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Spin injection into ballistic layers and resistance modulation in spin field-effect transistors
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The problem of electron transport through low-dimensional ballistic electron layers contacted to ferromag-
netic leads is studied theoretically. Using the drift-diffusion approach to describe the potential distribution in
the leads, we derive the general expression for the device resistance in terms of both the spin polarization in the
leads and partial spin-dependent transmission probabilities. It is found that, due to the dimensionality mismatch
between the leads and low-dimensional layer, the resistance depends rather on the total transmission probabil-
ity T than on the spin polarization in the leads. We calculater both two-dimensional2D) and 1D layers in
order to investigate the efficiency of the current modulation in the field-effect and magnetoresistance measure-
ments. The results are compared with recent experimental data.
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I. INTRODUCTION spin-flip scattering. Though this conclusion is supported by
the observation of a decrease of the resistance modulation
Spin-polarized electron transport in microstructures hagvith increasing temperature, the weakness of the effect at
been the focus of attention since the propbsdlan elec- low temperatures still requires other explanations. In particu-
tronic device where the spin precession in two-dimensionalr, it was mentionelf that limitations on the spin injection,
(2D) or 1D electron gas is controlled by an external electricSimilar to those outlined in Ref. 7, should also be expected
field via spin-orbit coupling. This field modifies the device for devices with 3D-2D contacts. However, a comprehensive
resistance provided the degree of spin polarization of th&uantitative theory of spin-polarized transport in such de-
electron gas in the conduction channel of the device is nonYiCes is still missing. . _
zero. The possibility to vary the spin-orbit coupling constant !N this paper we study the transport of spin-polarized elec-
in low-dimensional semiconductor layers by the externafrons in conditions when the.d|men5|onalmes of the spin-
electric field has been demonstrated in a number oftligning leads and of the semiconductor layer between them
experiment$~* It appeared to be difficuf® however, to ~ are different. This study covers _3D-2D-3D and 3D-1D-3D
achieve an efficient injection of spin-polarized electronsStructures, and also can be applied to 2D-1D-2D structures
from ferromagnetic metallic leads to semiconductor layers(Fig- 1. Electron transport in the low-dimensional layer is
Theoretical studi€€ applied to transport across the inter- @ssumed to be ballistic, while transport in the leads is diffu-
faces between 3D material8D-3D contacts have uncov- Sive. The paper is organized as follows. In Sec. Il we derive
ered a fundamental obstacle for spin injection: the conduc@eneral expressions for the degree of spin polarization of the
tivity mismatch between the two materials. Indeed, when thigurrent and for the resistance of the device. These quantities
obstacle is bypassed by choosing semimagnetic semicondugeéPend on both the spin polarization of electrons in the leads
tors instead of ferromagnetic metals as spin aligners, a r@@nd the partial transmission probabilities for spin-up and
bust, more than 80%, spin injection across 3D-3D interfacespin-down electrons, including sp|'n-fl|p transmlssmn. In Sec.
is observed " Another way to achieve spin injection is con- !l we present a_qL_lantum-mechanlcaI calculation of the trans-
cerned with quantum-mechanical spin-filtering properties offhission probabilities through 2D and 1D layers and analyze
the interfaces and has been recently discussed for 3D-3fhe limits of the dev!ce resistance modulation. In Sec. IV the_
(Refs. 8 and 12 3D-2D (Refs. 13 and 1¢ and 3D-quasi-1D results are briefly discussed and compared to recent experi-

(Ref. 15 contacts. mental data.
3D 3D
1D
(b)
2D 20
(C) 1D
injector-detector magnetization configuration was switched

Despite all efforts, a practical implementation of the idea
of spin field-effect transistotsstill remains an elusive goal.
Although devices containing very shdrearly ballistig 2D

electron layers contacted to ferromagnetic leads have been

fabricated, no electric field-effect modulation has been re- 0

from parallel to antiparallel®’ The weakness of the resis-  FIG. 1. Schematic representation of the structures under consid-
tance modulation has been attributed mostly to the deviatiosration. The low-dimensional layer is placed between the leads of
of the electron transport from the ballistic regime and to thehigher dimensionality.

AN

ported for them so far. A weak resistance modulation in such ' 2D

devices, about 0.2% at temperatures below 4.2 K, was ob- z

served in the magnetoresistance measurements, when the (a) ?
X
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IIl. SPIN POLARIZATION AND BALLISTIC RESISTANCE =pF—put. Thus, Egs(l) and (2) for these variables be-

To describe the electric response of the structures und&ro.r::e mde]E)(TIndem of each other, and their solutions can be
consideration, we use the drift-diffusion approach developeefvrI en as foflows:

in Ref. 19 and applied in Refs. 7 and 8 to 3D-3D-3D struc- - _ - 22
tures. Consider two leads, the left-§ and the right ) g (y2)=0 V_+JIn(Ny"+2%/r )lm,
orles, chgracterized by the different conductivitit{s and 9t (y,2)=0 "V, =3I (y—L)2+2%r . | @)
o for spin-up (') and spin-down [) electron states. The
distribution of electrochemical potentials in the leads is de-and
termined by the following equations:
dg cogq2) )

+ o+ + o+ - = — A" e — q +|Siy

Ao} ui (N +o]uj(r)]=0, 1) U (y,2)=-A f 21 JPr1.2 € ’

