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Dynamics of quantum Hall stripes in double-quantum-well systems
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The collective modes of stripes in double-layer quantum Hall systems are computed using the time-
dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer
coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the
other a pseudospin wave associated with a broken U~1! symmetry. For large layer separations the modes
disperse weakly for wave vectors perpendicular to the stripe orientation, indicating that the system becomes
akin to an array of weakly coupled one-dimensionalXY systems. At higher wave vectors the collective modes
develop a roton minimum associated with a transition out of the coherent state with further increasing layer
separation. A spin-wave model of the system is developed, and it is shown that the collective modes may be
described as those of a system with helimagnetic ordering.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Quantum Hall systems are by now well known to supp
a broad range of condensed matter phenomena.1 These in-
clude localization physics, electron solidification~Wigner
crystals!, chiral Luttinger liquids at quantum Hall edges, a
Fermi liquid behavior. Recently added to this list is high
anisotropic transport in moderate magnetic fields, in wh
electrons populate several Landau levels.2 Such behavior
was anticipated by mean-field studies predicting unidir
tional charge-density-wave~CDW! ground states for elec
trons in high Landau levels.3,4 While more careful studies5

demonstrate that within Hartree-Fock theory such grou
states are unstable to the formation of ‘‘modulated’’ stri
states which are essentially highly anisotropic tw
dimensional Wigner crystals~‘‘stripe crystals’’6!, quantum
fluctuations may restore the translational symmetry along
stripes.7–10 It has been noted that the CDW state has
symmetry of a two-dimensional smectic,6 and this analogy
with liquid crystals has been exploited to yield a number
useful results.11

A seemingly unrelated set of physical phenomena occ
in double-quantum-well systems~DQWS’s! in the quantum
Hall regime. For large magnetic fields, these systems sup
spontaneous interlayer coherence12 and exhibit an associate
Goldstone mode.13,14 A precursor of the Josephso
tunneling15,16 may have been observed17 in these systems
contributing to the recent excitement about them.

When immersed in more moderate magnetic fields, s
that several Landau levels are occupied, it becomes evi
that the physics of stripesand interlayer coherence are simu
taneously relevant in the bilayer system. This situation w
recently explored.18 For a system in which each layer is ha
filled in the Nth Landau level, with some simplifying as
sumptions~lower Landau levels filled and inert, Landau lev
mixing negligible, and Zeeman coupling large enough t
spins are polarized! the following was found:~1! For small
enough layer separation and any value ofN, an interlayer
coherent state of uniform density is formed.~2! Above a
critical layer separationdc(N), a unidirectional density
0163-1829/2002/65~8!/085321~13!/$20.00 65 0853
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modulation sets in such that the electron density oscilla
between the layers as a function of position.19 This state is
simultaneously interlayer coherent and smectic in spa
symmetry. With increasingd, the regions of coherence be
come relatively narrow in one direction, forming ‘‘linear co
herent regions’’~LCR’s!. ~3! For negligibly weak interlayer
tunneling, the coherence is spontaneous and a correspon
Goldstone mode should be present in the excitation sp
trum. When the LCR’s are sufficiently narrow compared
their separation~which occurs at larged and/or largeN), the
system may be thought of as an array of coupled o
dimensional XY models. Different possible quantum
disordered states may exist,18,20 which in principle can be
distinguished by tunneling experiments.

In order to predict which, if any, of these quantum diso
derings might occur, it is necessary to understand the l
energy collective modes in some detail and to create a m
that captures them which is sufficiently simple to be susc
tible to further analysis.8 This motivates our present stud
Beyond its use in specifying a low-energy theory, the colle
tive modes are interesting on their own, as they are so
times detectible in electromagnetic absorption21 or Raman
scattering22 experiments and allow one to learn about whi
states are realized in real samples.

In what follows, we compute the collective mode spe
trum of the electrons in a DQWS, in a perpendicular ma
netic field, in which several Landau levels are occupied,
ing the time-dependent Hartree-Fock approximat
~TDHFA!.23 Counting both the spin and layer index degre
of freedom, the situations we consider involve 4N filled Lan-
dau levels, which are taken to be inert~as appropriate for
large cyclotron energy\vc , wherevc5eB/m* c, B is the
magnetic field, andm* the effective mass of electrons in th
quantum wells, and large Zeeman coupling!. For simplicity
we ignore finite thickness of the wells. In addition to the 4N
filled levels, there is a level, with Landau indexN, which
contains precisely enough electrons so that the total fill
factor n, defined as the number of electrons per magne
flux quantum passing through the plane, is 4N11. The sys
©2002 The American Physical Society21-1
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tem considered has no interlayer bias, so that the hig
level in each layer will be half-filled on average.

As discussed above, if the individual layers are isolat
this is precisely the situation in which one expects stripes
form. For finite layer separations, it is clear that the grou
state will have the electron-rich regions in one layer al
directly above the hole-rich regions in the other. Furth
more, for a range of layer separations, the stripe edges
bridize between the layers so that the electron occupa
continuously shifts between the layers as a function
position.18 An example of such a ground state is illustrated
Fig. 2. To understand this state and its collective modes
convenient to adopt a pseudospin representation, in whic
electron pseudospin is ‘‘up’’ when occupying one layer a
‘‘down’’ when occupying the other. In this language, th
stripe ground state involves a unidirectional spatial tumbl
of the spin and may be thought of as having helimagn
ordering.24 As the separation increases, the electron den
tends to reside more sharply in one well or the other, and
transition regions between layers become narrower.18

In the absence of interlayer tunneling, the pseudos
density may tumble from1 ẑ to 2 ẑ by passing through thex̂
direction, theŷ direction, or any direction in between. Thu
each of the transition regions—the LCR’s mention
above—supports anXY degree of freedom, which is sponta
neously broken in the ground state. In addition, this st
obviously has broken translational symmetry.

