excitations can be neglected. The vibrational en: P g P

ergy was studied_ in the harmonic model, using different Ievnﬁqrgjtc, hagzsctgr? Szgnzmi/gi cl); r:]%tt rgq;:gg%gnzoe;&%rilgiﬂ;al
els of the approximation: the Debye model was compared tgtability of metastable phases

results obtained from a calculation of the phonon spectrum '
for Al;Zr in DO,3 and L1, structures, and it was found that
the use of the Debye model leads to an overestimation of the
vibrational free energy. Thus we preferred to use the results The authors would like to thank M. Nastar for valuable
from the phonon spectrum to calculate the vibrational freediscussions. Financial support from Pechiney ClRvance

energy of ordered compounds. For the disordered phase, vig acknowledged.
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