Alpi () =u] (D=1 (D= (N]=0, (2

by gy pt [(99. 00892 hiEy -
which follow from the continuity equations for the current .z =A f 2m \/q2+ls‘fe - ®
densitiesj; | (r)=—o7 Vu; (r), provided that spin relax- .. o

ation is taken into account. The latter is characterized by th&/hereo==o; +o " are the total conductivities of the lead
effective lengths.. , which are assumed to be much greateregions andA==J;"/o; —J /o[ . The potentialsu, (y,2)

than the mean-free-path lengths in the leads. Equatibns and u; (y,z) appear to be logarithmically divergent as
and(2) should be supplemented by the boundary conditions(y,z)—(0,0) and §,z)—(L,0), respectively. This is a con-
whose form is determined by the geometry of the leads andequence of the crudity of the drift-diffusion approximation
of the layer between them, as specified in Fig. 1. A detailedfor more accuracy, one has to solve a kinetic equation in the
consideration of electron transport is given below for 3D-vicinity of the 3D-2D transition regions Nevertheless, one
2D-3D structures. A rather straightforward generalization ofcan introduce a cutoff at the mean-free-path lengthsthe

the obtained results to 3D-1D-3D and 2D-1D-2D structuressmallest parameters of the drift-diffusion theory. This cannot

is given thereafter. affect the accuracy considerably, as far as the logarithmic
In 3D-2D-3D structures, the translational symmetry of thescaling is concerned. Accordingly, we introduce;
problem along thex direction renders the potentiajs; |  =u; (—1-,0) andu; =u; (L+I.,0), andobtain
independent ok. The first pair of boundary conditions fol- )
lows from current conservation: B Ko(l_/lg)| . o4
ur =Vo—RI+————— I — 3|, 9
—op Yyt (V. 2D)ly- 0= 8(2)Jp 3) oL T
— ot Vout (y,2)] = 8(2)3F 4) N Ko(l4 M) | UIT N
11 YyH1 Y 2ly=Lro Tl pi =Vi+RI-—————|3, ——=J3] |, (10

e (o
whereJ; | andJ{il are the currents entering the 2D layer at i It

y=0 and exiting it aly=L, respectively. These four currents WhereK, is the modified Bessel function. According to the
are not independent of each other, sidGe+ J[ =J7 +J/  initial assumptions, its arguments. /I and 1, /I, are
=J, whereJ is the total current. We assume that the layersmall, and the limits of accuracy _of this treatment permit us
thickness is smaller than the mean-free-path length. Therd® replaceKq(l-. /ls.) by In(ls. /1) in the following. In Egs.
fore, from the point of view of the drift-diffusion approxima- (9) and (10) we have also introduced the resistances of the
tion, this thickness should be set to zero, which justifies thdeads according t&..=(7o=) In(r../l..).

use of thes functions in Eqs.(3) and (4). Another set of To find the relation betweed andV._—V.., one has to
boundary conditions describes application of the external poconnect the four currentd; | to four potentialsu;, | given
tentialsV_ andV, to the leads: by Egs.(9) and (10). Considering the electron subsystems
with different spins in each lead as four independent
pi(y2)=p (y,2)=V_, yZ+zZZ=r_, (5 reservoir§’ and assuming that electron motion in the 2D

layer is ballistic, we directly apply the LandaueriBker
w2 =ut(y 2=V, Jy-L2+2=r., ) formalism for a four-terminal deviéé to obtain a set of
equations
wherer .. are large in comparison 1Q.- . An exact definition
of the equipotential surface is not essential and is chosen J; =G[(T;;" +T;"+Ry Du; — T/ p/ =T/ u/
here for convenience only. Changing it, one would modify

only the resistances of the bulk lead regions which enter the - Rfmf]y (11
theory as additional series resistances and can be excluded
i i - _ -+ -+ - - T+-, T+ +
from g:onS|derat|or(see below. _ I =GUT " +T " +R Du, — T/ u —T{ u
Using Eqgs.(3)—(6) one can write separate boundary con- o
ditions for the variableg ™ (r)=o; u; + o u] andu™(r) =Ry uq ], (12
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+_ -+ - -+ - + ot - -

I =CIT g + T ) FRG ) = (T + Ty T=Twb=The= T (15
— i

+R w1, (13 !

" Sy Ve _ which describes the total curredt=GT(u~ — ™) in con-
I =GIT e Ty g + Ry = (T + T ditions when the potentials for both spin states in each lead
+ R})Mf]- (14 are equalu?_f ,uj’_= ©®. The symmetry of_ thg tota_ll transm?s-
sion probability with respect to the lead indices is a manifes-
Here Tﬁ'ff’ (a,8=7*, j,j'=T1) is the probability for an tation of the Casimir-Onsager-Biker symmetry, becausg
electron in spin statg coming from the leadr to be trans- is related to thghysicaltwo-terminal device. This symmetry
mitted into spin stat¢’ of the leadB (8+«), andR], (j ~ formally follows from the linear relations fon;’f andRy,
#j') is the probability of the electron in spin stgteoming  Written above. According to its definition, the total transmis-
from the leade to be reflected back, into the state with the sion probabilityT can vary from 0 to 2. _
opposite spin. The coefficienﬂ.%l‘f andR;;, correspond to The partial transmission probabilities are essentially re-
the Fermi energy and are averaged over the angle of incjated fto the propern_es_ of the mterfa_ces and_ of_the ballistic
dence(see the details in the next sectian such a way that 1ayer itself. The ballistic layer acts like a spin filter T6F
the conductancé introduced in Eqs(11)—(14) is equal to ~ #T{f or T{f#T7f. Next, if T{f and T{f are nonzero, the
the Sharvin conductance of a 2D point contgger unit layer acts like a spin mixer. The spin-filtering and spin-
length, expressed through the 2D electron densify in the ~ Mixing properties are not necessarily connected to each
ballistic layer asG = (€2/h)\2n,p /7. The physical meaning ©ther. The spin mixing can be associated with the Rashba

