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Electronic transport in strongly anisotropic disordered systems:
Model for the random matrix theory with noninteger b

Peter Markosˇ*
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We study numerically electronic transport in strongly anisotropic weakly disordered two-dimensional sys-
tems. We find that the conductance distribution is Gaussian. The conductance fluctuations increase when
anisotropy becomes stronger. The statistics of the transport parameters can be interpreted by the random matrix
theory with a noninteger symmetry parameterb. Our results are in a good agreement with recent theoretical
work of K. A. Muttalib and J. R. Klauder@Phys. Rev. Lett.82, 4272~1999!#.
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It is generally accepted that the electronic transport
weakly disordered metallic systems is successfully descr
by the random matrix theory~RMT!,1 and the Dorokhov-
Mello-Pereyra-Kumar~DMPK! equation.2 Both theories pre-
dict a Gaussian distribution of the conductance and prov
us with the exact value of the conductance fluctuations
agreement with data obtained by diagrammatic expansi3

The Landauer formula for the conductance,g5Tr t†t enables
us to expressg in terms of eigenvalues of the transmissi
matrix t†t:

g5(
i

N

cosh22~zi /2!, ~1!

whereN is the number of open channels.
In the limit N@1, RMT proposed a common probabilit

distribution of parametersz,

P~z!5exp2H~z!/b ~2!

with

H~z!5(
i

N
k

2
zi

22(
i

N

J~zi !2b(
i , j

N

u~zi ,zj !. ~3!

In RMT, physical properties of the sample are specifi
only by two parameters:b51, 2, 4 for the orthogonal, uni
tary, and symplectic symmetry of the model, respective
and the mean free pathl, which determines, together with th
system lengthLx , the strength of one-particle potential:k
5 lN/Lx . RMT describes successfully the transport prop
ties of weakly disordered quasi-one-dimensional~Q1D! sys-
tems. It could be applied also to squares4 or cubes5 if the
lengthLx of the system fulfills the relations

l !Lx,j ~4!

with j being the localization length. The absence of a
other parameters reveals the universal transport propertie
weakly disordered systems. In particular, the variance of
conductance is universal, and depends only on the symm
and the shape of the sample.3,6,7

Recently, Muttalib and Klauder8 showed that the require
ment of the large system length is not necessary for the d
vation of the DMPK equation. In their DMPK equation th
0163-1829/2002/65~9!/092202~4!/$20.00 65 0922
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parameterb depends on the statistical properties of t
model. This allowsb to possess any positive value. As su
posed,b converges to unity when the system length
creases.

In this paper we present a physical realization of the t
oretical model proposed in Ref. 8. We calculate the cond
tance and the statistics of the parametersz for weakly disor-
dered strongly anisotropic two-dimensional systems a
show that their transport properties can be described wi
the framework of the RMT with the symmetry parameterb
smaller than 1.

Our model is defined by two-dimensional~2D! aniso-
tropic Anderson Hamiltonian

H5(
i j

« i j u i j &^ i j u1(
i

u i j &^ i 11 j u1t(
j

u i j &^ i j 11u,

~5!

where i<Lx ( j <Ly) numerates sites in thex ~y! direction,
respectively. Hard wall boundary conditions are conside
andEF50, thenN5Ly . Random energies« i j are distributed
uniformly between2W/2 andW/2. We putW52 through-
out the paper. Then the localization length increased fr
j;25 for the one-dimensional~1D! chain (t50) ~Ref. 9! to
;106 for the 2D isotropic systems10 while the mean free
path decreases froml;25 to l;4 ~Ref. 4! in the same range
of t. As a typical size of our samples varies between 20 a
100, we expect to find metallic behavior even for stro
anisotropy.

We found that the conductance distribution is Gauss
for each value oft. As an example, Fig. 1 presentsP(g) for
systems witht50.05 andt51. The inset of Fig. 1 shows
that the mean conductance is always larger than 1. The v
ance varg5^g2&2^g&2 increases ast decreases. The system
size dependence of the mean conductance is presente
Fig. 2 for both the Q1D and the square samples. Fort>tc
'0.2, the mean conductance decreases as^g&}Ly /Lx in
the Q1D case and is almost system-size independent
the squares. This confirms that these systems are in the
fusive regime. For a stronger anisotropy,t,tc , the diffusive
regime takes place for much smaller systems (30<L<50 for
t50.1!.
©2002 The American Physical Society02-1
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The analytical expression for varg derived by Stone
et al.3 states that the anisotropy influences the variance of
conductance only in the combination with the size of t
system:

var g5 f S Lx

Ly
At D . ~6!

