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Flat-band ferromagnetism in quantum dot superlattices
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The possibility of flat-band ferromagnetism in quantum dot arrays is theoretically discussed. By using a
quantum dot as a building block, quantum dot superlattices are possible. We consider dot arrays on Lieb and
kagome´ lattices known to exhibit flat-band ferromagnetism. By performing an exact diagonalization of the
Hubbard Hamiltonian, we calculate the energy difference between the ferromagnetic ground state and the
paramagnetic excited state, and discuss the stability of the ferromagnetism against the second-nearest-neighbor
transfer. We calculate the dot-size dependence of the energy difference in a dot model and estimate the
transition temperature of the ferromagnetic–paramagnetic transition, which is found to be accessible within the
present fabrication technology. We point out advantages of semiconductor ferromagnets and suggest other
interesting possibilities of electronic properties in quantum dot superlattices.
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I. INTRODUCTION

Recent progress in the fabrication technology in na
scale ~‘‘nanotechnology’’! has enabled us to make variou
types of small devices using semiconductor quantum d
Single electron transistors are one of the important exam
of device application.1 When the charging energy of a sma
quantum dot~artificial atom! is larger than the thermal en
ergy, electrons in the lead cannot transfer into the dot du
the Coulomb blockade effect. By combining several sin
electron transistors, logic circuits are proposed.2 By coupling
several quantum dots, it is suggested that a qubit for quan
computation can be realized by controlling excess spins
coupled quantum dots.3 Single electron transistors throug
coupled dots~artificial molecule! are also proposed, where
transition between the bonding and antibonding states se
as a qubit of quantum computation.4,5

Arrays of quantum dots have also been studied ex
sively; the quantum dot laser is one of the promisi
devices.6 Recently, a self-organizing technique of quantu
dots7 enabled us to synthesize very small dots in we
ordered lattices.8 In quantum dot lasers, electrons do n
transfer between dots in general and interdot coupling se
unimportant. The quantum cellular automaton9 is a very fas-
cinating proposal for a dot array device utilizing electr
transfer inside a cell of coupled dots and electrostatic fo
between the neighboring cells. Logical circuits using qu
tum cellular automata have been also proposed.10 Magnetic
properties of coupled dots have also been studied. A po
bility of observing spontaneous magnetization has been
posed in arrays of strained quantum dots and potential ap
cations in information storage and processing have b
discussed.11 It has also been shown that a square lattice
four coupled quantum dots containing 40 electrons ha
ferromagnetic ground state.12

Recently, the present authors have proposed a type o
vice forming a superlattice of quantum dots.13 If we consider
a quantum dot as a building block and put it on a site of
lattice, we can create an artificial crystal having interest
properties.14 In the dot lattice, we can design any type
0163-1829/2002/65~8!/085324~8!/$20.00 65 0853
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lattice structure that we like regardless of the number of e
trons in it. Lieb15 and kagome´16 lattices are interesting ex
amples of such artificial lattices, because they have a dis
sionless subband~flat band! in their single-particle band
structures.17 It has been proven that, in the repulsive Hu
bard model of these lattices, ferromagnetism appears. In
estingly, it has been shown that the ferromagnetic spin w
has a finite stiffness below a Stoner gap18 and that the ferro-
magnetism is robust against a finite dispersion.19 Some other
types of flat-band ferromagnetism have been proposed
several authors.20–22After their predictions, there have bee
several proposals to realize flat-band ferromagnetism ba
on real materials, such as carbon networks,23,24 a graphite
ribbon,25,26 and Ga27 and As28 atomic wires. However, there
has been no clear evidence of the observation of flat-b
ferromagnetism, because it is difficult to form these lattic
using the above materials since a lattice distortion eff
would destabilize the ferromagnetism when the flat band
half-filled.29 In real materials, the number of valence ele
trons is determined in such a way that the crystal structur
stable. Then, unrestricted material design is difficult in ge
eral.