Because of the two broken symmetries, there aretwo gap-
less excitations above the stripe ground state. One is as
ated with the brokenXY symmetry—alternatively thought o
as a phase coherence between the wells12,13—which dis-
perses linearly with wave vector. The other is a phononl
mode which disperses quadratically for wave vectors para
to the stripes and linearly perpendicular to them. This
analogous to what is seen in incommensurate helimagne24

A typical dispersion relation for theXY mode is displayed
in Fig. 5 for several values ofd/ l , wherel 5A\c/eB is the
magnetic length. As may be seen, the linear mode tend
disperse more strongly along the stripes than perpendic
to them, and in the limit of larged, the latter dispersion may
become quite weak. This may be understood in terms of
exchange coupling among LCR’s, which vanishes as t
become arbitrarily narrow.18 It is possible that quantum fluc
tuations can effectively wipe out the inter-LCR exchan
coupling, leading to a state analogous to a ‘‘slidingXY
model.’’18,25

Several other features appear in the collective mode s
trum. As is typical of such calculations, a number of high
energy modes are present, one of which may be interpr
as a gapped ‘‘out-of-phase’’ phonon mode, in which t
stripes in different layers oscillate against one another
Fig. 5, we see that this mode becomes degenerate with
XY mode in its dispersion relation along the stripe direct
and develops a roton minimum which touches zero at a c
cal separationdM , signaling an instability in which modula
tions form along the stripes. The instability, however, is fi
order in nature since the modulation amplitude changes
continuously at the transition.18 It is a surprising feature o
our results that a collective mode appears to go soft so c
08532
st

,
o
d

-
y-
n
f

is
an

g
ic
ty
e

in

e

ci-

e
el
s
.

to
lar

e
y

c-
r
ed

n
he

i-

t
s-

se

to this transition, and this behavior in principle allows a d
tection of the transition by inelastic light scattering. Wheth
such a bilayer stripe crystal is stable with respect to quan
fluctuations analogous to those being discussed in the si
layer case7–10 is at present unclear.

This article is organized as follows. In Sec. II we sket
the Hartree-Fock and TDHFA formalism, providing some d
tails about its application to the two-layer stripe system. S
tion III contains a more detailed description of our resul
and Sec. IV shows how the low-energy spectrum may
understood in the pseudospin language. We conclude wi
summary and discussion in Sec. V.

II. HARTREE-FOCK DESCRIPTION OF THE CDW
GROUND STATE

We consider an unbiaised symmetric DQWS in a perp
dicular magnetic fieldB5Bz at total filling factor n54N
1n0 whereN50,1,2, . . . is theLandau level index andn0
is the filling factor of the partially filled level. Each Landa
level has two spin states and two layer states specified by
index j 5R,L. The layer states hybridize into symmetric~S!
and antisymmetric~AS! states in the presence of tunnelin
We assume the magnetic field to be strong enough so tha
lower 4N levels are completely filled with electrons and c
be considered as inert. The Zeeman energy is assumed
much larger than the S-AS gap and so there is no spin tex
in the ground state. The electron gas is completely spin
larized and only the layer degree of freedom need be con
ered. In the ground state, the electronic charge is equ
distributed between the two wells.

In the Landau gauge where the vector potentialA
5(0,Bx,0), the electron wave functions are given by

cN,X, j~r !5
1

ALy

e2 iXy/ l 2wN~x2X!x j~z!, ~1!

whereN andX are the Landau level and guiding center i
dices andx j (z) is the envelope wave function of the lowes
energy electric subband centered on the right or left w
wN(x) is an eigenfunction of the one-dimensional harmo
oscillator. Because the fully occupied Landau levels are c
sidered as inert, we need only consider the partially fil
Landau level. We can then drop the Landau level index fr
now on.

To describe the various CDW ground states, we define
operator

r i , j~q!5
1

Nw
(
X

e2 iqxX1 iqxqyl 2/2ci ,X
† cj ,X2qyl 2, ~2!

where i , j 5R,L and Nw is the Landau level degeneracy. I
the ground state,̂r i , j (q)&Þ0 whereq is a reciprocal lattice
vector of the CDW. By definition̂ rR,R(q50)&5^rL,L(q
50)&5n0/2. In the HFA, the ground-state energy per ele
tron in units of e2/k l in the partially filled level can be
written in term of these operators as
1-2
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EHF52
2

n0
tRe@^rR,L~q50!&#

1
1

2n0
(

q
@H~q!2X~q!#@ u^rR,R~q!&u2

1u^rL,L~q!&u2#

1
1

n0
(

q
H̃~q!^rR,R~q!&^rL,L~2q!&

2
1

n0
(

q
X̃~q!^rR,L~2q!&^rL,R~q!&. ~3!

In this equation,t is the tunneling energy in units ofe2/k l ,
and H(q),X(q) are the Hartree and Fockintrawell interac-
tions while H̃(q) and X̃(q) are the Hartree and Fockinter-
well interactions. For very narrow wells wherex j (z) are
highly localized, these interactions are given by

H~q!5S 1

ql D @LN
0 ~q2l 2/2!#2e2q2l 2/2, ~4!

H̃~q!5S 1

ql D @LN
0 ~q2l 2/2!#2e2q2l 2/2e2qd,
ls

e

at
es
w
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X~q!5E
0

`

dyJ0~yql!e2y2/2@LN
0 ~y2/2!#2,

X̃~q!5E
0

`

dyJ0~yql!e2y2/2e2yd/ l@LN
0 ~y2/2!#2,

whered is the center-to-center separation between the w
andLN

0 (x) are generalized Laguerre polynomials. Because
the neutralizing positive backgrounds of ionized donors
both sides of the DQWS, we haveH(0)5H̃(0)50 in EHF .

