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Numerical study of the spin-flop transition in anisotropic spin-1
2 antiferromagnets
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Magnetization processes of the spin-1/2 antiferromagneticXXZ model in two and three spatial dimensions
are studied using a quantum Monte Carlo method based on stochastic series expansions. A recently developed
operator-loop algorithm enables us to show clear evidence of a first-order phase transition in the presence of an
external magnetic field. Phase diagrams of closely related systems, hard core bosons with nearest-neighbor
repulsions, are also discussed, focusing on the possibilities of phase-separated and supersolid phases.

DOI: 10.1103/PhysRevB.65.092402 PACS number~s!: 75.10.Jm, 74.20.Mn
rti

a
-
i

-
e

irs
-
-

a
in
m

es
-

b
se
th

e
ly

is
re

re

n
g

a
ulta-
e

lat-
nd

nce
/2
a

ent
ase-
, in a
est-

1/2

by
es
h

to
is

f
s no
in
g’’
p

to
tic
n-

over

le,

te
-

There has been much interest in the magnetic prope
of anisotropic quantum antiferromagnets since Ne´el first pre-
dicted a first-order phase transition in the presence of
external magnetic field.1 One of the simplest models for an
isotropic antiferromagnets in an external magnetic field
described by the spin-1/2XXZ model Hamiltonian
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i,j &
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x1Si
ySj
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i

Si
z , ~1!

whereSi
a is the a(5x,y,z) component of the spin-1/2 op

erator at sitei, h is an external magnetic field applied in th
z direction, and̂ i,j & runs over all the nearest-neighbor pa
of spins at sitesi and j . J(.0) is an antiferromagnetic cou
pling constant, andD(>0) is an anisotropic constant. Mean
field calculations of the spin-1/2XXZ model,2 supporting
Néel’s prediction, found a first-order phase transition from
Néel-ordered state to a spin-flipping state with increas
magnetic fieldh. Contrary to these studies, it is known fro
the Bethe ansatz solution that the one-dimensional~1D! spin-
1/2 XXZ model shows a second-order transition in the pr
ence of an external magnetic field.3 This discrepancy is as
signed to the inadequacy of treating quantum fluctuations
mean-field theories. It is thus important to use an unbia
numerical method for understanding the correct nature of
magnetization process even for the simplest systems@such as
one given by Eq.~1!# in higher spatial dimensions, sinc
there exist no analitically exact solutions. This is precie
one of our purposes in this paper.4

Another importance of studing the spin-1/2XXZ model
defined by Eq.~1! comes from the fact that the model
mapped onto a system of hard core bosons with nea
neighbor repulsions described by the Hamiltonian

HB52t(̂
i,j &

~ci
†cj1cj

†ci!1V(̂
i,j &

ninj2m(
i

ni , ~2!

with t5J/2, V5JD, andm5h1zJD/2 (z is the coordina-
tion number!.5 Hereci

† is a creation operator of a hard co
boson at sitei, and ni5ci

†ci . The total magnetizationMz

5( iSi
z thus relates to( i(ni21/2) in the boson model. The

boson HamiltonianHB is proposed as a model Hamiltonia
to study properties of liquid4He,6 granular superconductin
arrays,7 and flux lines in superconductors.8 The ground-state
phase diagram was studied using mean-field theories2,9 and
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numerical methods,10 and shows a Mott insulating phase,
superfluid phase, and a phase having both orders sim
neously~a supersolidphase!. The correspondence of thes
states to those in the spin model is as follows: Mott insu
ing and Néel states, superfluid and spin-flipping states, a
supersolid and ‘‘intermediate’’ spin states,2 respectively.

The main purpose of this paper is to show clear evide
of the first-order phase transitions of 2D and 3D spin-1
XXZ models in the presence of a magnetic field, using
recently developed numerical method; we also pres
ground-state phase diagrams. The presence of a ph
separated phase and the absence of a supersolid phase
closely related system of hard core bosons with near
neighbor repulsions, are also discussed.