On the other hand, dot lattices do not have such disadv
tages. One can design various types of lattice structures.
spatial position is fixed because an artificial atom is in a ri
buried region in semiconductors. The dot lattice does
undergo structural deformations by electronic effects such
the Jahn-Teller distortion. Then, one can design lattice st
tures which do not exist in nature without worrying about t
lattice instability. Moreover, the number of electrons in it c
be changed in a controllable manner. By putting a gate e
trode in the spatially separated region on top of the elect
gas, it is easy to modify the electron filling over a wide ran
by changing the gate voltage.30

In Ref. 13, it was suggested that flat-band ferromagnet
might be observable in quantum dot arrays based on a sim
calculation of a single-particle Hamiltonian. However,
feasibility in real experiments has been unclear, because
critical temperature in actual dot arrays was unknown. Mo
over, the next-nearest-neighbor transfer that inevitably
©2002 The American Physical Society24-1
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curs in real dot arrays could significantly reduce the criti
temperature because it would destroy the flat band. For
ther consideration, a more sophisticated calculation is
quired that takes into account the Coulomb interaction
the next-nearest-neighbor transfer in a realistic dot mode
the present paper, we demonstrate that the flat-band fe
magnetism, which has been thought to be an artifact i
mathematical model, is actually observable at reason
temperatures in dot arrays using existing fabrication tech
ogy.

In this paper, we discuss the possibility of realizing fla
band ferromagnetism in quantum dot superlattices. In Sec
we consider two types of two-dimensional~2D! dot lattices
~Lieb and kagome´ lattices! and obtain single-particle ban
structures using a tight-binding approximation including t
next-nearest-neighbor transfer. In Sec. III, we diagonaliz
Hubbard Hamiltonian for these lattices and obtain the ene
difference of the ferromagnetic ground state and the p
magnetic excited state. In Sec. IV, we describe our quan
dot model. By calculating the transfer and on-site Coulo
energy, we obtain the size dependence of the energy di
ence and discuss the stability of the ferromagnetic gro
state. In Sec. V, we argue that the magnetization can be
pected in 2D dot lattices in spite of the famous Merm
Wagner theorem. We indicate some device applications
semiconductor ferromagnets and propose other possibil
of dot superlattices having interesting electrical proper
like superconductivity. Conclusions are presented in Sec.

II. TIGHT-BINDING APPROXIMATION

We consider two types of lattices. Figure 1~a! shows the
Lieb lattice and Fig. 1~b! thekagome´ lattice. The Lieb lattice
is a bipartite lattice which consists of two sublattices. Si
belonging to one sublattice are connected to sites belon
to another sublattice.15 The kagome´ lattice is a line graph of
08532
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the hexagonal lattice.16 We consider a Hubbard model,

H52t (
( i , j )s

cis
1 cj s2t8 (

^ i ,k&s
cis

1 cks1U(
i

ni↑ni↓ , ~1!

where t is the transfer between a pair (i , j ) of the nearest-
neighboring sitesi and j, t8 is the transfer between a pa
^ i ,k& of the next-nearest-neighboring sitesi and k, U is the
on-site Coulomb energy on the sitei, cis

1 (cis) is the cre-
ation ~annihilation! operator of an electron on the sitei with
spin s5↑ or ↓, andns5cis

1 cis . In the noninteracting case
U50, we obtain the following tight-binding Hamiltonian
equations of single-particle energyE for the Lieb lattice,

FIG. 1. The Lieb lattice~a! andkagome´ lattice ~b!. Solid lines
represent the nearest-neighbor transfert. Dotted and dashed line
indicate one and 232 unit cell~s!, respectively. A unit cell contains
three sitesi 51, 2, and 3.
.

Ec52tF 0 11e22ik1a 11e22ik2a

11e2ik1a 0 0

11e2ik2a 0 0
G c2t8F 0 0 0

0 0 ~11e22ik1a!~11e2ik2a!