Figure 3 shows that forLx /LyAt.2 andt>tc , varg reaches
the universal value52/15. For the squares, varg is indepen-
dent on the system size fort.0.1.

The increase of varg for t,1 is in a qualitative agree
ment with the universal relation for the conductan
fluctuation,3,8

var g;b21, ~7!

provided thatb,1 when t,1. It seems straightforward to
compare numerical data for varg with Eq. ~7! and calculate
b5b(t). However, detailed numerical analyses have sho
that relation~7! underestimates numerical data if the disord
is weak.11,7 Therefore we prefer to estimateb(t) from the
statistics of the parametersz for anisotropic square sample
The quantity of interest is the probability distributionP(s) of
normalized differences12

s5~zi 112zi !/^zi 112zi&. ~8!

FIG. 1. The distribution of the conductance fort50.05 andt
51. Inset: Thet dependence of̂g& and varg for squares 50350.
09220
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Figure 4 shows the nonanalytical behavior

P~s!;sb(t) for s!1. ~9!

The t-dependent exponentb5b(t) ~inset of Fig. 4! is calcu-
lated from the logarithmic fit

ln P~ ln s!5@11b~ t !# ln s. ~10!

Relation~9! with b51, 2, or 4 is well known from the RMT.
The smalls behavior is determined by the symmetry of th
model. Here, however,b is given by statistical properties o
the system. In the limitt→0 our system dissociates to a s
of independent chains, each of them is characterized by iz.
Hencez are statistically independent variables and the dis
bution of their difference should be Poissonian:P(ln s)
}ln s andb(t50)50. The exponentb(t) increases ast in-
creases and the distributionP(s) converges to the Wigne
surmise~WS! as t→1: P(ln s)}2 lns as expected.

Contrary toP(s), the distributionP(z1) of the smallestz1
is similar to WS for anyt. This is consistent with RMT
which states that the distribution ofz1 is b independent.1

To test the applicability of RMT with nonintegerb to
anisotropic systems, we studied the spectra ofz for squares
~Fig. 5!. Assuming that the distributionP(z) has the form~2!
and ~3!, we can find the most probable valuesz̃ of the pa-
rametersz from the system of nonlinear equations,

]H/]zi uzi
5 z̃i50. ~11!

In the limit of small z the ‘‘interaction’’ and ‘‘Jacobian’’
terms in Eq.~3! can be approximated as1

u~zi ,zj !5 lnuzi
22zj

2u and J~z!5 ln z. ~12!

System~11! is then exactly solvable.13 After some algebra
we find14

z̃i; j a~ i !, a5
1

b
21, ~13!

where j a( i ) is the i th zero of the Bessel functionJa . From
Eq. ~13! we can express the ratio

z̃i 11

z̃i

5
j a~ i 11!

j a~ i !
~14!

which depends only onb.15
an

n

FIG. 2. System size dependence of the me
conductance ^g&. Left: for the quasi-one-
dimensional systemsLx3Ly. The width of the
system isLy510. Lines represent the relatio
^g&;a3Lx /Ly which is characteristic for the
diffusive regime. Right: for squaresL3L. In-
crease of the mean conductance for smallL indi-
cates a ballistic regime, decrease for largeL is
due to the crossover to the localized regime.
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The derivation of Eq.~14! holds for any value ofb. Using
the values ofb(t) presented in Fig. 4 we calculated the ra

z̃i 11 / z̃i and compared it with numerical data. As it is show
in inset of Fig. 5, the agreement is very good fora,2, which
corresponds tot>tc50.2.

In Fig. 6 we show that the exponentb depends also on th
shape of the system.b converges toward 1 as the lengthLx

increases. This is consistent with Ref. 8. Fort50.2 we found
that the distributionP(s) is WS for Lx /Ly'8. For this sys-
tem length the system is still in the metallic regime: the me
conductancêg&;1, and the RMT withb51 is applicable
to describe its properties. Of course, further increase of

FIG. 3. Left: varg as a function of the system lengthLx . The
width of the systemLy510. Dotted lines show universal values
var g for squares~0.185! and Q1D systems~0.133! ~Ref. 3!. The
increase of the system length causes the transition to localize
gime with decrease of varg. For t51, also data for shorter system
40310 and 20310 are present to show an increase of the cond
tance fluctuations. Right: varg as a function of the system size fo
squaresL3L.

