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Thermodynamics of quantum fluids confined in zeolites at low temperature
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The thermal properties of quantum fluids at low temperature~T! are determined by the spectrum of excita-
tions which possess the lowest frequencies. In the case of a fluid such as helium or hydrogen, confined in a
one-dimensional~1D! pore, these excitations are phonons, with wave vector parallel to the pore’s axis. This
paper describes the consequences of this fluid’s confinement for the low-T heat capacity and explores the
crossover from 1D to higher dimensionality in terms of both temperature and cross-sectional dimension.
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A central theme of condensed matter physics is the c
sequences of reduced dimensionality. For example, a fu
mental motivation for exploring very thin films has been t
opportunity to study two-dimensional~2D! and quasi-2D
matter, for which the ordered phases differ significantly fro
those of three-dimensional~3D! matter. The same motiva
tion, inter alia, has stimulated research concerning the
havior of 1D and quasi-1D systems, such as gases abso
within nanotubes1 and porous material with complex por
geometries.2 The crossover from 1D to a higher dimensio
ality regime is a subject of current interest; in particul
observation of 1D excitations in superfluid3He and3He-4He
mixtures adsorbed in alumina powder have been repo
recently.3 The present paper is concerned with a differe
quasi-1D system, a quantum fluid absorbed within a por
material, such as a zeolite. We address the low-T thermal
properties in the approximation that the modes are descr
by continuum hydrodynamics.4 This is the case when th
cross-sectional dimension is very large compared to
atomic size of the fluid, in contrast to the nanotube case,
which the ratio of these lengths is of order five.

The systems we have in mind are helium and hydrog
Helium is known to remain liquid at the lowest temperatur
While bulk hydrogen freezes belowT513.8 K, the triple
temperature is reduced in films5 and ought to be zero in a
strictly 1D system because of thermal fluctuations. In
case of hydrogen within a typical porous environment, o
expects the solid to be particularly disfavored, relative to
liquid, due to the poor epitaxy likely to be present wh
crystallized within the pore. This contributes to the we
known depression of freezing points within pores.6

For an ideal inviscid fluid, the relevant linearized hydr
dynamic equation gives rise to the scalar Helmholtz equa
for density fluctuationsdr(r ,t)5dr(r )eivt:

~cs
2¹21v2!dr~r !50. ~1!

Herev is the angular frequency andcs is the speed of sound
which we assume to be uniform in spite of the possible co
pressional effects of the pore’s adsorption potential. This r
resents the most significant approximation in our treatm
it is difficult to improve upon this approximation which i
conventionally used in treating the hydrodynamics of film
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Since the closest approximation to an ideal inviscid fluid
superfluid helium, one may wonder about the applicability
alternative theoretical descriptions to the present hydro
namic model. For example, a mean field treatment based
Bogoliubov’s approach starting from the Gross-Pitaevk
equation in the given geometry, such as that applied in Re
would not be valid for helium at bulk density; in such a cas
the strong He-He interaction is responsible for the high va
of the sound velocity,cs5238 m s21, which largely over-
rides the single-particle~sp! contributions to the Bogoliubov
spectrum that are clearly visible in the dilute gas regime.7

In order to exhibit and explore explicit solutions of th
problem here presented, we assume a cylindrical cross
tion of the pore; other, more general, shapes will be
scribed in a future presentation. We note that the appare
naive substitution of the true pore’s cross section by an eq
area, circular one is known to yield remarkably reliable h
drodynamic spectra for other shapes.8 In the cylindrical ge-
ometry, the eigenvalue problem~1! can be analytically
solved for fluctuations of the form

dr~r !5
1

A2pL
ei (kz1mw)Jm~kr ! ~2!

describing free propagation parallel to thez direction, i.e.,
the pore’s axis, with linear momentumk, with the usual azi-
muthal variation and withJm(kr) being a Bessel function fo
radial motion. As in the membrane problem, the bound
condition that the normal component of the velocity vanish
at the wall for radiusr 5R gives rise to a discrete spectrum
namely

v25cs
2~k21kmn

2 !. ~3!

Here the discretized wave numberskmn are given by the
zerosamn5kmnR of the slope of the Bessel functionJmn8 (a),
in contrast to the membrane case, for which the funct
itself vanishes at the boundary. The lowest (mn) values of
these coefficients can be found, i.e., in Ref. 9.