of Egs. (11)—(14) is the following?! The reservoir &j) in- term_in the Ham.iltonia.n. It is !mpor_tant for the layers with
jectsacurrenG[T-“TﬁﬂLT-"erR.“.,](,u-“—,uo), while the cur-  considerable spin-orbit coupling, like InAs or InSb. The
) y ) ] spin-filtering property can exist because of the different
rent from three other reservoirs coming intej§ is equal to Fermi velocities f : d spin-d | in th
Ba(B 1)+ TEU (P — )+ R (5 — wo) ], The dif- ermi velocities for spin-up and spin-down electrons in the
GLTH (17— po) T T (1]~ 1o Njrj\My T o)l leads, without regard to the spin-orbit coupling.
ference between these currents gives the cudienHere u Below we use Eqs(9)—(14) to calculate the spin polar-
is the reference potential, which is smaller than or equal tG,5tion of the currentd)*=J; —J; and the device resis-
the lowest of the four potential&ﬁl. In equilibrium, when  tanceR=(V_—V,)/J—R_—R, (per unit length for the

all these potentials are equal to each other, all the currenigase ofidentical leads, wheno " =0~ =0, Io_=lg, =I,

.Jf‘l must be equal to zero, so that one can write the followand| _=|, =1, and the absolute values of magnetization are
ing linear relations: the same in both leads. If the magnetization configuration of

the leads isparallel (P), one haso; =o] =0y, T{f

Tt p Tt T p—
T+ T ARy =Ty T #Ryy, =T¢#, andR;;, =R}, . Assuming also that the vectors of

T 4T " +R =T +TH +R;,, magnetizatiqn of the leads are _in_ the plane, we _reduce the
B L number of independent coefficients to 4, written Bs
_ _ _ _ _TaB _TaB _TaB sy _ pa _

T T 4R =T/ +T/ +R/, =T T =T Ty =T (1#)7), andR; =R;;, . Acal

culation gives
T, 4T, "+R, =T/ +T  +R,.
1l Tl Tl 1l i 1T
(TTT—Tu)ﬁ-Z,ByQp/(l—,BZ)

On the other hand, we would like to stress that, in general, 8Jp=0835=1J 5 , (16
TE# TP andRY, #R’), . This asymmetry can appear even T+2yQp/(1-57)

in the absence of a magnetic field, because the spin-orbit

interaction(Rashbaterm in the Hamiltonian of the ballistic o, 1+ yPpl(1—B?)

layer (see next sectigrchanges its sign when the momentum Rp= T+29Qp/(1- B?) ' (17)

is reversed, so that for spin-polarized electrons the forward
and backward directions of motion are not equivalent. How-
ever, if the magnetization vectors of the leads are inythe
plane[see Fig. 1a)], i.e., are directed perpendicular to the
effective magnetic field created in the ballistic layer by the

current(Rashba fiel§l the coefficientsI:., andR;;, become . | .

. L +2R;, . For antiparallel (A) configuration, when the mag-
symmetric. Th/? asymmetry of the partial sp|n—dependen};]e,[izt,mon of the right lead is inverted, one ha$l=0'ﬁ
probabilitiesT;; andR;;, is not a violation of the Casimir- _ TaB_TBY (ixin) TeA_TBe o ,h L

o . . . = , TEP=T50, (1#]7), T.7=T,: (j#]'), andR..,
Onsager-Bttiker symmetry relation for two-terminal devices —(F\:]”L i Jr‘] i fJ ) . (fj hJ I) d Ch h
because, since the states with different spins are considerédj’j - I the vectors of magnetization of the leads are In the
as separate reservoirs, one hasffactivefour-terminal de-  YZ Plane, we again have only four independent transmission

vice instead of a two-terminal one. It is convenient to intro-Coefficients defined asT;=T§" (j=1,1), T =T’
duce the totalsummed over the spingransmission prob- =T, T;;=T,;"=T", andR; =Ry, . The spin polar-
ability ization and the resistance are given by the equations

whereB=(o,— o)/ o characterizes spin polarization of the
currents in the leads, Qp=2T T +T; (T};+T)))
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B L (T =T,)+28yQal(1- 8% (kel) "tn(ls/1) and kel) ~2 are of the order of relative weak
Oy =—0J,=13 5 , (18 localization corrections to the 2D and 3D conductivities, re-
T+2yQal(1-59) spectively, and the spin-relaxation lendttplays the role of
) the dephasing length. The fundamental reasons for the small-
\=G1 1+yPAl(1-B) (19) ness of the parameter is the dimensionality mismatche-

