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Spin injection into ballistic layers and resistance modulation in spin field-effect transistors
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The problem of electron transport through low-dimensional ballistic electron layers contacted to ferromag-
netic leads is studied theoretically. Using the drift-diffusion approach to describe the potential distribution in
the leads, we derive the general expression for the device resistance in terms of both the spin polarization in the
leads and partial spin-dependent transmission probabilities. It is found that, due to the dimensionality mismatch
between the leads and low-dimensional layer, the resistance depends rather on the total transmission probabil-
ity T than on the spin polarization in the leads. We calculateT for both two-dimensional~2D! and 1D layers in
order to investigate the efficiency of the current modulation in the field-effect and magnetoresistance measure-
ments. The results are compared with recent experimental data.
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I. INTRODUCTION

Spin-polarized electron transport in microstructures
been the focus of attention since the proposal1 of an elec-
tronic device where the spin precession in two-dimensio
~2D! or 1D electron gas is controlled by an external elec
field via spin-orbit coupling. This field modifies the devic
resistance provided the degree of spin polarization of
electron gas in the conduction channel of the device is n
zero. The possibility to vary the spin-orbit coupling consta
in low-dimensional semiconductor layers by the exter
electric field has been demonstrated in a number
experiments.2–4 It appeared to be difficult,5,6 however, to
achieve an efficient injection of spin-polarized electro
from ferromagnetic metallic leads to semiconductor laye
Theoretical studies7,8 applied to transport across the inte
faces between 3D materials~3D-3D contacts!, have uncov-
ered a fundamental obstacle for spin injection: the cond
tivity mismatch between the two materials. Indeed, when
obstacle is bypassed by choosing semimagnetic semicon
tors instead of ferromagnetic metals as spin aligners, a
bust, more than 80%, spin injection across 3D-3D interfa
is observed.9–11Another way to achieve spin injection is con
cerned with quantum-mechanical spin-filtering properties
the interfaces and has been recently discussed for 3D
~Refs. 8 and 12!, 3D-2D ~Refs. 13 and 14!, and 3D-quasi-1D
~Ref. 15! contacts.

Despite all efforts, a practical implementation of the id
of spin field-effect transistors1 still remains an elusive goal
Although devices containing very short~nearly ballistic! 2D
electron layers contacted to ferromagnetic leads have b
fabricated, no electric field-effect modulation has been
ported for them so far. A weak resistance modulation in s
devices, about 0.2% at temperatures below 4.2 K, was
served in the magnetoresistance measurements, when
injector-detector magnetization configuration was switch
from parallel to antiparallel.16,17 The weakness of the resis
tance modulation has been attributed mostly to the devia
of the electron transport from the ballistic regime and to
0163-1829/2002/65~8!/085319~9!/$20.00 65 0853
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spin-flip scattering. Though this conclusion is supported
the observation of a decrease of the resistance modula
with increasing temperature, the weakness of the effec
low temperatures still requires other explanations. In parti
lar, it was mentioned18 that limitations on the spin injection
similar to those outlined in Ref. 7, should also be expec
for devices with 3D-2D contacts. However, a comprehens
quantitative theory of spin-polarized transport in such d
vices is still missing.

In this paper we study the transport of spin-polarized el
trons in conditions when the dimensionalities of the sp
aligning leads and of the semiconductor layer between th
are different. This study covers 3D-2D-3D and 3D-1D-3
structures, and also can be applied to 2D-1D-2D structu
~Fig. 1!. Electron transport in the low-dimensional layer
assumed to be ballistic, while transport in the leads is dif
sive. The paper is organized as follows. In Sec. II we der
general expressions for the degree of spin polarization of
current and for the resistance of the device. These quant
depend on both the spin polarization of electrons in the le
and the partial transmission probabilities for spin-up a
spin-down electrons, including spin-flip transmission. In S
III we present a quantum-mechanical calculation of the tra
mission probabilities through 2D and 1D layers and anal
the limits of the device resistance modulation. In Sec. IV
results are briefly discussed and compared to recent ex
mental data.

FIG. 1. Schematic representation of the structures under con
eration. The low-dimensional layer is placed between the lead
higher dimensionality.
©2002 The American Physical Society19-1
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II. SPIN POLARIZATION AND BALLISTIC RESISTANCE

To describe the electric response of the structures un
consideration, we use the drift-diffusion approach develo
in Ref. 19 and applied in Refs. 7 and 8 to 3D-3D-3D stru
tures. Consider two leads, the left (2) and the right (1)
ones, characterized by the different conductivitiess↑

6 and
s↓

6 for spin-up (↑) and spin-down (↓) electron states. The
distribution of electrochemical potentials in the leads is
termined by the following equations:

D@s↑
6m↑

6~r !1s↓
6m↓

6~r !#50, ~1!

D@m↑
6~r !2m↓

6~r !#2 l s6
22@m↑

6~r !2m↓
6~r !#50, ~2!

which follow from the continuity equations for the curre
densitiesj ↑,↓

6 (r )52s↑,↓
6 ¹m↑,↓

6 (r ), provided that spin relax-
ation is taken into account. The latter is characterized by
effective lengthsl s6 , which are assumed to be much grea
than the mean-free-path lengths in the leads. Equations~1!
and~2! should be supplemented by the boundary conditio
whose form is determined by the geometry of the leads
of the layer between them, as specified in Fig. 1. A deta
consideration of electron transport is given below for 3
2D-3D structures. A rather straightforward generalization
the obtained results to 3D-1D-3D and 2D-1D-2D structu
is given thereafter.

