PHYSICAL REVIEW B, VOLUME 65, 085401

Symmetry breaking in self-assembled monolayers on solid surfaces: Anisotropic surface stress
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This paper models the self-assembly dynamics of a two-phase monolayer on an elastic substrate. The two
phases coarsen to reduce the phase boundary energy and refine to reduce the elastic energy. To minimize the
total free energy, the two phases can order into nanoscale patterns. We combine the continuum phase field
model of spinodal decomposition and the anisotropic surface stress. The numerical simulation shows various
patterns, such as interwoven stripes, parallel stripes, triangular lattice of dots, and herringbone structures. The
surface stress anisotropy causes a transition from the parallel stripes to the herringbone structures. We show
that this symmetry breaking mesophase transition obeys the classical theory of Landau.

DOI: 10.1103/PhysRevB.65.085401 PACS nunider68.43.Hn

[. INTRODUCTION material system can generate whatever patterns it favors. A
sharply defined phase boundary adopted by Vanderbilt and

For two decades, the invention of the scanning tunnelingo-workers is unsuitable for such a purpose. A phase bound-
microscopy(STM) and other probes has stimulated the stud-ary in our model is represented by a concentration gradient,
ies of nanoscale activities on solid surfaces. An intriguingdn approach analogous to the work of Cahn and Hilliard on
finding is the self-assembly of monolayer atoms on soligsPinodal decompositioff. The continuous phase field model
surfaces into nanoscale structute$Atoms deposited on a allows us to study the dynamic process of growing a super-
low-symmetry surface of the substrate can self-assemble intgttice from a disordered initial concentration distribution.
quite different patterns. For instance, a submonolayer of oxylhe dynamics is particularly important in a system of many
gen on a CU110) surface can form stable periodic stripes of equilibrium configurations due to translational and rotational
alternating oxygen overlayer and bare copper, about 10 nraymmetries, leading to mesoscale defects in the superlattice.
in width and running in th€001) direction® This paper and The advantage of phase field model and its application in
the sequels present a model that predicts pattern types agther systems have been discussed before, e.g., Refs. 20 and
cording to various kinds of anisotropy. 21.

The atoms in the epilayer are usually stressed, even when We have performed linear perturbation analysis, studied
the epilayer and substrate are of the same kind of atoms. THEe early stage of self-assembly behavior, and given the con-
surface stress, with a unit of force per length, can be roughiglition for the existence of a uniform epilay€nwe have also
viewed as the residual stress times the layer thickPidss. Simulated the entire self-assembly process and discussed the
The surface stress can be obtained from experiment&ffect of average concentration, guided self-assembly by ini-
measurement$ or from first-principles calculation$® The  tial conditions, and numerical technique in a series of
surface stress is a second-rank tensor. The anisotropy of tiR&pers>—2*Our previous papers have focused on the isotro-
surface stress need not be coupled with that of the substrafdC surface stress. In this paper we demonstrate how the an-
elasticity. Depending on the epilayer and substrate, surfacgotropy of the surface stress breaks the symmetry of the
stress anisotropy can still be significant when the substratdystem and generates a variety of new patterns. In particular,
has a highly symmetric crystal structure and is almost elaswe show a second-order mesophase transition from parallel
tically isotropic. Surface stress anisotropy plays an importangtripes to herringbone structures. We assume here that the
role in surface reconstructidh?2 and accounts for the do- €lastic substrate is isotropic; the effects of anisotropic elastic
main patterns on reconstructed silicdi90) surfacet®“The  constants and anisotropic domain walls will be studied in the
model of Alerhancet al*® highlights two competing effects: Seduels to this paper.
surface stress anisotropy and domain wall energy. Narasim-
han.and Vanderbitt applied the same concept toﬁmodel the Il. CONTINUOUS PHASE FIELD MODEL
hemngbone re.constru.ctlon of the /(ll}ll) surfacet ' WITH ANISOTROPIC SURFACE STRESS

A binary epilayer differs from a single-crystal surface in
several aspects. In the former case, surface stress nonunifor- Consider an epilayer composed of two kinds of atoins
mity originates from compositional modulation, rather thanandB on a substrate of atons Here A andB can be both
structural variation. More importantly, the entropy of mixing different fromS, such as sulfur-silver mixture on a ruthenium
and the enthalpy of mixing play roles, along with the surfacesubstrate. Alternatively, only one species of the epilayer is
stresses and phase boundaries. The entropy of mixing may loéfferent from that of the substrate, such as oxygen atoms on
potent enough to stabilize a uniform epilayer. a copper substrafeAs shown in Fig. 1, the epilayer is taken