T+2yQal(1—8%) tween the leads and the layers, whose dimensionality is

lower. This mismatch sets an obstacle for spin injection.
where QA=2T”T2H+TTT(TH+TH)+TRH and Pp=(1 The results(16) and (18) show that spin polarization of
—B)*Ty +(1+p)°T; +2B°T;+2R,,. Equations (18  the current can occur as a consequence of two effects. The
and (19) can be obtained from Eq¢16) and (17) by the first is related to the spin polarization in the ledttee terms
formal substitutionsT;—T;, T;;—T;;, andT; —T;.  proportional toB), and the second is due to the spin-filtering
One should remember, however, that the transmission profyroperties of the contactithe terms proportional oy,

abilities T;;» for parallel and antiparallel configurations are —T,, in Eq.(16) and toT;— T ; in Eq. (18)]. If there is no
different. In Eqgs.(16)—(19) we have introduced the charac- gpjn filtering, T, =T, =Tp, T;,=T,,=Ta, and Eqs(16)

teristic dimensionless parameter and (18) can be written as
2G|
=—In 83, 2|8l 9(Ti+R
vy 770'|n| . (20 | ||: |8 ¥(T; 1) CiZPA (24)
I 1-B2+29(Ti+Ry)
The resultg16)—(20) are not modified essentially for the )
3D-1D-3D and 2D-1D-2D structures shown in Figéyland ~ While Egs.(17) and (19) become
1(c). In the 2D-1D-2D case, the geometry of the drift- 5
diffusion problem is the same as in the 3D-2D-3D case, and 11 By i—P.A (25
i yAL

the results are formally valid if we repla¢g by the funda- _ﬁ+ G 1—B242%T:+R, )’
. B (T TL)
mental conductance quantuef/h and considero as the
sheet resistance of the 2D leads. In the 3D-1D-3D case, th&ince the parameteyr is small, the spin injection is expected
geometry is different, and the electrochemical potentials deto be weak in this case, unleg]| is very close to 1. On the
pend on three coordinates. The theory, however, is very simisther hand, if spin filtering exists, the spin injection occurs
lar to the one presented above. It is based on the boundagven if we neglect the terms proportional @(1—32).
conditions Nevertheless, the resistanBeat smally/(1— 8?) is mostly
determined by théotal transmission probabilityf. The con-
—o Wui (XY,2)y=0=8(x)8(2)J; |,  (21)  trol of the resistance, which is crucial for operation of the
spin field-effect transistdrthus depends mostly on the pos-
—ai Yyt (%Y. 2)ly=1+0=8(x)82)J{ |, (22  sibility to control T.
The simplest way to evaluate the transmission probabili-
s in Egs.(16)—(19) is to assume adiabatic contacting,
when the electrochemical potentials for spin-up and spin-
down states are continuous across the contacts between the
leads and the low-dimensional layer. These are, in fact, the
conditions considered by Datta and Dasollowing Ref. 1,
e? 1 in the 1D case one can write, =0, TﬁzTuzco&p and
y=——. (23) T, =T, =sirfp, where p=am*L/#? is the field-effect-
h mol controlled phase expressed through the electron effective
The appearance of the term® results from inverse diver- Massm* and Rashba constantin the layer. These expres-
gences of the potentia]si(x,y,z) as functions of the dis- Sions are valid for both parallel and antiparallel configura-
tances to the contact poihts. The cutoff of these divergencééo_”s of the ma_gnetlzan_on._ The ballistic wire act_s I|_ke a spin
is again taken at the mean-free-path length, and we neglectédiXer, but rjot like a spin filter. The total transmission prob-
1/l in comparison to 1/ The loss of accuracy is greater than ability (15) is equal to 2. The resistancés=R; for parallel
in the case of logarithmic divergence, and one can speald =P) and antiparalleli(=A) configurations are
only about order-of-magnitude estimates. Nevertheless, it is
clear thaty does not depend on the spin-relaxation length h 2%y 2By
and is of the order ofKgl) 2, wherekg is the Fermi wave Ri:g + 1- B2 B 1- B2
number in the leads. This means that this parameter is small,
as long as metallic conductivity in the leads is assumed. Acwhere Tp=cog¢ and Ty=sir?¢. To obtain Eq.(26), we
cording to Eq.(20), the parametersy for 3D-2D-3D and  expanded the second term of the right-hand side of(&5).
2D-1D-2D structures are estimated gEk;) (kel) ~*In(ls/),  in powers of a small paramete#(1— 82). The control ofR
where p=2mn,p is the Fermi wave number in the 2D throughe is as weak ag?. The magnetoresistance, i.e., the
layer and kel) ~In(I/l), respectively. These parameters aredifferenceRp— R, , has the same weakness. In other words,
also small. It is important to stress that the factorsthe spin field-effect transistor cannot work efficiently in the

while another pair of boundary conditions relating tie
,ui(x,y,z) to the external potentials away from the 3D-1D
contacts can be chosen the same as in Exjsand(6). The
results(16)—(19) are valid in this case if we replad®@ by
e?/h and sety equal to

2

Til, (26)
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form it was initially proposed,because of the fundamental wherek, are discrete wave numbers of the quantized sub-

reasons which render the paramegesmall and thereby sup- bands. Only the lowest quantized subbamd=Q) is as-

press the spin injection. sumed to be occupied by electrons. The higher subbands
Fortunately, the realistic contacts are far from adiabationvith n=1,2, ... contribute to evanescent reflected modes.

and can provide spin filtering as well. As was pointed out byThe wave function on the side of the 3D conductor is given

