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Flat-band ferromagnetism in quantum dot superlattices
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The possibility of flat-band ferromagnetism in quantum dot arrays is theoretically discussed. By using a
guantum dot as a building block, quantum dot superlattices are possible. We consider dot arrays on Lieb and
kagomelattices known to exhibit flat-band ferromagnetism. By performing an exact diagonalization of the
Hubbard Hamiltonian, we calculate the energy difference between the ferromagnetic ground state and the
paramagnetic excited state, and discuss the stability of the ferromagnetism against the second-nearest-neighbor
transfer. We calculate the dot-size dependence of the energy difference in a dot model and estimate the
transition temperature of the ferromagnetic—paramagnetic transition, which is found to be accessible within the
present fabrication technology. We point out advantages of semiconductor ferromagnets and suggest other
interesting possibilities of electronic properties in quantum dot superlattices.
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[. INTRODUCTION lattice structure that we like regardless of the number of elec-
trons in it. Lied® and kagomé® lattices are interesting ex-
Recent progress in the fabrication technology in nanoamples of such artificial lattices, because they have a disper-
scale (“nanotechnology’) has enabled us to make various sionless subbandflat band in their single-particle band
types of small devices using semiconductor quantum dotsstructures.’ It has been proven that, in the repulsive Hub-
Single electron transistors are one of the important exampldsard model of these lattices, ferromagnetism appears. Inter-
of device applicatior.When the charging energy of a small estingly, it has been shown that the ferromagnetic spin wave
quantum doft(artificial atom is larger than the thermal en- has a finite stiffness below a Stoner {aand that the ferro-
ergy, electrons in the lead cannot transfer into the dot due tmagnetism is robust against a finite dispersib8ome other
the Coulomb blockade effect. By combining several singletypes of flat-band ferromagnetism have been proposed by
electron transistors, logic circuits are propoé@&Y: coupling  several author® 22 After their predictions, there have been
several quantum dots, it is suggested that a qubit for quantuiseveral proposals to realize flat-band ferromagnetism based
computation can be realized by controlling excess spins imn real materials, such as carbon netwdf&', a graphite
coupled quantum dofsSingle electron transistors through ribbon?>?®and G&” and A<® atomic wires. However, there
coupled dotdartificial molecule are also proposed, where a has been no clear evidence of the observation of flat-band
transition between the bonding and antibonding states servdésrromagnetism, because it is difficult to form these lattices
as a qubit of quantum computation. using the above materials since a lattice distortion effect
Arrays of quantum dots have also been studied extenwould destabilize the ferromagnetism when the flat band is
sively; the quantum dot laser is one of the promisinghalf-filled?® In real materials, the number of valence elec-
devices Recently, a self-organizing technique of quantumtrons is determined in such a way that the crystal structure is
dots enabled us to synthesize very small dots in well-stable. Then, unrestricted material design is difficult in gen-
ordered lattice§. In quantum dot lasers, electrons do noteral.
transfer between dots in general and interdot coupling seems On the other hand, dot lattices do not have such disadvan-
unimportant. The quantum cellular automatia very fas- tages. One can design various types of lattice structures. The
cinating proposal for a dot array device utilizing electronspatial position is fixed because an artificial atom is in a rigid
transfer inside a cell of coupled dots and electrostatic forcduried region in semiconductors. The dot lattice does not
between the neighboring cells. Logical circuits using quanundergo structural deformations by electronic effects such as
tum cellular automata have been also propd8adagnetic  the Jahn-Teller distortion. Then, one can design lattice struc-
properties of coupled dots have also been studied. A possiures which do not exist in nature without worrying about the
bility of observing spontaneous magnetization has been prdattice instability. Moreover, the number of electrons in it can
posed in arrays of strained quantum dots and potential applbe changed in a controllable manner. By putting a gate elec-
cations in information storage and processing have beetrode in the spatially separated region on top of the electron
discussed! It has also been shown that a square lattice ofyas, it is easy to modify the electron filling over a wide range
four coupled quantum dots containing 40 electrons has &y changing the gate voltag®.
ferromagnetic ground stat@. In Ref. 13, it was suggested that flat-band ferromagnetism
Recently, the present authors have proposed a type of desight be observable in quantum dot arrays based on a simple
vice forming a superlattice of quantum ddfdf we consider  calculation of a single-particle Hamiltonian. However, its
a quantum dot as a building block and put it on a site of thefeasibility in real experiments has been unclear, because the
lattice, we can create an artificial crystal having interestingcritical temperature in actual dot arrays was unknown. More-
properties? In the dot lattice, we can design any type of over, the next-nearest-neighbor transfer that inevitably oc-
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curs in real dot arrays could significantly reduce the critical
temperature because it would destroy the flat band. For fur-
ther consideration, a more sophisticated calculation is re-
quired that takes into account the Coulomb interaction and
the next-nearest-neighbor transfer in a realistic dot model. In
the present paper, we demonstrate that the flat-band ferro-
magnetism, which has been thought to be an artifact in a
mathematical model, is actually observable at reasonable
temperatures in dot arrays using existing fabrication technol-
ogy.

