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Dynamics of quantum Hall stripes in double-quantum-well systems
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The collective modes of stripes in double-layer quantum Hall systems are computed using the time-
dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer
coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the
other a pseudospin wave associated with a brokéh Bymmetry. For large layer separations the modes
disperse weakly for wave vectors perpendicular to the stripe orientation, indicating that the system becomes
akin to an array of weakly coupled one-dimensio¥dl systems. At higher wave vectors the collective modes
develop a roton minimum associated with a transition out of the coherent state with further increasing layer
separation. A spin-wave model of the system is developed, and it is shown that the collective modes may be
described as those of a system with helimagnetic ordering.
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I. INTRODUCTION AND SUMMARY OF RESULTS modulation sets in such that the electron density oscillates
between the layers as a function of positidiThis state is
Quantum Hall systems are by now well known to supportsimultaneously interlayer coherent and smectic in spatial
a broad range of condensed matter phenomeéHaese in-  symmetry. With increasingl, the regions of coherence be-
clude localization physics, electron solidificatidgvigner  come relatively narrow in one direction, forming “linear co-
crystalg, chiral Luttinger liquids at quantum Hall edges, and herent regions(LCR’s). (3) For negligibly weak interlayer
Fermi liquid behavior. Recently added to this list is highly tunneling, the coherence is spontaneous and a corresponding
anisotropic transport in moderate magnetic fields, in whichGoldstone mode should be present in the excitation spec-
electrons populate several Landau levelSuch behavior trum. When the LCR's are sufficiently narrow compared to
was anticipated by mean-field studies predicting unidirecthejr separatioiwhich occurs at largel and/or largeN), the
tional charge-density-waveCDW) ground states for elec- system may be thought of as an array of coupled one-
trons in high Landau levef$? While more careful studi€s gimensional XY models. Different possible quantum-

demonstrate that within Hartree-Fock theory such groundjigqrqered states may exi€2® which in principle can be
states are unstable to the formation of “modulated” Stripedistinguished by tunneling eiperiments

states which are essentially highly ~anisotropic ~ two- In order to predict which, if any, of these quantum disor-

dimensional Wigner crystal§‘stripe crystals™), quantum . . o
fluctuations may restore the translational symmetry along thgermgs m|ght. oceur, It IS hecessary t'o understand the low-
energy collective modes in some detail and to create a model

stripes’~%° It has been noted that the CDW state has the;[h ¢ oot . hich is euffeienthy Simple (o b
symmetry of a two-dimensional smecfi@nd this analogy at captures them which 1S sutficiently simple o be suscep-

with liquid crystals has been exploited to yield a number 0ftible to f_urther gnalysié.'l_’his motivates our present study.
useful resultd! Beyond its use in specifying a low-energy theory, the collec-
A seemingly unrelated set of physical phenomena occurlv® modes are interesting on their own, as they are some-
in double-quantum-well systent®QWS's) in the quantum times detectible in electromagnetic absorptfoor Raman
Hall regime. For large magnetic fields, these systems suppofcattering” experiments and allow one to learn about which
spontaneous interlayer coheretfcand exhibit an associated States are realized in real samples.
Goldstone modé>** A precursor of the Josephson In what follows, we compute the collective mode spec-
tunneling®*® may have been observ€dn these systems, trum of the electrons in a DQWS, in a perpendicular mag-
contributing to the recent excitement about them. netic field, in which several Landau levels are occupied, us-
When immersed in more moderate magnetic fields, sucing the time-dependent Hartree-Fock approximation
that several Landau levels are occupied, it becomes evideff DHFA).?® Counting both the spin and layer index degrees
that the physics of stripeendinterlayer coherence are simul- of freedom, the situations we consider involvd #llled Lan-
taneously relevant in the bilayer system. This situation waslau levels, which are taken to be in¢as appropriate for
recently explored® For a system in which each layer is half- large cyclotron energyiw., wherew,=eB/m*c, B is the
filled in the Nth Landau level, with some simplifying as- magnetic field, andn* the effective mass of electrons in the
sumptionglower Landau levels filled and inert, Landau level quantum wells, and large Zeeman couplingor simplicity
mixing negligible, and Zeeman coupling large enough thatve ignore finite thickness of the wells. In addition to thd 4
spins are polarizedhe following was found(1) For small filled levels, there is a level, with Landau indék which
enough layer separation and any valueNyfan interlayer contains precisely enough electrons so that the total filling
coherent state of uniform density is forme@) Above a factor v, defined as the number of electrons per magnetic
critical layer separationd.(N), a unidirectional density flux quantum passing through the plane, IS41. The sys
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tem considered has no interlayer bias, so that the highesb this transition, and this behavior in principle allows a de-

level in each layer will be half-filled on average. tection of the transition by inelastic light scattering. Whether
As discussed above, if the individual layers are isolatedsuch a bilayer stripe crystal is stable with respect to quantum

this is precisely the situation in which one expects stripes tdluctuations analogous to those being discussed in the single

form. For finite layer separations, it is clear that the groundayer cas&'%is at present unclear.

state will have the electron-rich regions in one layer align Thjs article is organized as follows. In Sec. Il we sketch

directly above the hole-rich regions in the other. Further—the Hartree-Fock and TDHFA formalism, providing some de-

more, for a range of layer separations, the stripe edges hyails about its application to the two-layer stripe system. Sec-

bridize between the layers so that the electron occupatiofion Il contains a more detailed description of our results,

continuously shifts between the Iayers as a function Ofand Sec. IV shows how the |ow-energy spectrum may be

pOSitiOﬂ?’s An example of such a ground state is illustrated in understood in the pseudospin |anguage_ We conclude with a