We have recently proposed a continuous phase méd&l. to be an infinitely large surface and the substrate a semi-
Unlike Vanderbilt and co-workerS:*>we do not preassume infinite elastic body. The substrate occupies the half space
the pattern types. Our model is a dynamic model, and the&;<0 and is bounded by the;-x, plane.
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FIG. 1. Self-organized nanoscale patterns of an epilayer on a FIG. 2. The curve ofy(C) for Q=2.2. The double wells corre-
solid surface. The substrate occupies the half spaee0 and is  spond to the two phases.

bounded by the;-x, plane.
However, due to mass conservation, the average concentra-

The free energy of the system comprises the surface enion is constant when atoms diffuse within the epilayer.
ergy in the epilayer and the elastic energy in the substrated4ence the term linear i@ does not influence diffusion and is
Focusing on the anisotropy of surface stress, we assume iteglected here. The first two terms in the brackets result
this paper that the substrate is elastic isotropic. As usual, thigom the entropy of mixing and the third term from the en-
elastic energy per unit volume in the bulk is a quadraticthalpy of mixing.A is the number of atoms per unit area on
function of strain with Young’s modulu& and Poisson’s the surfacek is Boltzmann’s constant, arilis the absolute
ratio v as parameters. The surface energy per unit arda, temperature. The dimensionless numlemeasures bond
takes an unusual form in our model. Define concentrafion strength relative to the thermal energ§. When(Q<2, the
by the fraction of atomic sites on the surface occupied byfunctiong(C) is convex. Wher{)>2, the functiong(C) has
speciesB. We will simulate the annealing process, in which double wells. Figure 2 shows thg(C) graph forQ=2.2.
the deposition process has stopped, but atoms are allowed The double-welled)(C) function drives phase separation; it
diffuse within the epilayer. Regard the concentration as gavors neither coarsening nor refining.
spatially ~ continuous ~and time-dependent function We assume that(C) is a positive constant(C)=hy.
C(X1,X2,t). Assume that’ is a function of the concentration Any nonuniformity in the concentration field by itself in-
C, the concentration gradief , and the strain in the surface creased". In the phase field model, the second term in Eq.
€45 A Greek subscript runs from 1 to 2. The strain tensor(1) represents the phase boundary energy. The total phase
relates to the displacement gradient in the usual way as in thgoundary energy of all the phase boundaries reduces when
theory of elasticity. Expanding the functid(C,C ,,e,5)  the two phases enlarge and the net length of the phase
in the leading-order terms of the concentration grad@nt  boundary reduces. Consequently, the concentration gradient

and the straire .5, we have term in Eq.(1) drives phase coarsening.
The quantityf,;, known as the surface stress tensor, is
I'=g+hC,C  tf.peap, (1) the surface energy change associated with the elastic &train.

As stated in the previous section, the concentration-

We have assumed thhtis isotropic in the plane of the sur- dege”?r?qttﬁurfacg StreSt? dnvies pl?r?ser rfefr|1nltri1gﬁ V\;ethmay is
face. The leading-order term in the concentration gradient igU te r att efsu gcis eis s % eha une S 0 edco
quadratic because, by symmetry, the term linear in the concentraton. 1.e. ap(C) =Vapt dapC, Wherei,p= g, an

centration gradient does not affect the surface energy. V\Ig’aﬁt: bpa d?‘frfe mate_:trr|]gl ;?nsta_r;ts; sctae rec\jnew ,'[R Ref. 8b'. d
have neglected terms quadratic in the strain, which relate to oms diifuse within the epriayer to reduce the combine

the excess in the elastic stiffness of the epilayer relative t&urface energy gnd .the elastl_c enegrgy in the substrate. The
the substrate. corresponding diffusion equatior?fs

When the concentration field is uniform in the epilayer,
. ) . P aC M Jg
the substrate is unstrained ag@C) is the only remaining — =—V? —=—2h,V2C+ bupEapls 3
term in Eq.(1). Henceg(C) represents the surface energy gt A2 aC
per unit area of a uniform epilayer on an unstrained sub-

strate. To describe phase separation. We pres as whereM is the mobility of atoms in the epilayer. The first
C ; P p , WE pre ngﬁl? two terms in Eq(3), which are analogous to those in Cafin,
any function with double wells. In numerical simulations, to

