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Electronic transport in strongly anisotropic disordered systems:
Model for the random matrix theory with noninteger g
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We study numerically electronic transport in strongly anisotropic weakly disordered two-dimensional sys-
tems. We find that the conductance distribution is Gaussian. The conductance fluctuations increase when
anisotropy becomes stronger. The statistics of the transport parameters can be interpreted by the random matrix
theory with a noninteger symmetry paramegrOur results are in a good agreement with recent theoretical
work of K. A. Muttalib and J. R. KlaudefPhys. Rev. Lett82, 4272(1999].
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It is generally accepted that the electronic transport inparameter3 depends on the statistical properties of the
weakly disordered metallic systems is successfully describethodel. This allowsB to possess any positive value. As sup-
by the random matrix theoryRMT),* and the Dorokhov- posed, 3 converges to unity when the system length in-
Mello-Pereyra-KumatDMPK) equatior? Both theories pre- creases.
dict a Gaussian distribution of the conductance and provides In this paper we present a physical realization of the the-
us with the exact value of the conductance fluctuations iroretical model proposed in Ref. 8. We calculate the conduc-
agreement with data obtained by diagrammatic expansiontance and the statistics of the parametefsr weakly disor-
The Landauer formula for the conductange; Trt't enables  dered strongly anisotropic two-dimensional systems and
us to expresg in terms of eigenvalues of the transmission show that their transport properties can be described within
matrix t't: the framework of the RMT with the symmetry parameger
smaller than 1.

, Our model is defined by two-dimension&D) aniso-
922 cosh “(z;/2), (D tropic Anderson Hamiltonian

N

whereN is the number of open channels.
In the limit N>1, RMT proposed a common probability o . S
distribution of parameters, H:; &if i1 )] |+§i: |'J><'+1l|+t§j: i) +1,

P(z)=exp—H(z)/B 2) (5)

with wherei<L, (j<L,) numerates sites in the (y) direction,
N N N respectively. Hard wall boundary conditions are considered

H(2)=>, 22— > Iz)— B> u(z Z)). (3) andEg=0, thenN=L,. Random energies; are distributed

T2 [ i<] uniformly between—W/2 andW/2. We putW=2 through-

. . . out the paper. Then the localization length increased from
In RMT, physical properties of the sample are speC|f|ed§N25 for the one-dimension4LD) chain ¢=0) (Ref. 9 to

only by two parameters3=1, 2, 4 for the orthogonal, uni- ~ 16 for the 2D isotropic system® while the mean free
tary, and symplectic Symf“e”y of the model, respgct|vely,path decreases from-25 tol ~4 (Ref. 4 in the same range
and the mean free pathwhich determines, together with the ¢ ‘A 5 typical size of our samples varies between 20 and

system lengtiL, the strength of one-particle potentiad: 154 e expect to find metallic behavior even for strong
=IN/L,. RMT describes successfully the transport PrOPerynisotropy.

ties of weakly dlsorder_ed qua5|-one-d|men5|oG@1D_) Sys- We found that the conductance distribution is Gaussian
tems. It could be applied also to squérm cubeS if the ¢ aach value of. As an example. Fig. 1 preserfdg) for
lengthL, of the system fulfills the relations systems witht=0.05 andt=1. The inset of Fig. 1 shows
that the mean conductance is always larger than 1. The vari-
ance valg=(g?)—(g)? increases asdecreases. The system
with ¢ being the localization length. The absence of anysize dependence of the mean conductance is presented in
other parameters reveals the universal transport properties &fg. 2 for both the Q1D and the square samples. tFet,
weakly disordered systems. In particular, the variance of the=0.2, the mean conductance decreaseg®msL,/Ly in
conductance is universal, and depends only on the symmetthe Q1D case and is almost system-size independent for
and the shape of the sampl&’ the squares. This confirms that these systems are in the dif-

Recently, Muttalib and Klaud&showed that the require- fusive regime. For a stronger anisotropy;t., the diffusive
ment of the large system length is not necessary for the derregime takes place for much smaller systems<{B6=50 for
vation of the DMPK equation. In their DMPK equation the t=0.1).

