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Symmetry breaking in self-assembled monolayers on solid surfaces: Anisotropic surface stress
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~Received 15 June 2001; published 15 January 2002!

This paper models the self-assembly dynamics of a two-phase monolayer on an elastic substrate. The two
phases coarsen to reduce the phase boundary energy and refine to reduce the elastic energy. To minimize the
total free energy, the two phases can order into nanoscale patterns. We combine the continuum phase field
model of spinodal decomposition and the anisotropic surface stress. The numerical simulation shows various
patterns, such as interwoven stripes, parallel stripes, triangular lattice of dots, and herringbone structures. The
surface stress anisotropy causes a transition from the parallel stripes to the herringbone structures. We show
that this symmetry breaking mesophase transition obeys the classical theory of Landau.
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I. INTRODUCTION

For two decades, the invention of the scanning tunne
microscopy~STM! and other probes has stimulated the stu
ies of nanoscale activities on solid surfaces. An intrigu
finding is the self-assembly of monolayer atoms on so
surfaces into nanoscale structures.1–4 Atoms deposited on a
low-symmetry surface of the substrate can self-assemble
quite different patterns. For instance, a submonolayer of o
gen on a Cu~110! surface can form stable periodic stripes
alternating oxygen overlayer and bare copper, about 10
in width and running in thê001& direction.5 This paper and
the sequels present a model that predicts pattern types
cording to various kinds of anisotropy.

The atoms in the epilayer are usually stressed, even w
the epilayer and substrate are of the same kind of atoms.
surface stress, with a unit of force per length, can be roug
viewed as the residual stress times the layer thickness6–8

The surface stress can be obtained from experime
measurements7,8 or from first-principles calculations.9,10 The
surface stress is a second-rank tensor. The anisotropy o
surface stress need not be coupled with that of the subs
elasticity. Depending on the epilayer and substrate, sur
stress anisotropy can still be significant when the subst
has a highly symmetric crystal structure and is almost e
tically isotropic. Surface stress anisotropy plays an import
role in surface reconstruction11,12 and accounts for the do
main patterns on reconstructed silicon~100! surface.13,14The
model of Alerhandet al.13 highlights two competing effects
surface stress anisotropy and domain wall energy. Nara
han and Vanderbilt15 applied the same concept to model t
herringbone reconstruction of the Au~111! surface.16

A binary epilayer differs from a single-crystal surface
several aspects. In the former case, surface stress nonu
mity originates from compositional modulation, rather th
structural variation. More importantly, the entropy of mixin
and the enthalpy of mixing play roles, along with the surfa
stresses and phase boundaries. The entropy of mixing ma
potent enough to stabilize a uniform epilayer.

We have recently proposed a continuous phase model17,18

Unlike Vanderbilt and co-workers,13,15 we do not preassum
the pattern types. Our model is a dynamic model, and
0163-1829/2002/65~8!/085401~9!/$20.00 65 0854
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material system can generate whatever patterns it favor
sharply defined phase boundary adopted by Vanderbilt
co-workers is unsuitable for such a purpose. A phase bou
ary in our model is represented by a concentration gradi
an approach analogous to the work of Cahn and Hilliard
spinodal decomposition.19 The continuous phase field mod
allows us to study the dynamic process of growing a sup
lattice from a disordered initial concentration distributio
The dynamics is particularly important in a system of ma
equilibrium configurations due to translational and rotatio
symmetries, leading to mesoscale defects in the superlat
The advantage of phase field model and its application
other systems have been discussed before, e.g., Refs. 2
21.

We have performed linear perturbation analysis, stud
the early stage of self-assembly behavior, and given the c
dition for the existence of a uniform epilayer.18 We have also
simulated the entire self-assembly process and discusse
effect of average concentration, guided self-assembly by
tial conditions, and numerical technique in a series
papers.22–24Our previous papers have focused on the isot
pic surface stress. In this paper we demonstrate how the
isotropy of the surface stress breaks the symmetry of
system and generates a variety of new patterns. In partic
we show a second-order mesophase transition from par
stripes to herringbone structures. We assume here tha
elastic substrate is isotropic; the effects of anisotropic ela
constants and anisotropic domain walls will be studied in
sequels to this paper.