Fig. 2. To understand this state and its collective modes it isummary and discussion in Sec. V.

convenient to adopt a pseudospin representation, in which an

electron pseudospin is “up” when occupying one layer and

“down” when occupying the other. In this language, the !l HARTREE-FOCK DESCRIPTION OF THE CDW

stripe ground state involves a unidirectional spatial tumbling GROUND STATE

of the ngln and may be thought of as having helimagnetic \ye consider an unbiaised symmetric DQWS in a perpen-
ordering- A_s the separation increases, the electron densityji.jar magnetic field=Bz at total filling factor »=4N
tends to reS|d_e more sharply in one well or the other, and the_ vo WhereN=0,1,2 . . . is theLandau level index andt,
transition regions betw_een layers become narrdficer. .is the filling factor of the partially filled level. Each Landau

In the absence of interlayer tunneling, the pseudospifleye| has two spin states and two layer states specified by the
density may tumble from-z to —z by passing through the  indexj=R,L. The layer states hybridize into symmet¢t)
direction, they direction, or any direction in between. Thus, and antisymmetri¢AS) states in the presence of tunneling.
each of the transition regions—the LCR’s mentionedWe assume the magnetic field to be strong enough so that the
above—supports akY degree of freedom, which is sponta- lower 4N levels are completely filled with electrons and can
neously broken in the ground state. In addition, this statde considered as inert. The Zeeman energy is assumed to be
obviously has broken translational symmetry. much larger than the S-AS gap and so there is no spin texture

Because of the two broken symmetries, theretaregap-  in the ground state. The electron gas is completely spin po-
less excitations above the stripe ground state. One is assod#rized and only the layer degree of freedom need be consid-
ated with the brokeXY symmetry—alternatively thought of ered. In the ground state, the electronic charge is equally
as a phase coherence between the Welfs-which dis-  distributed between the two wells.
perses linearly with wave vector. The other is a phononlike In the Landau gauge where the vector potental
mode which disperses quadratically for wave vectors parallet (0,Bx,0), the electron wave functions are given by
to the stripes and linearly perpendicular to them. This is
analogous to what is seen in incommensurate helimaghets. 1
. Atypical dispersion relation for th&Y mode is displayed I ()= _e*iXy/IZ(PN(X_ X)x;(2), (1)
in Fig. 5 for several values da/l, wherel = \#c/eB is the JL,
magnetic length. As may be seen, the linear mode tends to
disperse more strongly along the stripes than perpendicularvhereN and X are the Landau level and guiding center in-
to them, and in the limit of largé, the latter dispersion may dices andy;(z) is the envelope wave function of the lowest-
become quite weak. This may be understood in terms of thenergy electric subband centered on the right or left well.
exchange coupling among LCR’s, which vanishes as they,(x) is an eigenfunction of the one-dimensional harmonic
become arbitrarily narrow? It is possible that quantum fluc- oscillator. Because the fully occupied Landau levels are con-
tuations can effectively wipe out the inter-LCR exchangesidered as inert, we need only consider the partially filled
coupling, leading to a state analogous to a “slidiXy Landau level. We can then drop the Landau level index from
model.”82° now on.

Several other features appear in the collective mode spec- To describe the various CDW ground states, we define the
trum. As is typical of such calculations, a number of higheroperator
energy modes are present, one of which may be interpreted
as a gapped “out-of-phase” phonon mode, in which the 1 _ o
stripes in different layers oscillate against one another. In pi'j(q)zN_ > e iaXtiaayl IZCiT,ij,x—qyﬂa (2
Fig. 5, we see that this mode becomes degenerate with the ¢ X
XY mode in its dispersion relation along the stripe direction
and develops a roton minimum which touches zero at a critiwherei,j=R,L andN,, is the Landau level degeneracy. In
cal separatioml, , signaling an instability in which modula- the ground stat(p; ;(q))# 0 whereq is a reciprocal lattice
tions form along the stripes. The instability, however, is firstvector of the CDW. By definition(pr r(q=0))=(p. (q
order in nature since the modulation amplitude changes dis=0))=1¢/2. In the HFA, the ground-state energy per elec-
continuously at the transitiolf. It is a surprising feature of tron in units of e*/«| in the partially filled level can be
our results that a collective mode appears to go soft so closeritten in term of these operators as

<
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EHF: - V_othpr'L(q:O»]

1
+ 5 2 [H(@) = X(@)][Kpra(@)?
0 q
+pL(a))?]

1 ~
+ > H(@){(prr(Q)){pL,L(—))
0°qg

1 ~
T ; X(@(prL(=D)pLr(@). (3
In this equationt is the tunneling energy in units @/ I,
andH(q),X(q) are the Hartree and Fodktrawell interac-
tions while H(q) andX(q) are the Hartree and Fodhter-
well interactions. For very narrow wells wheng(z) are
highly localized, these interactions are given by

H(q)= %)[L%(qzlzfznzeqz'z’% (4)

ﬁ(q)=($) [L%(q21%2)]%e¥1%12e 0,

(ihop+p) 5q,q"— UR,R(qrq”)
I:5q,q"_ UL,R(Qaqu)

>

q//

|

where u is the chemical potential. The effective potentials
Uj j (in units ofe?/kl) are defined by

Urr(0,9")=[H(a—q")—X(q—9") {prr(A—a")) Yq.q'

+H(g—a"){pL (A=A ) Yaq )

U(9,9")=[H(q—9")=X(a—d") KpL.(a—9")) Yq.q

+H(a—a"){(prr(A—A")) ¥qq' 9)
Ur(9,0")=—=X(q—a){pLr(A=0)) ¥qq» (10
UL r(0,0")==X(@=0)pr (A=) Ygq (11

where yq,q,:e“qu"f/Z. The procedure to solve for the
(pi,;(q))’s is described in detail in Ref. 23.