- . ) . come from the free energy of mixing and the phase boundary
be definite, we assume that the epilayer is a regular SOIUt'OQner The third term comes from the concentration-
so that the function takes the form gy-

dependent surface stress and from substrate elasticity. A re-
peated index implies summation.
When the concentration is nonuniform, the surface stress
(2 £ . X . )
«p IS a@lso nonuniform. A stress field;; is generated in the
The usual expression @f(C) also includes a term linear in substrate, subject to the boundary conditiens=f,; 5 and
the concentratiorC, representing the weighted contribution o3;=0 at the boundary ok;=0." A Latin subscript runs
of free energy by pure componeAtandB on the substrate. from 1 to 3. The elastic field in a half space due to a tangen-

whereg, h, andf,; are all functions of the concentratiéh

g(C)=AKT[CINC+(1—C)In(1—C)+QC(1-C)].
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tial point force acting on the surface was solved by Ceffuti. Surface stress is a second-rank tensor, having two princi-
The strain field in the surface,z, can be obtained by linear pal directions within the plane of the epilayer. The substrate
superposition, resulting singular integrals over the entire surbeing assumed elastically isotropic, we can always rotate the
face: coordinates so that the shear component of the surface stress
disappears. Hence we can sgt,=0 without losing gener-
1+v 1
Cap™ E f f o
pP3

ality. Define
3
+¢7KV 8aﬁ_ ;(Xa_ga)(xﬁ_gﬁ)

1
( v— E) (¢BK(Xa_ goz) + ¢G’K(Xﬁ_ gﬁ))

=l $11. 9
This parameter measures the degree of anisotropy.

(xy,= &) The singular integrals in Eq4) make it inefficient to
solve Eq.(3) in real space. An alternative, more efficient,

9C method is to solve the equation in reciprocal space. The Fou-
X—dé&dés, (4) rier transform converts the integral-differential equati@h
K into a regular partial differential equation. The integration
operation, as well as the differentiation over space, is re-
wherep= \/(x;— &)+ (x,— &,)°.

: ) ' moved and the evolution equation can be dramatically sim-
We define two length scales. A comparison of the first two

; . _ plified. It is not necessary to transform the expression gf
terms in the parentheses of H§) defines a length: in Eq. (4) into reciprocal space, which seems to be a formi-

12 dable task. Alternatively, we transform the boundary condi-
_ ho 5 tions and solve the elasticity problem in reciprocal space
N m— : (5) directly. The result is very simple, as given below.

Let k; andk, be the coordinates in reciprocal space. De-
In the Cahn-Hilliard model this length scales the distancenote the Fourier transform of(X;,X,,t) by C(kq,Ks,t),
over which the concentration changes from the level of ongamely,
phase to that of the other. That is,is comparable to the
thickness of the phase boundary. The magnitudbyas on - e _
the order of energy per atom at a phase boundary. Using C(kl,kz,t)=JimﬁxC(xl,xz,t)e Hearieeidy dy,.
magnitudesho~10"%° J, A~5x10"* m 2 and kT~5 (10)
X 1021 J (corresponding td =400 K), we haveb~0.6 nm. _ _
The other length scale, which reflects the competition beNormalize Eq.(3) by b and r, and apply the Fourier trans-

tween coarsening and refinifitne second and third terms in form on both sides. We obtain the evolution equation in re-

Eq. (3)], is defined by ciprocal space:
__ Eho ©) £=—|<2ﬁ>—2(|<4—Qs)c‘:. (11)
(1-17) g2 &
L Herek ands are given by
Young’s modulus of a bulk solid is abol~ 10" N/m?.
According to the data compiled in Ibafta representative k:\/m (12)

value of slope of the surface stressfigi~4 N/m. The equi-
librium phase size is on the orderdl, according to theo- and
retical analysis and simulatidf®®> These magnitudes, to-

gether withhy~10"1° J, give 4rl~8 nm, which broadly k3 (k? = k) + k5(k?— vk3)r? = 2vkikar
agrees with observed phase sizes in experiments. A dimen- S= (1— »)k - (13
sionless parameté) is defined by the ratio of the two length
scales: When the surface stress is isotropies 1 ands=k3, which
reduce to the result in Ref. 2B(k,,k5,t) is the correspond-
b (1-1v7)¢3, 7 ing form of P(x4,X5,t) in reciprocal space, where
071 E(AKThy) Y2’ " c