II. CONTINUOUS PHASE FIELD MODEL
WITH ANISOTROPIC SURFACE STRESS

Consider an epilayer composed of two kinds of atomsA
andB on a substrate of atomsS. HereA andB can be both
different fromS, such as sulfur-silver mixture on a rutheniu
substrate.1 Alternatively, only one species of the epilayer
different from that of the substrate, such as oxygen atoms
a copper substrate.5 As shown in Fig. 1, the epilayer is take
to be an infinitely large surface and the substrate a se
infinite elastic body. The substrate occupies the half sp
x3,0 and is bounded by thex1-x2 plane.
©2002 The American Physical Society01-1
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 085401
The free energy of the system comprises the surface
ergy in the epilayer and the elastic energy in the substr
Focusing on the anisotropy of surface stress, we assum
this paper that the substrate is elastic isotropic. As usual,
elastic energy per unit volume in the bulk is a quadra
function of strain with Young’s modulusE and Poisson’s
ratio n as parameters.23 The surface energy per unit area,G,
takes an unusual form in our model. Define concentratioC
by the fraction of atomic sites on the surface occupied
speciesB. We will simulate the annealing process, in whi
the deposition process has stopped, but atoms are allow
diffuse within the epilayer. Regard the concentration a
spatially continuous and time-dependent functi
C(x1 ,x2 ,t). Assume thatG is a function of the concentratio
C, the concentration gradientC,a and the strain in the surfac
«ab . A Greek subscript runs from 1 to 2. The strain tens
relates to the displacement gradient in the usual way as in
theory of elasticity. Expanding the functionG(C,C,a ,«ab)
in the leading-order terms of the concentration gradientC,a
and the strain«ab , we have

G5g1hC,aC,a1 f ab«ab , ~1!

whereg, h, and f ab are all functions of the concentrationC.
We have assumed thath is isotropic in the plane of the sur
face. The leading-order term in the concentration gradien
quadratic because, by symmetry, the term linear in the c
centration gradient does not affect the surface energy.
have neglected terms quadratic in the strain, which relat
the excess in the elastic stiffness of the epilayer relative
the substrate.

When the concentration field is uniform in the epilay
the substrate is unstrained andg(C) is the only remaining
term in Eq.~1!. Henceg(C) represents the surface ener
per unit area of a uniform epilayer on an unstrained s
strate. To describe phase separation, we prescribeg(C) as
any function with double wells. In numerical simulations,
be definite, we assume that the epilayer is a regular solu
so that the function takes the form

g~C!5LkT@ClnC1~12C!ln~12C!1VC~12C!#.
~2!

The usual expression ofg(C) also includes a term linear in
the concentrationC, representing the weighted contributio
of free energy by pure componentA andB on the substrate

FIG. 1. Self-organized nanoscale patterns of an epilayer o
solid surface. The substrate occupies the half spacex3,0 and is
bounded by thex1-x2 plane.
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However, due to mass conservation, the average conce
tion is constant when atoms diffuse within the epilay
Hence the term linear inC does not influence diffusion and i
neglected here. The first two terms in the brackets re
from the entropy of mixing and the third term from the e
thalpy of mixing.L is the number of atoms per unit area o
the surface,k is Boltzmann’s constant, andT is the absolute
temperature. The dimensionless numberV measures bond
strength relative to the thermal energykT. WhenV,2, the
functiong(C) is convex. WhenV.2, the functiong(C) has
double wells. Figure 2 shows theg(C) graph for V52.2.
The double-welledg(C) function drives phase separation;
favors neither coarsening nor refining.

We assume thath(C) is a positive constant,h(C)5h0 .
Any nonuniformity in the concentration field by itself in
creasesG. In the phase field model, the second term in E
~1! represents the phase boundary energy. The total p
boundary energy of all the phase boundaries reduces w
the two phases enlarge and the net length of the ph
boundary reduces. Consequently, the concentration grad
term in Eq.~1! drives phase coarsening.

The quantityf ab , known as the surface stress tensor,
the surface energy change associated with the elastic stra25

As stated in the previous section, the concentrati
dependent surface stress drives phase refining. We may
sume that the surface stress is a linear function of the c
centration, i.e.,f ab(C)5cab1fabC, wherecab5cba and
fab5fba are material constants; see review in Ref. 8.

Atoms diffuse within the epilayer to reduce the combin
surface energy and the elastic energy in the substrate.
corresponding diffusion equation is22,23

]C

]t
5

M

L2
¹2S ]g

]C
22h0¹2C1fab«abD , ~3!

whereM is the mobility of atoms in the epilayer. The firs
two terms in Eq.~3!, which are analogous to those in Cahn26

come from the free energy of mixing and the phase bound
energy. The third term comes from the concentratio
dependent surface stress and from substrate elasticity. A
peated index implies summation.