It is instructive at this point to describe the electron state

in a DQWS by using a pseudospin language where sktes

t5q,q”_ UR,L(qqu)
(Iﬁwn-f- ,U,)gq’qn_ UL,
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X(q)= f:dyaoque-yz’z[L%(yzlzuz,

7<(q)=f:dyJo(yqI)e‘yz’ze‘yd"[L‘&(y2/2)]2,

whered is the center-to-center separation between the wells
and Lﬁ,(x) are generalized Laguerre polynomials. Because of
the neutralizing positive backgrounds of ionized donors on
both sides of the DQWS, we ha¥(0)=H(0)=0 in Ey.

The order parametefgp; j(q))} are computed by solving
the HF equations of motion for the single-particle Green’s
function

Gii(X,X",1)==(Tc x(7)¢] 4, (0)), (5)

whose Fourier transform we define as

I

Gi,j(qu): N(j;
X, X'

e X XNi2g, ~q,12G; j(X. X, 7),

(6

so thatG; ;(q,7=0")=(p;,i(Q))-
In the HFA, these equations of motion are given by

)(GR,R(q”!wn) GR,L(q"rwn)>:(ﬁ5q,0 0 )
L(0,9") )\ GLr(Q"wn) G (9", 0p) 0 11 84,0
(7)
[
1
p(A)=5lprer(@+pL (D], (12

1

px(Q)= E[PR,L(q) +oLr(@],
1

py(Q)= E[pR,L(Q) —pLr(D],

1
pAQ)= E[PR,R(Q) —pL(@],

p.(0) = px(A)X+ py(Q)Y.

These operators act in the restricted Hilbert space of the par-
tially filled Landau level. To get a real-space representation
of the ordered states, we take the Fourier transform

<pi,j<r>>=§ (pi(q))eldr, (13

A local filling factor in each well can then be defined as

andL are mapped to up and down spin states. For this, we

define the pseudospin operators

vi(r)={(pi,(r)). (14)
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For unidirectional modulations, the quantity(r) will take We derive the dispersion relations of the collective exci-
values between 0 and 1. Similarly, a Fourier transform of theations of the CDW states in the DQWS by tracking the poles
order parameters defined in EGL2) will define the total of the retarded density and pseudospin response functions.
density(p(r)) and spin densityp ,(r)). Note that these den- These are obtained by analytical continuation of the two-
sities are related to the density of orbit centers and not to thparticle Matsubara Green’s functions

real density of electrons. For instance, when Landau mixing

is neglected, the real “densitiest; ;(q) are given by Xii k(4,9 7)==Ng(Tp; j(d,7)pii(—q",0))
ni (@) =Ny4Fn(@)p; ;(a), (15) +Ng(pi j(@)pri(=a)), (19
whereF(q) is a form factor appropriate to Landau lew¢l ~ Which we compute in the generalized random phase approxi-
given by mation (GRPA). The procedure is explained in details in
Refs. 5 and 23. It is convenient to work in the pseudospin
—q?? 0 g2 language where we can define the matrix
Fn(a)=exp — N5 (16)

Xpp Xpx Xpy Xpz
Xx.p Xxx Xxy Xxz
X= . (20
5 Xy,p Xyx Xyy Xyz
EHFz_V_OthKpX(O))] Xzp Xzx Xzy Xzz

These pseudospin Green’s functions are related to the origi-
nal Green’s functions of Eq19) by the transformation

In the pseudospin language, the HF energy can be rewrit-
ten as

1
+— 2 Y(@)p(—D))p(a))
0 q

1
1 X"H=Z 07X kT (21
+ 1 2 3D~ D)o D) 4
where v,u=p,x,y,z. Here o/ ™* are Pauli matrices and
o=(2}.
The summation of the bubbles and ladder diagrams of the
GRPA can be expressed as an equation of motioly fofrthe

form

1
to g J@(p (=) (pu(@), (1D
where the effective interactions are defined by

Y(q)=H(q)+H(q)—X(a), _
3 (0+i9)x(a.",0)= 2 F(a,q)x(q",q",@)=D(a.q").
Jo(a)=H(a)=H(@)=X(a), | (22

J. (q)=—X(q). (18 HereF andD may be written schematically as

(pysinalY—Y']  (pgsinald,—3.]  (pysinald—J]  (ppsinald,~J]
| (posinala,=Y'] (psina[Y-3[]  (pjcosald,~3i]  —(py)cosald — ;]
P22 psinald, —Y'] —(pjcosald— 3] (pysinalY-Jl]  t+(ppcosafd, 1| P2

(psinald,~Y'] (pycosa[d, —3;] t—(pycosa[d,—I;]  (p)sinalY—J;]

and

i{p)(sina) i(py(sina) i{py)(sina)  i(p,)(sina)
i{py)(sina) i{p)(sina) i(pycosa  —i(py)(cosa)
D= i{py)(sina) —i(pyHcosa i(p)(sina) i(pyy(cosa) |- 249
i{pz)(sina) i{py)(cosa) —i(py)(cosa) i(p)(sina)
These matrices contain wave vector dependence that is not shown. For examplef im#tex, the first entry is explicitly
given by
"|f

. }[Y(q—q")—wq")]. 25

—2i{p)sina[ Y =Y']— —2i{p(g—q"))sin
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The other terms in the matrix, as well as those in the matrix  d/I=0.7
D, have analogous definitions. Finally, for the tunneling term
in F34 and F,3 is diagonal in the wave vector index, i.¢.,
—13,,4v- Equation(22) may be solved by diagonalizirfg®®

and the collective mode frequencies found from its eigenval-
ues. From the eigenvectors of thematrix, it is also possible

to extract the motion of the guiding-center densities and of
the pseudospin in a given mode.