The order parameters$^r i , j (q)&% are computed by solving
the HF equations of motion for the single-particle Gree
function

Gi , j~X,X8,t!52^Tci ,X~t!cj ,X8
†

~0!&, ~5!

whose Fourier transform we define as

Gi , j~q,t!5
1

Nf
(
X,X8

e2 iqx(X1X8)/2dX,X82qyl 2Gi , j~X,X8,t!,

~6!

so thatGi , j (q,t502)5^r j ,i(q)&.
In the HFA, these equations of motion are given by
(
q9

S ~ i\vn1m!dq,q92UR,R~q,q9! tdq,q92UR,L~q,q9!

tdq,q92UL,R~q,q9! ~ i\vn1m!dq,q92UL,L~q,q9!
D S GR,R~q9,vn! GR,L~q9,vn!

GL,R~q9,vn! GL,L~q9,vn!
D 5S \dq,0 0

0 \dq,0
D
~7!
par-
ion
wherem is the chemical potential. The effective potentia
Ui , j ~in units of e2/k l ) are defined by

UR,R~q,q8!5@H~q2q8!2X~q2q8!#^rR,R~q2q8!&gq,q8

1H̃~q2q8!^rL,L~q2q8!&gq,q8 , ~8!

UL,L~q,q8!5@H~q2q8!2X~q2q8!#^rL,L~q2q8!&gq,q8

1H̃~q2q8!^rR,R~q2q8!&gq,q8 , ~9!

UR,L~q,q8!52X̃~q2q8!^rL,R~q2q8!&gq,q8 , ~10!

UL,R~q,q8!52X̃~q2q8!^rR,L~q2q8!&gq,q8 , ~11!

where gq,q85e2 iq3q8 l'
2 /2. The procedure to solve for th

^r i , j (q)&8s is described in detail in Ref. 23.
It is instructive at this point to describe the electron st

in a DQWS by using a pseudospin language where statR
and L are mapped to up and down spin states. For this,
define the pseudospin operators
e

e

r~q!5
1

2
@rR,R~q!1rL,L~q!#, ~12!

rx~q!5
1

2
@rR,L~q!1rL,R~q!#,

ry~q!5
1

2i
@rR,L~q!2rL,R~q!#,

rz~q!5
1

2
@rR,R~q!2rL,L~q!#,

r'~q!5rx~q!x̂1ry~q!ŷ.

These operators act in the restricted Hilbert space of the
tially filled Landau level. To get a real-space representat
of the ordered states, we take the Fourier transform

^r i , j~r !&5(
q

^r i , j~q!&eiq•r. ~13!

A local filling factor in each well can then be defined as

n i~r !5^r i ,i~r !&. ~14!
1-3
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For unidirectional modulations, the quantityn i(r ) will take
values between 0 and 1. Similarly, a Fourier transform of
order parameters defined in Eq.~12! will define the total
density^r(r )& and spin densitŷrm(r )&. Note that these den
sities are related to the density of orbit centers and not to
real density of electrons. For instance, when Landau mix
is neglected, the real ‘‘densities’’ni , j (q) are given by

ni , j~q!5NfFN~q!r i , j~q!, ~15!

whereFN(q) is a form factor appropriate to Landau levelN
given by

FN~q!5expS 2q2l 2

4 DLN
0 S q2l 2

2 D . ~16!

In the pseudospin language, the HF energy can be rew
ten as

EHF52
2

n0
tRe@^rx~0!&#

1
1

n0
(

q
Y~q!^r~2q!&^r~q!&

1
1

n0
(

q
Jz~q!^rz~2q!&^rz~q!&

1
1

n0
(

q
J'~q!^r'~2q!&•^r'~q!&, ~17!

where the effective interactions are defined by

Y~q!5H~q!1H̃~q!2X~q!,

Jz~q!5H~q!2H̃~q!2X~q!,

J'~q!52X̃~q!. ~18!
08532
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We derive the dispersion relations of the collective ex
tations of the CDW states in the DQWS by tracking the po
of the retarded density and pseudospin response functi
These are obtained by analytical continuation of the tw
particle Matsubara Green’s functions

x i , j ,k,l~q,q8;t!52Nf^Tr i , j~q,t!rk,l~2q8,0!&

1Nf^r i , j~q!&^rk,l~2q8!&, ~19!

which we compute in the generalized random phase appr
mation ~GRPA!. The procedure is explained in details
Refs. 5 and 23. It is convenient to work in the pseudos
language where we can define the matrix

x5S xr,r xr,x xr,y xr,z

xx,r xx,x xx,y xx,z

xy,r xy,x xy,y xy,z

xz,r xz,x xz,y xz,z

D . ~20!

These pseudospin Green’s functions are related to the o
nal Green’s functions of Eq.~19! by the transformation

xn,m5
1

4
s i , j

n x i , j ,k,lsk,l
m , ~21!

wheren,m5r,x,y,z. Here s i , j
n5x,y,z are Pauli matrices and

sr5(1 0
0 1).

The summation of the bubbles and ladder diagrams of
GRPA can be expressed as an equation of motion forx of the
form

~v1 id!x~q,q8,v!2(
q9

F~q,q9!x~q9,q8,v!5D~q,q8!.

~22!

HereF andD may be written schematically as
F522i S ^r&sina@Y2Y8# ^rx&sina@J'2J'8 # ^ry&sina@J'2J'8 # ^rz&sina@Jz2Jz8#

^rx&sina@J'2Y8# ^r&sina@Y2J'8 # ^rz&cosa@Jz2J'8 # 2^ry&cosa@J'2Jz8#

^ry&sina@J'2Y8# 2^rz&cosa@Jz2J'8 # ^r&sina@Y2J'8 # t1^rx&cosa@J'2Jz8#

^rz&sina@Jz2Y8# ^ry&cosa@J'2J'8 # t2^rx&cosa@J'2J'8 # ^r&sina@Y2Jz8#

D , ~23!

and

D5S i ^r&~sina! i ^rx&~sina! i ^ry&~sina! i ^rz&~sina!

i ^rx&~sina! i ^r&~sina! i ^rz&cosa 2 i ^ry&~cosa!

i ^ry&~sina! 2 i ^rz&cosa i^r&~sina! i ^rx&~cosa!

i ^rz&~sina! i ^ry&~cosa! 2 i ^rx&~cosa! i ^r&~sina!

D . ~24!