When the concentration is nonuniform, the surface str
f ab is also nonuniform. A stress fields i j is generated in the
substrate, subject to the boundary conditionss3a5 f ab,b and
s3350 at the boundary ofx350.17 A Latin subscript runs
from 1 to 3. The elastic field in a half space due to a tang

a FIG. 2. The curve ofg(C) for V52.2. The double wells corre
spond to the two phases.
1-2



i.
r
su

w

c
n

sin

be
n

-

e
h

e

nci-
ate
the
tress

t,
ou-

on
re-
im-

i-
di-
ce

e-

-
re-

l-

r
e

.

SYMMETRY BREAKING IN SELF-ASSEMBLED . . . PHYSICAL REVIEW B65 085401
tial point force acting on the surface was solved by Cerrut27

The strain field in the surface,«ab , can be obtained by linea
superposition, resulting singular integrals over the entire
face:

«ab5
11n

pE E E 1

r3
F S n2

1

2D ~fbk~xa2ja!1fak~xb2jb!!

1fgknS dab2
3

r2
~xa2ja!~xb2jb!D ~xg2jg!G

3
]C

]jk

dj1dj2 , ~4!

wherer5A(x12j1)21(x22j2)2.
We define two length scales. A comparison of the first t

terms in the parentheses of Eq.~3! defines a length:

b5S h0

LkT
D 1/2

. ~5!

In the Cahn-Hilliard model this length scales the distan
over which the concentration changes from the level of o
phase to that of the other. That is,b is comparable to the
thickness of the phase boundary. The magnitude ofh0 is on
the order of energy per atom at a phase boundary. U
magnitudesh0;10219 J, L;531019 m22, and kT;5
310221 J ~corresponding toT5400 K!, we haveb;0.6 nm.

The other length scale, which reflects the competition
tween coarsening and refining@the second and third terms i
Eq. ~3!#, is defined by

l 5
Eh0

~12n2!f11
2

. ~6!

Young’s modulus of a bulk solid is aboutE;1011 N/m2.
According to the data compiled in Ibach,8 a representative
value of slope of the surface stress isf11;4 N/m. The equi-
librium phase size is on the order;4p l , according to theo-
retical analysis and simulation.18,23 These magnitudes, to
gether withh0;10219 J, give 4p l;8 nm, which broadly
agrees with observed phase sizes in experiments. A dim
sionless parameterQ is defined by the ratio of the two lengt
scales:

Q5
b

l
5

~12n2!f11
2

E~LkTh0!1/2
. ~7!

The effect of the surface stress is negligible whenQ→0.
From Eq. ~3!, disregarding a dimensionless factor, w

note that the diffusivity scales asD;MkT/L. To resolve
events occurring over the length scale ofb, the time scale is
t5b2/D, namely,

t5
h0

M ~kT!2
. ~8!
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Surface stress is a second-rank tensor, having two pri
pal directions within the plane of the epilayer. The substr
being assumed elastically isotropic, we can always rotate
coordinates so that the shear component of the surface s
disappears. Hence we can setf1250 without losing gener-
ality. Define

r 5f22/f11. ~9!

This parameter measures the degree of anisotropy.
The singular integrals in Eq.~4! make it inefficient to

solve Eq.~3! in real space. An alternative, more efficien
method is to solve the equation in reciprocal space. The F
rier transform converts the integral-differential equation~3!
into a regular partial differential equation. The integrati
operation, as well as the differentiation over space, is
moved and the evolution equation can be dramatically s
plified. It is not necessary to transform the expression of«ab
in Eq. ~4! into reciprocal space, which seems to be a form
dable task. Alternatively, we transform the boundary con
tions and solve the elasticity problem in reciprocal spa
directly. The result is very simple, as given below.

Let k1 andk2 be the coordinates in reciprocal space. D
note the Fourier transform ofC(x1 ,x2 ,t) by Ĉ(k1 ,k2 ,t),
namely,

Ĉ~k1 ,k2 ,t !5E
2`

` E
2`

`

C~x1 ,x2 ,t !e2 i ~k1x11k2x2!dx1dx2 .

~10!

Normalize Eq.~3! by b and t, and apply the Fourier trans
form on both sides. We obtain the evolution equation in
ciprocal space:

]Ĉ

]t
52k2P̂22~k42Qs!Ĉ. ~11!