In this paper, we discuss the possibility of realizing flat-
band ferromagnetism in quantum dot superlattices. In Sec. I,
we consider two types of two-dimension@D) dot lattices
(Lieb and kagomelattice3 and obtain single-particle band
structures using a tight-binding approximation including the
next-nearest-neighbor transfer. In Sec. Ill, we diagonalize a
Hubbard Hamiltonian for these lattices and obtain the energy
difference of the ferromagnetic ground state and the para-
magnetic excited State.‘ In Sec. IV, we describe our quantum FIG. 1. The Lieb latticel@ andkagomelattice (b). Solid lines
dot model. By cglculatlng the transfer and on-site COUIO,mbrepresent the nearest-neighbor trantfeDotted and dashed lines
energy, we _obtaln the size _d_ependence of the energy d'f'feTﬁdicate one and 2 2 unit cells), respectively. A unit cell contains
ence and discuss the stability of the ferromagnetic groungee sites =1, 2, and 3.
state. In Sec. V, we argue that the magnetization can be ex-
pected in 2D dot lattices in spite of the famous Mermin-ihe hexagonal latticK We consider a Hubbard model,
Wagner theorem. We indicate some device applications for
semiconductor ferromagnets and propose other possibilities
of dot superlattices having interesting electrical properties H=—t > Che,—t' > ¢l tUY nyng, (D)
like superconductivity. Conclusions are presented in Sec. VI. Do o '
wheret is the transfer between a pair,|) of the nearest-
neighboring sites andj, t’ is the transfer between a pair
(i,k) of the next-nearest-neighboring siteandk, U is the

We consider two types of lattices. Figuréalshows the —on-site Coulomb energy on the sitec;, (c;,) is the cre-
Lieb lattice and Fig. (b) the kagomdattice. The Lieb lattice  ation (annihilatior) operator of an electron on the sitevith
is a bipartite lattice which consists of two sublattices. Sitesspino=1 or |, and n,=c; Ci,. In the noninteracting case
belonging to one sublattice are connected to sites belonging =0, we obtain the following tight-binding Hamiltonian
to another sublattic® The kagomelattice is a line graph of equations of single-particle energyfor the Lieb lattice,

II. TIGHT-BINDING APPROXIMATION

0 1+e 22 14e 2k 0 0 0
Ec=—t| 1+e?k? 0 0 c—t’| 0 0 (1+e 2ka?)(1+e?*2?) | ¢, )
1+e?ikaa 0 0 0 (1+e¥?)(1+e 2ka) 0

and for thekagomelattice,

0 1+ e*Zikla 1+e72ik2a
Ec= _t| 1+e?kia 0 1+ e?itakoa |
1+eZ|k2a 1+e—2i(k1—k2)a 0
0 e 2i(ki—kpay a=2ika  g-2ikia @2i(ki—kp)a
_t/ eZl(kl—kz)a+ ezlkza 0 eZ|k1a+ e—2ik2a C (3)
e2ikia | a=2i(ky—kp)a e—2ikiay g2ikya 0

wherea is the interdot spacindg=k,b; + kb, is the wave vector expressed by the reciprocal-lattice vetitpendb, (see
insets of Fig. 2 andc=(c,,C,,C3) are the amplitudes of the wave function at the sitel,2,3 in the unit cell shown in Fig.
1. Fort'=0, eigenvalues for Eq$2) and(3) are simply given by