0 ~11e2ik1a!~11e22ik2a! 0
G c, ~2!

and for thekagome´ lattice,

Ec52tF 0 11e22ik1a 11e22ik2a

11e2ik1a 0 11e2i (k12k2)a

11e2ik2a 11e22i (k12k2)a 0
G c

2t8F 0 e22i (k12k2)a1e22ik2a e22ik1a1e2i (k12k2)a

e2i (k12k2)a1e2ik2a 0 e2ik1a1e22ik2a

e2ik1a1e22i (k12k2)a e22ik1a1e2ik2a 0
G c, ~3!

wherea is the interdot spacing,k5k1b11k2b2 is the wave vector expressed by the reciprocal-lattice vectorsb1 andb2 ~see
insets of Fig. 2!, andc5(c1 ,c2 ,c3) are the amplitudes of the wave function at the sitei 51,2,3 in the unit cell shown in Fig
1. For t850, eigenvalues for Eqs.~2! and ~3! are simply given by

E50, 62tAcos2~k1a!1cos2~k2a! ~4!
4-2
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for the Lieb model, and by

E52t, t„216A312 cos~2k1a!12 cos~2k2a!12 cos~2k1a22k2a!… ~5!
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for the kagome´ model. Figures 2~a! and 2~b! are the band
diagrams for Lieb andkagome´ lattices. Fort850, disper-
sionless flat subbands are formed in the middle for the L
lattice and in the top for thekagome´ lattice. When the next
nearest transfer is taken into account (t8.0), the flat sub-
bands are broken down, except for 2k1a5p ~from the X
point to theM point! in the Lieb lattice. This is because th
next-nearest transfers between site 2 and 3 are cancele
tween different unit cells.

III. EXACT DIAGONALIZATION

We diagonalize the Hubbard Hamiltonian~1! for 232
unit cells of 12 dots enclosed by dashed lines in Fig. 1.
the Lieb lattice, we use an antiperiodic boundary condition
the x direction and a periodic boundary condition in they
direction in order to avoid unimportant finite-size effects
additional degeneracy at the cross point of the flat band
dispersive bands. For thekagome´ lattice, we use an ordinary
periodic boundary condition.

Figure 3 shows the total spin as a function of the num
of electronsN andU/t in the @Fig. 3~a!# Lieb and the@Fig.

FIG. 2. Single-particle band energyE for ~a! the Lieb lattice and
~b! the kagome´ lattice for the next-nearest-neighbor transfert850
~solid line! and t8.0 ~dashed line! calculated using the tight
binding approximation, whereE and t8 are normalized in units of
the nearest-neighbor transfert. Insets: Brillouin zone.b1 andb2 are
the reciprocal-lattice vectors.
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3~b!# kagome´ lattices for t850. For anyU/t.0, high-spin
states appear at the half-filling (N512) for the Lieb lattice
and 19<N<22 for thekagome´ lattice. This result is consis
tent with the theorems proved by Lieb15 for the Lieb lattice
and Mielke16 for the kagome´ lattice. This result shows tha
the ferromagnetic state appears in a wide range of elect
filling in the kagome´ lattice, whereas ferromagnetism a
pears only at the half-filling for the Lieb lattice. High-spi
states seen in Fig. 3 when the Fermi level is not at the
band (NÞ12 for the Lieb lattice andN,16 for thekagome´
lattice! are due to an unimportant finite-size effect due
additional degeneracy.

Figure 4 shows the energy difference between the gro
state with spinS52 and the lowest excited state with sp
S50 for various t ’s when the flat band is half-filled, i.e.
@Fig. 4~a!# N512 for the Lieb and@Fig. 4~b!# N520 for the
kagome´ lattice. This energy difference can be regarded a
qualitative estimate of the transition temperature of fer
magnetic and paramagnetic transitions in a macrosco
sample as will be discussed in Sec. V. First we considet8
50. As Lieb has already pointed out,15 the high-spin state in