The modes satisfy Bose statistics, in which case the s
cific heat~in units of Boltzmann’s constantkB and withN the
number of atoms in the pore! may be written as
©2002 The American Physical Society01-1
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C

NkB
5

kBT

p n1\cs
(
mn

E
0

xM
dx

x3

Ax22xmn
2

n~x!@11n~x!#

~4!

with x5\v/kBT andxM a cutoff that we choose accordin
to @cf. Eq. ~3!#

vM
2 5cs

2~kM
2 1kmn

2 ! ~5!

for a maximum wave vectorkM51 Å21, corresponding to
the maxon excitation in the dispersion relation of heliu
Here n(x)51/(ex21) is the population of excitations with
reduced energyx. Expression~4! displays the divergences o
the 1D density of states at the dimensionless band-head
ergiesxmn . Moreover,n15r0pR2 is the number of particles
per unit length of the pore,r0 being the saturation density o
the liquid. At the very lowest temperatures, only the~0,0!
mode is excited, in which case the heat capacity can
evaluated analytically ifxM is very large; in this regime
C/NkB is proportional toT, indicating the 1D character o
the system, i.e.,

C

NkB
5

p

3n1\cs
kBT. ~6!

This dependence may be compared to the analogous 2D
3D heat capacities, respectively proportional
(kBT/\cs)

2/n2 and (kBT/\cs)
3/n3 , n2 , n3 being the corre-

sponding number densities.
The calculations presented here correspond to the

density of liquid helium at zero temperature,r0
50.0219 Å21, for which we have\cs518.18kB K Å. In
Fig. 1 we present the specific heat per particle for liqu
helium in two different pores with radiiR57 and 20 Å,
together with the respective contribution from the grou
state band. Note that the smallest pore exhibits the lar
specific heat at lowT, corresponding to the reduced line
densityn1 in the prefactor. In fact, the square of the radi
here scales the heat capacity. In addition, this small p

FIG. 1. Specific heat as a function ofT for liquid helium in
cylindrical pores of radiiR57 Å andR520 Å, together with the
1D contributions from the respective ground state bands (mn)
5(00).
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presents the most extended range of 1D behavior. The
indicate that the total heat capacity exceeds by 10% tha
the lowest band at temperatures around 0.7 K forR57 Å
and 0.25 K forR520 Å.

Although the trend of these curves suggests a power
full 3D behavior~i.e.,C'T3) is not attained within this very
low temperature range; fits of the specific heat to power la
yield exponents 1.4 for the smallest pore and 1.96 for
largest, showing an increased presence of 2D phonons in
case. This reflects the sequence of filling the 1D bands
beled by azimuthal and radial quantum numbersm and n,
respectively; the angular~m! spectrum being more com
pressed than the transverse~n! one, the first bands to be
thermally excited are those associated to motion on a cy
drical surface at a given average radius. The 1D regime t
crosses over to 2D, rather than 3D, at the low temperatu
considered here. Only at very largeT—i.e., much aboveTl

for liquid helium, which invalidates the present approach
the system approaches the expected 3D limit; in fact,
restrict our displayed results to the lowest temperatu
keeping in mind that already in the vicinity ofT51 K, the
roton contribution to the thermal properties of bulk helium
non-negligible.

Our calculations also demonstrate that the pore’s heat
pacity exceeds the bulk’s at temperatures where the pho
thermal wavelength

lph~T!5
2p\cs

kBT
~7!

is larger than the pore’s radius. This can be visualized in F
2 where we plot the 3D heat capacity for bulk helium giv
by

C

NkB
5

2p2

5~\cs!
3
~kBT!3, ~8!

which cannot be distinguished from the numerically in
grated expression allowing for a finite momentum cut
kM51 Å21 in 3D, together with the pore’s specific heat~4!
for various radii. From the data we infer that the 3D a
finite radius curves cross at temperatures of approxima

FIG. 2. Specific heat of bulk helium and of helium in cylindric
pores of several radii.
1-2



n
v

he
th

er
w

th
er
n
e
n

ap
r
w

g-
re
c
ur
t
is
lo
ca
l,
e
f

pl
no
n

of
eri-

by
c-
n
nce
D
1D
hen
ulk
ra-

nd
em-
the
vail,
o-
er,
q.

ich
ities
in

ula-

dis-
Re-

up-

for

BRIEF REPORTS PHYSICAL REVIEW B 65 092501
0.85, 0.6, 0.42, and 0.3 K, for radii equal to 7, 10, 15, a
20 Å, respectively. At these temperatures, the phonon wa
lengths~7! remain one order of magnitude higher than t
pore’s diameter; however, the derived thermal waveleng
and imposed radii agree within a factor of 3 if one consid
that the propagation along the 1D channels takes place
the 1D sound velocityc15cs /A3.