In 3D-2D-3D structures, the translational symmetry of t
problem along thex direction renders the potentialsm↑,↓

6

independent ofx. The first pair of boundary conditions fol
lows from current conservation:

2s↑,↓
2 ¹ym↑,↓

2 ~y,z!uy5205d~z!J↑,↓
2 , ~3!

2s↑,↓
1 ¹ym↑,↓

1 ~y,z!uy5L105d~z!J↑,↓
1 , ~4!

whereJ↑,↓
2 andJ↑,↓

1 are the currents entering the 2D layer
y50 and exiting it aty5L, respectively. These four curren
are not independent of each other, sinceJ↑

21J↓
25J↑

11J↓
1

5J, whereJ is the total current. We assume that the lay
thickness is smaller than the mean-free-path length. Th
fore, from the point of view of the drift-diffusion approxima
tion, this thickness should be set to zero, which justifies
use of thed functions in Eqs.~3! and ~4!. Another set of
boundary conditions describes application of the external
tentialsV2 andV1 to the leads:

m↑
2~y,z!5m↓

2~y,z!5V2 , Ay21z25r 2 , ~5!

m↑
1~y,z!5m↓

1~y,z!5V1 , A~y2L !21z25r 1 , ~6!

wherer 6 are large in comparison tol s6 . An exact definition
of the equipotential surface is not essential and is cho
here for convenience only. Changing it, one would mod
only the resistances of the bulk lead regions which enter
theory as additional series resistances and can be excl
from consideration~see below!.

Using Eqs.~3!–~6! one can write separate boundary co
ditions for the variablesg6(r )5s↑

6m↑
61s↓

6m↓
6 and u6(r )
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5m↑
62m↓

6 . Thus, Eqs.~1! and ~2! for these variables be
come independent of each other, and their solutions can
written as follows:

g2~y,z!5s2V21J ln~Ay21z2/r 2!/p,

g1~y,z!5s1V12J ln@A~y2L !21z2/r 1#/p ~7!

and

u2~y,z!52A2E dq

2p

cos~qz!

Aq21 l s2
22

eAq21 l s2
22y,

u1~y,z!5A1E dq

2p

cos~qz!

Aq21 l s1
22

e2Aq21 l s1
22(y2L), ~8!

wheres65s↑
61s↓

6 are the total conductivities of the lea
regions andA65J↑

6/s↑
62J↓

6/s↓
6 . The potentialsm↑,↓

2 (y,z)
and m↑,↓

1 (y,z) appear to be logarithmically divergent a
(y,z)→(0,0) and (y,z)→(L,0), respectively. This is a con
sequence of the crudity of the drift-diffusion approximatio
~for more accuracy, one has to solve a kinetic equation in
vicinity of the 3D-2D transition regions!. Nevertheless, one
can introduce a cutoff at the mean-free-path lengthsl 6 , the
smallest parameters of the drift-diffusion theory. This can
affect the accuracy considerably, as far as the logarith
scaling is concerned. Accordingly, we introducem↑,↓

2

5m↑,↓
2 (2 l 2,0) andm↑,↓

1 5m↑,↓
1 (L1 l 1 ,0), andobtain

m↑,↓
2 5V22R2J1

K0~ l 2 / l s2!

ps2 F J↓,↑
2 2

s↓,↑
2

s↑,↓
2

J↑,↓
2 G , ~9!

m↑,↓
1 5V11R1J2

K0~ l 1 / l s1!

ps1 F J↓,↑
1 2

s↓,↑
1

s↑,↓
1

J↑,↓
1 G , ~10!

whereK0 is the modified Bessel function. According to th
initial assumptions, its argumentsl 2 / l s2 and l 1 / l s1 are
small, and the limits of accuracy of this treatment permit
to replaceK0( l 6 / l s6) by ln(ls6 /l6) in the following. In Eqs.
~9! and ~10! we have also introduced the resistances of
leads according toR65(ps6)21ln(r6 /l6).

To find the relation betweenJ and V22V1 , one has to
connect the four currentsJ↑,↓

6 to four potentialsm↑,↓
6 given

by Eqs. ~9! and ~10!. Considering the electron subsystem
with different spins in each lead as four independe
reservoirs20 and assuming that electron motion in the 2
layer is ballistic, we directly apply the Landauer-Bu¨ttiker
formalism for a four-terminal device21 to obtain a set of
equations

J↑
25G@~T↑↑

211T↑↓
211R↑↓

2 !m↑
22T↑↑

12m↑
12T↓↑

12m↓
1

2R↓↑
2 m↓

2#, ~11!

J↓
25G@~T↓↓

211T↓↑
211R↓↑

2 !m↓
22T↓↓

12m↓
12T↑↓

12m↑
1

2R↑↓
2 m↑

2#, ~12!
9-2
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SPIN INJECTION INTO BALLISTIC LAYERS AND . . . PHYSICAL REVIEW B65 085319
J↑
15G@T↑↑

21m↑
21T↓↑

21m↓
21R↓↑

1 m↓
12~T↑↑

121T↑↓
12

1R↑↓
1 !m↑

1#, ~13!

J↓
15G@T↓↓

21m↓
21T↑↓

21m↑
21R↑↓

1 m↑
12~T↓↓

121T↓↑
12

1R↓↑
1 !m↓

1#. ~14!