Grundler? the abrupt contacts between ferromagnetic matein the integral representation

rials and 2D layers act like spin filters in a natural way, since ik

the Fermi velocities for spin-up and spin-down electrons in N R S

the ferromagnets are diﬁgrentpand thg guantum-mechanical V> (xy.2)= J ﬂtkel el (28

transmission probabilities depend on these velocities. Using _ )

this Fermi velocity mismatch, Grundler has estimitatie ~ Where k=k,, and the factori yk—k* in the exponent

magnetoresistance of a 2D device with two ferromagnetishould be replaced by Vk“—kZ, when|k|>k- . In Egs.

leads. The theory of Ref. 14, however, has to be improved27) and (28) we introduced the wave numberk_

since the model of one-dimensional transport used there has\2m_(e—U)/A?—k2 and k. =\2m_er/A>—KZ,

not been justified, the transmission has been considered onjyherem. andm.. are the effective masses; is the Fermi

for x-polarized magnetizatiofifor the geometry shown in energy counted from the conduction-band bottom in the 3D

Fig. 1(a)], and the motion of electrons in thedirection has  material, andU is the potential energy offset between the

been neglected. The latter approximation apparently led to agontacting materials. The boundary conditions expressing

overestimation of the relative modulation of the resistance. ltontinuity of ¥ andm™1dW¥/dy give us

is important to note that the Rashba term in the 2D Hamil-

tonian mixes the motion of an electronxrandy directions, ~ dk

so that the symmetry of the spinor wave function depends on (1+ro)xo(2)+ Z M'Xn(2)= J Etkelkz (29

the direction of the wave vector in they plane[see, for =t

example, Eq(34) of the next sectioh As a result, the trans- and

mission probability acquires a nontrivial dependence of the

2D wave vector. This effect has been completely neglected in ”

Refs. 13 and 14. The thedRyof spin injection through a i VK2 —K§(1—ro)xo(2) + 21 rnVka—kZ xn(2)
single interface betwen 3D and quasi-1D materials has the "

same drawback, since the mixirgduced by the Rashba me _

term) between 1D subband statébas been neglected. In the = o vks — k?e'k?, (30

next section we overcome these limitations and calculate the

transmission probabilities through both 2D and 1D layers foMultiplying these equations bg™ ", integrating them over

different magnetization directions in the leads. z, and introducing the overlap integraig,= [dze *?y,(2),
one can excludg, and obtain a single equation

ikz

l1l. TRANSMISSION PROBABILITY il ol 2= N =il ol o[ 1+ Nie]
To calculate the transmission probabilities, Gruntitét » R
used a simple model, which reduced the problem of electron + 2 Tenlnl [2n < i =0,
transfer between the regions of different dimensionality to a n=1 k2 — ké
one-dimensional quantum-mechanical problem. It has been
already pointed odt that such a one-dimensional transport m K2 — K2
model gives a reasonable order-of-magnitude estimate of the )\k=—< 2>— (3D
exact numerical results for the transmission. However, as far M=V k2 -k

as we know, nobody noticed that this model is a very gOOdwhich is equivalent to an infinite system of linear equations

approximation in the case when the Fermi wave number irilOr f n=01 Thecoefficientsl .. become small when
ns =U,4L,.... kn

3D material is much greater than the inverse length of siz : : S
P . k| exceeds the inverse length of size quantization in the

quantization in the quantum wel where the 2D Ia_yer_ 'S cref lLantum well where the 2D ?ayer is creac'ied If this inverse

ated. To demonstrate it, let us consider the transmission prob*- '

lem in more detail. Following Kriman and Rudé&hwe con- ength (estimated ako) is much smaller tha|k>, onez ean
sider a single abrupt contact between a 2D conductor frorff€dl€ct the dependence Bf on k, replacing vk= —k* by

the left (<) and a 3D conductor from the right=(), aty k- . Then, multiplying Eq(31) by I, and integrating it over

=0. The wave function of the Fermi electron coming fromK Wwith use of the orthogonality propertyfdKIgql,

the side of the 2D conductor is written as =2méhm, We obtainrg=(v<—v-)/(v-+v-) andr,=0
for n#0. Herev-=Ak- /m- andv<=ﬁ\/k2<—k02/m< are
Fermi velocities of 3D and 2D electrons in tlgedirection.

: 2 2 . 2 2 .
W_(x,y,2)=[e' VK=KV +r oo™ VKoY ] yo(2) €' Therefore, the contribution from the higher subbands is neg-
o ligible, and the transmission probability-1r|? is given by
2 2 . . .
n revknkiy, (7 eikex. 2 a weII_—known expression correspondmg to the one-
ngl n=ne Xn(2) @7 dimensional  transmission-reflection  probm (the
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the interface and its inclusion is trivjialFrom the qualitative mey) @HUXCY(Y) y) (33
point of view, this correspondence follows from the fact that

electron transitions between 3D and 2D layerskat>kg across the interfaces. The wave function in the semiconduc-
involve only those electrons in 3D material whodg| is  tor layer is written as

small in comparison tk-. , so that they effectively move

alongy direction. The contacts between 3D metals and semi-

P1 :
. . . — |
conductor quantum wells satisfy this requirement, because U= 2 aq( )eqplyy

x-dependent part of the wave function is conserved across [ h2

== —i
for them ko~10® cm™! and ko~10° cm™%, and can be a APy~ 1Px
considered within the one-dimensional transport model. This P8 :
greatly simplifies the subsequent calculation. +q_+ bq Py tip e'dP2yy, (34)
~, Py

