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Numerical study of the spin-flop transition in anisotropic spin-; antiferromagnets
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Magnetization processes of the spin-1/2 antiferromagn€X@ model in two and three spatial dimensions
are studied using a quantum Monte Carlo method based on stochastic series expansions. A recently developed
operator-loop algorithm enables us to show clear evidence of a first-order phase transition in the presence of an
external magnetic field. Phase diagrams of closely related systems, hard core bosons with nearest-neighbor
repulsions, are also discussed, focusing on the possibilities of phase-separated and supersolid phases.
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There has been much interest in the magnetic propertiesumerical method¥ and shows a Mott insulating phase, a
of anisotropic quantum antiferromagnets sinceNest pre-  superfluid phase, and a phase having both orders simulta-
dicted a first-order phase transition in the presence of aneously(a supersolidphase. The correspondence of these
external magnetic fiel§ One of the simplest models for an- states to those in the spin model is as follows: Mott insulat-
isotropic antiferromagnets in an external magnetic field iSng and Nel states, superfluid and spin-flipping states, and

described by the spin-1/2XZ model Hamiltonian supersolid and “intermediate” spin statésespectively.
The main purpose of this paper is to show clear evidence
H=J> (S'S+99+ AS,ZSJZ)—hE s, (1)  of the first-order phase transitions of 2D and 3D spin-1/2
(o [ XXZ models in the presence of a magnetic field, using a

recently developed numerical method; we also present
ground-state phase diagrams. The presence of a phase-
separated phase and the absence of a supersolid phase, in a
closely related system of hard core bosons with nearest-

whereS" is the a(=X,y,z) component of the spin-1/2 op-
erator at sita, h is an external magnetic field applied in the
z direction, and(i,j) runs over all the nearest-neighbor pairs
of spins at site$ andj. J(>0) is an antiferromagnetic cou-

pling constant, and (=0) is an anisotropic constant. Mean- neighbor repuls_ion_s, are also discussed. .
field calculations of the spin-1/XXZ model? supporting The magnetization process of the 2D and 3D spin-1/2

Néel’s prediction, found a first-order phase transition from aXXZ models, defined by Eql), is studied numerically on
Neéel-ordered state to a spin-flipping state with increasingsduare(number of spinsNs=LXL) and cubic Ns=LXL
magnetic fielch. Contrary to these studies, it is known from X L) lattices using a quantum Monte CafQMC) technique
the Bethe ansatz solution that the one-dimensi@i®) spin-  based on stochastic series expansiéBSE'9."* Very re-
1/2 XX Z model shows a second-order transition in the prescently an important technical improvement was achieved by
ence of an external magnetic fiéldhis discrepancy is as- Sandvik? He found an algorithm of cluster-type updates
signed to the inadequacy of treating quantum fluctuations byoperator-loop updatgsvithin the SSE QMC scheme which
mean-field theories. It is thus important to use an unbiaseceduces the autocorrelation time drastically compared to
numerical method for understanding the correct nature of theimulations using only local updates. While this method is
magnetization process even for the simplest sysfsnnch as  very similar to the loop algorithm in the world-line QMC
one given by Eq(1)] in higher spatial dimensions, since method proposed by Evergt al,'® one major advantage of
there exist no analitically exact solutions. This is precielythe SSE method with operator-loop updates is that there is no
one of our purposes in this pager. difficulty in simulating systems with anisotropic couplings in
Another importance of studing the spin-1XXZ model  external magnetic fields, owing to not needing “freezing”
defined by Eq.(1) comes from the fact that the model is configurations and “global” weights which make the loop
mapped onto a system of hard core bosons with nearesiigorithm in the world-ine QMC method highly
neighbor repulsions described by the Hamiltonian inefficient!? This reduced autocorrelation time enables us to
go down to very low temperatures in very high magnetic
- _ LSS Y o . fields; therefore, the method is suitable for our purpose. An-
He= t(% (cigte C'HV% i ’MEi N @ e advantage of this study using the SSE scheme over
_ _ _ other earlier numerical studie¥'*is that the simulations
with t=J/2, V=JA, andu=h+2zJA/2 (z is the coordina-  are performed directly in the ground canonical ensemble,
tion numbey.® Herec/ is a creation operator of a hard core j e, the magnetization per site,= M, /Ny is calculated for a
boson at sitei, and n;=c/c;. The total magnetizatioM,  given magnetic fieldh. In this paper temperaturdsare set to
=35 thus relates t&;(n;—1/2) in the boson model. The be J/kgT=2L, which is low enough to study ground-state
boson HamiltoniarH is proposed as a model Hamiltonian properties on finite lattice’s, and a periodic boundary con-
to study properties of liquidHe? granular superconducting dition is used. The exchange couplidgvill be taken to be
arrays’ and flux lines in superconductdtd he ground-state the energy unit. Since there exists a long-rangeliedered
phase diagram was studied using mean-field theotiand  state only forA=1.0, from which the first-order spin-flip
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FIG. 1. (a) Magnetization curve of the 2D spin-1#%XZ model
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updates. In this paper we have to construct closed loops as
many as about 1000 times per MC step for larger values of
A.