It is interesting to note that fofp, ,)=0 andt=0, the
forms of F and D indicate that in the equations of motion
Xppr Xpzv Xzp» @nd x,, completely decouple from
Xxx» Xxys Xyx» andyy,. This indicates that distortions of
the stripes involving motion of charge either within the lay-
ers or between them is completely decoupled from any “in-
plane” XY motion of the pseudospins; i.e., phonon modes
and spin-wave modes will create poles in different, distinct  d/l=2.0
response functions. The presence of coherence—a nonvar
ishing(py) or (py)—mixes these motions, so that poles from __—f
all the collective modes appear in all the response functions
This phenomenon is closely related to “spin-charge cou-
pling” that is generically present in multicomponent quan-
tum Hall systemsand has important consequences for the
charged excitations in this systéfh.For the collective
modes, we will see below that the low-energy interlayer
charge degrees of freeddlistortions that change,) are in
a sense conjugate to the in-plane degrees of freeggy) (
and distortions oboth are involved in any given collective
mode.

density

(a)

density

(b)

Ill. NUMERICAL RESULTS FIG. 2. Real-space representation of the guiding center and
. pseudospin densities in the UCCDW fbir=2 andt=0. (a) d/I
In Ref. 18 the energies of several ordered ground states atg 7, (n) d/I=2.0. The width of the linear coherent regions

vo=1 were computed in the HFA. The states considereqLcR’s) become narrower as the interlayer separation increases.
there were a uniform coherent stdtéCS), a unidirectional

coherent charge density wa¥dCCDW), a modulated uni- \vigner crystal(CWC) with a square lattice. We refer the
directional charge density wav®UCDW), and a coherent roader to Ref. 18 for more detailed discussions of these
states. FoN>0, it was found that the ground state of the

-0.25 vos | :i electron gas evolves from the _UCS fd<d(N) to the
- | ——owe ’ UCCDW at larger values af and finally to the MUCDW as
| | —— mucow 1= the separation between the wells increases. At lakgihe
i 12 Wigner crystal state is only lowest in energy for Landau level
i 11 N=0. [There is, however, a small region dffor d>d. in
Z o0k - L0 N=0 for which the UCCDW is lowest in energgee Ref.
) 0.9 18)]. For all ordered states, the lowest energy is obtained
S i dos é when the density pattern in both wells are shifted with re-
2 I Jo7 T2 spect to one another. Moreover, coherent stidttes with
é i P— dos 7 nonzero value ofpr((Q))], when they exist, have lower
= i energy than their incoherent counterparts. For the MUCDW
w -0.35 0:3 it was impossible to find a coherent version in the region
0.4 where it has lower energy than the UCCDW. An interesting
0.3 result of the HF calculation is that the local coherence
0.2 (pr.L(r)) is maximal when the charge density is equally
0.1 shared by both wells. For the UCCDW, this occurs along
-0.40 0.0 channels called LCR’s. As the separation between the wells
0.0 1.0 2.0 3.0 increases, the width of the LCR’s become very small. Fig-

di ures 1-3 summarizes the HF results for leMet 2. Figure 1
FIG. 1. Hartree-Fock energy per electron and coherence as $hows the energy of the four states defined above as a func-
function of the interlayer separation in the UCS, CWC, UCCDW, tion of d in Landau leveN=2 and in the absence of tunnel-
and MUCDW states in Landau levil=2 and fort=0. ing. [We remark that all results presented in the present paper
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DOS (a.u.)
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FIG. 3. Evolution of the band structuig(X)
and of the density of state¢DOS in the
UCCDW atN=2 andt=0 as a function of the
interlayer separation. The interstripes separation
is approximatelya=6.2 for these values ofl.
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0 10 30
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DOS (a.u.)
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are forvy=1. Also, in the absence of tunneling, the phase ofequation to get the response function

(pr,L(r)) is arbitrarily chosen so that all spins point in the
direction in the ground stafeAs a measure of the coherence
of a given state, we usépr (0)). This quantity takes its
maximal value 1/2(at vo=1) in the UCS. In Fig. 1, the
coherence decreases slowly for the UCCDW but very rapidly
for the CWC and is essentially zero in the MUCDW.