E=0, +2tycos(ksa)+cos(k,a) (4)
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for the Lieb model, and by

E=2t, t(—1*3+2 cog2k;a)+2 cog2k,a)+2 cog2k,a—2k,a)) 5)

for the kagomemodel. Figures @) and 2b) are the band 3(b)] kagomelattices fort’=0. For anyU/t>0, high-spin
diagrams for Lieb andagomelattices. Fort’=0, disper- states appear at the half-fillindN& 12) for the Lieb lattice
sionless flat subbands are formed in the middle for the Lieland 19<N<22 for thekagomelattice. This result is consis-
lattice and in the top for th&agomelattice. When the next tent with the theorems proved by Lifor the Lieb lattice
nearest transfer is taken into accoutt>0), the flat sub- and Mielke® for the kagomelattice. This result shows that
bands are broken down, except fok;a= 7 (from the X  the ferromagnetic state appears in a wide range of electrons
point to theM point) in the Lieb lattice. This is because the filling in the kagomelattice, whereas ferromagnetism ap-
next-nearest transfers between site 2 and 3 are canceled lgears only at the half-filling for the Lieb lattice. High-spin

tween different unit cells. states seen in Fig. 3 when the Fermi level is not at the flat
band (N+ 12 for the Lieb lattice andN< 16 for thekagome
IIl. EXACT DIAGONALIZATION lattice) are due to an unimportant finite-size effect due to

additional degeneracy.

We diagonalize the Hubbard Hamiltonidf) for 2x 2 Figure 4 shows the energy difference between the ground
unit cells of 12 dots enclosed by dashed lines in Fig. 1. Foptate with spinS=2 and the lowest excited state with spin
the Lieb lattice, we use an antiperiodic boundary condition in>= 0 for varioust’s when the flat band is half-filled, i.e.,
the x direction and a periodic boundary condition in the [Fig. 4@)] N=12 for the Lieb andFig. 4b)] N=20 for the
direction in order to avoid unimportant finite-size effects of kagomelattice. This energy difference can be regarded as a
additional degeneracy at the cross point of the flat band angualitative estimate of the transition temperature of ferro-

dispersive bands. For theagomeattice, we use an ordinary Magnetic and paramagnetic transitions in a macroscopic
periodic boundary condition. sample as will be discussed in Sec. V. First we consider

Figure 3 shows the total spin as a function of the numbef=0- AS Lieb has already pointed otitthe high-spin state in
of electronsN andU/t in the [Fig. 3(@)] Lieb and the[Fig.