Repeating the same procedure for different valuea pf
the ground-state phase diagram of the 2D spin-X/2Z
model is completed. The result is given in Fidc)l There
exist three different phases denoted by m,=0, (ii)) m,
#0, and (iii) m,=0.5 in the figure. The third phas@i)
corresponds to a fully saturated ferromagnetic phase, and is
separated from the second phdge by a critical magnetic
field h®. This transition is trivial, and is not of interest
here. The critical magnetic field]'® is indeed easily calcu-
lated by going to the boson model described by &. the
critical chemical potential required to have just one particle
in the d-dimensional boson system is2dt; thereforeh*/J
is found to bed(1+A).

with A=1.5. Inset: an enlarged scale is used. Error bars are smaller To show further evidence of a first-order transition

than symbols(b) Correlation timer(l) (for a definition, see in the
text) of m, (circles and S(#,w) (squarep as a function of bin
length |. The parameters arbl = 122, T=1/24, A=1.5, andh
=2.0. Solid(open marks are data for operator-loop updates with
closed loops constructed as many as(280 times per MC step.
(c) The ground-state phase diagram of the 2D spinXXZ model
with anisotropic constank in the presence of the magnetic figld
There exist three phase§) a Neel-ordered phase(ii) a spin-
flipping phase, andiii) a fully saturated ferromagnetic phase. The
solid line is 2(1+ A) (see the text The dashed line is a guide to the
eye.

transition can take place by applying a finite external field,
our main focus in this paper will be on this anisotropic re-
gime.

Let us first study the magnetization process in two dimen-

sions. A typical example of the magnetization curves is
shown in Fig. 1a). One can see that at a certain critical
magnetic fieldh, the magnetizatiom, changes discontinu-
ously from 0 to a finite valuen;. For this example in the
figure, withA=1.5, the magnetization jumps h{~1.83 to
m§~0.11.16 Working on various system siz¢see in the in-
set of Fig. 1a)], we confirm that finite-size effects are small,

and conclude that the jump in magnetization is not due to

extrinsic factors working on finite-size lattices. The result

already gives clear evidence of a first-order phase transition

In order to illustrate that autocorrelation times of our

QMC measurements are short enough, the integrated autc °

correlation timer;,, is estimated as follows: we first divide a
sequence of Monte Carlo data points into bins of lerigth
and, for each bin length the average of the data in th¢h
bin and the variance(l) of the bin averages are calculated.
The integrated autocorrelation timg; is then estimated by
the asymptotic value of(1)=10?(1)/26*(1=1) at largel,
above whichr(l) does not depend o'’ The results ofri,
for m, and spin structure fact®(q) atq= (7, ) are shown
in Fig. 4b) for A=1.5 andh=2.0. From this figures,'s

between phasesi) and (ii) we calculate the spin struc-
turefactorS(q) = 1/Ng3; ;€9 (1S § at q=(,7) and the
spin stiffness(helicity modulus ps as a function oh for a
fixed A. The spin stiffnesgg is calculated, for example, by
ps=T(Wi+Wo(+w2))/dLY"2 in two (threg dimensions
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FIG. 2. (a) S(7,7) andp, for the 2D spin-1/2XXZ model with

A=1.5 andN,=2( as a function of the magnetic field Inset: an

are estimated to be no longer than 45 MC steps. Since Wghjarged scale is useth) Finite-size scaling o8(r, 7)/Ng and pq
use a bin length of=1000 or more to estimate the statistical for different magnetizations witit =1.5. The top figure shows

errors, we can be sure that our error bar is accurate. It shoulg( -, )/N, for m,=0 and the middle(bottom figure showspy
be noted here that;,, can be controlled by changing how (S(m,#7)/Ng) for m,=0.113. Dashed lines are liner fitting curves
many times closed loops are constructed in the operator-loojor QMC data, extrapolating to 8l,—0.
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FIG. 3. (8 m,, S(m,, ), and ps for the
3D spin-1/2 XXZ model with A=1.5 and Ng
=83 as a function of the magnetic field Inset:
an enlarged scale is useth) The ground-state
phase diagram of the 3D spin-12XZ model
with an anisotropic constark in the presence of
a magnetic fielch. The diagram consists df) a
Neel-ordered phase(ii) a spin-flipping phase,
and (iii) a fully saturated ferromagnetic phase.
The solid line is 3(3-A) (see the tejxt The
dashed line is a guide to the eye.

wherew,, is the winding number per linear spatial lattice sizeis shown in Fig. 8). As in two dimensions the phase dia-
L in the « direction?® p corresponds to the superfluid den- gram consists of three different phasés: a Neel-ordered

sity in the boson model, and is used to detect the superfluighase,(ii) a spin-flipping phase, andii) a fully saturated

phase in the system%'8The results are shown in Fig(a
for A=1.5 as a function oh. Whenh is small, S(q) has a
peak atq=(7,7) (the q dependence is not shoyvand p,

ferromagnetic phase.The critical magnetic fieldh, in three
dimensions is observed to be larger compared to that in two
dimensions for a giverA. This is simply because the in-

=0. With increasingh these quantities change discontinu- creased coordination number in three dimensions makes the

ously ath, where the magnetizatiom, jumps, andS(, )
becomes zero whilp, has a finite valué® Apparently these
two phases aré) a Neel-ordered phaséfor h<h.) and(ii)

a spin-flipping phaséfor h>h.), and are separated through

needed magnetic field larger to destroy theeNstate. Simi-
lar finite-size scaling analyses, done for the 2D model, do not
find a supersolid phase in the 3D model.