FIG. 3. Total spin as a function of the number of electrons
<N<24 for U/t51023, 5, 10, 15, and 20 for~a! the Lieb lattice
and ~b! the kagome´ lattice whent850.
4-3
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the Lieb lattice is caused by the antiferromagnetic orderin
the half-filling. This ordering can be easily understood wh
U/t@1. In this limit at the half-filling, there is one localize
electron per dot. Due to the second-order process of an e
tron with up spin transferring to the neighboring dot having
down-spin electron, the effective exchange energy is gi
by 22t2/U. As the numbers of sites in two sublattices a
different, the remaining total spin is responsible for the f
romagnetism. The high spin in thekagome´ lattice is caused
by an effective exchange interaction of the third-order p
cess cycling and exchanging two electrons with the oppo
spins within the triangular lattice of three sites.20 When
U/t@1, the energy loss due to this ring exchange is of
order oft, whereas there is no energy loss between two e
trons with the same spins. Actually, from Fig. 4, one c
deduceDE.4.3t2/U for the Lieb lattice andDE.0.26t for
the kagome´ lattice, which is consistent with the above arg
ment. WhenU/t is small, the energy difference is propo
tional toU in both cases, i.e.,DE.0.16U for the Lieb lattice
andDE.0.05U for the kagome´ lattice. This is because th
Coulomb repulsion raises the energy of the order ofU when
electrons on the flat band have the opposite spins in
lowest-spin state, whereas, by the Pauli principle, it does
when electrons on the flat band have the same spins in
high-spin state.

As t8 is increased, the energy difference becomes sma
or sometimes negative. For smallU/t, the ferromagnetic
ground state fort850 is easily broken down by very sma

FIG. 4. Energy differenceE(S50) andE(S52) as a function
of U/t in ~a! the Lieb (N512) and ~b! the kagome´ lattices (N
520) for various values oft8.
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t8, because the subband is no longer flat fort8.0 as seen in
Fig. 2. Electrons are filled in such way as to lower the to
spin to gain the single-particle energy of the order oft8
rather than to align spins to gain the smaller exchange en
of the order ofU. As U/t is increased, the gain from th
effective exchange energyDE overcomes the loss from th
single-particle energy which is of the order oft8, and the
ferromagnetic ground state becomes robust againstt8. In the
Lieb lattice, the ground state is always paramagnetic w
t8.0.6 in the range 0,U/t,30, whereas, in thekagome´
lattice, the ferromagnetism disappears fort8.0.1. This dif-
ference in the robustness againstt8 comes from the magni-
tude of the effective exchange energyDE as seen in Fig. 4.
When U/t,1, DE.0.16U for the Lieb lattice is much
larger thanDE.0.05U for the kagome´ lattice. ForU/t@1,
the antiferromagnetic exchange energy between the n
nearest-neighbor sites in the Lieb lattice slowly increases
(t8/t)2 because t82/U5(t8/t)2(t2/U), whereas, in the
kagome´ lattice, the ferromagnetic energy due to the ring e
change rapidly decreases ast8/t.

IV. QUANTUM DOT MODEL

To evaluate the transfer and on-site Coulomb energy
quantum dot arrays, we assume that electrons are confine
a two-dimensional confinement potential given by

V~r !5(
i

v~r2Ri !,

v~r !5H 2
1

16
m* v2a2@cos~px/a!cos~py/a!#2

for r ,a/2,

0 for r>a/2,

~6!

wherem* is the effective mass of an electron,v is the con-
fining oscillator frequency,Ri is the position of thei th dot,
anda is the interdot spacing. This dot model is quite simil
to that used for the square lattice.31 Noting that
@cos(px/a)cos(py/a)#2.@(2r/a)221#2.122(2r/a)2 for r
!a/2, the ‘‘atomic’’ wave function localized in the potentia
v(r ) is given in a good aproximation by

f~r !5
2

Apd
expS 2

2r 2

d2 D , ~7!

whered52A\/m* v is the dot diameter.
The transfer and on-site Coulomb energies are given

t~Ri ,Rj !52E drf~r2Ri !$2\2¹2/2m* 1V~r !%

3f~r2Rj !, ~8!