Our study demonstrates the possibly surprising fact
the heat capacity of the quantum fluid confined in a v
small capillary exceeds both those of the bulk material a
the pore background. This fact reflects the reduced dim
sionality through the high density of states at low energy a
in the neighborhood of the bandheads@cf. Eq. ~4!#. While
clearly this is the case within the present hydrodynamic
proximation, it is interesting to observe that such behavio
expected even for fluids within nanotubes, the finest kno
regular porous media.10 This is a consequence of the lon
wavelength modes present in very long pores. If the po
were to have finite lengths, instead, the linear heat capa
would become exponentially small below the temperat
corresponding to the gap in the spectrum associated with
long-wavelength cutoff. We note one further point in th
context. The modes might be argued to possess high ve
ties when confined in such a small space. While this
occur due to compression by the adsorption potentia
should not be the case near the threshold for fluid uptak
the given region of space, since there the system is ‘‘so
mechanically and thermodynamically. An extreme exam
of this behavior is the nature of the axial phase within na
tubes, which is a very low density fluid at its formatio
le,

a

-

09250
d
e-

s
s
ith

at
y
d
n-
d

-
is
n

s
ity
e
he

ci-
n
it
in
t’’
e
-

threshold.11 Thus this class of problem presents a number
surprising features which remain to be investigated exp
mentally.

Note added. Recently, we became aware of a report
Wada and co-workers12 of the vapor pressure and heat capa
ity of 4He adsorbed in 1D pores. In this work, it is show
that the heat capacity data are compatible with the prese
of 2D phonons belonging to a first inert layer for helium 3
densities below a critical monolayer coverage, plus
phonons corresponding to the fluid in the second layer w
the density exceeds that threshold, all the way up to b
saturation at about 50% above monolayer coverage. The
dius of the adsorption shell in this experiment is 5.5 Å a
temperatures vary up to 0.5 K. For such a radius and t
perature range, the results in Fig. 1 indicate that within
present model, the 1D phonon heat capacity should pre
without any contribution from higher bands of angular m
tion, in agreement with the experimental output. Moreov
the authors in Ref. 12 employ their data to derive, out of E
~6!, values of the sound velocity for the 1D coverages wh
correspond to their reported 3D ones. These sound veloc
lie above 100 m/s for the reported density range, also
agreement with our parameter input for the present calc
tions.
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Department of Physics, Pennsylvania State University,
supporting her stay where this work was done.
l

le,

a,
1M.M. Calbi, S.M. Gatica, M.J. Bojan, G. Stan, and M.W. Co
Rev. Mod. Phys.73, 857 ~2001!.

2L.D. Gelbi, K.E. Gubbins, R. Radhakrishnan, and M. Sliwinsk
Bartkowiak, Rep. Prog. Phys.62, 1573~1999!.

3H. Cho and G.A. Williams, cond-mat/0103187~unpublished!.
4W.F. Saam and M.W. Cole, Phys. Rev. B11, 1086~1975!.
5P.S. Ebey and O.E. Vilches, J. Low Temp. Phys.101, 469~1995!.
6P.E. Sokol, W.J. Ma, K.W. Herwig, W.M. Snow, Y. Wang, J. Ko

plik, and J.R. Banavar, Appl. Phys. Lett.61, 777 ~1992!.
7E. S. Herna´ndez and M. W. Cole, J. Low Temp. Phys.~to be

published!.
-

8A. L. Fetter and J. D. Walecka,Theoretical Mechanics of Par-
ticles and Continua~McGraw-Hill, New York, 1980!.

9M. Abramowitz and I. A. Stegun,Handbook of Mathematica
Functions~Dover, New York, 1972!.

10A.M. Vidales, V.H. Crespi, and M.W. Cole, Phys. Rev. B58,
13 426~1998!.

11S.M. Gatica, G. Stan, M.M. Calbi, J.K. Johnson, and M.W. Co
J. Low Temp. Phys.120, 337 ~2000!.

12N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, and Y. Fukushim
Phys. Rev. Lett.86, 4322~2001!.
1-3