Finally we summarize our results in Fig. 4 by showing the
ground-state phase diagrams of the 2D and 3D spirkXZ

a first-order transitioR?
Earlier studies found the supersolid phase in the 2D bosomodels on the parameter space of anisotropic conatamtd

5.0

model characterized by simultaneously possessing finite val-
ues ofS(a,7) andpg in a region between phasé$ and (ii)
of the phase diagram® One can indeed barely see small but A
finite values ofS(7r,7) for h>h., wherep is finite [see
Fig. 2(@]. In order to elucidate the possibility of the exis-
tence of the supersolid phase systematically in two dimen-
sions, we carry out finite-size scaling analysesS6fr, )
andp, for fixed magnetizations. The results are presented in
Fig. 2b). One can see th&(m,7)/Ns (ps) stays finite in the
limit of Ng—o for h<h; (h>h.) while S(,7)/Ng ap-
proaches zero dil;—« for h>h.. Doing similar analyses
for different values ofA andm, it is found that whenever
h>h., S(,7)/Ng goes to zero in the thermodynamic limit.
We therefore conclude that the supersolid phase does nc
exist in the 2D spin-1/XXZ model. The results are consis-
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tent with very recent studies by Batrouni and Scaléftar. 0.0

We now carry out similar calculations for the 3D spin-1/2
XXZ model to study the nature of the phase transition in-

0.0 01 02 03 04 05

0.0 0.1 02 0.3 04 05

m, m,

duced by the external magnet field. Strong evidence of the g5 4 The ground-state phase diagrams of ®e2D and (b)

first-order transition is provided in Fig(&. In this figure the
magnetizatiorm,, spin structure facto®(r,, ), and spin

3D spin-1/2XXZ models on the parameter space of anisotropic
constantA and magnetizatiom,. PS stands for phase separation.

stiffnessps for A=1.5 are plotted as functions of the exter- The Nel (fully saturated ferromagnetistate exists in the region of
nal magnetic fielch. It is clearly seen that as in the case of A=1.0 andm,=0.0 (m,=0.5). The spin-flipping phase is in the
the 2D model, these quantities change discontinuously at ggion denoted by.+ 0. The dashed line is a guide to the eye. For

critical magnetic fieldh,. Working with different values of
A, a ground-state phase diagram is constructed and the resuin and
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the boson model defined by E(R) m, and A correspond to 0.5

V/2t, respectively.
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magnetizationm,. The phase diagrams sho@) a Neel-  existence of a phase-separated region and the absence of a
ordered state ak=1.0 andm,= 0.0, (ii) a spin-flipping state supersolid phase were pointed out in the related systems of
with ps#0, (iii) a fully saturated ferromagnetic stateraf  hard core bosons with nearest-neighbor repulsions.
=0.5, and(iv) a phase-separated stétkenoted by PS in the It would be of great interest to study effects of random
figure9. The phase-separated region exists because, as seamisotropic constanA on phase diagrants,since one can
in Figs. 1@ and 3a), there is a region in magnetization,  elucidate quantumeffects on recently proposed impurity-
which we cannot reach in a thermodynamically stable wayinduced quantum-critical-point-like behavior ndast-order
no matter how finely the magnetic fieldis tuned. In other phase transitions in Ising modéfsAnother interesting issue
words, if one could have a state with, in this magnetiza- to address is the effects of long-ranged Coulomb repulsions
tion region, the state would be phase separated betweenbg&tween bosons on the phase-separated region in the phase
Neel state withm,=0 and a spin-flipping state witim,  diagram. There is a general belief that introducing Coulomb
=m¢. Some earlier studies predicted two phase coexistingnteractions replaces the phase-separated state by thermody-
regions working with a canonical ensemitie., fixedm,), namically stable states such as a dropletlike state and perhaps
and their results were interpreted as a supersolid phi¥se. a stripe staté’ The model studied here provide an ideal sys-
However, our calculations conclude that these phases afgm to examine the possibilities of those exotic states using
thermodynamically unstable and phase separated. Our coHhbiased numerical methods.
clusions are consistent with recent studies by Batrouni and Note added in proofPhase diagrams at finite tempera-
Scalettar for the 2D boson modél. tures for the 2D boson modétiescribed by Eq(2)] with

In conclusion, we have numerically studied the magneti-V =3t have been reported recently by G. Schmical*> Our
zation process of the spin-1/2 anisotropiXZ model in two  results in this paper are in good agreement with their results
and three spatial dimensions using the QMC method base¥ low temperatures.
on the SSE, and have shown clear evidence of a first-order
phase transition in the presence of an external magnetic field. The author thanks E. Dagotto and A. Dorneich for valu-
Based on the calculated ground-state phase diagrams, thable discussions.
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