These matrices contain wave vector dependence that is not shown. For example, in theF matrix, the first entry is explicitly
given by

22i ^r&sina@Y2Y8#→22i ^r~q2q9!&sinFq3q9l'
2

2 G @Y~q2q9!2Y~q9!#. ~25!
1-4
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The other terms in the matrix, as well as those in the ma
D, have analogous definitions. Finally, for the tunneling te
in F34 and F43 is diagonal in the wave vector index, i.e.,t
→tdq,q9 . Equation~22! may be solved by diagonalizingF23

and the collective mode frequencies found from its eigenv
ues. From the eigenvectors of theF matrix, it is also possible
to extract the motion of the guiding-center densities and
the pseudospin in a given mode.

It is interesting to note that for̂rx,y&50 and t50, the
forms of F and D indicate that in the equations of motio
xr,r , xr,z , xz,r , and xz,z completely decouple from
xxx , xxy , xyx , andxyy . This indicates that distortions o
the stripes involving motion of charge either within the la
ers or between them is completely decoupled from any ‘
plane’’ XY motion of the pseudospins; i.e., phonon mod
and spin-wave modes will create poles in different, disti
response functions. The presence of coherence—a non
ishing^rx& or ^ry&—mixes these motions, so that poles fro
all the collective modes appear in all the response functio
This phenomenon is closely related to ‘‘spin-charge c
pling’’ that is generically present in multicomponent qua
tum Hall systems1 and has important consequences for
charged excitations in this system.18 For the collective
modes, we will see below that the low-energy interlay
charge degrees of freedom~distortions that changerz) are in
a sense conjugate to the in-plane degrees of freedom (rx,y)
and distortions ofboth are involved in any given collective
mode.

III. NUMERICAL RESULTS

In Ref. 18 the energies of several ordered ground state
n051 were computed in the HFA. The states conside
there were a uniform coherent state~UCS!, a unidirectional
coherent charge density wave~UCCDW!, a modulated uni-
directional charge density wave~MUCDW!, and a coheren

FIG. 1. Hartree-Fock energy per electron and coherence
function of the interlayer separation in the UCS, CWC, UCCD
and MUCDW states in Landau levelN52 and fort50.
08532
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Wigner crystal~CWC! with a square lattice. We refer th
reader to Ref. 18 for more detailed discussions of th
states. ForN.0, it was found that the ground state of th
electron gas evolves from the UCS ford,dc(N) to the
UCCDW at larger values ofd and finally to the MUCDW as
the separation between the wells increases. At larged, the
Wigner crystal state is only lowest in energy for Landau le
N50. @There is, however, a small region ofd for d.dc in
N50 for which the UCCDW is lowest in energy~see Ref.
18!#. For all ordered states, the lowest energy is obtain
when the density pattern in both wells are shifted with
spect to one another. Moreover, coherent states@states with
nonzero value of̂ rR,L(q)&], when they exist, have lowe
energy than their incoherent counterparts. For the MUCD
it was impossible to find a coherent version in the reg
where it has lower energy than the UCCDW. An interesti
result of the HF calculation is that the local coheren
^rR,L(r )& is maximal when the charge density is equa
shared by both wells. For the UCCDW, this occurs alo
channels called LCR’s. As the separation between the w
increases, the width of the LCR’s become very small. F
ures 1–3 summarizes the HF results for levelN52. Figure 1
shows the energy of the four states defined above as a f
tion of d in Landau levelN52 and in the absence of tunne
ing. @We remark that all results presented in the present pa

a
,

FIG. 2. Real-space representation of the guiding center
pseudospin densities in the UCCDW forN52 and t50. ~a! d/ l
50.7, ~b! d/ l 52.0. The width of the linear coherent region
~LCR’s! become narrower as the interlayer separation increase
1-5
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FIG. 3. Evolution of the band structureE(X)
and of the density of states~DOS! in the
UCCDW at N52 and t50 as a function of the
interlayer separation. The interstripes separat
is approximatelya56.2l for these values ofd.
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are forn051. Also, in the absence of tunneling, the phase

^rR,L(r )& is arbitrarily chosen so that all spins point in thex̂
direction in the ground state.# As a measure of the coherenc
of a given state, we usêrR,L(0)&. This quantity takes its
maximal value 1/2~at n051) in the UCS. In Fig. 1, the
coherence decreases slowly for the UCCDW but very rap
for the CWC and is essentially zero in the MUCDW.

In Landau levelN52, the UCS is lower in energy fo
d/ l ,0.7 at which point it evolves continuously into th
UCCDW. At d/ l .1.6, there is a first-order transition into th
MUCDW. Figure 2 shows the guiding-center density in t
right and left wells as defined in Eq.~14! and the pseudospin
pattern @Eq. ~12!# for the UCCDW at d/ l 50.7 and d/ l
52.0. The formation of the LCR’s is clearly visible in th
figure. At larged, the coherence is very small~see Fig. 1!
and the guiding-center densities approach the stripe pa
appropriate to decoupled layers with filling factor 1/2. F
completeness, we also show in Fig. 3 the evolution of b
structure18 E(X) and of the density of states in the UCCDW
at N52 and fort50.

We now consider the collective excitations of the UC
and UCCDW. The dispersion is obtained by solving Eq.~22!
for the suceptibilityx. In the UCS, we can easily solve th
08532
f
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rn
r
d

equation to get the response function

x5S 0 0 0 0

0 0 0 0

0 0 2
a

v224ab
a i

v

v224ab
a

0 0 2 i
v

v224ab
a 2

b

v224ab
a

D , ~26!

where

a[^rx~0!&, ~27!

and

a~q!5t2^rx~0!&@J'~0!2Jz~q!#, ~28!

b~q!5t2^rx~0!&@J'~0!2J'~q!#. ~29!