Here Tj j 8
ab (a,b56, j , j 85↑↓) is the probability for an

electron in spin statej coming from the leada to be trans-
mitted into spin statej 8 of the leadb (bÞa), andRj j 8

a ( j
Þ j 8) is the probability of the electron in spin statej coming
from the leada to be reflected back, into the state with th
opposite spin. The coefficientsTj j 8

ab and Rj j 8
a correspond to

the Fermi energy and are averaged over the angle of i
dence~see the details in the next section! in such a way that
the conductanceG introduced in Eqs.~11!–~14! is equal to
the Sharvin conductance of a 2D point contact~per unit
length!, expressed through the 2D electron densityn2D in the
ballistic layer asG5(e2/h)A2n2D /p. The physical meaning
of Eqs. ~11!–~14! is the following.21 The reservoir (a j ) in-
jects a currentG@Tj↑

ab1Tj↓
ab1Rj j 8

a
#(m j

a2m0), while the cur-
rent from three other reservoirs coming into (a j ) is equal to
G@T↑ j

ba(m↑
b2m0)1T↓ j

ba(m↓
b2m0)1Rj 8 j

a (m j 8
a

2m0)#. The dif-
ference between these currents gives the currentJj

a . Herem0

is the reference potential, which is smaller than or equa
the lowest of the four potentialsm↑,↓

6 . In equilibrium, when
all these potentials are equal to each other, all the curr
J↑,↓

6 must be equal to zero, so that one can write the follo
ing linear relations:

T↑↑
211T↑↓

211R↑↓
2 5T↑↑

121T↓↑
121R↓↑

2 ,

T↓↓
211T↓↑

211R↓↑
2 5T↓↓

121T↑↓
121R↑↓

2 ,

T↑↑
211T↓↑

211R↓↑
1 5T↑↑

121T↑↓
121R↑↓

1 ,

T↓↓
211T↑↓

211R↑↓
1 5T↓↓

121T↓↑
121R↓↑

1 .

On the other hand, we would like to stress that, in gene
Tj j 8

abÞTj 8 j
ba andRj j 8

a ÞRj 8 j
a . This asymmetry can appear eve

in the absence of a magnetic field, because the spin-o
interaction~Rashba! term in the Hamiltonian of the ballistic
layer~see next section! changes its sign when the momentu
is reversed, so that for spin-polarized electrons the forw
and backward directions of motion are not equivalent. Ho
ever, if the magnetization vectors of the leads are in theyz
plane @see Fig. 1~a!#, i.e., are directed perpendicular to th
effective magnetic field created in the ballistic layer by t
current~Rashba field!, the coefficientsTj j 8

ab andRj j 8
a become

symmetric. The asymmetry of the partial spin-depend
probabilitiesTj j 8

ab andRj j 8
a is not a violation of the Casimir-

Onsager-Bu¨ttiker symmetry relation for two-terminal device
because, since the states with different spins are consid
as separate reservoirs, one has aneffectivefour-terminal de-
vice instead of a two-terminal one. It is convenient to intr
duce the total~summed over the spins! transmission prob-
ability
08531
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T5Tab5Tba5(
j j 8

Tj j 8
ab , ~15!

which describes the total currentJ5GT(m22m1) in con-
ditions when the potentials for both spin states in each l
are equal,m↑

a5m↓
a5ma. The symmetry of the total transmis

sion probability with respect to the lead indices is a manif
tation of the Casimir-Onsager-Bu¨ttiker symmetry, becauseT
is related to thephysicaltwo-terminal device. This symmetry
formally follows from the linear relations forTj j 8

ab and Rj j 8
a

written above. According to its definition, the total transm
sion probabilityT can vary from 0 to 2.

The partial transmission probabilities are essentially
lated to the properties of the interfaces and of the ballis
layer itself. The ballistic layer acts like a spin filter ifT↑↑

ab

ÞT↓↓
ab or T↑↓

abÞT↓↑
ab . Next, if T↑↓

ab andT↓↑
ab are nonzero, the

layer acts like a spin mixer. The spin-filtering and spi
mixing properties are not necessarily connected to e
other. The spin mixing can be associated with the Ras
term in the Hamiltonian. It is important for the layers wit
considerable spin-orbit coupling, like InAs or InSb. Th
spin-filtering property can exist13 because of the differen
Fermi velocities for spin-up and spin-down electrons in t
leads, without regard to the spin-orbit coupling.

Below we use Eqs.~9!–~14! to calculate the spin polar
ization of the currentdJ65J↑

62J↓
6 and the device resis

tanceR5(V22V1)/J2R22R1 ~per unit length! for the
case of identical leads, whens15s25s, l s25 l s15 l s ,
and l 25 l 15 l , and the absolute values of magnetization a
the same in both leads. If the magnetization configuration
the leads isparallel (P), one hass↑,↓

2 5s↑,↓
1 [s↑,↓ , T↑↓

ab

5T↓↑
ab , and Rj j 8

2
5Rj 8 j

1 . Assuming also that the vectors o
magnetization of the leads are in theyz plane, we reduce the
number of independent coefficients to 4, written asT↑↑
5T↑↑

ab , T↓↓5T↓↓
ab , T↑↓5Tj j 8

ab ( j Þ j 8), andR↑↓5Rj j 8
a . A cal-

culation gives

dJP
25dJP

15J
~T↑↑2T↓↓!12bgQP /~12b2!

T12gQP /~12b2!
, ~16!

RP5G21
11gPP /~12b2!

T12gQP /~12b2!
, ~17!

whereb5(s↑2s↓)/s characterizes spin polarization of th
currents in the leads, QP52T↑↑T↓↓1T↑↓(T↑↑1T↓↓)
1TR↑↓ , and PP5(12b)2T↑↑1(11b)2T↓↓12b2T↑↓
12R↑↓ . For antiparallel ~A! configuration, when the mag
netization of the right lead is inverted, one hass↑,↓

2 5s↓,↑
1

[s↑,↓ , Tj j
ab5Tj 8 j 8

ba ( j Þ j 8), Tj j 8
ab

5Tj 8 j
ba ( j Þ j 8), and Rj j 8

2

5Rj 8 j
1 . If the vectors of magnetization of the leads are in t

yz plane, we again have only four independent transmiss
coefficients defined asT↑↑5Tj j

ab ( j 5↑,↓), T↑↓5T↑↓
21

5T↓↑
12 , T↓↑5T↓↑

215T↑↓
12 , andR↑↓5Rj j 8

a . The spin polar-
ization and the resistance are given by the equations
9-3
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dJA
252dJA

15J
~T↑↓2T↓↑!12bgQA /~12b2!