In Landau levelN=2, the UCS is lower in energy for
d/I<0.7 at which point it evolves continuously into the
UCCDW. Atd/lI=1.6, there is a first-order transition into the

MUCDW. Figure 2 shows the guiding-center density in the

right and left wells as defined in E¢L4) and the pseudospin
pattern [Eq. (12)] for the UCCDW atd/I=0.7 andd/I
=2.0. The formation of the LCR’s is clearly visible in this

figure. At larged, the coherence is very smdlee Fig. 1

and the guiding-center densities approach the stripe pattern
appropriate to decoupled layers with filling factor 1/2. For
completeness, we also show in Fig. 3 the evolution of band
structuré® E(X) and of the density of states in the UCCDW

atN=2 and fort=0.

where

and

0O 0 0 0
0 O 0 0
0 a . w
X w2—4aba Iw2—4aba G
) D) b
0 0 —j 5 a 2 5 a
w“—4ab w“—4ab
a=(p,(0)), (27)
a(q) =t—(px(0))[I.(0)—J,(a)], (28)
b(aq)=t—(px(0))[J, (0)—J, (a)]. (29

The dispersion relation of the collective mode of the UCS is
We now consider the collective excitations of the UCSgiven by

and UCCDW. The dispersion is obtained by solving &)
for the suceptibilityy. In the UCS, we can easily solve this
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This mode is a Goldstone modatt=0) associated with the softening occurs at a finite valug =0.92 of the wave vec-
brokenXY symmetry of the UCS. For small wave vectors, it tor, signaling the onset of the formation of the UCCDW state
disperses linearly irg for t=0 andd#0. This coherence with a wavelength(separation between stripes in a given

mode represents an elliptical motion of the pseudospinLaye') of approximatelyh/| =2/0.92.

: . . For our choice of phase, the pseudospins in the UCCDW
around thex axis. The pseudospin motion becomes more amiiotate in thex-z plane. This implies thatp,(q))=0. More-

more confined to the-y plane asq decreases. For lev®l ey, in this shifted state, there is no modulation of tibial
=2 and in the absence of tunneling, the dispersion relatior@jensity, so thatp(q))=0 as well. TheF and D matrices
of this mode softens at interlayer separattih~0.64. This introduced in Egs(23) and(24) then simplify to

0 (posinald, 3] 0 (py)sina[J,—J;]
| (pwsinald, — Y] 0 (p,ycosalI,~ ! ] 0
= 0 ~(pa)cosal,— 3. ] 0 th(pgcosald, ~ 31|
(pysinalJ,—Y'] 0 t—{pyycosa[J, —J]] 0
and
0 i{py)(sina) 0 i{py)(sina)
i{py)(sina) 0 i{p,cosa 0
D= v >O —i{p,)cosa <p>0 i(py)(cosa) | (32
i{py(sina) 0 —i{py)(cosa) 0

As is clear from Eq(31), the interlayer coherence present in cost for “sliding” stripes with respect to one another is small
the UCCDW introduces a coupling between the longitudinalbecause the modulations are weak and is nearly averaged out
and transverse response functions. From E8H. and (32), due to the long-range nature of the Coulomb potential. Thus,
we see thaj, ,—0 ask—0 so that the coupling with the in calculations such a gap is essentially immeasurale.
density response gets very small for small wave vectors pathe present case, the coupling between stripes is due to ex-
allel to the stripes, in which case the response is dominatechange; it is present even in the absence of modulations
by the pseudospin motion. Figure 4 shows the dispersiomalong the stripes and is not averaged away due to the long-
relations of the lowest four collective modes of the UCCDW range nature of the interaction. The exchange coupling is set
at d/I=1.0 with and without tunneling. The dispersion is by matrix elements between single-particle states in different
given for wave vector along the direction of the stripes withLCR’s (Ref. 18; these become small in the limit of large

k, =0. These curves are obtained by tracking the poles in ther N but in general are not negligible.

four response functiong, ,, xxx, Xy, andy,, for wave In addition, one may also clearly see a linearly dispersing
vector k along the desired direction in the Brillouin zone. gaplessXY mode in Fig. 4 which, as in the UCS, represents
From the weight of given pole in each response function, weax motion of the spins in thg-z plane. In the UCCDW, the
can infer the nature of the mode. The low-energy dispersionlispersion relation of this mode is folded into the first Bril-
consists of in-phase and out-of-phase phonon md@dpen louin zone(as is the case for the phonon modes as )wéidl
squares in Fig. ¥that both involve a coupling between the Fig. 4, we show two branches of thiY mode represented
densityp and pseudospip, . The in-phase phonon mode is by the solid diamonds. Figurgld) shows how tunneling af-
gapless while the out-of-phase phonon is gapped. Botfects these dispersion relations. As expected, the phonon
phonons are gapped f&j= 0k, |>0 [see Fig. @] in con-  modes are not dramatically affected by switching on the tun-
trast with what happens for stripes in single-quantum-wellneling while the phaseXY) mode becomes gapped.

systems where the phonon frequency vanishes fdg;al0. The dispersion relations of the phase and in-phase phonon
These behaviors are distinct because the nature of the intemodes are plotted in Figs. 5 and 6 for directions parallel and
stripe coupling in the single-layer and double-layer systemgerpendicular to the stripes and for several valued bf For

is different in an important way. In the single-layer system,the phase mode, the dispersion is linear in both directions but
there is very little exchange interaction between stripes. Anyweaker in the perpendicular direction. Comparing Figs) 6
dispersion in the perpendicular direction comes from direcend 6b), we see that the phonon dispersion is quadratic
coupling, i.e., the Hartree interaction. In the single-layeralong the stripes and linear for direction perpendicular to the
case, modulations along the stripes are present and in pristripes. Asd increases, the phonon and phase mode disper-
ciple introduce a gap in this direction. In practice, the energysions in the perpendicular direction become very weak and
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FIG. 4. Dispersion relations calculated in the GRBAwithout by {2mia)
and (b) with tunneling for the lowest-energy collective excitations FIG. 5. Dispersions of th&Y mode of the UCCCW witiN
in the UCCDW in Landau leveN=2 and ford/I=1.0. These  _, . 4t—0 for wave vector(@) parallel , =0) and(b) perpen-