Below we calculate the probability of transmission from a

metallic lead to another through a 2D semiconductor laye{yhere P1ay= /pZ1 — pXZ, pi=p—m*alh?,  p,=p
between them. The metal is a ferromagnet, and the semicon: .« /2 énd ﬁp': \/2m*(s—U3)+(m* Q)2 If & is

ductor layer is characterized by a C(anifjerable spin-orbi{he Fermi energyp; andp, are the Fermi wave numbers for
coupling which adds the Rashba tetthoxXp]n, in the 2D the two branches of the spin-split electron spectrum, while
Hamiltonian?® Here o is the vector of the Pauli matricesp s the averagedeffective Fermi wave number of 2D elec-

is the operator of the 2D momentum, amds the unit vector  tron gas, which is expressed through its density according to
in thez direction. The Rashba constamican be modified by p=+2wn,p.

application of an electric field in the direction, since this The explicit form of the wave function in the metallic
field modifies the symmetry of the confining potential. Be-|eads is written below for the simplest calsl|z, when the
low we need to use another form of the Rashba term, genepotential energy matrix is diagonal. For a parallel magneti-
alized for the case of a coordinate-dependenthe Rashba zation configuration,

term is written as an anticommutatoraf(oX p]+[o

X pla)n,/2. This form can be justified, for example, by deri- B cie vt re B tye'ey

vation of the Rashba term from the multiband Kane Hamil- y<0™ c ekt e kY ) y>L™ tyelkey)’

tonian. (35
The wave function in such a ferromagnet-semiconductor- - .

ferromagnet  system is presented asb(xy,z) Wwhere ky=v2my (s —Ug — U)/#?, kz

—eP¥y(2)i(y), and the one-dimensional Sckinger = v2My(s—Ug +U,)/%% andmy, is the effective mass in

equation H(y)d(y)=su(y) is written for the two- the fe_rromagnet. It is the Eermi energygl andk, are thg
component spinory= (i ,i,). The 2<2 matrix Hamil- Fermi wave numbers for spin-up and spin-down states in the
tonianF is given by ferromagne.t. The.case:§=1, c2_=0 andc,=0, c,=1 cor-
respond to incoming electrons in the stateand |, respec-
5 9 2 ) tively. If the right-lead magnetization is inverted, one should
f(y)=— i h i+ 7Py +O(y) - '_(} a(y)i permutek; andk; in ¢f,- . The eight coefficienta.., b. ,
dy 2m(y) dy 2m(y) 27 dy ry,, andt; , are expressed through andc, after a solution
of the system of eight linear equations generated through
(32) application of the boundary conditionsyat 0 andy=L to
the wave functiong34) and (35). The p,-dependent trans-
mission probabilitiesTj]f(pX) obtained in this way should
be averaged over, as

d -
+ d_ya'(Y) - O'ya'(y) Px

where m(y) is the coordinate-dependent effective mass
which is assumed to be a scalar, arlfdi(y)zuo(y)

+3,0;U;(y) is the potential energy matrix=x,y,z. The B
componentJ, changes fronU(")" in the leads tdJ§ in the T _ﬁ _OchJ’ (P)dpy.
semiconductor layer. The componebtsare nonzero only in

the ferromagnetic leads, and the vectdr(U,,U,,U,) This gives us the transmission probabilitfé%’f entering the
gives the direction of the magnetizatio there. On the equations of Sec. II.

other handg(y) is assumed to be nonzefequal toa) only The problem of transmission through a 1D semiconductor
in the semiconductor layer,<Oy<<L. The Hamiltonian(32)  layer is simpler, since free motion in thelirection is absent.

is similar to that used by Hu and Matsuyaim their study We have ¥(x,y,z)=x(x,2)¢(y) and put p,=0 in the

of spin injection across a single ferromagnet-semiconductodamiltonian(32). One should remember, however, that this
interface. The only difference is that these authors considereslubstitution is not straightforward because of the spin-orbit-
magnetization perpendicular to the interface, introduced anduced mixing between 1D subband stafeshich leads to
lateral confinement of 2D electron gas, and added @ome renormalizatidfi of both the effective masm* and
S-function scattering potential at the interface. The Hamil-the Rashba constant One can neglect this renormalization
tonian (32) allows us to derive the boundary conditions ex-if a/#% is small in comparison to the Fermi velocityp/m*
pressing the continuity of botli{y) and in the 1D layer. The wave functiof84) in the 1D case is

(36)

085319-6



SPIN INJECTION INTO BALLISTIC LAYERS AND. . .. PHYSICAL REVIEW B65 085319

102 1.60
1.00 1.59
0.98 1.58
- -
1.57
c 096 c
e o
1.
B 094 & 18
g & 155
g 0.2 Y
= o154
0.90 7
1.53 i/
0.88 | [
T T T T T 1-52 T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
2 2
m*o L/zh m*o L/nfi
FIG. 2. Probabilities of transmission through guin-long 2D FIG. 3. The same as in Fig. 2 fopp=5X 10 cm™ 2,

layer for M||z (solid ling), M||y (dashed ling and M||x (dotted o _
line) as a function oim* aL/a#2. Thick and thin lines correspond the modulation is considerably weaker because of a smaller

to parallel and antiparallel magnetization configurations. The lead§€rmi velocity mismatch for spin-up and spin-down elec-
are Fe electrodes, and the 2D electron gas densify is trons. We obtained a degree of modulation of less than 4%
10" em™2. for NiygFeso and about 0.4% for NjFey for all orientations

of M. With an increase of the electron density, the modula-
considerably simplified, sinc@; ,=p;,, and there is no tion weakens. Figure 3 shows the behavior of transmission
need of an averaging procedure like E86) once the trans-  coefficients an,p=5Xx 10t cm__z. _ N
mission probabilitiesT ;," are calculated in the quantum- I Fig. 4 we plot the transmission probability through a
mechanical problem. 1D layer. As in the case shown in Fig. 2, we assume Fe leads