T12gQA /~12b2!
, ~18!

RA5G21
11gPA /~12b2!

T12gQA /~12b2!
, ~19!

where QA52T↑↓T↓↑1T↑↑(T↑↓1T↓↑)1TR↑↓ and PA5(1
2b)2T↑↓1(11b)2T↓↑12b2T↑↑12R↑↓ . Equations ~18!
and ~19! can be obtained from Eqs.~16! and ~17! by the
formal substitutionsT↑↑→T↑↓ , T↓↓→T↓↑ , and T↑↓→T↑↑ .
One should remember, however, that the transmission p
abilities Tj j 8 for parallel and antiparallel configurations a
different. In Eqs.~16!–~19! we have introduced the chara
teristic dimensionless parameter

g5
2G

ps
ln

l s

l
. ~20!

The results~16!–~20! are not modified essentially for th
3D-1D-3D and 2D-1D-2D structures shown in Figs. 1~b! and
1~c!. In the 2D-1D-2D case, the geometry of the dri
diffusion problem is the same as in the 3D-2D-3D case,
the results are formally valid if we replaceG by the funda-
mental conductance quantume2/h and considers as the
sheet resistance of the 2D leads. In the 3D-1D-3D case
geometry is different, and the electrochemical potentials
pend on three coordinates. The theory, however, is very s
lar to the one presented above. It is based on the boun
conditions

2s↑,↓
2 ¹ym↑,↓

2 ~x,y,z!uy5205d~x!d~z!J↑,↓
2 , ~21!

2s↑,↓
1 ¹ym↑,↓

1 ~x,y,z!uy5L105d~x!d~z!J↑,↓
1 , ~22!

while another pair of boundary conditions relatin
m↑,↓

6 (x,y,z) to the external potentials away from the 3D-1
contacts can be chosen the same as in Eqs.~5! and ~6!. The
results~16!–~19! are valid in this case if we replaceG by
e2/h and setg equal to

g5
e2

h

1

ps l
. ~23!

The appearance of the terml 21 results from inverse diver
gences of the potentialsm↑,↓

6 (x,y,z) as functions of the dis-
tances to the contact points. The cutoff of these divergen
is again taken at the mean-free-path length, and we negle
1/l s in comparison to 1/l . The loss of accuracy is greater tha
in the case of logarithmic divergence, and one can sp
only about order-of-magnitude estimates. Nevertheless,
clear thatg does not depend on the spin-relaxation len
and is of the order of (kFl )22, wherekF is the Fermi wave
number in the leads. This means that this parameter is sm
as long as metallic conductivity in the leads is assumed.
cording to Eq.~20!, the parametersg for 3D-2D-3D and
2D-1D-2D structures are estimated as (p/kF)(kFl )21ln(ls/l),
where p5A2pn2D is the Fermi wave number in the 2D
layer and (kFl )21ln(ls/l), respectively. These parameters a
also small. It is important to stress that the facto
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(kFl )21ln(ls/l) and (kFl )22 are of the order of relative wea
localization corrections to the 2D and 3D conductivities,
spectively, and the spin-relaxation lengthl s plays the role of
the dephasing length. The fundamental reasons for the sm
ness of the parameterg is the dimensionality mismatchbe-
tween the leads and the layers, whose dimensionality
lower. This mismatch sets an obstacle for spin injection.

The results~16! and ~18! show that spin polarization o
the current can occur as a consequence of two effects.
first is related to the spin polarization in the leads~the terms
proportional tob), and the second is due to the spin-filterin
properties of the contacts@the terms proportional toT↑↑
2T↓↓ in Eq. ~16! and toT↑↓2T↓↑ in Eq. ~18!#. If there is no
spin filtering,T↑↑5T↓↓5TP , T↑↓5T↓↑5TA , and Eqs.~16!
and ~18! can be written as

udJi u
J

5
2ubug~Ti1R↑↓!

12b212g~Ti1R↑↓!
, i 5P,A, ~24!

while Eqs.~17! and ~19! become

Ri5
1

TG
1

1

G

b2g

12b212g~Ti1R↑↓!
, i 5P,A. ~25!

Since the parameterg is small, the spin injection is expecte
to be weak in this case, unlessubu is very close to 1. On the
other hand, if spin filtering exists, the spin injection occu
even if we neglect the terms proportional tog/(12b2).
Nevertheless, the resistanceR at smallg/(12b2) is mostly
determined by thetotal transmission probabilityT. The con-
trol of the resistance, which is crucial for operation of t
spin field-effect transistor,1 thus depends mostly on the po
sibility to control T.