dispersions are _for wave vectér in the direction of the stripes dicular (k;=0) to the stripes and for several values of the interlayer
(k, =0). The solid diamonds represent the phonon mdufeghase separation

and out of phasewhile the lowest two branches of th€Y mode

are represented by the empty squares. within HF theory the unidirectional CDW state is always

unstable with respect to the formation of an anisotropic
eventually their gaps vanish in the limit of very largeThe ~ Wigner crystal. Here, the instability only occurs at large
suppression of these gaps reflects the shrinking of the exenough values ofd. In the MUCDW, the coherence is
change coupling discussed above and indicates that the sygdickly lost with increasingl as can be seen in Fig. 1.
tem is essentially an array of weakly coupled one-

dimensional systems in this limit. For the phonon mode, our IV. SPIN-WAVE ANALYSIS
results are consistent with the calculated dispersion for the _ _
phonon mode of stripes in single quantum weTlhe quali- As mentioned previously, the symmetry of the ground

tative behavior of the gapless modes at low energies may bgtate and the low-energy excitations are formally quite simi-
understood in terms of a spin-wave model which will belar to those of a noncollinear ferromagnet, with helimagnet

developed in the next section. ordering?4 In this section, we demonstrate that such a model
In Fig. 4@a), the out-of-phase phonon mode is seen tocan be constructed that captures the low-energy behavior and
become degenerate with the¥ mode at large values ¢f.  explicitly demonstrates the origin of the two low-energy

Both modes soften at approximately/(2/a) = 3.1 whend modes. Our analysis uses the pseudospin analogy introduced
increases, and at/l =1.6 (a is the separation between the above but now with the real electron density difference be-
stripes in a given lay@ithey become unstable. The period of tween wells which we denote by

modulation along the stripes implied by this instability is .

consistent with the formation of a MUCDW or highly aniso- _ t T

tropic Wigner crystal with one electron per unit cell in each SN = LR YR = gDy (N] 33
well. The softening apparently accompanies a first-order

transition into the MUCDW, since both the UCCDW and With the natural definitions for spin raising and lowering
MUCDW exist as solutions to the HFA both above and be-operators,

low the critical separation, and cross in energy very close to

it. Note that for stripes in a single quantum well system, S.(N=S_(NT=yk)y(r), (34)
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006 It is clear that in the limit of smaltj andq’ the density and

i diii L spin density operators decouple. Moreover, if we make the
005 d/=1.0 . identification S;(q) ~N,pi(q), one can see the direct con-
[ ik ’ nection between the microscopic operators and the effective
ones used in this section in the long-wavelength I#it.

If we are interested in just the low-energy, long-
wavelength physics, our two-layer system should be describ-
i able in terms of these operatdfsThe most general qua-
0EE A dratic Hamiltonian we can write down for the system that is
i R consistent with the (1) symmetry in the absence of tunnel-
sorE DT ing takes the form

| K ]

004 | :

N Ve e

(a) Ae“XAAA
e .

003 | A
I *
i

hv/(e*/kl)

H=f er dr'{K(r=r")[S(r)S«(r")
+S(N)Sy(r")]+KL(r=r")S(r)S,r")}. (39

® e The functionsK andK, are assumed to have a form that
will induce a spin density wave, i.e., stripes, in the ground
) state. For example, they could take fR®urier transformed
form K;(a)=ps9? K, (a) = «(—g*+q*&?) whereq is the
wave vector,p, a spin stiffness, and,£? are positive con-
stants. One can see far>pg that a uniform spin state will
be unstable to a state in which the spins tumble spatially i.e.,
- . . helimagnetic ordering. The precise form of the ground state
00t | vor is difficult to find, even if the spin operators are treated clas-
i S . sically; however, qualitatively we know they will have a
[ o, e mmemmrentt TR form similar to the stripe states in our Hartree-Fock analysis.
oot e e e In any case, the results below do not depend on any specific
k, /(2m/a) choice ofK; or K, , only on the requirement that there be
_ _ ) helimagnetic ordering in the ground state.

FIG. 6._D|sper5|ons of the in-phase phonon mode of the Ag is common in a spin-wave analy§f5we begin by
UCCCW with N=2 andt=0 for wave vector(a) parallel &, eating the spins classically. Imposing the constrsigt)?
L pependeir ) o e s o sl S5 1271 vt  Lagrange mupien 1) Ea.

' (38) may be minimized to obtain the three equations

0.04
0.03 [~

0.02

hv/(e*/x1)

we then have in-plane spin componeS;;%[&JrS_],Sy
=(1/2)[S,—S_]. These spin operators obey the usual f dr'Ky(r=r")S y(r")=n(r)S, y(r),
commutation relations

[s(r),sj(r')]=; eijS(r) s(r—r"), (35) f dr'K (r=r")S,(r")=A(r)Syr). (39

wherei,j,k=x,y,z ande;; is the antisymmetric tensor. Equation§(39) together with the constraint equation specify
These spin operators are obviously related to the spin OF}.he(cI_assma] ground state. We assume the solutions to these

erators defined in Sec. Il. The connection is most easily seefduations may be written in the form

when the spin commutation relations are Fourier trans-

formed, to give Sy(r)=cosb(x)=c(x),

[Sd(@).Sy(a")]1=iS(a+q"). (36) Sy(r)=0,

This should be compared to the guiding center density and —sinf(x)= 40
spin density operatoii€Egs. (12)] which obey the algebra SAr)=sin6(x)=s(). (40
Given the symmetries oH, it is clear that equal-energy,
N[ p(a),p(q")]=—isingxq'122)p(q+q’), inequivalent states can be generated by rota8rig the x
¢ —y (spin plane, by translationd(x)— #(x—u) for u a con-
stani, or by rotation[ 6(x)— 6(Q-r), with |Q|=1]. These