The dispersion relation of the collective mode of the UCS
given by

v52Aa~q!b~q!. ~30!
1-6
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This mode is a Goldstone mode~at t50) associated with the
brokenXY symmetry of the UCS. For small wave vectors,
disperses linearly inq for t50 and dÞ0. This coherence
mode represents an elliptical motion of the pseudosp
around thex axis. The pseudospin motion becomes more a
more confined to thex-y plane asq decreases. For levelN
52 and in the absence of tunneling, the dispersion rela
of this mode softens at interlayer separationd/ l'0.64. This
in
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softening occurs at a finite valueql50.92 of the wave vec-
tor, signaling the onset of the formation of the UCCDW sta
with a wavelength~separation between stripes in a give
layer! of approximatelyl/ l 52p/0.92.

For our choice of phase, the pseudospins in the UCCD
rotate in thex-z plane. This implies that̂ry(q)&50. More-
over, in this shifted state, there is no modulation of thetotal
density, so that̂ r(q)&50 as well. TheF and D matrices
introduced in Eqs.~23! and ~24! then simplify to
F522i S 0 ^rx&sina@J'2J'8 # 0 ^rz&sina@Jz2Jz8#

^rx&sina@J'2Y8# 0 ^rz&cosa@Jz2J'8 # 0

0 2^rz&cosa@Jz2J'8 # 0 t1^rx&cosa@J'2Jz8#

^rz&sina@Jz2Y8# 0 t2^rx&cosa@J'2J'8 # 0

D ~31!

and

D5S 0 i ^rx&~sina! 0 i ^rz&~sina!

i ^rx&~sina! 0 i ^rz&cosa 0

0 2 i ^rz&cosa 0 i ^rx&~cosa!

i ^rz&~sina! 0 2 i ^rx&~cosa! 0

D . ~32!
all
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As is clear from Eq.~31!, the interlayer coherence present
the UCCDW introduces a coupling between the longitudi
and transverse response functions. From Eqs.~31! and ~32!,
we see thatxr,r→0 aski→0 so that the coupling with the
density response gets very small for small wave vectors
allel to the stripes, in which case the response is domina
by the pseudospin motion. Figure 4 shows the dispers
relations of the lowest four collective modes of the UCCD
at d/ l 51.0 with and without tunneling. The dispersion
given for wave vector along the direction of the stripes w
k'50. These curves are obtained by tracking the poles in
four response functionsxr,r , xx,x , xy,y , andxz,z for wave
vector k along the desired direction in the Brillouin zon
From the weight of given pole in each response function,
can infer the nature of the mode. The low-energy dispers
consists of in-phase and out-of-phase phonon modes~open
squares in Fig. 4! that both involve a coupling between th
densityr and pseudospinrx . The in-phase phonon mode
gapless while the out-of-phase phonon is gapped. B
phonons are gapped forki50,uk'u.0 @see Fig. 6~b!# in con-
trast with what happens for stripes in single-quantum-w
systems where the phonon frequency vanishes for allki50.
These behaviors are distinct because the nature of the i
stripe coupling in the single-layer and double-layer syste
is different in an important way. In the single-layer syste
there is very little exchange interaction between stripes. A
dispersion in the perpendicular direction comes from dir
coupling, i.e., the Hartree interaction. In the single-lay
case, modulations along the stripes are present and in
ciple introduce a gap in this direction. In practice, the ene
l
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cost for ‘‘sliding’’ stripes with respect to one another is sm
because the modulations are weak and is nearly average
due to the long-range nature of the Coulomb potential. Th
in calculations such a gap is essentially immeasurable.5 In
the present case, the coupling between stripes is due to
change; it is present even in the absence of modulat
along the stripes and is not averaged away due to the lo
range nature of the interaction. The exchange coupling is
by matrix elements between single-particle states in differ
LCR’s ~Ref. 18!; these become small in the limit of larged
or N but in general are not negligible.

In addition, one may also clearly see a linearly dispers
gaplessXY mode in Fig. 4 which, as in the UCS, represen
a motion of the spins in they-z plane. In the UCCDW, the
dispersion relation of this mode is folded into the first Br
louin zone~as is the case for the phonon modes as well!. In
Fig. 4, we show two branches of thisXY mode represented
by the solid diamonds. Figure 4~b! shows how tunneling af-
fects these dispersion relations. As expected, the pho
modes are not dramatically affected by switching on the t
neling while the phase (XY) mode becomes gapped.

The dispersion relations of the phase and in-phase pho
modes are plotted in Figs. 5 and 6 for directions parallel a
perpendicular to the stripes and for several values ofd/ l . For
the phase mode, the dispersion is linear in both directions
weaker in the perpendicular direction. Comparing Figs. 6~a!
and 6~b!, we see that the phonon dispersion is quadra
along the stripes and linear for direction perpendicular to
stripes. Asd increases, the phonon and phase mode dis
sions in the perpendicular direction become very weak
1-7
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R. CÔTÉ AND H.A. FERTIG PHYSICAL REVIEW B65 085321
eventually their gaps vanish in the limit of very larged. The
suppression of these gaps reflects the shrinking of the
change coupling discussed above and indicates that the
tem is essentially an array of weakly coupled on
dimensional systems in this limit. For the phonon mode,
results are consistent with the calculated dispersion for
phonon mode of stripes in single quantum well.5 The quali-
tative behavior of the gapless modes at low energies ma
understood in terms of a spin-wave model which will
developed in the next section.

In Fig. 4~a!, the out-of-phase phonon mode is seen
become degenerate with theXY mode at large values ofki .
Both modes soften at approximatelyqi /(2p/a)53.1 whend
increases, and atd/ l 51.6 (a is the separation between th
stripes in a given layer! they become unstable. The period
modulation along the stripes implied by this instability
consistent with the formation of a MUCDW or highly anis
tropic Wigner crystal with one electron per unit cell in ea
well. The softening apparently accompanies a first-or
transition into the MUCDW, since both the UCCDW an
MUCDW exist as solutions to the HFA both above and b
low the critical separation, and cross in energy very close
it. Note that for stripes in a single quantum well syste

FIG. 4. Dispersion relations calculated in the GRPA~a! without
and ~b! with tunneling for the lowest-energy collective excitatio
in the UCCDW in Landau levelN52 and for d/ l 51.0. These
dispersions are for wave vectork in the direction of the stripes
(k'50). The solid diamonds represent the phonon modes~in phase
and out of phase! while the lowest two branches of theXY mode
are represented by the empty squares.
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within HF theory the unidirectional CDW state is alway
unstable with respect to the formation of an anisotro
Wigner crystal. Here, the instability only occurs at lar
enough values ofd. In the MUCDW, the coherence i
quickly lost with increasingd as can be seen in Fig. 1.