l<L <& 4)
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1 Figure 4 shows the nonanalytical behavior
10 ;
8| &SP 0 ] P(s)~sP®  for s<1. 9)
60 © Thet-dependent exponegt= B(t) (inset of Fig. 4 is calcu-
4l 0) lated from the logarithmic fit
t=1.0
P(g) L=50 2 varg _
| |<amas ] A“MA N InP(Ins)=[1+B(t)]Ins. (10
' var(g)=0.18 0 05 1 Relation(9) with B=1, 2, or 4 is well known from the RMT.
The smalls behavior is determined by the symmetry of the
}_=_05-85 model. Here, howevep is given by statistical properties of
<g>=6.81 the system. In the limit— 0 our system dissociates to a set
var(g)=1.71 of independent chains, each of them is characterized hy its
Hencez are statistically independent variables and the distri-
bution of their difference should be PoissoniaA(Ins)

0 5 4 5 8 - s xInsand B(t=0)=0. The exponenB(t) increases asin-
creases and the distributidh(s) converges to the Wigner
surmise(WS) ast—1: P(Ins)x2Ins as expected.

FIG. 1. The distribution of the conductance fior 0.05 andt Contrary toP(s), the distributionP(z,) of the smallest;
=1. Inset: Thet dependence ofg) and varg for squares 5850. is similar to WS for anyt. This is consistent with RMT

which states that the distribution af is 8 independent.

The analytical expression for vay derived by Stone To test the applicability of RMT with nonintege to
et al? states that the anisotropy influences the variance of thenisotropic systems, we studied the spectra fifr squares
conductance only in the combination with the size of the(Fig. 5. Assuming that the distributioR(z) has the forn{(2)
system: and (3), we can find the most probable valigof the pa-
rameters from the system of nonlinear equations,

<g>

(6)

L
var ng(L—X\/f .

y JHI 97|, =2;=0. (11)

Figure 3 shows that fer/Ly\ﬁ>2 andt=t_, vargreaches
the universal value=2/15. For the squares, vgiis indepen-
dent on the system size for-0.1.

In the limit of smallz the “interaction” and “Jacobian”
terms in Eq.(3) can be approximated &s

The increase of vag for t<1 is in a qualitative agree- Calo2 o2 _
ment with the universal relation for the conductance u(z.z)=Inlz’-z] and Jz)=Inz. (12)
fluctuation?® System(11) is then exactly solvabl&€ After some algebra
1 we find
var g~ (7)
provided thatB<1l whent<1. It seems straightforward to Zi~i.(), a= i—l (13)
compare numerical data for vgrwith Eq. (7) and calculate bl B

B=B(t). However, detailed numerical analyses have shown S : :
that relation(7) underestimates numerical data if the disorder\é’herleéa(') Is theith zerotk(])f thg Bessel functiod, . From
is weak!!” Therefore we prefer to estimajg(t) from the 9. (13 we can express the ratio

statistics of the parametersor anisotropic square samples.

The quantity of interest is the probability distributi®s) of Zit1_ jalit1) (14)
normalized differencé$ Z Jo(i)
s=(z11—2){zi 11— 7). (8)  which depends only o.*°
\ 10
10 dt\& ©1-0.05 )
NS 01=0.10 3 FIG. 2. System size dependence of the mean
WQIQ oz conductance (g). Left: for the quasi-one-
o R ¥1=0.75 81 dimensional system&,XL,. The width of the
NS N T : ; y ;
& 1 3\_ >N SO il B Y i N S ¥ system isL,=10. Lines represent the relation
d \Li_r\*\:‘:lﬁz;?? v )//>k\\ (g)~axL,/L, which is characteristic for the
° \"h:\i\: > 6f v . diffusive regime. Right: for squaresXL. In-
""""""""" e < \\. crease of the mean conductance for srhatdi-
° a e Y cates a ballistic regime, decrea_se for Ia_tgezs
10" P due to the crossover to the localized regime.
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FIG. 3. Left: varg as a function of the system length,. The 5 a oo ;tg'?g
width of the systeni,=10. Dotted lines show universal values of BQ&@ " t;o:15
var g for squareq0.185 and Q1D system$0.133 (Ref. 3. The QQEQQ& > 1=0.25
increase of the system length causes the transition to localized re @Q@ +1=0.35
gime with decrease of vay. Fort=1, also data for shorter systems @@Qg
40X 10 and 210 are present to show an increase of the conduc- 0 @g s
tance fluctuations. Right: vay as a function of the system size for 0 10 20 30 40 50
squared X L. i

FIG. 5. Spectrum ofs for small anisotropy parameters. Note
The derivation of Eq(14) holds for any value of8. Using  the common crossing point of spectra for differeribset: compari-
the values of3(t) presented in Fig. 4 we calculated the ratio Son of ratios of the most probable valugs,; /z fori=1,2,3(open

.. 1/7 and compared it with numerical data. As it is shown YPOIS with theoretical prediction) o(i +1)/14(i) (full symbols.
S comp ; : ) Parameterr=8"1—1 [Eq. (13)].
in inset of Fig. 5, the agreement is very good &6x2, which
corresponds té=t.=0.2.