U5E E dr1dr2

e2uf~r1!u2uf~r2!u2

4p«ur12r2u
5

A2pe2

4p«d
, ~9!
4-4
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where« is the dielectric constant.32 Note that the minus sign
of the integral in Eq.~8! comes from the definition of the
transfer energy in Eq.~1!. Here, the nearest-neighbor transf
t is calculated forRi5(0,0) andRj5(a,0), and the next-
nearest-neighbor transfert8 is for Ri5(a,0) andRj5(0,a)
in the Lieb lattice andRi5(a,0) andRj5(a/2,A3a/2) in the
kagome´ lattice. The Coulomb energy can be analytically i
tegrated, but the transfer integral is evaluated numeric
from Eqs.~6! and~7!. Figure 5 shows the calculated transf
and the on-site Coulomb energy as a function of the
diameter. Here, we adapt the effective atomic units\2/2m*
5e2/4p«51. In these units, energy and length are scaled
units of the effective rydberg constant Ry* 513.6 eV
3(m* /m0)/(«/«0)2 and the effective Bohr radiusaB*
50.53 Å3(«/«0)/(m* /m0), wherem0 and«0 are the mass
of a bare electron and the dielectric constant in vacuum
our dot model, the contribution from terms such
^f(0)uv(Ri)uf(Rj )& (RiÞ0, Rj ) is negligible in Eq.~8!,
and the transfer energy is determined by the distance
tween the nearest-neighboring dots, i.e.,t.^f(0)u$p2/2m*
1v(0)1v(Ri)%uf(Ri)&. Therefore, the transfer energies f
the Lieb andkagome´ lattices are almost identical within th
width of drawn lines in Fig. 5. On the other hand,t8 for the
Lieb lattice is larger than that for thekagome´ lattice, because
of the difference in the distance of the next-nearest-neigh
dots, i.e.,uRi2Rj u5A2a for the Lieb lattice anduRi2Rj u
5A3a for the kagome´ lattice. For d/a&0.5, t8 is much
smaller thant and is negligible. It is noted thatt is always
smaller thanU when the interdot spacinga*0.1, which is
usually realized in the present fabrication technology.

In realistic dot arrays formed by a negatively biased g
electrode depleting the underneath two-dimensional elec
gas, the interdot spacing is usually fixed and cannot
changed. By modifying the gate voltage, the dot diame
can be changed. To simulate this, we evaluatet, t8, and U
from Eqs.~8! and~9! for a fixed interdot spacing (a50.5, 1,
5, 10! and calculate the energy difference as a function of
diameter as shown by the closed symbols in Fig. 6. T
energy difference is appreciable for 0.3&d/a&0.7. For a
.0.5, t is always smaller thanU. In this strongly correlated
region, the energy differenceDE has the dependence o
DE;t2/U;1/a3 for the Lieb lattice, andDE;t;1/a2 for

FIG. 5. The nearest- and the next-nearest-neighbor transfe
ergiest, t8 and on-site Coulomb energyU in the dot model as a
function of d/a. Energy and length are scaled in units of the effe
tive rydberg constant Ry* and the effective Bohr radiusaB* ~see
text!.
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the kagome´ lattice. For d/a*0.6, DE rapidly decreases
sincet8 becomes significantly large and the ground state
comes paramagnetic. In Fig. 6,DE for t850 is also plotted.
Whend/a*0.6, DE for t850 monotonically decreases bu
does not become negative, since the ground state is alw
ferromagnetic fort850. It is noted that, whenDE takes a
peak aroundd/a50.520.6, the effect oft8 is negligible and
DE is not affected byt8.

In Table I, we estimateDE for dot arrays of various sizes
We consider GaAs, InAs, and Si dots and assumea52d. For
dots with a spacing of 100 nm which is available within t
present fabrication technology,DE is of the order of severa
hundreds millidegrees Kelvin and we can expect that fer
magnetism can be observable in the dilution temperature
gion. For dots of spacing of 5 nm,DE is as high as a few
tens of Kelvin.