IV. SPIN-WAVE ANALYSIS

As mentioned previously, the symmetry of the grou
state and the low-energy excitations are formally quite si
lar to those of a noncollinear ferromagnet, with helimagn
ordering.24 In this section, we demonstrate that such a mo
can be constructed that captures the low-energy behavior
explicitly demonstrates the origin of the two low-energ
modes. Our analysis uses the pseudospin analogy introd
above but now with the real electron density difference
tween wells which we denote by

Sz~r !5
1

2
@cR

†~r !cR~r !2cL
†~r !cL~r !#. ~33!

With the natural definitions for spin raising and lowerin
operators,

S1~r !5S2~r !†5cR
†~r !cL~r !, ~34!

FIG. 5. Dispersions of theXY mode of the UCCCW withN
52 andt50 for wave vector~a! parallel (k'50) and~b! perpen-
dicular (ki50) to the stripes and for several values of the interla
separation.
1-8
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DYNAMICS OF QUANTUM HALL STRIPES IN DOUBLE- . . . PHYSICAL REVIEW B 65 085321
we then have in-plane spin componentsSx5 1
2 @S11S2#,Sy

5(1/2i )@S12S2#. These spin operators obey the usu
commutation relations

@Si~r !,Sj~r 8!#5(
k

« i jkSk~r !d~r2r 8!, ~35!

wherei , j ,k5x,y,z and« i jk is the antisymmetric tensor.
These spin operators are obviously related to the spin

erators defined in Sec. II. The connection is most easily s
when the spin commutation relations are Fourier tra
formed, to give

@Sx~q!,Sy~q8!#5 iSz~q1q8!. ~36!

This should be compared to the guiding center density
spin density operators@Eqs.~12!# which obey the algebra

Nf@r~q!,r~q8!#52 isin~q3q8l 2/2!r~q1q8!,

Nf@r~q!,r i~q8!#52 isin~q3q8l 2/2!r i~q1q8!,

Nf@r i~q!,r j~q8!#5 i« i jkcos~q3q8l 2/2!rk~q1q8!, iÞ j .
~37!

FIG. 6. Dispersions of the in-phase phonon mode of
UCCCW with N52 and t50 for wave vector~a! parallel (k'

50) and ~b! perpendicular (ki50) to the stripes and for severa
values of the interlayer separation.
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It is clear that in the limit of smallq andq8 the density and
spin density operators decouple. Moreover, if we make
identification Si(q);Nfr i(q), one can see the direct con
nection between the microscopic operators and the effec
ones used in this section in the long-wavelength limit.26

If we are interested in just the low-energy, lon
wavelength physics, our two-layer system should be desc
able in terms of these operators.12 The most general qua
dratic Hamiltonian we can write down for the system that
consistent with the U~1! symmetry in the absence of tunne
ing takes the form

H5E drE dr 8$K i~r2r 8!@Sx~r !Sx~r 8!

1Sy~r !Sy~r 8!#1K'~r2r 8!Sz~r !Sz~r 8!%. ~38!

The functionsK i and K' are assumed to have a form th
will induce a spin density wave, i.e., stripes, in the grou
state. For example, they could take the~Fourier transformed!
form K i(q)5rsq

2,K'(q)5k(2q21q4j2) where q is the
wave vector,rs a spin stiffness, andk,j2 are positive con-
stants. One can see fork.rs that a uniform spin state will
be unstable to a state in which the spins tumble spatially
helimagnetic ordering. The precise form of the ground st
is difficult to find, even if the spin operators are treated cl
sically; however, qualitatively we know they will have
form similar to the stripe states in our Hartree-Fock analy
In any case, the results below do not depend on any spe
choice ofK i or K' , only on the requirement that there b
helimagnetic ordering in the ground state.

As is common in a spin-wave analysis,24 we begin by
treating the spins classically. Imposing the constraintSx(r )2

1Sy(r )21S2(r )251 with a Lagrange multiplierl(r ), Eq.
~38! may be minimized to obtain the three equations

E dr 8K i~r2r 8!Sx,y~r 8!5l~r !Sx,y~r !,

E dr 8K'~r2r 8!Sz~r 8!5l~r !Sz~r !. ~39!

Equations~39! together with the constraint equation spec
the ~classical! ground state. We assume the solutions to th
equations may be written in the form

Sx~r !5cosu~x![c~x!,

Sy~r !50,

Sz~r !5sinu~x![s~x!. ~40!

Given the symmetries ofH, it is clear that equal-energy
inequivalent states can be generated by rotatingS in the x
2y ~spin! plane, by translation@u(x)→u(x2u) for u a con-
stant#, or by rotation@u(x)→u(Q̂•r ), with uQ̂u51]. These
properties are responsible for the presence of the two gap
modes and their dispersions.

The spin-wave spectrum around this ground state is c
veniently found by working in a rotated spin basis, such t

e

1-9
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in the ground state all the spins are aligned along theẑ axis.24

We thus define new spin operators

S Sx8~r !

Sy8~r !

Sz8~r !
D 5S s~x! 0 2c~x!

0 1 0

c~x! 0 s~x!
D S Sx~r !

Sy~r !

Sz~r !
D . ~41!

ExpandingSz8[A12Sx8
22Sy8

2'12 1
2 @Sx8

21Sy8
2# and mak-

ing use of Eqs.~38!, ~39!, and~41!, to quadratic order inS8
after some algebra the Hamiltonian may be written as

H2E05E drE dr 8@Kxx~r ,r 8!Sx8~r !Sx8~r 8!