The magnetization process of the 2D and 3D spin-
XXZ models, defined by Eq.~1!, is studied numerically on
square~number of spinsNs5L3L) and cubic (Ns5L3L
3L) lattices using a quantum Monte Carlo~QMC! technique
based on stochastic series expansions~SSE’s!.11 Very re-
cently an important technical improvement was achieved
Sandvik.12 He found an algorithm of cluster-type updat
~operator-loop updates! within the SSE QMC scheme whic
reduces the autocorrelation time drastically compared
simulations using only local updates. While this method
very similar to the loop algorithm in the world-line QMC
method proposed by Evertzet al.,13 one major advantage o
the SSE method with operator-loop updates is that there i
difficulty in simulating systems with anisotropic couplings
external magnetic fields, owing to not needing ‘‘freezin
configurations and ‘‘global’’ weights which make the loo
algorithm in the world-line QMC method highly
inefficient.12 This reduced autocorrelation time enables us
go down to very low temperatures in very high magne
fields; therefore, the method is suitable for our purpose. A
other advantage of this study using the SSE scheme
other earlier numerical studies4,10,14 is that the simulations
are performed directly in the ground canonical ensemb
i.e., the magnetization per sitemz5Mz /Ns is calculated for a
given magnetic fieldh. In this paper temperaturesT are set to
be J/kBT52L, which is low enough to study ground-sta
properties on finite lattices,15 and a periodic boundary con
dition is used. The exchange couplingJ will be taken to be
the energy unit. Since there exists a long-range Ne´el-ordered
state only forD>1.0, from which the first-order spin-flip
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 092402
transition can take place by applying a finite external fie
our main focus in this paper will be on this anisotropic r
gime.

Let us first study the magnetization process in two dim
sions. A typical example of the magnetization curves
shown in Fig. 1~a!. One can see that at a certain critic
magnetic fieldhc the magnetizationmz changes discontinu
ously from 0 to a finite valuemz

c . For this example in the
figure, withD51.5, the magnetization jumps athc;1.83 to
mz

c;0.11.16 Working on various system sizes@see in the in-
set of Fig. 1~a!#, we confirm that finite-size effects are sma
and conclude that the jump in magnetization is not due
extrinsic factors working on finite-size lattices. The res
already gives clear evidence of a first-order phase transit

In order to illustrate that autocorrelation times of o
QMC measurements are short enough, the integrated a
correlation timet int is estimated as follows: we first divide
sequence of Monte Carlo data points into bins of lengthl,
and, for each bin lengthl, the average of the data in thebth
bin and the variances2( l ) of the bin averages are calculate
The integrated autocorrelation timet int is then estimated by
the asymptotic value oft( l )5 ls2( l )/2s2( l 51) at largel,
above whicht( l ) does not depend onl.17 The results oft int
for mz and spin structure factorS(q) at q5(p,p) are shown
in Fig. 1~b! for D51.5 andh52.0. From this figure,t int’s
are estimated to be no longer than 4–5 MC steps. Since
use a bin length ofl 51000 or more to estimate the statistic
errors, we can be sure that our error bar is accurate. It sh
be noted here thatt int can be controlled by changing ho
many times closed loops are constructed in the operator-

FIG. 1. ~a! Magnetization curve of the 2D spin-1/2XXZ model
with D51.5. Inset: an enlarged scale is used. Error bars are sm
than symbols.~b! Correlation timet( l ) ~for a definition, see in the
text! of mz ~circles! and S(p,p) ~squares! as a function of bin
length l. The parameters areNs5122, T51/24, D51.5, andh
52.0. Solid ~open! marks are data for operator-loop updates w
closed loops constructed as many as 25~100! times per MC step.
~c! The ground-state phase diagram of the 2D spin-1/2XXZ model
with anisotropic constantD in the presence of the magnetic fieldh.
There exist three phases:~i! a Néel-ordered phase,~ii ! a spin-
flipping phase, and~iii ! a fully saturated ferromagnetic phase. T
solid line is 2(11D) ~see the text!. The dashed line is a guide to th
eye.
09240
,
-

-
s
l

o
t
n.

to-

e

ld

op

updates. In this paper we have to construct closed loop
many as about 1000 times per MC step for larger values
D.