The simplest way to evaluate the transmission probab
ties in Eqs. ~16!–~19! is to assume adiabatic contactin
when the electrochemical potentials for spin-up and sp
down states are continuous across the contacts betwee
leads and the low-dimensional layer. These are, in fact,
conditions considered by Datta and Das.1 Following Ref. 1,
in the 1D case one can writeR↑↓50, T↑↑5T↓↓5cos2w and
T↑↓5T↓↑5sin2w, where w5am* L/\2 is the field-effect-
controlled phase expressed through the electron effec
massm* and Rashba constanta in the layer. These expres
sions are valid for both parallel and antiparallel configu
tions of the magnetization. The ballistic wire acts like a sp
mixer, but not like a spin filter. The total transmission pro
ability ~15! is equal to 2. The resistancesR5Ri for parallel
( i 5P) and antiparallel (i 5A) configurations are

Ri.
h

2e2 F11
2b2g

12b2
2S 2bg

12b2D 2

Ti G , ~26!

where TP5cos2w and TA5sin2w. To obtain Eq.~26!, we
expanded the second term of the right-hand side of Eq.~25!
in powers of a small parameterg/(12b2). The control ofR
throughw is as weak asg2. The magnetoresistance, i.e., th
differenceRP2RA , has the same weakness. In other wor
the spin field-effect transistor cannot work efficiently in th
9-4
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form it was initially proposed,1 because of the fundament
reasons which render the parameterg small and thereby sup
press the spin injection.

Fortunately, the realistic contacts are far from adiaba
and can provide spin filtering as well. As was pointed out
Grundler,13 the abrupt contacts between ferromagnetic ma
rials and 2D layers act like spin filters in a natural way, sin
the Fermi velocities for spin-up and spin-down electrons
the ferromagnets are different and the quantum-mechan
transmission probabilities depend on these velocities. Us
this Fermi velocity mismatch, Grundler has estimated14 the
magnetoresistance of a 2D device with two ferromagn
leads. The theory of Ref. 14, however, has to be improv
since the model of one-dimensional transport used there
not been justified, the transmission has been considered
for x-polarized magnetization@for the geometry shown in
Fig. 1~a!#, and the motion of electrons in thex direction has
been neglected. The latter approximation apparently led t
overestimation of the relative modulation of the resistance
is important to note that the Rashba term in the 2D Ham
tonian mixes the motion of an electron inx andy directions,
so that the symmetry of the spinor wave function depends
the direction of the wave vector in thexy plane @see, for
example, Eq.~34! of the next section#. As a result, the trans
mission probability acquires a nontrivial dependence of
2D wave vector. This effect has been completely neglecte
Refs. 13 and 14. The theory15 of spin injection through a
single interface betwen 3D and quasi-1D materials has
same drawback, since the mixing~induced by the Rashb
term! between 1D subband states22 has been neglected. In th
next section we overcome these limitations and calculate
transmission probabilities through both 2D and 1D layers
different magnetization directions in the leads.

III. TRANSMISSION PROBABILITY

To calculate the transmission probabilities, Grundler13,14

used a simple model, which reduced the problem of elec
transfer between the regions of different dimensionality t
one-dimensional quantum-mechanical problem. It has b
already pointed out23 that such a one-dimensional transpo
model gives a reasonable order-of-magnitude estimate o
exact numerical results for the transmission. However, as
as we know, nobody noticed that this model is a very go
approximation in the case when the Fermi wave numbe
3D material is much greater than the inverse length of s
quantization in the quantum well where the 2D layer is c
ated. To demonstrate it, let us consider the transmission p
lem in more detail. Following Kriman and Ruden,23 we con-
sider a single abrupt contact between a 2D conductor f
the left (,) and a 3D conductor from the right (.), at y
50. The wave function of the Fermi electron coming fro
the side of the 2D conductor is written as

C,~x,y,z!5@eiAk,
2

2k0
2y1r 0e2 iAk,

2
2k0

2y#x0~z!eikxx

1 (
n51

`

r neAkn
2
2k,

2 yxn~z!eikxx, ~27!
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wherekn are discrete wave numbers of the quantized s
bands. Only the lowest quantized subband (n50) is as-
sumed to be occupied by electrons. The higher subba
with n51,2, . . . contribute to evanescent reflected mod
The wave function on the side of the 3D conductor is giv
in the integral representation

C.~x,y,z!5E dk

2p
tke

iAk.
2

2k2yeikzeikxx, ~28!

where k5kz , and the factoriAk.
2 2k2 in the exponent

should be replaced by2Ak22k.
2 , when uku.k. . In Eqs.

~27! and ~28! we introduced the wave numbersk,

5A2m,(«F2U)/\22kx
2 and k.5A2m.«F /\22kx

2,
wherem, andm. are the effective masses,«F is the Fermi
energy counted from the conduction-band bottom in the
material, andU is the potential energy offset between th
contacting materials. The boundary conditions express
continuity of C andm21dC/dy give us

~11r 0!x0~z!1 (
n51

`

r nxn~z!5E dk

2p
tke

ikz ~29!

and

iAk,
2 2k0

2~12r 0!x0~z!1 (
n51

`

r nAkn
22k,

2 xn~z!

5 i
m,

m.
E dk

2p
tkAk.

2 2k2eikz. ~30!

Multiplying these equations bye2 ikz, integrating them over
z, and introducing the overlap integralsI kn5*dze2 ikzxn(z),
one can excludetk and obtain a single equation

i I k0@12lk#2 i I k0r 0@11lk#

1 (
n51

`

I knr nFAkn
22k,

2

k,
2 2k0

2
2 ilkG50,

lk5
m,

m.
Ak.

2 2k2

k,
2 2k0

2
, ~31!

which is equivalent to an infinite system of linear equatio
for r n , n50,1, . . . . ThecoefficientsI kn become small when
uku exceeds the inverse length of size quantization in
quantum well where the 2D layer is created. If this inver
length ~estimated ask0) is much smaller thank. , one can
neglect the dependence oflk on k, replacingAk.