. o P(C)=In<—) +Q(1-2C). (14

The effect of the surface stress is negligible wig@n:0. 1-C

From Eg. (3), disregarding a dimensionless factor, we
note that the diffusivity scales @~MkT/A. To resolve
events occurring over the length scalebpthe time scale is
r=b?/D, namely,

The termP(C) comes from the derivative of Eq2) with
respect toC. The factorAkT disappears due to the normal-
ization. Note thatP(C) is a function ofxy, X,, andt. Be-
causeP(C) is a nonlinear function o2, an analytical ex-
h pression forP(kq,k,,t) is unavailable. The fast Fourier
= (g)  transform(FFT) and the inverse FFT are used in each time
M(kT)? step. Details can be found in one of our previous papers.
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I1l. SIMULATIONS OF EVOLVING PATTERNS
A. Refining effect of the surface stress

Figure 3 shows two evolution sequences from0 to t
=1.0x 1%, the time unit being-. The calculation cell size is
256X 2560. In the simulation, we tak€=2.2 andv=0.3.

For sequencéa), there is an isotropic surface stregs=(1

and Q=1); for sequenceh), there is no surface stres® ( =0
=0). The initial conditions are the same for the two se-
guences: the concentration has an average 0.5 and fluctuates
randomly within 0.001 from the average. Boundary condi-
tions of the calculation cell are periodic. Results are visual-
ized by gray scale graphs in thg,(x,) plane. The brighter
region corresponds to the higher concentration, and the
darker region corresponds to the lower concentration.

In sequencda), shortly after phase separation, the two
phases form interwoven stripes. The width of the stripes sta-
bilizes very fast. Front=1000 tot=1.0x10°, the widths
are almost invariant. The patterns resemble experimental
observationé. By contrast, in sequencd), the two phases
try to increase their sizes as much as possible, restricted only
by mass conservation and the size of the calculation cell. The
system finally evolves into a state such that one phase takes =100
half of the calculation cell and the other phase takes the other
half. This reproduces the classical spinodal decomposition.
Comparison between the two cases clearly demonstrates the
refining effect of surface stress.

Figure 4a) is the pattern at=1.0x 1°, sequencéa) of
Fig. 3. Figure 4b) shows the concentration profile along the
segment between the two arrows in Figa)4 It is observed
that the concentration is roughly 0.85 at the crest and 0.15 at
the trough. Nonuniform concentration in the epilayer gener-
ates a strain field in the substrate. Figure)4shows the
strain fieldeq4 in the substrate. The brighter region corre-
sponds to contraction, and the darker region corresponds to
extension(Here we takep;,>0.) Figure 4d) gives a simple
explanation. The traction on the surfaceadg,= df /x4
= ¢»110Cl x4, as shown in Fig. &l). The strain field in the =10
substrate is caused by the traction. Figui® 4hows that the
deformation is localized in a very shallow region close to the
surface, decaying quickly along thexs direction. The fig-
ure clearly shows the existence of a fringe elastic field in the
substrate.

Sequenceda) in Fig. 3 can be roughly divided into three
stages: phase separation, size selection, and spatial ordering.
As shown in the sequence, the two phases reach equilibrium
concentrations on the time scale-6f0. The time to attain a
uniform size is on the order of 100—-1000. The ordering of
the structure still continues and is far from completion after
t=1CP. It is relatively fast for the phases to separate, attain
their equilibrium compositions, and select a uniform size, but
very slow to order over a long distance. Our calculation
shows that the system has the lowest energy if the stripes line  =10°
up into parallel stripe&® However, due to the high symmetry
of the system, all the directions are energy equivalent. The
phases are confused and do not know which direction to line
up. The interwoven stripes have been observed in many self- FIG. 3. Two evolution sequences. The time unit in the figures is
assembled systems, including block copolymers, ferromagr. For sequencéa), there is isotropic surface stress; for sequence
netic films, and the Langmuir monolayéfs. (b), there is no surface stress.

r=1000

=107
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FIG. 5. Various patterns &t 2.0x 10° under five representative
status of surface stress anisotropy. The average concentration is 0.5.