Repeating the same procedure for different values ofD,
the ground-state phase diagram of the 2D spin-1/2XXZ
model is completed. The result is given in Fig. 1~c!. There
exist three different phases denoted by~i! mz50, ~ii ! mz
Þ0, and ~iii ! mz50.5 in the figure. The third phase~iii !
corresponds to a fully saturated ferromagnetic phase, an
separated from the second phase~ii ! by a critical magnetic
field hc

max. This transition is trivial, and is not of interes
here. The critical magnetic fieldhc

max is indeed easily calcu-
lated by going to the boson model described by Eq.~2!: the
critical chemical potential required to have just one parti
in thed-dimensional boson system is22dt; thereforehc

max/J
is found to bed(11D).

To show further evidence of a first-order transitio
between phases~i! and ~ii ! we calculate the spin struc
turefactorS(q)51/Ns( i,je

iq•( i2 j )Si•Sj at q5(p,p) and the
spin stiffness~helicity modulus! rs as a function ofh for a
fixed D. The spin stiffnessrs is calculated, for example, by
rs5T^wx

21wy
2(1wz

2)&/dLd22 in two ~three! dimensions

ler

FIG. 2. ~a! S(p,p) andrs for the 2D spin-1/2XXZ model with
D51.5 andNs5202 as a function of the magnetic fieldh. Inset: an
enlarged scale is used.~b! Finite-size scaling ofS(p,p)/Ns andrs

for different magnetizations withD51.5. The top figure shows
S(p,p)/Ns for mz50 and the middle~bottom! figure showsrs

(S(p,p)/Ns) for mz50.113. Dashed lines are liner fitting curve
for QMC data, extrapolating to 1/Ns→0.
2-2
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FIG. 3. ~a! mz , S(p,p,p), and rs for the
3D spin-1/2 XXZ model with D51.5 and Ns

583 as a function of the magnetic fieldh. Inset:
an enlarged scale is used.~b! The ground-state
phase diagram of the 3D spin-1/2XXZ model
with an anisotropic constantD in the presence of
a magnetic fieldh. The diagram consists of~i! a
Néel-ordered phase,~ii ! a spin-flipping phase,
and ~iii ! a fully saturated ferromagnetic phas
The solid line is 3(11D) ~see the text!. The
dashed line is a guide to the eye.
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wherewa is the winding number per linear spatial lattice si
L in the a direction.18 rs corresponds to the superfluid de
sity in the boson model, and is used to detect the superfl
phase in the system.9,10,18The results are shown in Fig. 2~a!
for D51.5 as a function ofh. Whenh is small,S(q) has a
peak atq5(p,p) ~the q dependence is not shown! and rs
50. With increasingh these quantities change discontin
ously athc where the magnetizationmz jumps, andS(p,p)
becomes zero whilers has a finite value.19 Apparently these
two phases are~i! a Néel-ordered phase~for h,hc) and ~ii !
a spin-flipping phase~for h.hc), and are separated throug
a first-order transition.20

Earlier studies found the supersolid phase in the 2D bo
model characterized by simultaneously possessing finite
ues ofS(p,p) andrs in a region between phases~i! and~ii !
of the phase diagram.9,10 One can indeed barely see small b
finite values ofS(p,p) for h.hc , wherers is finite @see
Fig. 2~a!#. In order to elucidate the possibility of the exi
tence of the supersolid phase systematically in two dim
sions, we carry out finite-size scaling analyses ofS(p,p)
andrs for fixed magnetizations. The results are presente
Fig. 2~b!. One can see thatS(p,p)/Ns (rs) stays finite in the
limit of Ns→` for h,hc (h.hc) while S(p,p)/Ns ap-
proaches zero atNs→` for h.hc . Doing similar analyses
for different values ofD and mz it is found that whenever
h.hc , S(p,p)/Ns goes to zero in the thermodynamic limi
We therefore conclude that the supersolid phase does
exist in the 2D spin-1/2XXZ model. The results are consis
tent with very recent studies by Batrouni and Scalettar.14