NT— _icj VA . ’
Nolp(a).pi(a")]= —isin(axq'I%/2)pi(a+q"), properties are responsible for the presence of the two gapless
modes and their dispersions.
Nyl pi(Q),p;(q")]=ligjcoqqx a'l?2)p(a+q’), i#]j. T_he spin-wave spectrum around this ground state is con-
3 veniently found by working in a rotated spin basis, such that
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in the ground state all the spins are aligned anngEthxeis?"’
We thus define new spin operators

Si(r) s(x) 0 —c(x)\ [ Sr)
S |={ 0 1 0 Sy(r) (41)
S,(r) c(x) 0 s(x) / \S(r)
ExpandingS,=\1-S?-S/?~1—3[S;’+S,?] and mak- 04- N /!

ing use of Eqs(38), (39), and(41), to quadratic order it 0sF  (a) AN L
after some algebra the Hamiltonian may be written as osF g0z et m—
10 1 1 1
H_EO:J’ drf dr/[KXX(r’r/)S)/((r)S)/((r ) -0.50 -0.25 ;/02 0.25
+KY(r=r")S(r)Sy(r')], (42)
where
KXX(rr ") =s(x)Ky(r—r")s(x")
+e(X)K, (r=r")c(x")=N(r)8(r—r"),
(43
KWY(r—r")=Ky(r=r")=x(r)é(r—r’), (44)
and the ground-state energy is g
08E  gi15 \ K
Eo=f er dr'[e(x)K(r=r")c(x") dolf, o o g porEmemmes® ‘
-0.50 -0.25 0.00 0.25 0.50
x/a
+s(X)K, (r—=r")s(x")]. (45)

FIG. 7. Plots of the functions(x) ands(x) defined in Eq(40)

In the classical ground stat§,=1. The spin-wave ap-
proximation amounts to approximating the spin commutation
relation betweerS(r) andSi(r') by

[Sk(r),Sy(r")]=id(r—r")S,(r)=is(r—r"). (46)
Equation(42) is particularly easy to work with because these
commutation relations allow us to think & as a general-
ized “position” andS}’, as a “momentum,” and in the Hamil-
tonian they are decoupled.

An exact computation of the normal modes of E4R) is
quite difficult; however, we can understand the basic proper-
ties of the spectrum through the symmetries of the Hamil-
tonian and the ground state. Figure 7 illustrates the shapes of
s(x) andc(x) in the stripe state for two values dfl. Taking
a to be the distance between stripe centers in a single layer
(i.e., the width of a full unit ce)l, it is interesting and impor-
tant to notice thaHl is invariant under the operatid® (r)

— S/ (r+(al2)x); i.e., the primitive unit cell is half the size
one expects naively, becauséx) enters the Hamiltonian
guadratically and is invariant undsfx) — —s(x+a/2). The
discrete translational invariance tells us that the normal
modes should be expanded in Bloch functions:

Mg, (X+@/2)=hy 4 (),

al2
JO dXh:,qx(X)hm,qx(X) = 5mnv

form

HoEo=02 f(z )2

1
+ mpn(—Q)pn(Q)}

where(} is the system area, and

n(q) Qfer'dr h*q(x -iar
><Kxx(rlrl)eiq‘r,hn,qx(x,)1

un(q)zj d’rhy o (X)€7'9 TS (r), (47)

m= %f er dr'hy g, (X)

Pn(d)= f d2rhn’qx(x)eiq¢s§(r), (48)
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[2 Kn(@)Un(—a)un(q)

X eaTKYY(r—r")e iar hi.q, (X")-

for the UCCDW inN=2 and fort=0. (a) d/I=0.7, (b) d/I=1.5.

(49

(50

and—2m/a<q,<2m/a defines the effective Brillouin zone.
The functionshn,qX may be chosen so that— E, takes the

(51

(52
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From the form of Eq(5)), it is clear that the excitation 1
frequencies of the system ag€(q) = k,(q)/my(q). We thus ps=— ﬁf dfj dr’c(x)Ky(r—r’)(x=x")%c(x’),
see that there will be gaple$serg modes whenevek,(q) (59)
or 1/m,(q) vanishes. This occurs if there are choices for the
Bloch functionshn'qx(x) which satisfy either I 1 ) ) o,
ps=—§f er dr'c(x)Ky(r=r")(y—=y")“c(x’).
(59)

Thus, the phase mode disperses linearly frgm0. Notice
that if c(x) is only very different from zero in narrow re-
gions, as occurs for large layer separatiGsee Fig. 7, then
c(X)Ky(r—r")c(x") will be small unlesscandx” are in the
f dr’Kyy(r—r’)e*‘q"’h’;’q (x")=0. (54) same LCR. Due to thex(-x')? factor inpé ,pé<p!; in this
* limit; i.e., the dispersion of the phase mode perpendicular to
he stripes becomes relatively weak. This is precisely the
ehavior observed in our numerical calculations of the col-
lective modes.
For the phonon mode, it ik,—q which vanishes as|
hi=0g,=0(X)=c(x)=cos6(x), (55  —Q/2. Writing sq=q—Q/2, it is not difficult to see how
Kn—og, Must behave for smalbq|, once one recognizes that
it is easily shown that Eq54) is satisfied. This mode repre- the “position” field Un—og=oi2+5q, When Fourier trans-
sents a uniform rotation of the ground-state spin pat&r)  formed back to real space, represents a displacement perpen-
in the spinx-y plane; i.e., it is associated with the spontane-gdicular to the stripes. In this case, the stiffness must have the
ous phase coherence in the ground state. Making use of Eq§iandard  smectic  form Kn—og=0/2+ 5g= K1 5Q>2<+Kb5(1§4,