Herek ands are given by

k5Ak1
21k2

2 ~12!

and

s5
k1

2~k22nk1
2!1k2

2~k22nk2
2!r 222nk1

2k2
2r

~12n!k
. ~13!

When the surface stress is isotropic,r 51 ands5k3, which
reduce to the result in Ref. 23.P̂(k1 ,k2 ,t) is the correspond-
ing form of P(x1 ,x2 ,t) in reciprocal space, where

P~C!5 lnS C

12CD1V~122C!. ~14!

The termP(C) comes from the derivative of Eq.~2! with
respect toC. The factorLkT disappears due to the norma
ization. Note thatP(C) is a function ofx1 , x2 , and t. Be-
causeP(C) is a nonlinear function ofC, an analytical ex-
pression for P̂(k1 ,k2 ,t) is unavailable. The fast Fourie
transform~FFT! and the inverse FFT are used in each tim
step. Details can be found in one of our previous papers23
1-3
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 085401
III. SIMULATIONS OF EVOLVING PATTERNS

A. Refining effect of the surface stress

Figure 3 shows two evolution sequences fromt50 to t
51.03106, the time unit beingt. The calculation cell size is
256b3256b. In the simulation, we takeV52.2 andn50.3.
For sequence~a!, there is an isotropic surface stress (r 51
and Q51!; for sequence~b!, there is no surface stress (Q
50). The initial conditions are the same for the two s
quences: the concentration has an average 0.5 and fluct
randomly within 0.001 from the average. Boundary con
tions of the calculation cell are periodic. Results are visu
ized by gray scale graphs in the (x1,x2) plane. The brighter
region corresponds to the higher concentration, and
darker region corresponds to the lower concentration.

In sequence~a!, shortly after phase separation, the tw
phases form interwoven stripes. The width of the stripes
bilizes very fast. Fromt51000 to t51.03106, the widths
are almost invariant. The patterns resemble experime
observations.4 By contrast, in sequence~b!, the two phases
try to increase their sizes as much as possible, restricted
by mass conservation and the size of the calculation cell.
system finally evolves into a state such that one phase t
half of the calculation cell and the other phase takes the o
half. This reproduces the classical spinodal decompositio19

Comparison between the two cases clearly demonstrate
refining effect of surface stress.

Figure 4~a! is the pattern att51.03106, sequence~a! of
Fig. 3. Figure 4~b! shows the concentration profile along th
segment between the two arrows in Fig. 4~a!. It is observed
that the concentration is roughly 0.85 at the crest and 0.1
the trough. Nonuniform concentration in the epilayer gen
ates a strain field in the substrate. Figure 4~c! shows the
strain field «11 in the substrate. The brighter region corr
sponds to contraction, and the darker region correspond
extension.~Here we takef11.0.) Figure 4~d! gives a simple
explanation. The traction on the surface iss315] f 11/]x1
5f11]C/]x1 , as shown in Fig. 4~d!. The strain field in the
substrate is caused by the traction. Figure 4~c! shows that the
deformation is localized in a very shallow region close to
surface, decaying quickly along the2x3 direction. The fig-
ure clearly shows the existence of a fringe elastic field in
substrate.

Sequence~a! in Fig. 3 can be roughly divided into thre
stages: phase separation, size selection, and spatial orde
As shown in the sequence, the two phases reach equilib
concentrations on the time scale of;10. The time to attain a
uniform size is on the order of 100–1000. The ordering
the structure still continues and is far from completion af
t5106. It is relatively fast for the phases to separate, att
their equilibrium compositions, and select a uniform size,
very slow to order over a long distance. Our calculati
shows that the system has the lowest energy if the stripes
up into parallel stripes.23 However, due to the high symmetr
of the system, all the directions are energy equivalent.
phases are confused and do not know which direction to
up. The interwoven stripes have been observed in many
assembled systems, including block copolymers, ferrom
netic films, and the Langmuir monolayers.28
08540
-
tes
-
l-

e

a-

tal

ly
e
es
er
.
the

at
r-

to

e

e

ing.
m

f
r
n
t

ne

e
e
lf-
g-

FIG. 3. Two evolution sequences. The time unit in the figures
t. For sequence~a!, there is isotropic surface stress; for sequen
~b!, there is no surface stress.
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SYMMETRY BREAKING IN SELF-ASSEMBLED . . . PHYSICAL REVIEW B65 085401
FIG. 4. ~a! The pattern att51.03106. ~b! The concentration
profile along the segment between the two arrows in~a!. ~c! The
corresponding strain field«11 in the substrate. The brighter regio
corresponds to contraction, and the darker region co
sponds to extension (f11.0). ~d! An explanation of the strain in
the substrate.
08540
B. Symmetry breaking by the surface stress anisotropy