2 2k2 by
k. . Then, multiplying Eq.~31! by I km* and integrating it over
k with use of the orthogonality property*dkIkm* I kn

52pdnm , we obtainr 05(v,2v.)/(v,1v.) and r n50
for nÞ0. Herev.5\k. /m. and v,5\Ak,

2 2k0
2/m, are

Fermi velocities of 3D and 2D electrons in they direction.
Therefore, the contribution from the higher subbands is n
ligible, and the transmission probability 12ur 0u2 is given by
a well-known expression corresponding to the on
dimensional transmission-reflection problem24 ~the
9-5
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x-dependent part of the wave function is conserved ac
the interface and its inclusion is trivial!. From the qualitative
point of view, this correspondence follows from the fact th
electron transitions between 3D and 2D layers atk.@k0
involve only those electrons in 3D material whoseukzu is
small in comparison tok. , so that they effectively move
alongy direction. The contacts between 3D metals and se
conductor quantum wells satisfy this requirement, beca
for them k.;108 cm21 and k0;106 cm21, and can be
considered within the one-dimensional transport model. T
greatly simplifies the subsequent calculation.

Below we calculate the probability of transmission from
metallic lead to another through a 2D semiconductor la
between them. The metal is a ferromagnet, and the semi
ductor layer is characterized by a considerable spin-o
coupling which adds the Rashba terma@ŝ3p̂#nz in the 2D
Hamiltonian.25 Hereŝ is the vector of the Pauli matrices,\p̂
is the operator of the 2D momentum, andnz is the unit vector
in thez direction. The Rashba constanta can be modified by
application of an electric field in thez direction, since this
field modifies the symmetry of the confining potential. B
low we need to use another form of the Rashba term, ge
alized for the case of a coordinate-dependenta. The Rashba
term is written as an anticommutator (a@ŝ3p̂#1@ŝ

3p̂#a)nz/2. This form can be justified, for example, by de
vation of the Rashba term from the multiband Kane Ham
tonian.

The wave function in such a ferromagnet-semiconduc
ferromagnet system is presented asC(x,y,z)
5eipxxx(z)c(y), and the one-dimensional Schro¨dinger
equation Ĥ(y)c(y)5«c(y) is written for the two-
component spinorc5(c↑ ,c↓). The 232 matrix Hamil-
tonianĤ is given by

Ĥ~y!52
d

dy

\2

2m~y!

d

dy
1

\2px
2

2m~y!
1Û~y!2

i

2
ŝxFa~y!

d

dy

1
d

dy
a~y!G2ŝya~y!px , ~32!

where m(y) is the coordinate-dependent effective ma
which is assumed to be a scalar, andÛ(y)5U0(y)
1( i ŝ iUi(y) is the potential energy matrix,i 5x,y,z. The
componentU0 changes fromU0

M in the leads toU0* in the
semiconductor layer. The componentsUi are nonzero only in
the ferromagnetic leads, and the vectorU5(Ux ,Uy ,Uz)
gives the direction of the magnetizationM there. On the
other hand,a(y) is assumed to be nonzero~equal toa) only
in the semiconductor layer, 0,y,L. The Hamiltonian~32!
is similar to that used by Hu and Matsuyama15 in their study
of spin injection across a single ferromagnet-semicondu
interface. The only difference is that these authors conside
magnetization perpendicular to the interface, introduce
lateral confinement of 2D electron gas, and added
d-function scattering potential at the interface. The Ham
tonian ~32! allows us to derive the boundary conditions e
pressing the continuity of bothc(y) and
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m~y!

d

dy
1 i ŝxa~y!Gc~y! ~33!

across the interfaces. The wave function in the semicond
tor layer is written as

c5 (
q56

aqS p1

qp1y2 ipx
D eiqp1yy

1 (
q56

bqS p2

2qp2y1 ipx
D eiqp2yy, ~34!

where p1,2y5Ap1,2
2 2px

2, p15p2m* a/\2, p25p
1m* a/\2, and \p5A2m* («2U0* )1(m* a/\)2. If « is
the Fermi energy,p1 andp2 are the Fermi wave numbers fo
the two branches of the spin-split electron spectrum, whilp
is the averaged~effective! Fermi wave number of 2D elec
tron gas, which is expressed through its density accordin
p5A2pn2D.

The explicit form of the wave function in the metalli
leads is written below for the simplest caseM uuẑ, when the
potential energy matrix is diagonal. For a parallel magne
zation configuration,

cuy,05S c1eik1y1r 1e2 ik1y

c2eik2y1r 2e2 ik2yD , cuy.L5S t1eik1y

t2eik2yD ,

~35!

where k15A2mM(«2U0
M2Uz)/\

2, k2

5A2mM(«2U0
M1Uz)/\

2, andmM is the effective mass in
the ferromagnet. If« is the Fermi energy,k1 andk2 are the
Fermi wave numbers for spin-up and spin-down states in
ferromagnet. The casesc151, c250 andc150, c251 cor-
respond to incoming electrons in the states↑ and↓, respec-
tively. If the right-lead magnetization is inverted, one shou
permutek1 andk2 in cuy.L . The eight coefficientsa6 , b6 ,
r 1,2, andt1,2 are expressed throughc1 andc2 after a solution
of the system of eight linear equations generated thro
application of the boundary conditions aty50 andy5L to
the wave functions~34! and ~35!. The px-dependent trans
mission probabilitiesTj j 8

21(px) obtained in this way should
be averaged overpx as

Tj j 8
21

5
1

2pE2`

`

Tj j 8
21

~px!dpx . ~36!