V. DISCUSSION

There are several advantages of using semiconducto
making artificial crystals. First, the lattice structure can
widely chosen. One can fabricate a lattice structure that d
not exist in nature. Second, interdot coupling and the e
tron filling can be separately modified. This is possible if t
interdot coupling is modified mainly by the front-gate ele
trode on top of the two-dimensional electron gas and
electron filling is modified mainly by the back-gate ele

n-

-

FIG. 6. Energy differenceDE5E(S50)2E(S52) as a func-
tion of dot diameterd for ~a! the Lieb and~b! the kagome´ lattices
for various interdot spacinga in the dot model represented by sol
symbols. Open symbols represent the energy difference when
neglect the next-nearest-neighbor transfert8.
4-5
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TABLE I. Estimated energy differenceDE5E(S50)2E(S52) ~K! between the ground state with sp
2 and the lowest excited state with spin 0 for dot arrays of the Lieb andkagome´ lattices of typical interdot
spacinga55, 10, 50, and 100 nm and dot diametera/2. We consider GaAs dots (m* /m050.067, «/«0

512.4, Ry* 56 meV, aB* 510 nm), InAs dots (m* /m050.02, «/«0512.4, Ry* 51.8 meV, aB*
534 nm), and Si dots (m* /m050.2, «/«0512, Ry* 519 meV, aB* 53 nm).

DE ~K! for Lieb lattice DE ~K! for kagome´ lattice

Spacinga 5 nm 10 nm 50 nm 100 nm 5 nm 10 nm 50 nm 100 nm

GaAs 76 26 0.5 0.06 31 11 0.6 0.2
InAs 90 43 3.5 0.6 45 19 1.7 0.5
Si 27 4.5 0.04 0.005 15 4.3 0.2 0.05
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trode. The controllability of electron filling enables us
switch ferromagnetism on and off. It would be better to u
thekagome´ lattice in order to switch the ferromagnetism b
cause the ferromagnetic ground state appears in a wide r
of electron filling as shown in Fig. 3~b!. The effect of a
magnetic field in thekagome´ lattice is also very interesting
because the flat band is destroyed by the threaded mag
flux. It has been found that a giant negative magnetore
tance and ferromagnetic–paramagnetic transition induce
a magnetic field occur in thekagome´ dot lattice.33 Recently,
the present authors have proposed a simple way to realiz
kagome´ dot lattice within the present fabricatio
technology.34 It has been shown that a network of quantu
wires effectively acts as akagome´ lattice where electrons ar
well localized at the cross points of two wires. This kind
kagome´ network has been already available in quant
wires formed by a selective area growth technique.35 This
method of making akagome´ dot lattice provides us with a
chance to observe the flat-band ferromagnetism in exp
ment.

One may think that a finite magnetization does not app
at finite temperatures in two dimensions because of the
sence of long-range order according to the Mermin-Wag
theorem.36 However, it has been shown that the spin-sp
correlation lengthj in the spin-1/2 Heisenberg model on
2D square lattice exponentially grows asj;exp(J/T) as tem-
perature decreases although the~antiferromagnetic! spin-spin
correlation decays aŝS0•Sr&}exp(2r/j).37 Then, the spin-
spin correlation lengthj can be macroscopically large at lo
temperatures. For example, atT50.1J, j is 104 times larger
than the lattice spacing. Noticing that the Hubbard mode
the Lieb lattice forU/t@1 at the half-filling is reduced to the
Heisenberg model with the same antiferromagnetic coup
(J54t2/U) as in the square lattice, the temperature dep
dence ofj also holds for the Lieb lattice. In contrast to th
square lattice, a finite magnetization can appear in the L
lattice because the numbers of sites in two sublattices
different. As for thekagome´ lattice, there has been no theor
to our best knowledge, on spin waves to date and the e
of thermal fluctuation on the spin-spin correlation is still u
known. At least, a finite magnetization can be expected in
Lieb lattice even in two dimensions as long as the sam
size is smaller than the spin-spin correlation length. Mo
over, consideringJ;DE, our estimation of the transition
temperature in Fig. 6 is qualitatively justified.
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Although a finite magnetization is expected in two dime
sions, its value will be quite small in 2D dot arrays, since t
lattice constant (*10 nm) of dot arrays is about more than
hundred times larger than that of the conventional ferrom
netic materials and the expected magnetization per area
be significantly reduced. For example, the expected mag
tization of dot arrays of the interdot spacinga with spin S
51/2 per unit cell isgmBS/a3;0.1 G for a510 nm and
;1024 G for a5100 nm, wheremB5e\/2m is the Bohr
magneton andg.2 is a gyromagnetic ratio. To measure th
magnetic moment directly, a very sensitive detector such
superconducting quantum interference device magnetom
would be required. A more convenient way to detect t
magnetization directly will be to measure the anomalo
Hall resistivity which is proportional to the magnetization
the sample and is added to the normal Hall resistivity p
portional to the external magnetic field. This method w
only be applicable when the magnetization is larger than 0
G (a&10 nm). On the other hand, magnetoresistance m
surement is rather an indirect way to detect the magnet
tion. When the magnetic field is increased, the insulat
ferromagnetic state turns into the metallic paramagnetic
in the kagome´ lattice at the half-filled flat-band.33 The mag-
nitude of the magnetization could not be estimated only fr
the magnetoresistance measurement, although
ferromagnetic–paramagnetic phase transition could be
tected.