1Kyy~r2r 8!Sy8~r !Sy8~r 8!#, ~42!

where

Kxx~r,r 8!5s~x!K i~r2r 8!s~x8!

1c~x!K'~r2r 8!c~x8!2l~r !d~r2r 8!,

~43!

Kyy~r2r 8!5K i~r2r 8!2l~r !d~r2r 8!, ~44!

and the ground-state energy is

E05E drE dr 8@c~x!K i~r2r 8!c~x8!

1s~x!K'~r2r 8!s~x8!#. ~45!

In the classical ground state,Sz851. The spin-wave ap-
proximation amounts to approximating the spin commutat
relation betweenSx8(r ) andSy8(r 8) by

@Sx8~r !,Sy8~r 8!#5 id~r2r 8!Sz8~r !' id~r2r 8!. ~46!

Equation~42! is particularly easy to work with because the
commutation relations allow us to think ofSx8 as a general-
ized ‘‘position’’ andSy8 as a ‘‘momentum,’’ and in the Hamil-
tonian they are decoupled.

An exact computation of the normal modes of Eq.~42! is
quite difficult; however, we can understand the basic prop
ties of the spectrum through the symmetries of the Ham
tonian and the ground state. Figure 7 illustrates the shape
s(x) andc(x) in the stripe state for two values ofd/ l . Taking
a to be the distance between stripe centers in a single l
~i.e., the width of a full unit cell!, it is interesting and impor-
tant to notice thatH is invariant under the operationS8(r )
→S8„r1(a/2)x̂…; i.e., the primitive unit cell is half the size
one expects naively, becauses(x) enters the Hamiltonian
quadratically and is invariant unders(x)→2s(x1a/2). The
discrete translational invariance tells us that the norm
modes should be expanded in Bloch functions:

un~q!5E d2rhn,qx
* ~x!e2 iq•rSx8~r !, ~47!

pn~q!5E d2rhn,qx
~x!eiq•rSy8~r !, ~48!
08532
n
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hn,qx
~x1a/2!5hn,qx

~x!, ~49!

E
0

a/2

dxhn,qx
* ~x!hm,qx

~x!5dmn , ~50!

and22p/a<qx,2p/a defines the effective Brillouin zone
The functionshn,qx

may be chosen so thatH2E0 takes the
form

H2E05V(
n
E dq

~2p!2 F1

2
kn~q!un~2q!un~q!

1
1

2mn~q!
pn~2q!pn~q!G , ~51!

whereV is the system area, and

1

2
kn~q!5

1

VE drE dr 8hn,qx
* ~x!e2 iq•r

3Kxx~r ,r 8!eiq•r8hn,qx
~x8!,

1

2mn~q!
5

1

VE drE dr 8hn,qx
~x!

3eiq•rKyy~r2r 8!e2 iq•r8hn,qx
* ~x8!. ~52!

FIG. 7. Plots of the functionsc(x) ands(x) defined in Eq.~40!
for the UCCDW inN52 and fort50. ~a! d/ l 50.7, ~b! d/ l 51.5.
1-10
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DYNAMICS OF QUANTUM HALL STRIPES IN DOUBLE- . . . PHYSICAL REVIEW B 65 085321
From the form of Eq.~51!, it is clear that the excitation
frequencies of the system arevn

2(q)5kn(q)/mn(q). We thus
see that there will be gapless~zero! modes wheneverkn(q)
or 1/mn(q) vanishes. This occurs if there are choices for
Bloch functionshn,qx

(x) which satisfy either

E dr 8Kxx~r ,r 8!eiq•r8hn,qx
~x8!50 ~53!

or

E dr 8Kyy~r2r 8!e2 iq•r8hn,qx
* ~x8!50. ~54!

Using the symmetries of the ground state, one may find
choices ofhn,qx

(x) satisfying Eq.~53! or ~54!. For

hn50,qx50* ~x!5c~x![cosu~x!, ~55!

it is easily shown that Eq.~54! is satisfied. This mode repre
sents a uniform rotation of the ground-state spin patternS(r )
in the spinx-y plane; i.e., it is associated with the spontan
ous phase coherence in the ground state. Making use of
~39!, one may also show that Eq.~53! is satisfied for

hn50,qx5Q/2~x!5
du

dx
e2 iQ•r /2 ~56!

for Q5(4p/a) x̂. This second zero mode arises due to
translational invariance inH and is a phonon mode. It i
interesting to note that the two zero modes are found in
ferent parts of the Brillouin zone, the phase mode dispers
from the zone center, the phonon from the zone edge of
effective Brillouin zone. In our numerical calculations w
found both modes dispersing from the zone center. The
son for this is that our numerical technique obliges us
work with the naive primitive unit cell, with a resulting Bril
louin zone half the size of the one we use in this section
that the phonon mode is folded back to the zone center.
important to note that since two zero modes occur at dif
ent wave vectors, they do not mix together and complic
the dispersionvn(q). This point was missed in Ref. 18
where it was supposed that such mixing would lead to on
single gapless mode with appreciable oscillator strength
most response functions. The presence of two gapless m
dispersing from different points in the Brillouin zone is pr
cisely what one finds for the spin-wave spectrum of an
commensurate helimagnet.24

We are left with determining howv0(q) disperses from
the two zero modes. In the case of the phase mode, for w
1/m0(q) vanishes atq50, we may approximatekn50,qx

'kn50,qx50[k0 near q50 and expand 1/m0(q) in small

powers ofq to find

v0
2~q!'k0@rs

'qx
21rs

iqy
2#, ~57!

where
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'52

1

VE drE dr 8c~x!K i~r2r 8!~x2x8!2c~x8!,

~58!

rs
i52

1

VE drE dr 8c~x!K i~r2r 8!~y2y8!2c~x8!.

~59!