This gives us the transmission probabilitiesTj j 8
ab entering the

equations of Sec. II.
The problem of transmission through a 1D semiconduc

layer is simpler, since free motion in thex direction is absent.
We have C(x,y,z)5x(x,z)c(y) and put px50 in the
Hamiltonian~32!. One should remember, however, that th
substitution is not straightforward because of the spin-or
induced mixing between 1D subband states,22 which leads to
some renormalization26 of both the effective massm* and
the Rashba constanta. One can neglect this renormalizatio
if a/\ is small in comparison to the Fermi velocity\p/m*
in the 1D layer. The wave function~34! in the 1D case is
9-6
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considerably simplified, sincep1,2y5p1,2, and there is no
need of an averaging procedure like Eq.~36! once the trans-
mission probabilitiesTj j 8

21 are calculated in the quantum
mechanical problem.

The transmission probabilities for both 1D and 2D ca
contain two oscillating contributions, with phases (p1
1p2)L52pL and (p22p1)L52m* aL/\252w. We will
neglect the first kind of oscillations by averaging the tra
mission probability over the perioddp5p/L. From the
physical point of view, it corresponds to thermal averaging
the transmission probabilities27 in conditions when the tem
perature is large in comparison to\2p/kBm* L. The oscilla-
tions associated with the Rashba phase 2w are not influenced
by such averaging, sincew is energy independent. The re
sults given below are obtained forL51 mm, mM5m0, and
m* 50.035m0. The latter is a reasonable value of th
conduction-band electron mass in InAs quantum wells.

Figure 2 represents the total transmission probabilityT for
a 2D layer with densityn2D51011 cm22, corresponding to
Fermi wave numberp50.793106 cm21. The transmission
is plotted as a function ofw/p ~for given m* and L, the
values ofa lie in the reasonable rangea;10 meV nm) and
shows characteristic oscillations. The leads are assume
be Fe @k151.053108 cm21 and k250.443108 cm21].13

The field-effect modulation of the transmission forM uuẑ
reaches about 10% at smalla and decreases with an increa
of a. ForM uu ŷ the modulation at smalla is about 6%, but its
decrease is weaker. AtM uux̂, when the spins of the injecte
electrons are nearly aligned with the Rashba field, the fie
effect modulation is weakest, but the magnetoresistanc
highest, about 8% on average. The behavior of the trans
sion probability for Ni40Fe60 leads @k151.053108 cm21

and k250.653108 cm21] and Ni80Fe20 leads @k151.05
3108 cm21 andk250.883108 cm21] is very similar, but

FIG. 2. Probabilities of transmission through a 1-mm-long 2D

layer for M uuẑ ~solid line!, M uu ŷ ~dashed line!, and M uux̂ ~dotted
line! as a function ofm* aL/p\2. Thick and thin lines correspond
to parallel and antiparallel magnetization configurations. The le
are Fe electrodes, and the 2D electron gas densityn2D is
1011 cm22.
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s

-

f

to

-
is

is-

the modulation is considerably weaker because of a sma
Fermi velocity mismatch for spin-up and spin-down ele
trons. We obtained a degree of modulation of less than
for Ni40Fe60 and about 0.4% for Ni80Fe20 for all orientations
of M . With an increase of the electron density, the modu
tion weakens. Figure 3 shows the behavior of transmiss
coefficients atn2D5531011 cm22.

In Fig. 4 we plot the transmission probability through
1D layer. As in the case shown in Fig. 2, we assume Fe le
and Fermi wave numberp50.793106 cm21. The transmis-
sion does not depend on the angle ofM in the yz plane,
because a rotation of the magnetization vector in this pl
does not change the componentMx parallel to the Rashba
field. The transmission oscillates as the Rashba phas
changed; the oscillations are nearly harmonic and do
decay with an increase ofa, in contrast to the 2D case. Th
amplitude of the oscillations is maximal forM' x̂. The trans-

s

FIG. 3. The same as in Fig. 2 forn2D5531011 cm22.

FIG. 4. Probabilities of transmission through a 1-mm-long 1D

wire for M' x̂ ~solid line! and M uux̂ ~dotted line! as a function of
m* aL/p\2. The leads are Fe electrodes, and the Fermi wave n
ber isp50.793106 cm21. Thick and thin lines correspond to pa
allel and antiparallel magnetization configurations.
9-7
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mission forM uux̂ does not depend on the Rashba phase,
cause the spin-up and spin-down states do not mix. For
orientation, the difference between the transmission pr
abilities Tpar andTant for parallel and antiparallel polariza
tion configurations is equal to the amplitude of the fie
effect modulation of transmission atM' x̂. One can obtain
analytical expressions for these coefficients,14 which gives

Tpar2Tant

Tpar
5

~k12k2!2@k1k2 /mM
2 2~p/m* !2#

~k11k2!2@k1k2 /mM
2 1~p/m* !2#

. ~37!

The degree of modulation defined by this equation is ma
mal atp→0 when it reaches 16.7% for the case of Fe lea
With the increase of electron density, the modulation we
ens and goes through its minimum~zero! at pmin.2.4
3106 cm21 ~in the case of Fe leads!. A similar behavior
takes place for 2D layers as well, though analytical res
for that case cannot be obtained. We stress that the g
value ofpmin corresponds to a Fermi energy of about 60 m
and cannot be reached in the present artificial quantum w
On the other hand, in InAs-based quantum wellspmin corre-
sponds to the densitiesn2D;1012 cm22, which are typical
for those systems.