We now carry out similar calculations for the 3D spin-1
XXZ model to study the nature of the phase transition
duced by the external magnet field. Strong evidence of
first-order transition is provided in Fig. 3~a!. In this figure the
magnetizationmz , spin structure factorS(p,p,p), and spin
stiffnessrs for D51.5 are plotted as functions of the exte
nal magnetic fieldh. It is clearly seen that as in the case
the 2D model, these quantities change discontinuously
critical magnetic fieldhc . Working with different values of
D, a ground-state phase diagram is constructed and the r
09240
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is shown in Fig. 3~b!. As in two dimensions the phase dia
gram consists of three different phases:~i! a Néel-ordered
phase,~ii ! a spin-flipping phase, and~iii ! a fully saturated
ferromagnetic phase.21 The critical magnetic fieldhc in three
dimensions is observed to be larger compared to that in
dimensions for a givenD. This is simply because the in
creased coordination number in three dimensions makes
needed magnetic field larger to destroy the Ne´el state. Simi-
lar finite-size scaling analyses, done for the 2D model, do
find a supersolid phase in the 3D model.

Finally we summarize our results in Fig. 4 by showing t
ground-state phase diagrams of the 2D and 3D spin-1/2XXZ
models on the parameter space of anisotropic constantD and

FIG. 4. The ground-state phase diagrams of the~a! 2D and~b!
3D spin-1/2XXZ models on the parameter space of anisotro
constantD and magnetizationmz . PS stands for phase separatio
The Néel ~fully saturated ferromagnetic! state exists in the region o
D>1.0 andmz50.0 (mz50.5). The spin-flipping phase is in th
region denoted byrsÞ0. The dashed line is a guide to the eye. F
the boson model defined by Eq.~2! mz and D correspond to 0.5
2n andV/2t, respectively.
2-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 092402
magnetizationmz . The phase diagrams show~i! a Néel-
ordered state atD>1.0 andmz50.0, ~ii ! a spin-flipping state
with rsÞ0, ~iii ! a fully saturated ferromagnetic state atmz
50.5, and~iv! a phase-separated state~denoted by PS in the
figures!. The phase-separated region exists because, as
in Figs. 1~a! and 3~a!, there is a region in magnetizationmz
which we cannot reach in a thermodynamically stable w
no matter how finely the magnetic fieldh is tuned. In other
words, if one could have a state withmz in this magnetiza-
tion region, the state would be phase separated betwe
Néel state withmz50 and a spin-flipping state withmz

5mz
c . Some earlier studies predicted two phase coexis

regions working with a canonical ensemble~i.e., fixedmz),
and their results were interpreted as a supersolid phas9,10

However, our calculations conclude that these phases
thermodynamically unstable and phase separated. Our
clusions are consistent with recent studies by Batrouni
Scalettar for the 2D boson model.14

In conclusion, we have numerically studied the magn
zation process of the spin-1/2 anisotropicXXZ model in two
and three spatial dimensions using the QMC method ba
on the SSE, and have shown clear evidence of a first-o
phase transition in the presence of an external magnetic fi
Based on the calculated ground-state phase diagrams
e
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existence of a phase-separated region and the absence
supersolid phase were pointed out in the related system
hard core bosons with nearest-neighbor repulsions.

It would be of great interest to study effects of rando
anisotropic constantD on phase diagrams,22 since one can
elucidatequantumeffects on recently proposed impurity
induced quantum-critical-point-like behavior nearfirst-order
phase transitions in Ising models.23 Another interesting issue
to address is the effects of long-ranged Coulomb repulsi
between bosons on the phase-separated region in the p
diagram. There is a general belief that introducing Coulo
interactions replaces the phase-separated state by therm
namically stable states such as a dropletlike state and per
a stripe state.24 The model studied here provide an ideal sy
tem to examine the possibilities of those exotic states us
unbiased numerical methods.

Note added in proof. Phase diagrams at finite temper
tures for the 2D boson model@described by Eq.~2!# with
V53t have been reported recently by G. Schmidet al.25 Our
results in this paper are in good agreement with their res
at low temperatures.

The author thanks E. Dagotto and A. Dorneich for va
able discussions.
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