(39), one may also show that E(p3) is satisfied for wherey is the direction parallel to the stripes and the absence
of a 5qf, term is a direct result of the rotational symmetry of
hno0g, - 0/2(X) = _98*iQ-r/2 (56)  the Hamiltonian, is a bending modulus for the stripes and
e dx represents an energy cost for introducing a curvature along
~ them. Writingmg g g/2+ 55~ Mo, We find
for Q=(4m/a)x. This second zero mode arises due to the
translational invariance it and is a phonon mode. It is
interesting to note that the two zero modes are found in dif-
ferent parts of the Brillouin zone, the phase mode dispersing
from the zone center, the phonon from the zone edge of théhus, we see the phonon mode disperses linearly i,
effective Brillouin zone. In our numerical calculations we except along the direction parallel to the stripes, for which it
found both modes dispersing from the zone center. The redlisperses quadratically. A careful examination of the phonon
son for this is that our numerical technique obliges us tgmnode in our numerical results confirms this behavior.
work with the naive primitive unit cell, with a resulting Bril- ~ In closing this section, we note that an observation of the
louin zone half the size of the one we use in this section, s¢honon mode dispersion would yield a direct confirmation of
that the phonon mode is folded back to the zone center. It i§tripe ordering in this system: the quadratic dispersion along
important to note that since two zero modes occur at differthe stripes is indicative of spontaneous smectic ordering.
ent wave vectors, they do not mix together and complicate
the dispersionw,(q). This point was missed in Ref. 18, V. CONCLUDING REMARKS
where it was supposed that such mixing would lead to only a

single gapless mode with appreciable oscillator strength in ; > .
most response functions. The presence of two gapless mod the formatlonlof a UCCDW at a C”t.'cal value of the in-
terlayer separatiod=d;(N). Working in the GRPA, we

dispersing from different points in the Brillouin zone is pre- h he di . lati f the |
cisely what one finds for the spin-wave spectrum of an in-"av€ computed the dispersion relations of the low-energy

commensurate helimagriét. collective modes of the UCCDW in a range a@fvhere this
We are left with determining howw,(q) disperses from state is expected to be the ground state of the two-

the two zero modes. In the case of the phase mode, for whicfjmensional electron gd@DEQ) in the bilayer system. The
1/mo(q) vanishes atq=0, we may approximate,_oq UCCDW has two Goldstone modes that are respectively re-
Hx

~K —K . q d . | lated to the broken translational symmetry of the stripes and
~Kn-0g,~0=Ko nearq=0 and expand io(q) in small 1, the proken L) symmetry of the coherent state. In the

f dr/K*(r,r e "y o (x')=0 (53)

or

Using the symmetries of the ground state, one may find tw
choices ofnn,qx(x) satisfying Eq.(53) or (54). For

1
w3(Q/2+ 6q)~ EO[KL 89%+ KO0y ] (60)

In a double-layer system, the UCS is unstable with respect

powers ofq to find long-wavelength limit, the dispersion relations of these
modes are consistent with the spin-wave dispersion obtained
wd(a)~kol ps a2+ pla?l, (57 in a noncollinear ferromagnet with helimagnetic ordering.
We expect that, as is the case for the stripe phase in a
where single-quantum-wellSQW) system, the UCCDW state stud-

085321-11



R. COTE AND H.A. FERTIG PHYSICAL REVIEW B65 085321

ied in this paper should also exhibit strong anisotropic transef Spielmanet al,?® for example, measured the dispersion
port properties. No experiment has yet been done, howeverelation of the pseudospin-wave mode in the uniform coher-
to detect the formation of such a state in higher Landau levent state. For a given value of an applied parallel magnetic
els in DQW systems. But our calculation can be applied withfield, the tunneling current has a peak at a biahat corre-
some minor changes to SQW systems where two Landagponds to an energgV=7%w(Q) whereQ=d/Iﬁ and w is
levels are coupled by an external field. An example of thisthe frequency of the pseudospin mode. In principle, such an
was recently studied by Pan and collaborafdiis their ex-  experiment could be carried out in the UCCDW state con-
periment, they studied the transport properties of a wideidered in this paper and the dispersion relation of the phase
quantum well where Landau levels from two electrical SUb'mode probed_ More work is necessary, however, to ensure
bands were occupied. When the magnetic field was tilted ahat the parallel field does not destroy the UCCDW state and
constant filling factory=6, the Zeeman energy increase led giso to find out how the dispersion relation of the phase
to the closing of the gap between two levels with differentmode is changed when a parallel magnetic field is applied.
E|eCtricaI, Landau Ievel, and Spin indices. In the V|C|n|ty of Fina”y' the phonon mode can in princip|e be detected by

this level crossing, Paet al. observed a Strongly anisotropic inelastic light scattering or surface acoustic-wave
behavior of the longitudinal conductivity that bears close re+techniques®

semblance with that of the stripe state in SQW systems. The

anisotropic transport may be due to the formation of a coher-

ent charge-density-wave state involving half-filled levels ACKNOWLEDGMENTS
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