The advantage of using semiconductors in realizing fer
magnetism exists not only in making semiconducting ‘‘pe
manent magnets.’’ As we mentioned, the controllability
the magnetic property by changing the electron filling a
the magnetic field will make dot lattices useful in electron
devices such as memories, sensors, and magnetic heads
only semiconductor materials such as Si and GaAs are c
tained. Magnetic devices can be fabricated without using
magnetic elements such as iron and manganese which
incompatible with the conventional large-scale-integra
circuit ~LSI! fabrication process.

By extending the idea of dot superlattices, one can th
of other interesting possibilities for artificial material
Thanks to the rapid progress in semiconductor nanotech
ogy, we can expect that various interesting electric proper
which have been observed in conventional materials may
realized also in dot superlattices. One of the most fascina
examples is high-temperature~high-Tc) superconductivity.
4-6
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High-temperatured-wave superconductivity in a repulsiv
Hubbard model has been predicted.38 Although the energy
scales or the transition temperature is a hundred tim
smaller than the conventional CuO2 high-Tc superconductors
(Tc;100 K), superconductivity in semiconductor dot arra
might be possible, because the estimated transition temp
ture using the predicted expression isTc.0.01t;1 K for a
52d510 nm GaAs dots. It has been shown that, in ot
types of lattices, the transition temperature becomes m
higher.39,40 It would be very interesting if superconductivit
~or at least the Kosterlitz-Thouless-Berezinskii transitio!
could be realized in semiconductors. Other types of lat
structures would also be fascinating, such as a ladder s
ture realized in copper oxide materials, where various in
esting properties have been observed such as the spin
and superconductivity.41–43 Optical properties of the dot ar
rays would also be interesting, since the large density
states in the flat band will significantly affect photolumine
cence or laser characteristics.

VI. CONCLUSIONS

Flat-band ferromagnetism in quantum dot arrays has b
theoretically discussed. We considered dot arrays on the
and kagome´ lattices which are known to exhibit flat-ban
ferromagnetism. The tight-binding calculation showed t
the next-nearest-neighbor transfert8 destroys the flat sub
band. We performed the exact diagonalization of the H
bard Hamiltonian and calculated the energy difference
s
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tween high-spin and low-spin states. This energy differe
represents a qualitative estimate of the transition tempera
of ferromagnetic and paramagnetic states in a macrosc
sample. The energy difference becomes smaller as the n
nearest-neighbor transfert8 increases. It was shown that, a
though the ferromagnetic ground state is easily broken do
by t8 in the weak correlation region (t@U), it is robust
againstt8 in the strong correlation region (U@t).

We calculated the size dependence of the energy dif
ence in a realistic dot model. We found that, although
next-nearest-neighbor transfer destroys the ferromagne
when the dot diameter approaches the interdot spacin
does not affect the peak value of the energy difference or
transition temperature when the dot diameter decreases
argued that the flat-band ferromagnetism can be observ
in dot arrays fabricated using the present technology.
suggested other interesting possibilities for artificial mate
design using quantum dot superlattices.
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