FIG. 4. Probability densityP(ln s) for different anisotropyt of
the system.s is the~normalized! differencezi 112zi . Solid lines are
Wigner surmiseW1(s)5(p/2)s exp2(p/4)s2 and Poisson distribu-
tion e2s. The size of the samplesLx5Ly550. Statistical ensemble
of Nstat5105 samples have been considered. Dot-dashed lines
resent fits~10!. Inset:t dependence of exponentb.
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system length causes a decrease of the mean conduc
andP(s) becomes Gaussian. A qualitatively similar behav
can be found for anyt.0.2.

For t50.05, P(s) reaches WS only forLx /Ly'36. How-
ever, the coincidence ofP(s) with WS does not indicate the
metallic behavior. The mean conductance is^g&;1022.
Thus we have an interesting paradox: the strongly an
tropic system exhibits the metallic behavior with a distrib
tion P(s) very close to Poissonian distribution. By increa
ing the system length we obtain an insulating regime
which P(s) becomes WS.

In conclusion, we have presented numerical data for
strongly anisotropic weakly disordered systems. Fort>tc
'0.2 we found the metallic behavior with the mean condu
tance independent on the system size~for sizeL,100). The
distribution of the conductance is Gaussian. We found t
the anisotropy causes the increase of the varg. We analyzed
also the spectrum of the parametersz. We found that the
shape of the distributionP(s) of the normalized differences
@Eq. ~8!# depends on the anisotropy. We interpret these
sults by the random matrix theory in which the ‘‘symmet
parameter’’b depends on the anisotropy and can possess
positive value. From such RMT we derived the analytic
formula for the spectrum ofz which agrees very well with
numerical data.

The assumption thatb could be noninteger correspond
with the theoretical prediction of Muttalib and Klauder.8 In
their theory, the DMPK equation can be generalized to
description of shorter systems. The parameterb becomes
then a function of mutual correlations of eigenvalues a
eigenvectors of the transfer matrix. In agreement with Ref
we found thatb depends on the length of the system a
converges to 1 when the system length increases.

Another, more formal interpretation of RMT with nonin
tegerb is based on the Coulomb gas analogy:4 the probabil-

re-

-
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FIG. 5. Spectrum ofzs for small anisotropy parameters. No
the common crossing point of spectra for differentt. Inset: compari-
son of ratios of the most probable values,zi 11 /zi for i 51,2,3 ~open
symbols! with theoretical predictionj a( i 11)/ j a( i ) ~full symbols!.
Parametera5b2121 @Eq. ~13!#.
2-3
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FIG. 6. Change ofP(ln s) with the length of the system. For a longer system, the exponentb increases andP(s) converges to Wigner
surmise. Insets showP(s) in linear scale for some ratioLx /Ly . ~a! t50.05: P(s) achieves Wigner surmises forLx /Ly.36. Comparison
with Fig. 2 shows that the conductance of such long system is small.~b! t50.2. P(s) has a form of Wigner surmises already forLx /Ly

58, when the system is still in a metallic state,^g&;1. We present alsoP(s) for square samples of various size to show that exponenb
is system-size independent although^g& is not constant~see Fig. 2!.
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ity distribution ~2! is formally equivalent to the statistica
weight of the classical system of charged interacting parti
in one dimension.z determines the position of the particl
which interact via interactionbu(zi ,zj ). The parameterb
represents the strength of interaction. The anisotropy pa
eter t tunes this interaction. The limitt50 represents th
system of noninteracting particles withb50. This effect of
weak interaction must not be confused with the decreas
the interaction which appears in the isotropic Q1D system
the last phenomena the confining one-particle potentialkz2/2
becomes weaker as the length of the system increases
enables an increase of the mutual distancezi 112zi between
particles. The effect of the interaction~which is a function of
the particle distance! is therefore less important than in th
metallic ~short! systems. This does not affect the value of
interaction constantb.
,

s
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The critical value of anisotropytc50.2 appears frequently
throughout the paper. For stronger anisotropy~smallert), no
diffusive regime exists. The actual value oftc is, of course,
determined by our choice of the strength of disorder and
expected to be smaller for smallerW.

We suppose that the anisotropic model discussed in
paper represents the physical system to which the gene
ized DMPK equation of Muttalib and Klauder8 can be ap-
plied.
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