We notice that the transmission shown in Figs. 2–4 d
not depend on the direction ofM if a is zero. This is a
consequence of the isotropic model of the ferromagnets
use. Next, one can check that ifM is reversed in both lead
simultaneously, the transmission is not changed even at
zero a. This is a manifestation of the Casimir-Onsag
Büttiker symmetry, which recently has been emphasized28,29

for the conductance of a single interface between a ferrom
net and a Rashba semiconductor. It is interesting that in
case of a 1D Rashba semiconductor, this conductance is
sensitive to the direction ofM at all.29 Applying our formal-
ism to this particular problem, we obtain the following e
pression for the conductance:

G5
e2

h (
i 51,2

4j i

~11j i !
2

, j i5
ki

p

m*

mM
, ~38!

which coincides with the result of Ref. 29 under the assum
tion m* 5mM . Therefore, in order to control the condu
tance either by electric-field modulation ofa or by magne-
tization axis rotation, it is essential to have a device with t
ferromagnetic leads.

IV. DISCUSSION

Among the issues raised in the new field of spin electr
ics, the problem of electrical spin injection from spi
aligning~for example, ferromagnetic! leads into semiconduc
tor layers appears to be particularly challenging. The la
degree of spin polarization of the current has been obta
only in the case of injection from a semimagnetic semic
ductor to a bulk ~3D! semiconductor layer. However, t
implement the idea of a spin transistor as proposed by D
and Das, one needs to use low-dimensional, ballistic lay
In the first part of this paper we have shown that there i
fundamental obstacle, caused by the dimensionality m
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match, for the injection of spin-polarized currents to laye
whose dimensionality is lower than the dimensionality of t
leads. As a result, the contribution of the spin polarization
the leads to the spin polarization in the low-dimension
layer appears to be small. If the dimensionality mismatch
or 2, the relative magnitude of such contribution, giv
above by the dimensionless parameterg, is of the order of
weak localization correction to 2D or 3D conductivities, r
spectively. Moreover, the parameterg for 3D-2D-3D struc-
tures contains an extra factor, the ratio of the Fermi wa
numbers in 2D and 3D layers, which is also small in the c
of metallic leads. Due to the smallness ofg, the resistance of
the device depends rather on the total transmission prob
ity T than on the spin polarization in the leads.

Fortunately, even if we neglect the small terms prop
tional to g, the spin-filtering effect in the contacts betwee
the leads and the semiconductor layer still offers a possib
to inject spin-polarized electrons and to control the res
tance. In principle, using the spin-filtering property of abru
contacts discussed in Refs. 13 and 14 it is possible to ge
to 15% of the resistance modulation in 1D layers~quantum
wires! using Fe leads. Somewhat smaller values are expe
for 2D layers with the same Fermi wave number of the el
trons. The use of FeNi alloys reduces the resistance mod
tion. The increase of the electron density in the layers has
same effect. In particular, the resistance modulation is
pected to be small for electron densitiesn2D around

FIG. 5. The resistanceR ~a! and the degree of spin polarizatio
for parallel magnetization configurations~b! calculated using the
experimental parameters of Ref. 17@Ni40Fe60 leads,m* 50.05m0 ,

n2D51.731012 cm22, and L50.45 mm] for M uuẑ ~solid line!,

M uu ŷ ~dashed line!, andM uux̂ ~dotted line!.
9-8
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SPIN INJECTION INTO BALLISTIC LAYERS AND . . . PHYSICAL REVIEW B65 085319
1012 cm22 ~for InAs layers with Fe leads!. In this sense, the
samples with n2D51.731012 cm22 used in the recen
experiment17 are, probably, not the best choice. It is impo
tant to compare the results of our calculations to the exp
mental data. Using the experimental valuesL50.45mm,
m* 50.05m0, and parametersk1 and k2 of Ni40Fe60
leads, we calculated the resistance according toR
5(h/e2)Ap/2n2D T21, neglecting the contributions propo
tional to g. Within the same approximation, the degree
spin polarization of the injected current for a parallel ma
netization configuration is estimated as (T↑↑

212T↓↓
21)/T. The

results are plotted in Fig. 5 as functions of the Rashba ph
for different polarizations ofM in the leads. Actually, only
the caseM uux̂ has been investigated experimentally. For th
polarization we obtain a magnetoresistance of about 0.5%
average. This value is not far from the value of 0.2% o
tained experimentally. The degree of spin polarization of
injected current for parallel magnetization configurations
found to be about 9%, which is twice larger than the expe
mental value. Nearly the same values were obtained
samples with channel lengthL51.8 mm, also investigated
in the experiment. We stress that the theory15 of spin injec-
tion through a single ferromagnet/semicondictor interfa
also gives a degree of spin polarization of about 10% wh
realistic parameters of the device are used in the calcula

To explain the larger values of the resistance modulat
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and spin polarization obtained theoretically, we would like
emphasize that realistic contacts between the metal and
semiconductor layer are not completely abrupt, as was
sumed in the calculations. The presence of a finite transi
region between the metal and 2D layer should increase
adiabaticity of the ballistic electron motion and, therefo
decrease both the spin-filtering effect and the possibility
control R ~the completely adiabatic case is considered in
end of Sec. II!. The discrepancy between experimental a
theoretical values can also be attributed to a more com
experimental geometry, involving several interdigita
placed ferromagnetic layers.

In conclusion, our theory suggests that the modulation
resistance of the ballistic spin field-effect transistor with f
romagnetic leads contacted to 2D or 1D semiconductor
ers in the geometry shown in Fig. 1 cannot be made effici
A modulation of several percent can, in principle,
achieved in 2D devices through the use of Fe leads and
enough (;231011 cm22) 2D electron density. Creation o
1D devices is desirable, but the modulation there is not
pected to increase considerably in comparison to 2D devi
A possible way to create an efficient transistor device is
make the spin-aligning leads from materials with a total s
polarization of carriers, such as semimagne
semiconductors9–11 ~in magnetic fields at low temperature!
or half-metallic magnets.30
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