Thus, the phase mode disperses linearly fromq50. Notice
that if c(x) is only very different from zero in narrow re
gions, as occurs for large layer separations~see Fig. 7!, then
c(x)K i(r2r 8)c(x8) will be small unlessx andx8 are in the
same LCR. Due to the (x2x8)2 factor in rs

' ,rs
'!rs

i in this
limit; i.e., the dispersion of the phase mode perpendicula
the stripes becomes relatively weak. This is precisely
behavior observed in our numerical calculations of the c
lective modes.

For the phonon mode, it iskn50,q which vanishes asq
→Q/2. Writing dq5q2Q/2, it is not difficult to see how
kn50,qx

must behave for smalludqu, once one recognizes tha

the ‘‘position’’ field un50,q5Q/21dq , when Fourier trans-
formed back to real space, represents a displacement pe
dicular to the stripes. In this case, the stiffness must have
standard smectic form5 kn50,q5Q/21dq5k'dqx

21kbdqy
4

whereŷ is the direction parallel to the stripes and the abse
of a dqy

2 term is a direct result of the rotational symmetry
the Hamiltonian.kb is a bending modulus for the stripes an
represents an energy cost for introducing a curvature al
them. Writingm0,q5Q/21dqW'm0, we find

v0
2~Q/21dq!'

1

m0
@k'dqx

21kbdqy
4#. ~60!

Thus, we see the phonon mode disperses linearly withudqu,
except along the direction parallel to the stripes, for which
disperses quadratically. A careful examination of the phon
mode in our numerical results confirms this behavior.

In closing this section, we note that an observation of
phonon mode dispersion would yield a direct confirmation
stripe ordering in this system: the quadratic dispersion al
the stripes is indicative of spontaneous smectic ordering

V. CONCLUDING REMARKS

In a double-layer system, the UCS is unstable with resp
to the formation of a UCCDW at a critical value of the in
terlayer separationd5dc(N). Working in the GRPA, we
have computed the dispersion relations of the low-ene
collective modes of the UCCDW in a range ofd where this
state is expected to be the ground state of the tw
dimensional electron gas~2DEG! in the bilayer system. The
UCCDW has two Goldstone modes that are respectively
lated to the broken translational symmetry of the stripes
to the broken U~1! symmetry of the coherent state. In th
long-wavelength limit, the dispersion relations of the
modes are consistent with the spin-wave dispersion obta
in a noncollinear ferromagnet with helimagnetic ordering

We expect that, as is the case for the stripe phase
single-quantum-well~SQW! system, the UCCDW state stud
1-11
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R. CÔTÉ AND H.A. FERTIG PHYSICAL REVIEW B65 085321
ied in this paper should also exhibit strong anisotropic tra
port properties. No experiment has yet been done, howe
to detect the formation of such a state in higher Landau
els in DQW systems. But our calculation can be applied w
some minor changes to SQW systems where two Lan
levels are coupled by an external field. An example of t
was recently studied by Pan and collaborators.27 In their ex-
periment, they studied the transport properties of a w
quantum well where Landau levels from two electrical su
bands were occupied. When the magnetic field was tilte
constant filling factorn56, the Zeeman energy increase l
to the closing of the gap between two levels with differe
electrical, Landau level, and spin indices. In the vicinity
this level crossing, Panet al. observed a strongly anisotrop
behavior of the longitudinal conductivity that bears close
semblance with that of the stripe state in SQW systems.
anisotropic transport may be due to the formation of a coh
ent charge-density-wave state involving half-filled leve
with different subband indices, which is closely analogous
the double-layer system studied here. However, effects of
parallel field must be accounted for and may involve s
textures in the ground state, in addition to the stripe order
itself.28

The phonon and phase modes discussed in this pape
be detected experimentally. The recent tunneling experim
.
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of Spielmanet al.,29 for example, measured the dispersio
relation of the pseudospin-wave mode in the uniform coh
ent state. For a given value of an applied parallel magn
field, the tunneling current has a peak at a biasV that corre-
sponds to an energyeV5\v(Q) whereQ5d/ l i

2 and v is
the frequency of the pseudospin mode. In principle, such
experiment could be carried out in the UCCDW state co
sidered in this paper and the dispersion relation of the ph
mode probed. More work is necessary, however, to ens
that the parallel field does not destroy the UCCDW state
also to find out how the dispersion relation of the pha
mode is changed when a parallel magnetic field is appl
Finally, the phonon mode can in principle be detected
inelastic light scattering or surface acoustic-wa
techniques.30
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~2000!.
9D.G. Barci, E. Fradkin, S.A. Kivelson, and V. Oganesya

cond-mat/0105448~unpublished!.
10The effect of quantum fluctuations on the spatial symmetry of

ground state is at present controversial. See A.H. MacDon
and M.P.A. Fisher, Phys. Rev. B61, 5724 ~2000!; A. Lapatni-
kova, S. Simon, B.I. Halperin, and X.G. Wen
cond-mat/0105079~unpublished!. At any experimentally acces
sible temperature, the stripe crystal is surely destabilized~see
Ref. 5!.

11M.M. Fogler and V.M. Vinokur, Phys. Rev. Lett.84, 5828
~2000!; E. Fradkin, S.A. Kivelson, E. Manousakis, and K. Nh
ibid. 84, 1982 ~2000!; C. Wexler and A. Dorsey, Phys. Rev.
64, 115312~2001!.

12For a review, see article by S.M. Girvin and A.H. Macdonald,
Perspectives in Quantum Hall Effects~Ref. 1!.

13H.A. Fertig, Phys. Rev. B40, 1087~1989!.
,

e
ld

,

14I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Ph
Rev. Lett.87, 036803~2001!.

15X.G. Wen and A. Zee, Phys. Rev. Lett.69, 1811~1992!.
16Z.F. Ezawa and A. Iwazaki, Phys. Rev. B47, 7295~1993!.
17I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Ph

Rev. Lett.84, 5808~2000!.
18L. Brey and H.A. Fertig, Phys. Rev. B62, 10 268~2000!.
19For N50, the range ofd values for which the unidirectiona

modulated state is the Hartree-Fock ground state is very nar
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