The slopes of the two principal surface stresses,f22 and
f11, play equivalent roles. Because the free energy of
system is quadratic inf22 andf11, when they both change
signs, the free energy is invariant. Consequently, we n
only consider the region on the (f11,f22) plane bounded by
the two linesf112f2250 and f111f2250, as shown in
Fig. 5. The five representative statesa, b, c, d, ande corre-
spond tor 51, 0.5, 0,20.5, and21, respectively. Figures
5~a!–5~e! show the simulated patterns att52.03105. All
five simulations start from the same random initial conditi
as that in Fig. 3. Statea corresponds to isotropic surfac
stress. Due to the high symmetry of the surface stress,
patterns exhibit a structure of high symmetry. Our simulat
has shown that the interwoven structure still exists at
;107. This is probably the reason that interwoven stripes
commonly observed in many self-assembled systems.

The ordering process can be accelerated by suita
breaking the symmetry of the system. Our previous work
shown that by adding some lines to the random initial co
dition to provide a direction to line up the stripes, the form
tion of parallel stripes can be dramatically accelerated.23 Fig-
ures 5~b! and 5~c! show how the anisotropy of surface stre
has a similar effect. The anisotropy provides a direction pr
erence, and the phases very quickly line up into perio
strips. The simulation shows that stripes form normal to
-

FIG. 5. Various patterns att52.03105 under five representative
status of surface stress anisotropy. The average concentration i
1-5
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 085401
principal direction that the slope of the surface stress
larger. The larger surface stress slope allows more ela
energy relaxation. Comparing~b! and ~c! with ~a!, we ob-
serve that the width of the stripes is roughly the same.

Quite beyond our initial expectation, in~d! r 520.5, we
obtain herringbone structures. In~e!, r 521 and we obtain
tweed structures. The stripes align along the diagonal di
tion. It is found the stripes turn more close to the diago
direction whenr becomes more negative. We will examin
this mesophase transition between the parallel stripes an
herringbones in the next section.

Figure 6 shows the time sequence forr 520.5. The initial
condition is random, with average concentration 0.5 plu
fluctuation within 0.001 from the average.V52.2 andQ
51, the same as those in Fig. 3. We can still broadly iden
three states of evolution: phase separation, size selection
special ordering. However, the ordering process is m
faster. A herringbone structure is obtained within 1.03105.

FIG. 6. An evolution sequence forr 520.5.
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Two variants of stripes, with different orientations, can
identified from the patterns. For the given symmetry, the t
variants are energy equivalent. The width of the strip
which is determined by the intrinsic length scale, stabiliz
very fast. However, the length of the stripes continues
grow at t553105.

Figure 7 shows the patterns for average concentra
equal to 0.4. The figures are patterns att52.03105, initiated
at a random concentration. When the surface stress is iso
pic, the system forms dots. The dots locally form a triangu
lattice, but over long distance form multidomains. Our mod
predicts that average concentration affects the pattern for
tion, as observed in experiments.4 The multidomain and loca
ordering structures of dots have been found in many ot
systems, such as block copolymers and Langmuir mono
ers. Long-range ordering is difficult to attain. A similar ph
nomenon also appears in the recently discovered lithogra
cally induced self-assembly~LISA!.29

Figures 7~b!–7~e! show that surface stress anisotropy c
considerably affect the pattern formation: it can change
patterns from dots to stripes. Note the dislocations in F
7~b!.

IV. MESOPHASE TRANSITION INDUCED BY SURFACE
STRESS ANISOTROPY

Our numerical simulation has revealed a surprising fin
ing. There seems to exist a critical pointr c somewhere be-

FIG. 7. Various patterns att52.03105 under different surface
stress anisotropy. The average concentration is 0.4.
1-6
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SYMMETRY BREAKING IN SELF-ASSEMBLED . . . PHYSICAL REVIEW B65 085401
tween r 520.5 and r 50. When r c,r ,1, the stripes are
parallel to thef22 direction. When21<r ,r c , the stripes
deviate from thef22 direction. The angle between the orie
tation of the stripes and thef22 direction is determined by
the value ofr. As shown in Fig. 8, the orientations ofu and
2u are equivalent variants that break the symmetry of
system. In the following we look at the mesophase transit
more carefully and show that it follows the Landau theory30