B. Symmetry breaking by the surface stress anisotropy

:' The slopes.of the two principal surface stressks, and
$11, play equivalent roles. Because the free energy of the
v system is quadratic iw,, and ¢4, when they both change
signs, the free energy is invariant. Consequently, we need
only consider the region on theb(,, ¢, plane bounded by
the two lines¢q,— ¢»=0 and ¢4+ ¢,,=0, as shown in
A Fig. 5. The five representative statesb, c, d, ande corre-
spond tor=1, 0.5, 0,—0.5, and—1, respectively. Figures
5(a)—5(e) show the simulated patterns & 2.0x 10°. All
five simulations start from the same random initial condition
> x as that in Fig. 3. State corresponds to isotropic surface
o.. =0, 9C/ox stress. Due to the high symmetry of the surface stress, the
=y o . RO e 5 =0 €/, patterns exhibit a structure of high symmetry. Our simulation
, has shown that the interwoven structure still existst at
g,, in Substrate ~10". This is probably the reason that interwoven stripes are
' commonly observed in many self-assembled systems.
The ordering process can be accelerated by suitably
breaking the symmetry of the system. Our previous work has
() shown that by adding some lines to the random initial con-
dition to provide a direction to line up the stripes, the forma-
FIG. 4. (@) The pattern at=1.0x1CP. (b) The concentration tion of parallel stripes can be dramatically acceleratdeig-
profile along the segment between the two arrowsain (c) The  ures §b) and c) show how the anisotropy of surface stress
corresponding strain field,; in the substrate. The brighter region has a similar effect. The anisotropy provides a direction pref-
corresponds  to contraction, and the darker region corregrence, and the phases very quickly line up into periodic

sponds to extensiond(;>0). (d) An explanation of the strain in  strips. The simulation shows that stripes form normal to the
the substrate.

(©)
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identified from the patterns. For the given symmetry, the two
variants are energy equivalent. The width of the stripes,
which is determined by the intrinsic length scale, stabilizes
very fast. However, the length of the stripes continues to
grow att=5x10.

Figure 7 shows the patterns for average concentration
equal to 0.4. The figures are patterns-aR.0x 10°, initiated
at a random concentration. When the surface stress is isotro-

principal direction that the slope of the surface stress iic, the system forms dots. The dots locally form a triangular

larger. The larger surface stress slope allows more elasti@ttice, but over long distance form multidomains. Our model
energy relaxation. Comparing) and (c) with (a), we ob- predicts that average concentration affects the pattern forma-
serve that the width of the stripes is roughly the same. tion, as observed in experimefitShe multidomain and local

Quite beyond our initial expectation, i) r=—0.5, we ordering structures of dots have been found in many other
obtain herringbone structures. (8), r=—1 and we obtain SYStéms, such as block copolymers and Langmuir monolay-
tweed structures. The stripes align along the diagonal dire'S: Long-range ordering is difficult to attain. A similar phe-
tion. It is found the stripes turn more close to the diagonaf’oMenon also appears in the recently discovered lithographi-
direction whenr becomes more negative. We will examine c@lly induced self-assembly ISA).

this mesophase transition between the parallel stripes and the Figures Tb)—7(e) show that surface stress anisotropy can
herringbones in the next section. considerably affect the pattern formation: it can change the

Figure 6 shows the time sequence ffer—0.5. The initial patterns from dots to stripes. Note the dislocations in Fig.

condition is random, with average concentration 0.5 plus 4.

fluctuation within 0.001 from the averag@=2.2 andQ  \\; \ieSoPHASE TRANSITION INDUCED BY SURFACE

=1, the same as those in Fig. 3. We can still broadly identify STRESS ANISOTROPY

three states of evolution: phase separation, size selection, and

special ordering. However, the ordering process is much Our numerical simulation has revealed a surprising find-
faster. A herringbone structure is obtained within>10°. ing. There seems to exist a critical point somewhere be-

‘ FIG. 7. Various patterns dt=2.0x 10° under different surface
=208 stress anisotropy. The average concentration is 0.4.
Two variants of stripes, with different orientations, can be

—

FIG. 6. An evolution sequence for=—0.5.
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o, The former favors the stripes in the principal direction of the
¢ tensor, and the latter favors the stripes off the principal
direction.

yl'ghe energy per unit area of the systegg,e, is expressed

b

¢11

FIG. 8. A mesophase transition induced by surface stress :_I( C)+hC C — =0 u.ldA 15
anisotropy. Yave™ 1 A 9(C) aLa 5034Uq (15

tweenr=—0.5 andr=0. Whenr <r<1, the stripes are whereA s the area of the surface ang the displacement in
parallel to theg,, direction. When—1=<r<r, the stripes the epilayer. The first two terms in the brackets are isotropic.
deviate from thep,, direction. The angle between the orien- Let »=sin # be the order parameter. A calculation shows
tation of the stripes and thé,, direction is determined by that for any concentration modulation, the free energy takes
the value ofr. As shown in Fig. 8, the orientations éfand  the form
— 6 are equivalent variants that break the symmetry of the
system. In the following we look at the mesophase transition

more carefully and show that it follows the Landau thetry.