“(a) — 1/+=0.0
=IO - 1/=0.6

4
Total spin

Total spin

r M K r
FIG. 2. Single-particle band energfor (a) the Lieb lattice and 10
(b) the kagomelattice for the next-nearest-neighbor transfes 0 0 2 Number of Electrons
(solid line) and t'>0 (dashed ling calculated using the tight-
binding approximation, wherg andt’ are normalized in units of FIG. 3. Total spin as a function of the number of electrons 0
the nearest-neighbor transteinsets: Brillouin zoneb,; andb, are <N=24 for U/t=10"32, 5, 10, 15, and 20 fofa) the Lieb lattice
the reciprocal-lattice vectors. and (b) the kagomelattice whent’ =0.
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(a) 05 = o 700 t’, because the subband is no longer flattfor O as seen in
AN ’ Fig. 2. Electrons are filled in such way as to lower the total
Z 04 LY “e- th=0.2 spin to gain the single-particle energy of the ordertbf
N 043 ll ’.»-°~~.\ LY -4 tUt=0.4 rather than to align spins to gain the smaller exchange energy
o o *o Mg ¥ /=06 of the order ofU. As U/t is increased, the gain from the
0 o2 a e Wy effective exchange energyE overcomes the loss from the
= . el mg, single-particle energy which is of the order tf and the
&b 0.1 Ly hae, .- ferromagnetic ground state becomes robust againgh the
o * Aoda Lieb lattice, the ground state is always paramagnetic when
[ S S t'>0.6 in the range &U/t<30, whereas, in th&agome
01 I X ) aaani lattice, the ferromagnetism disappears for-0.1. This dif-
0 5 10 15 20 25 30 ference in the robustness agaihstcomes from the magni-
U/t tude of the effective exchange ener§y§ as seen in Fig. 4.
(b) *3 =00 - =0075 When U/t<1, AE=0.16J for the ,Lieb. lattice is much
e $}=0.025 o /=01 larger thanAE:0.0EL_J for the kagomelattice. ForU/t>1,
Z 0.2 - t71=0.05 '__'__.__...---»-l-----"""""' the antiferromagnetic exchange energy between the next-
x .,,r' .__.___.___....o--o»--O--""' nearest-neighbor sites in the Lieb lattice slowly increases as
) e an (t'/t)* becauset'?/U=(t'/t)*(t?/U), whereas, in the
w ool w AhE ackk kagomelattice, the ferromagnetic energy due to the ring ex-
= iy o —— change rapidly decreases t@t.
(|/|) ,"/‘ Yy _'_,_.»v—--" v
= 0.0M- - B
W - . IV. QUANTUM DOT MODEL
iy ‘_,,,.‘--0"""“ . To evaluate the transfer and on-site Coulomb energy for
-0-1 5 10 15 20 25 30 quantum dot arrays, we assume that electrons are confined in
U/t a two-dimensional confinement potential given by

FIG. 4. Energy differenc&(S=0) andE(S=2) as a function
of U/t in (a) the Lieb N=12) and(b) the kagomelattices (N V(=2 v(r-Ry),

=20) for various values of’. i

. . . . . . 1
the Lieb lattice is caused by the antiferromagnetic ordering at — Z m* w2a?[cog mx/a)cog my/a)]?

the half-filling. This ordering can be easily understood when 16

U/t>1. In this limit at the half-filling, there is one localized v(r)= (6)
forr<al2,

electron per dot. Due to the second-order process of an elec-

tron with up spin transferring to the neighboring dot having a 0 forr=al/2,

down-spin electron, the effective exchange energy is given ) ) .
by —2t%/U. As the numbers of sites in two sublattices areWherem® is the effective mass of an electran,is the con-
different, the remaining total spin is responsible for the fer-fining oscillator frequencyR; is the position of theth dot,
romagnetism. The high spin in thegonielattice is caused anda is the interdot spacing. This dot m_odel is quite similar
by an effective exchange interaction of the third-order proi0 that used for2 the square lattit. Noting that
cess cycling and exchanging two electrons with the oppositeCOS@¥/a)cos(my/a)|*=[(2r/a)"—1]*=1-2(x/a)" for r
spins within the triangular lattice of three sif®sWhen <a/2_, thg “atomic” wave func_tlon _Iocahzed in the potential
U/t>1, the energy loss due to this ring exchange is of the’(r) iS given in a good aproximation by
order oft, whereas there is no energy loss between two elec-
trons with the same spins. Actually, from Fig. 4, one can 2 2r?
deduceAE=4.3t?/U for the Lieb lattice and\E=0.2& for $(r)= ﬂex Ik
the kagomelattice, which is consistent with the above argu- m
ment. WhenU/t is small, the energy difference is propor-
tional toU in both cases, i.eAE=0.16J for the Lieb lattice
and AE=0.03J for the kagomelattice. This is because the
Coulomb repulsion raises the energy of the ordedafhen
electrons on the flat band have the opposite spins in the (R, ,Rj)z—f dr(r—R){—#2V?2m* +V(r)}
lowest-spin state, whereas, by the Pauli principle, it does not
\r/]v_hen e_lectrons on the flat band have the same spins in the X G(r—R)), ®)
igh-spin state.

