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Magnetolocalization in disordered quantum wires
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Magnetic-field-dependent localization in a disordered quantum wire is considered nonperturbatively. An
increase of an averaged localization length with the magnetic field is found, saturating at twice its value
without magnetic field. The crossover behavior is shown to be governed both in the weak- and strong-
localization regimes by the magnetic diffusion lengih. This function is derived analytically in closed form
as a function of the ratio of the mean free pathhe wire thicknesdV, and the magnetic lengthy for a
two-dimensional wire with specular boundary conditions, as well as for a parabolic wire. The applicability of
the analytical formulas to resistance measurements in the strong localization regime is discussed. A comparison
with recent experimental results is included.
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I. INTRODUCTION rities, there is an unspecified surface roughness which may
influence the classical mobility of the wires as well as its
The phase-coherent movement of electrons in a disordejuantum transport properties. Therefore, a more detailed
potential can result in strong localization due to quantumanalysis of the localization length as a function of these pa-
interference:As soon as the localization length becomes  rameters is called for, in order to be able to compare the
smaller than the size of the sampleand the phase coher- theory with the experimental results quantitatively.
ence length. ,, the resistance increases exponentially. In Sec. Il, we review the known weak-localization correc-
The strong localization due to quantum interference isions to the conductivity in disordered quantum wires and
known to depend on the global symmetry of the disorderedheir magnetosensitivity as a function of mobility, wire thick-
electron system.In disordered quantum wires, the localiza- ness, and electron densfty2In Sec. IIl, the nonperturbative

tion length is theory of localization in disordered electron systérissex-
tended in order to allow the study of wires with ballistic
L.=BmhvSDy, (1)  cross sections.

In Sec. IV, the magnetic phase-shifting rate is introduced
where 8=1, 2, and 4, corresponding to no magnetic field,and identified with a correlation function of the magnetic
finite magnetic field, and strong spin-orbit scattering or magvector potential, relating it to the coefficient of the time-
netic impurities, respectively(E) is the electronic density reversal symmetry-breaking term in the nonlinear sigma
of states in the wireDy=rvZ/d is the classical diffusion model. This expression for the magnetic phase shifting rate is
constant of the electrons in the wire, wittthe elastic scat- calculated analytically for arbitrary ratios of the mean free
tering time,vg the Fermi velocity, andl the dimension of pathl and the width of the wir&V, and compared with pre-
classical diffusionSis the wire cross section. This result was viously derived analytical and numerical restfits for a
first obtained by calculating the spatial decay of the densityire with specular boundary scattering. Next it is calculated
correlation function for wires with diffuse cross sections andfor a wire with a harmonic confinement which allows one to
many transversal channdie>1. It can also be obtained by extend the analysis to stronger magnetic fields, when the
calculating the transmission probability through thin, fewcyclotron radiud  is smaller than the wire thickne$d, but
channel wire$:® A correction of order M givesL.= (8N still larger than the elastic mean free path. In this regime an
+2—p)I1,° wherel =vg 7 is the mean free path, agg=1, 2, enhancement mechanism for the magnetic phase-shifting
and 4, as defined above. This correction ensures that thate, leading to a stronger magnetosensitivity, is identified.
localization length is for a single channbl=1, independent In Sec. V, the autocorrelation function of the spectral de-
of B, L.=2I. terminants ASD)*14is considered for a coherent disordered