. _ _1 .
The transmission probabilities for both 1D and 2D case@nd Fermi wave numbgr=0.79x 10° cm ~. The transmis-
contain two oscillating contributions, with phaseg,( Sion does not depend on the angleMfin the yz plane,
+p,)L=2pL and (p,— py)L=2m*aL/h?=2¢. We wil because a rotation of the magnetization vector in this plane

neglect the first kind of oscillations by averaging the trans-d0€s not change the componevii parallel to the Rashba
mission probability over the periodp= /L. From the field. The transmission oscillates as the Rashba phase is

physical point of view, it corresponds to thermal averaging ofch@nged; the oscillations are nearly harmonic and do not
the transmission probabiliti®sin conditions when the tem- d€cay with an increase af, in contrast to the 2D case. The
perature is large in comparison ﬁ&p/kBm* L. The oscilla- amplitude of the oscillations is maximal fdf_L x. The trans-
tions associated with the Rashba phagea?e not influenced
by such averaging, since is energy independent. The re- 124}
sults given below are obtained fa=1 um, my=mg, and
m*=0.035n,. The latter is a reasonable value of the
conduction-band electron mass in InAs quantum wells.
Figure 2 represents the total transmission probabilityr
a 2D layer with densityn,p =10 cm™?, corresponding to
Fermi wave numbep=0.79x10° cm !. The transmission
is plotted as a function of/# (for given m* and L, the
values ofa lie in the reasonable range~10 meV nm) and
shows characteristic oscillations. The leads are assumed to
be Fe[k;=1.05<10° cm ! and k,=0.44x10° cm %].13

The field-effect modulation of the transmission fivt||z
reaches about 10% at smalland decreases with an increase 1.06 -

of @. ForM||y the modulation at smak is about 6%, but its 0o 05 10 s 20

decrease is weaker. A||x, when the spins of the injected m*a L/nfi

electrons are nearly aligned with the Rashba field, the field-

effect modulation is weakest, but the magnetoresistance is FIG. 4. Probabilities of transmission through gui-long 1D
highest, about 8% on average. The behavior of the transmissire for ML X (solid line) andM||X (dotted ling as a function of
sion probability for NjgFes, leads[k;=1.05<10° cm™ ! m* aL/##2. The leads are Fe electrodes, and the Fermi wave num-
and k,=0.65<10° cm ] and NigFey leads [k;=1.05 berisp=0.79x10° cm L. Thick and thin lines correspond to par-
x10° cm ! andk,=0.88<10° cm 1] is very similar, but allel and antiparallel magnetization configurations.

transmission T
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mission forM||x does not depend on the Rashba phase, behatch, for the injection of spin-polarized currents to layers
cause the spin-up and spin-down states do not mix. For thi‘é’hose dimensionality is lower than the dimensionality of the
orientation, the difference between the transmission prc)bl_eads. As a result, the contribution of the spin polarization in

abilities Ty, and T,y for parallel and antiparallel polariza- the leads to the spin polarization in the low-dimensional
tion configurations is equal to the amplitude of the field-ayer appears to be small. If the dimensionality mismatch is 1

effect modulation of transmission M1 X. One can obtain o 2, the relative magnitude of such contribution, given
: . S : : above by the dimensionless parameigiis of the order of
analytical expressions for these coefficielftsyhich gives

weak localization correction to 2D or 3D conductivities, re-

T -7 K — ko) 2T kKo /2 — (D/m* )2 spectively. Moreover, the parametgrfor 3D-2D-3D struc-
par— Tan: _ (K 2)2[ 12 > (p )2]_ (37)  tures contains an extra factor, the ratio of the Fermi wave
Toar (K1t ko) Tkyka /my +(p/m*)“] numbers in 2D and 3D layers, which is also small in the case

of metallic leads. Due to the smallnessifthe resistance of

The degree of modulation defined by this equation is maxi : e .
mal atp—0 when it reaches 16.7% for the case of Fe IeadsEhe device depends rather on the total transmission probabil-

With the increase of electron density, the modulation weak!ly T than on the spin polarization in the leads.
ens and goes through its minimurzerd at p,,,~2.4 Fortunately, even if we neglect the small terms propor-
tional to vy, the spin-filtering effect in the contacts between

x10° em™? (in the case of Fe leafisA similar behavior . . b
takes place for 2D layers as well, though analytical resultéhe. Igads aqd the sgmmonductor layer still offers a p055|b|I_|ty
inject spin-polarized electrons and to control the resis-

for that case cannot be obtained. We stress that the giveth | incinl 1a th in-filteri fab
value ofp,, corresponds to a Fermi energy of about 60 me\v/iance. Inprinciple, using the spin-filtering property of abrupt

and cannot be reached in the present artificial quantum wire§ONtacts discussed in Refs. 13 and 14 it is possible to get up