Ast’ is increased, the energy difference becomes smaller ) 5 ) 5
or sometimes negative. For small/t, the ferromagnetic U:f fdr ar. & |p(ro)|*[(ra)* _ V2me
ground state fot’=0 is easily broken down by very small Y2 Amelri—ry) Amed’

)

whered=2y%/m* w is the dot diameter.
The transfer and on-site Coulomb energies are given by

)
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afii '—-W-V-'VV--V..
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(Dot diameter d) / (Inter dot spacing a) ‘W A =10 v
10—4" A A
FIG. 5. The nearest- and the next-nearest-neighbor transfer en- 03 04 05 06 07 08 09
ergiest, t’ and on-site Coulomb enerdy in the dot model as a (Dot diameter d) / (Inter-dot spacing a)
function ofd/a. Energy and length are scaled in units of the effec- 100
tive rydb Ryand the effective Bohr radiua? (b) & ovegoo.
Ive ryaberg constant y an the effective Bohr ra luag (see ._.0 “9 0-000000000
text). 1 ,! '.ﬁZE‘D-DEE}DDD
g 10' L ,‘, -. =1 " 00
whereze is the dielectric constarif.Note that the minus sign o o M LY
of the integral in Eq.8) comes from the definition of the g 1072 ;" ,..' ‘ff- Ak YDA,
transfer energy in Eq1). Here, the nearest-neighbor transfer b= L " V.3 B,
t is calculated forR;=(0,0) andR;=(a,0), and the next- 2 _31.’ FaliE S adid &wa‘vwvvvi
nearest-neighbor transfef is for R;=(a,0) andR;=(0a) 0T kT 10 v
in the Lieb lattice andr; = (a,0) andR,-:(aIZ,\/§a/2) in the ,",.’
kagomelattice. The Coulomb energy can be analytically in- Tomd I
tegrated, but the transfer integral is evaluated numerically 03 04 05 06 07 08 09
from Eqgs.(6) and (7). Figure 5 shows the calculated transfer (Dot diameter d) / (Inter dot spacing a)

and the on-site Coulomb energy as a function of the dot

. . . p IG. 6. E diff AE=E(S=0)—E(S=2 func-
diameter. Here, we adapt the effective atomic uAf&2m* F nergy crierenc ( )—E( ) as a func

T - . di tion of dot diameted for (a) the Lieb and(b) the kagomelattices
=e“/4me=1. In these units, energy and length are scale "or various interdot spacing in the dot model represented by solid

units* of the ef‘fgctive rydberg constant Ry 13.6 e*\/ symbols. Open symbols represent the energy difference when we
X(m*/mg)/(eleg)= and the effective Bohr radiussg  neglect the next-nearest-neighbor trangfer

=0.53 AX(eleg)/(m*/mgy), wheremy ande, are the mass
of a bare electron and the dielectric constant in vacuum. Ifhe kagonielattice. For d/a=0.6, AE rapidly decreases,

our dot model, the contribution from terms such assincet’ becomes significantly large and the ground state be-
(6(0)]v(R)[#(R))) (Ri#0, R;) is negligible in Eq.(8),  comes paramagnetic. In Fig. 8F for t’=0 is also plotted.

and the transfer energy is determined by the distance b&yhend/a=0.6, AE for t'=0 monotonically decreases but
tween the nearest-neighboring dots, ite=(¢(0)|{p?/2m*  does not become negative, since the ground state is always

+v(0)+v(Ri)}¢(Ri)). Therefore, the transfer energies for ferromagnetic fort’ =0. It is noted that, wheAE takes a
the Lieb andkagomelattices are almost identical within the peak aroundi/a=0.5-0.6, the effect of’ is negligible and

width of drawn lines in Fig. 5. On the other hartd,for the  AE is not affected byt'.

of the difference in the distance of the next-nearest-neighbaje consider GaAs, InAs, and Si dots and assamed. For
dots, i.e,|Ri—Rj|= \/?a for the Lieb lattice andR;—R;|  dots with a spacing of 100 nm which is available within the
=[3a for the kagomelattice. Ford/a<0.5, t' is much  present fabrication technolog§E is of the order of several
smaller thant and is negligible. It is noted thdtis always  hundreds millidegrees Kelvin and we can expect that ferro-
smaller thanU when the interdot spacing=0.1, which is  magnetism can be observable in the dilution temperature re-
usually realized in the present fabrication technology. gion. For dots of spacing of 5 nm\E is as high as a few