The question is the following: assuming that an arbitrary ) ) _
concentration stripe is formed on the substrate and Wherego andg, (9,>0) are independent of the orientation
— ol ¢11 is known, what will be the orientatiofof sucha 7 @hdR s expressed by
stripe? The stripes should select their orientations to relax the
energy of the system as much as possible. The surface stress  R(,)=(1—r)[r+(1—2v)] 72+ v(1—1)25% (17
is a second-rank tensor, so is the slapg;. According to
tensor algebra, the maximum direction for the slope coin—_l_h terred ofi ion is obtained by minimizi
cides with one of the principal directions of the tensor, € preterre orlentat|on_|s 0 iame y T|n|m|2|gg,e or
namely, theg,, direction assuming¢,,|=|¢,, Then why R. We only need to canS|de$r|\}.and|7;\1. In the ex-
do stripes sometimes deviate from the direction normal t(press_lt_)n(17), thze _coefficient for” is always positive. The
$11? We will give a qualitative answer first, followed by a coefficient for,” is positive wher=r gnd negative when
detailed calculation. When a set of parallel stripes lines up if <Tc Whererc_=_— (1__ 2v). The fL_mct|onR( 7) is drawn
a direction off the two principal directions of thgtensor, a in Fig. 9. We distinguish the following cases.
shear component of the tensor arises. In the new coordi- (j) Whenr =1, the surface stress is isotropic aRe-0

Jave=90t+ R(7)91, (16)

nates that are normal and parallel to the stripgsX;), we for all orientations 7. All orientations are energy
denote the tensor components ¢)’45. In the cross section equivalent, as expected.

(x1,x3) of the substrate, the componet,; generates a (i) Whenr <r<1, the coefficient for;? is positive, so
plane strain field an@;, generates an antiplane shear strain that R minimizes at7.,=0, corresponding to stripes
field. Both fields contribute to the elastic energy relaxation. parallel to ¢y, .
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1.0 ] orientation.q and the anisotropy parameterThe equilib-
0.9 V=0_3| rium orientations agree with those obtained by the dynamic
1 simulations.
0.8+
Sg 0'7—. V. CONCLUDING REMARKS
5 0.6
% 1 A binary epilayer on a solid surface may self-assemble
g 0.5 ] into ordered structures. We have proposed a thermodynamic
T 0.4 model to study this phenomenon. The formation of stable
5 03 concentration patterns requires three ingredients: phase sepa-
B ] ration, phase coarsening, and phase refining. These ingredi-
O o02- ents result in a nonlinear diffusion equation, with which we
0.1 have simulated the entire process of pattern evolution. The
00 surface stress refines and stabilizes the patterns. Without the

surface stress, the phases will coarsen as much as possible.
However, with the surface stress, the phases reach their equi-
Degree of anisotropy, r librium sizes and become stable. When the surface stress is
o ) ) isotropic, the epilayer forms interwoven stripes or disordered
FIG. 10. The equilibrium value of the orientation order param- qgtg. depending on the average concentration. The anisot-
eter 7.4 as a function of the degree of surface stress anisotropy ropy of the surface stress generates two kinds of patterns:
parallel stripes and herringbone structures. As the degree of
the surface stress anisotropy changes, the epilayer changes
from one pattern to the other. Each pattern is a mesophase. A
herringbone structure is a mixture of two sets of parallel
stripes, which form by breaking the symmetry of the single
set of parallel stripes. Taking the stripe orientations as the
order parameter, we show that the mesophase transition is of
] el (18) second order and occurs when the degree of surface stress
Mea™ = 2v(1— r)' anisotropy reaches a critical value. We hope that experiments
will soon succeed in verifying this prediction.
They correspond to the two orientations obtained in the nu-
merical simulations, Figs. 5—7. In the simulations, we have
takenv=0.3, so that .= — 0.4. The stripes line up in thé,,
direction for caseb andc, but form two variants for casebs This work was supported by the Department of Energy
ande. Figure 10 plots the relation between the equilibriumthrough Contract No. DE-FG02-99ER45787.

T T ¥ 1 i ¥ 1 ¥ 1]
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 02 04 06 0.8 1.0

(i) When—1<r<r,, the coefficient fory? is negative,
so thatR has a local maximum ay=0 and two
minima at
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