In Fig. 6 we show that the exponeidepends also on the system length causes a decrease of the mean conductance
shape of the systeng converges toward 1 as the length andP(s) becomes Gaussian. A qualitatively similar behavior

increases. This is consistent with Ref. 8. Fer0.2 we found ~ ©&" be found for any>0.2.
that the distributiorP(s) is WS forL,/L,~8. For this sys- ev;orﬂt}; gbci)r?é;(esrch??seisv?//i\ﬁ \?vrgydfggglrl%zggilcgtoe V\i_he
tem length the system is still in the metallic regime: the mean_ "

o ; metallic behavior. The mean conductance (g~ 10 2.
conductgnce?g) L aqd the RMT with5=1 IS applicable Thus we have an interesting paradox: the strongly aniso-
to describe its properties. Of course, further increase of th

'Fropic system exhibits the metallic behavior with a distribu-
tion P(s) very close to Poissonian distribution. By increas-
ing the system length we obtain an insulating regime in
which P(s) becomes WS.

In conclusion, we have presented numerical data for the
strongly anisotropic weakly disordered systems. Esit,
~0.2 we found the metallic behavior with the mean conduc-
tance independent on the system dioe sizeL<<100). The
distribution of the conductance is Gaussian. We found that
the anisotropy causes the increase of thegvaile analyzed
also the spectrum of the parametersWe found that the
shape of the distributioR(s) of the normalized difference
[Eqg. (8)] depends on the anisotropy. We interpret these re-
sults by the random matrix theory in which the “symmetry
parameter’8 depends on the anisotropy and can possess any
positive value. From such RMT we derived the analytical
formula for the spectrum of which agrees very well with
numerical data.

The assumption thg8 could be noninteger corresponds
with the theoretical prediction of Muttalib and Klaudem
their theory, the DMPK equation can be generalized to the
description of shorter systems. The paramegebecomes

FIG. 4. Probability density(In's) for different anisotropyt of ~ then a function of mutual correlations of eigenvalues and
the systemsis the(normalized differencez;, ;—z . Solid lines are ~ €igenvectors of the transfer matrix. In agreement with Ref. 8,
Wigner surmisal; (s) = (m/2)s exp—(m/4)s? and Poisson distribu- we found thatg depends on the length of the system and
tion e”S. The size of the samplds,= L, =50. Statistical ensembles converges to 1 when the system length increases.
of Ng,= 10° samples have been considered. Dot-dashed lines rep- Another, more formal interpretation of RMT with nonin-
resent fits(10). Inset:t dependence of exponept tegerB is based on the Coulomb gas analdgie probabil-
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FIG. 6. Change oP(In s) with the length of the system. For a longer system, the expofi@émtreases ané&(s) converges to Wigner
surmise. Insets shoW(s) in linear scale for some ratib, /L, . (a) t=0.05: P(s) achieves Wigner surmises fax /L,>36. Comparison
with Fig. 2 shows that the conductance of such long system is stbali=0.2. P(s) has a form of Wigner surmises already fof/L,
=8, when the system is still in a metallic statg)~ 1. We present als@(s) for square samples of various size to show that expogent
is system-size independent althou@) is not constantsee Fig. 2

ity distribution (2) is formally equivalent to the statistical The critical value of anisotrop,=0.2 appears frequently
weight of the classical system of charged interacting particleghroughout the paper. For stronger anisotrég@yallert), no

in one dimensionz determines the position of the particles diffusive regime exists. The actual value tofis, of course,
which interact via interactiorBu(z; ,z;). The paramete3  determined by our choice of the strength of disorder and is
represents the strength of interaction. The anisotropy parangxpected to be smaller for smalle\.

etert tunes this interaction. The limit=0 represents the e suppose that the anisotropic model discussed in this
system of noninteracting particles wip=0. This effect of paper represents the physical system to which the general-

weak interaction must not be confused with the decrease 9£ed DMPK equation of Muttalib and Klaudecan be ap-
the interaction which appears in the isotropic Q1D system. "blied.

the last phenomena the confining one-particle potek#&R
becomes weaker as the length of the system increases. This
enables an increase of the mutual distancg —z; between
particles. The effect of the interactigwhich is a function of
the particle distangeis therefore less important than in the
metallic (shor) systems. This does not affect the value of the
interaction constang.
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