In realistic dot arrays formed by a negatively biased gataens of Kelvin.
electrode depleting the underneath two-dimensional electron
gas, the interdot spacing is usually fixed and cannot be
changed. By modifying the gate voltage, the dot diameter
can be changed. To simulate this, we evaluatg, and U There are several advantages of using semiconductors in
from Eqgs.(8) and(9) for a fixed interdot spacingag=0.5, 1, making artificial crystals. First, the lattice structure can be
5, 10 and calculate the energy difference as a function of dotvidely chosen. One can fabricate a lattice structure that does
diameter as shown by the closed symbols in Fig. 6. Thewot exist in nature. Second, interdot coupling and the elec-
energy difference is appreciable for &8/a<0.7. Fora  tron filling can be separately modified. This is possible if the
>0.5, t is always smaller thabl. In this strongly correlated interdot coupling is modified mainly by the front-gate elec-
region, the energy differencAE has the dependence of trode on top of the two-dimensional electron gas and the
AE~t?/U~1/a® for the Lieb lattice, and\E~t~1/a® for  electron filling is modified mainly by the back-gate elec-

V. DISCUSSION
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TABLE I. Estimated energy differenc®E=E(S=0)—E(S=2) (K) between the ground state with spin
2 and the lowest excited state with spin O for dot arrays of the Liebkagdmelattices of typical interdot
spacinga=>5, 10, 50, and 100 nm and dot diame&#2. We consider GaAs dotar(*/my=0.067, /¢
=12.4, Ry=6 meV, a§=10 nm), InAs dots i*/my=0.02, e/eq=12.4, Ry =1.8 meV, aj
=34 nm), and Si dotsni*/my=0.2, e/e;=12, Ry* =19 meV,ag=3 nm).

AE (K) for Lieb lattice AE (K) for kagomelattice
Spacinga 5nm 10 nm 50 nm 100 nm 5nm 10 nm 50 nm 100 nm
GaAs 76 26 0.5 0.06 31 11 0.6 0.2
InAs 90 43 3.5 0.6 45 19 1.7 0.5
Si 27 4.5 0.04 0.005 15 4.3 0.2 0.05