On the other hand, in InAs-based quantum wells, corre- fo 15% qf the resistance modulation in 1D layégsiantum
sponds to the densitigs,p~ 10" cm2, which are typical wires) using Fe .Ieads. Somewhat _smaIIer values are expected
for those systems. for 2D layers with the same Fermi wave numk_)er of the elec-
We notice that the transmission shown in Figs. 2—4 doe%rons. The; use of FeNi alloys reduces .the' resistance modula-
not depend on the direction dfl if « is zero. This is a lon. The increase of_the electron d_enS|ty in the Iaye_rs h_as the
consequence of the isotropic model of the ferromagnets waame efiect. In particular, the reS|stance_r_nodulat|on IS ex-
use. Next, one can check thatN\f is reversed in both leads pected to be small for electron densitieg, around
simultaneously, the transmission is not changed even at non-
zero a. This is a manifestation of the Casimir-Onsager- i
Buttiker symmetry, which recently has been emphagzét 0.600 fy,

0.601

for the conductance of a single interface between a ferromag- § 0.599
net and a Rashba semiconductor. It is interesting that in the o~ 0508 i
case of a 1D Rashba semiconductor, this conductance is not 2
sensitive to the direction d¥l at all?® Applying our formal- 2 0.597
ism to this particular problem, we obtain the following ex- 3 059
pression for the conductance: - 0595
e2 4§i g ki m* (38) 0.594
= — &=, 0.593
h T2 (1+¢)? " op my 0.
which coincides with the result of Ref. 29 under the assump- 0.10
tion m*=m,, . Therefore, in order to control the conduc- 5
tance either by electric-field modulation af or by magne- g 008
tization axis rotation, it is essential to have a device with two 5
ferromagnetic leads. g 0.06
IV. DISCUSSION w5 004
()]
Among the issues raised in the new field of spin electron- £ 0.02
ics, the problem of electrical spin injection from spin- 3
aligning (for example, ferromagnetiteads into semiconduc- 0.00 . , . ,
tor layers appears to be particularly challenging. The large 0.0 0.5 1.0 1.5 2.0 2.5
degree of spin polarization of the current has been obtained m*al/nf’

only in the case of injection from a semimagnetic semicon-

ductor to a bulk(3D) semiconductor layer. However, to FIG. 5. The resistancR (a) and the degree of spin polarization
implement the idea of a spin transistor as proposed by Datté@r parallel magnetization configuratiorts) calculated using the
and Das, one needs to use low-dimensional, ballistic layergxperimental parameters of Ref. [i,qFes, leads,m* =0.05m,

In the first part of this paper we have shown that there is a,,=1.7x10'2 cm 2, and L=0.45 um] for M||z (solid line),
fundamental obstacle, caused by the dimensionality mism||y (dashed ling andM||x (dotted ling.
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10'? cm™? (for InAs layers with Fe leadsIn this sense, the and spin polarization obtained theoretically, we would like to
samples withn,p;=1.7x10? cm 2 used in the recent emphasize that realistic contacts between the metal and 2D
experiment’ are, probably, not the best choice. It is impor- semiconductor layer are not completely abrupt, as was as-
tant to compare the results of our calculations to the experisumed in the calculations. The presence of a finite transition
mental data. Using the experimental values-0.45um, region between the metal and 2D layer should increase the
m*=0.05mg, and parametersk, and k, of NisFeg  adiabaticity of the ballistic electron motion and, therefore,
leads, we calculated the resistance according Ro decrease both the spin-filtering effect and the possibility to
=(h/e?)Jm/2n,p, T 1, neglecting the contributions propor- control R (the completely adiabatic case is considered in the
tional to y. Within the same approximation, the degree ofend of Sec. Il. The discrepancy between experimental and
spin polarization of the injected current for a parallel mag-theoretical values can also be attributed to a more complex
netization configuration is estimated & (" —T,")/T. The  experimental geometry, involving several interdigitally
results are plotted in Fig. 5 as functions of the Rashba phagsiaced ferromagnetic layers.
for different polarizations oM in the leads. Actually, only In conclusion, our theory suggests that the modulation of
the casd\ﬂ||§< has been investigated experimentally. For thisresistance of the ballistic spin field-effect transistor with fer-
polarization we obtain a magnetoresistance of about 0.5% oromagnetic leads contacted to 2D or 1D semiconductor lay-
average. This value is not far from the value of 0.2% ob-ers in the geometry shown in Fig. 1 cannot be made efficient.
tained experimentally. The degree of spin polarization of theA modulation of several percent can, in principle, be
injected current for parallel magnetization configurations isachieved in 2D devices through the use of Fe leads and low
found to be about 9%, which is twice larger than the experienough 2x 10" cm 2) 2D electron density. Creation of
mental value. Nearly the same values were obtained fotD devices is desirable, but the modulation there is not ex-
samples with channel length=1.8 um, also investigated pected to increase considerably in comparison to 2D devices.
in the experiment. We stress that the thédwf spin injec- A possible way to create an efficient transistor device is to
tion through a single ferromagnet/semicondictor interfacemake the spin-aligning leads from materials with a total spin
also gives a degree of spin polarization of about 10% whepolarization  of carriers, such as semimagnetic
realistic parameters of the device are used in the calculatiosemiconductors™! (in magnetic fields at low temperatujes
To explain the larger values of the resistance modulatioror half-metallic magnet¥
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