The question is the following: assuming that an arbitra
concentration stripe is formed on the substrate andr
5f22/f11 is known, what will be the orientationu of such a
stripe? The stripes should select their orientations to relax
energy of the system as much as possible. The surface s
is a second-rank tensor, so is the slopefab . According to
tensor algebra, the maximum direction for the slope co
cides with one of the principal directions of the tens
namely, thef11 direction assuminguf11u>uf22u Then why
do stripes sometimes deviate from the direction norma
f11? We will give a qualitative answer first, followed by
detailed calculation. When a set of parallel stripes lines up
a direction off the two principal directions of thef tensor, a
shear component of thef tensor arises. In the new coord
nates that are normal and parallel to the stripes (x18 ,x28), we
denote the tensor components byfab8 . In the cross section
(x18 ,x3) of the substrate, the componentf11 generates a
plane strain field andf128 generates an antiplane shear str
field. Both fields contribute to the elastic energy relaxati

FIG. 8. A mesophase transition induced by surface str
anisotropy.
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The former favors the stripes in the principal direction of t
f tensor, and the latter favors the stripes off the princi
direction.

The energy per unit area of the system,gave, is expressed
by17

gave5
1

AEA
S g~C!1hC,aC,a2

1

2
s3auaDdA, ~15!

whereA is the area of the surface andua the displacement in
the epilayer. The first two terms in the brackets are isotro
Let h5sin u be the order parameter. A calculation show
that for any concentration modulation, the free energy ta
the form

gave5g01R~h!g1 , ~16!

whereg0 andg1 (g1.0) are independent of the orientatio
h, andR is expressed by

R~h!5~12r !@r 1~122n!#h21n~12r !2h4. ~17!

The preferred orientation is obtained by minimizinggave or
R. We only need to considerur u<1 and uh<1. In the ex-
pression~17!, the coefficient forh4 is always positive. The
coefficient forh2 is positive whenr .r c and negative when
r ,r c , wherer c52(122n). The functionR(h) is drawn
in Fig. 9. We distinguish the following cases.

~i! When r 51, the surface stress is isotropic andR50
for all orientations h. All orientations are energy
equivalent, as expected.

~ii ! When r c,r ,1, the coefficient forh2 is positive, so
that R minimizes atheq50, corresponding to stripe
parallel tof22.

s

FIG. 9. The normalized free energyR as a function of the order
parameterh.
1-7
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 085401
~iii ! When21<r ,r c , the coefficient forh2 is negative,
so that R has a local maximum ath50 and two
minima at

heq56A r c2r

2n~12r !
. ~18!

They correspond to the two orientations obtained in the
merical simulations, Figs. 5–7. In the simulations, we ha
takenn50.3, so thatr c520.4. The stripes line up in thef22
direction for casesb andc, but form two variants for casesd
and e. Figure 10 plots the relation between the equilibriu

FIG. 10. The equilibrium value of the orientation order para
eterheq as a function of the degree of surface stress anisotropyr.
ri
n,

k

a

re

G

r

d

08540
-
e

orientationheq and the anisotropy parameterr. The equilib-
rium orientations agree with those obtained by the dyna
simulations.

V. CONCLUDING REMARKS

A binary epilayer on a solid surface may self-assem
into ordered structures. We have proposed a thermodyna
model to study this phenomenon. The formation of sta
concentration patterns requires three ingredients: phase s
ration, phase coarsening, and phase refining. These ing
ents result in a nonlinear diffusion equation, with which w
have simulated the entire process of pattern evolution.
surface stress refines and stabilizes the patterns. Withou
surface stress, the phases will coarsen as much as pos
However, with the surface stress, the phases reach their e
librium sizes and become stable. When the surface stre
isotropic, the epilayer forms interwoven stripes or disorde
dots, depending on the average concentration. The an
ropy of the surface stress generates two kinds of patte
parallel stripes and herringbone structures. As the degre
the surface stress anisotropy changes, the epilayer cha
from one pattern to the other. Each pattern is a mesophas
herringbone structure is a mixture of two sets of para
stripes, which form by breaking the symmetry of the sing
set of parallel stripes. Taking the stripe orientations as
order parameter, we show that the mesophase transition
second order and occurs when the degree of surface s
anisotropy reaches a critical value. We hope that experim
will soon succeed in verifying this prediction.
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