trode. The controllability of electron filling enables us to  Although a finite magnetization is expected in two dimen-
switch ferromagnetism on and off. It would be better to usesions, its value will be quite small in 2D dot arrays, since the
the kagomelattice in order to switch the ferromagnetism be- lattice constant£10 nm) of dot arrays is about more than a
cause the ferromagnetic ground state appears in a wide rangandred times larger than that of the conventional ferromag-
of electron filling as shown in Fig. (B). The effect of a netic materials and the expected magnetization per area will
magnetic field in thekagomelattice is also very interesting be significantly reduced. For example, the expected magne-
because the flat band is destroyed by the threaded magnetigation of dot arrays of the interdot spaciagwith spin S
flux. It has been found that a giant negative magnetoresis=1/2 per unit cell isgugS/a®~0.1 G fora=10 nm and
tance and ferromagnetic—paramagnetic transition induced by 10"* G for a=100 nm, whereug=e#/2m is the Bohr
a magnetic field occur in theagomedot lattice’® Recently, magneton ang~2 is a gyromagnetic ratio. To measure the
the present authors have proposed a simple way to realize tigagnetic moment directly, a very sensitive detector such as a
kagome dot lattice within the present fabrication superconducting quantum interference device magnetometer
technology** It has been shown that a network of quantumwould be required. A more convenient way to detect the
wires effectively acts as kagomelattice where electrons are magnetization directly will be to measure the anomalous
well localized at the cross points of two wires. This kind of Hall resistivity which is proportional to the magnetization of
kagome network has been already available in quantumthe sample and is added to the normal Hall resistivity pro-
wires formed by a selective area growth techniduhis  portional to the external magnetic field. This method will
method of making &agomedot lattice provides us with a only be applicable when the magnetization is larger than 0.01
chance to observe the flat-band ferromagnetism in experic (a<10 nm). On the other hand, magnetoresistance mea-
ment. surement is rather an indirect way to detect the magnetiza-
One may think that a finite magnetization does not appeagion. When the magnetic field is increased, the insulating
at finite temperatures in two dimensions because of the alferromagnetic state turns into the metallic paramagnetic one
sence of long-range order according to the Mermin-Wagnein the kagomelattice at the half-filled flat-ban?f The mag-
theorent® However, it has been shown that the spin-spinnitude of the magnetization could not be estimated only from
correlation lengthé in the spin-1/2 Heisenberg model on a the magnetoresistance measurement, although  the
2D square lattice exponentially grows &s exp@/T) as tem-  ferromagnetic—paramagnetic phase transition could be de-
perature decreases although ¢aetiferromagneticspin-spin  tected.
correlation decays a&S- S;)>exp(—r/¢).3” Then, the spin- The advantage of using semiconductors in realizing ferro-
spin correlation lengtl§ can be macroscopically large at low magnetism exists not only in making semiconducting “per-
temperatures. For example, Bt 0.1J, ¢ is 10" times larger manent magnets.” As we mentioned, the controllability of
than the lattice spacing. Noticing that the Hubbard model inthe magnetic property by changing the electron filling and
the Lieb lattice forU/t>1 at the half-filling is reduced to the the magnetic field will make dot lattices useful in electronic
Heisenberg model with the same antiferromagnetic couplinglevices such as memories, sensors, and magnetic heads since
(J=4t?/U) as in the square lattice, the temperature depenenly semiconductor materials such as Si and GaAs are con-
dence of¢ also holds for the Lieb lattice. In contrast to the tained. Magnetic devices can be fabricated without using any
square lattice, a finite magnetization can appear in the Lielmagnetic elements such as iron and manganese which are
lattice because the numbers of sites in two sublattices ar@compatible with the conventional large-scale-integrated
different. As for thekagomeattice, there has been no theory, circuit (LSI) fabrication process.
to our best knowledge, on spin waves to date and the effect By extending the idea of dot superlattices, one can think
of thermal fluctuation on the spin-spin correlation is still un- of other interesting possibilities for artificial materials.
known. At least, a finite magnetization can be expected in th&hanks to the rapid progress in semiconductor nanotechnol-
Lieb lattice even in two dimensions as long as the samplegy, we can expect that various interesting electric properties
size is smaller than the spin-spin correlation length. Morewhich have been observed in conventional materials may be
over, consideringJ~AE, our estimation of the transition realized also in dot superlattices. One of the most fascinating
temperature in Fig. 6 is qualitatively justified. examples is high-temperatuidigh-T;) superconductivity.
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High-temperatured-wave superconductivity in a repulsive tween high-spin and low-spin states. This energy difference
Hubbard model has been predicfdAlthough the energy represents a qualitative estimate of the transition temperature
scales or the transition temperature is a hundred timesf ferromagnetic and paramagnetic states in a macroscopic
smaller than the conventional Cy@igh-T,. superconductors sample. The energy difference becomes smaller as the next-
(T.~100 K), superconductivity in semiconductor dot arraysnearest-neighbor transfer increases. It was shown that, al-
might be possible, because the estimated transition temperdzough the ferromagnetic ground state is easily broken down
ture using the predicted expressionTig=0.01t~1 K fora by t’ in the weak correlation regiont¥U), it is robust
=2d=10 nm GaAs dots. It has been shown that, in othemgainstt’ in the strong correlation regioret).

types of lattices, the transition temperature becomes much We calculated the size dependence of the energy differ-
higher3®4% 1t would be very interesting if superconductivity ence in a realistic dot model. We found that, although the
(or at least the Kosterlitz-Thouless-Berezinskii transition next-nearest-neighbor transfer destroys the ferromagnetism
could be realized in semiconductors. Other types of latticavhen the dot diameter approaches the interdot spacing, it
structures would also be fascinating, such as a ladder strucioes not affect the peak value of the energy difference or the
ture realized in copper oxide materials, where various intertransition temperature when the dot diameter decreases. We
esting properties have been observed such as the spin gapued that the flat-band ferromagnetism can be observable
and superconductiviit~*3 Optical properties of the dot ar- in dot arrays fabricated using the present technology. We
rays would also be interesting, since the large density oSuggested other interesting possibilities for artificial material
states in the flat band will significantly affect photolumines-design using quantum dot superlattices.

cence or laser characteristics.
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