Recently/ a doubling of the localization length was ob- quantum wire, which shows the expected crossover from
served in submicron thin wires of $+doped GaAs struc- Wigner-Dyson statistick’ typical of a spectrum of extended
tures by Khavin, Gershenson and Bogdanov, who found atates in phase-coherent disordered metal system®ois-
continuously decreasing activation energy when the magson statistics, corresponding to a spectrum of localized
netic field is increased, saturating at one-half of its field-freestates-®=2! as the length of the wire is increased beyond a
value® This symmetry dependence of the localization prop-localization lengthL, as reported earliéf. This crossover
erties of quantum wires allows one to test our present thedength scale to Poissonian statistics is used to derive the av-
retical understanding by a detailed comparison with the exeraged localization length of disordered quantum wires, and
periment. The quantum wires used in the experiment havé is shown that it yields the correct symmetry dependence
mean free paths which are smaller than or comparable tfEq. (1)]. A comparison with the result of the supersymmet-
their thicknesses. Also, in addition to the disorder in the bulkric theory of the two-terminal conductance of a disordered
due to the random electrostatic potential of the donor impuguantum wire is given. It is concluded that the definition of
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an averaged localization length, by the decay of an energy- A magnetic field breaks the time-reversal symmetry.
level correlation function, can be used to consider analyti-Therefore, the magnetic phase accumulated in a Brownian
cally the magnetic-field dependence of the localizationmotion of electrons enters effectively as an additive contri-
length. Thereby, analytical formulas for the localization bution to the phase coherence rate, diminishing the weak-
length as a function of wire width, mean free path, and maglocalization corrections of the conductivityFor wires with
netic field are derived. a diffusive widthW>1, this varies quadratically with the
In Sec. VI the theory of finite temperature magnetoresisimagnetic field, 1#,(B)=1/74+ D(g%/4?)SB/Kp, whereS
tance in quantum wires is discussed. In particular, thes the cross section of the wire, and the constégptdepends
variable-range-hopping conductivity in quantum wires is re-on the geometry of the wire, the direction of the magnetic
viewed for various temperature and dimensional regimes. lfield and the scattering mechanisfsor example, for a two-
is shown that in a wide temperature regime the resistance hamensional wire of diffusive cross section in a perpendicu-
an activated behavior, and that therefore, the activation gajar magnetic field, it yield&K,=3. In this way, the conduc-
can be directly measured and related to the localizationivity increases to its classical value, when the magnetic field
length of the electrons in the wire. This allows a comparisonis turned on.
of the analytical results for the magnetic field dependence of For a wire with ballistic cross section and a magnetic field
the localization length with these experimental results, aseing perpendicular to its cross section, the magnetic-field
done in the seventh section. dependence of the weak localization correction to the con-
In Appendix A, a functional integral representation of the ductivity is weakened by flux cancellation effects due to
ASD by Grassmann integrals is given, and an averaging ovefoundary scatterintf. If the magnetic field is so small that
disorder is performed. In AppendiB a derivation of the less than one flux quantumt,=h/e is penetrating an area
magnetic phase-shifting rate is given. In Appen@i a rep-  WI, the effective dephasing rate 7}(B) quadratically in-
resentation of the matrix field® is given, and their Laplac- creases as for diffusive cross sections. Its slope was found to
ian is derived. be by at least a factdn/l smaller, as a consequence of the
flux cancellation effect of edge to edge skipping orbit¥
Il. WEAK LOCALIZATION When BWI> ¢, the effective dephasing rate 73(B)
. . . was found by a semiclassical method, to increase only lin-
Classm_ally, th(_a transport of a disordered conductor 'Searly with the magnetic fiel® in this regime®*2 In the
characterized by its mobility. =gr/m and the electron den-  ecence of magnetic impurities, scattering the electrons with
Sity 1 related to the classical Drude conductivityo 5 rate 14, there is no temperature dependence of the con-
=ngq 7/m. AIternatlv_er,_lt can be characterized by the dif- ductivity, if 1/7s>1/7,.
fusion constanD, which is in a metazl related to the conduc- — gyrong spin-orbit scattering reverses the sign of the quan-
tivity by the Einstein relationro=2qg°»D. , tum correction to the conductivif{}. The conductivity is then
When the electrons diffuse coherently, quantum |nterfer1arger than classically expected. This can be observed by
ence without magnetic field results in a suppression of the,creasing an external magnetic field, which destroys time
conductivity of a quantum wire of orde?* reversal invariance and acts through an effective decoher-
Ao 9 ( \/T—w ) ence time 1#,(B) =1/7, as noted above. In the case of mod-
3 :

\/;

where 7, is the phase coherence time, that increases wheg,
decreasing the temperature as a power law,

) erately strong spin-orbit scattering, the conductivity de-
creases therefore when the magnetic field is turnett on.

At low temperatures, when the dephasing rate libe-

mes smaller than the typical energy scale of strong local-

ization, the local level spacing.=1/(vWL¢), a perturba-
T &) tion the_ory in the elastic scatte_ring rater it no anger _
¢ ' appropriate, and a nonperturbative treatment of disorder is

and defines the phase-coherence length, which an electramalled for, as the scaling theory of localization indicafte¥!

diffuses coherentlyl. ;= (D 7,)"2

Quasielastic electron-electron scattering can be the domi-|iI. NONPERTURBATIVE THEORY OF LOCALIZATION
nant low-temperature dephasing mechanism, and yiglds IN DISORDERED QUANTUM WIRES

=2/3 for a one dimensiondlLD) wire and y=1 for a 2D . . ) .
film. 1128 At higher temperatures the exponent crosses over to In this section, the nonperturbative theory of disordered

y=4 due to electron-phonon scattering at temperatureBoninteracting electrons in quantum wires is deri?é8Its
keT<(h% 7€), whereQp is the optical Debye phonon action, govgrned by the _Iong-w_avelength mpdes co.rrespond-
frequency. This power can be smaller, due to the confineid to diffusion, the nonlinear sigma model is rederived, ex-
ment, in quantum wires. tending previous derivations, to allow for a description of
The above definition of the phase-coherence rate is ndiU@ntum wires with ballistic cross sections. _
applicable when approaching the localized regime, and the The Hamiltonian of disordered noninteracting electrons is
phase-coherence length is larger than the localization length
L.. Also, there are mechanisms which may lead to a satura-
tion of 7, below T=1K, as observed in a wide range of whereq is the electron charge. In the following, we will
conductorg®* generally approximate the electronic dispersigip—qA)

0o 2

H=e(p—qA)+V(X)+ abyx) + augeXp, (4)
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TABLE I. Relation between symmetry of the Hamiltonian and the gap of the quasi-1D NLSM. TR is time reversal and SR is spin
reversal.

Class Symmetry Symmetric space Cartan class Eap
Ordinary TR SR SE@)/[Sp(1) X Sp(1)] cl 16/Lcy
Ordinary No TR SR U(2)/[U(1)xU(1)] (Sphere Alll 8/Lcuy
Ordinary TR No SR O(4)/[0(2)X0(2)] BDI 4Ly
Ordinary No TR No SR U((2)/[U(1)xU(1)] Alll 4/ Ly

by (p—gA)?/(2m), wherem is the effective electron mass, integral.2 Thus the average over the form of the disorder
but note that higher moments are sometimes needed to regpotential can be done right at the beginning as a Gaussian
larize the correlation functions, calculated below. integral, exactly.

V(x) is taken to be a Gaussian distributed random func- Here, for simplicity, we present the derivation of a simpler
tion (V(x))=0, and({V(X)V(X'))=hASU(277) S(x—X"), correlation function, which does not necessitate the use of
which models randomly distributed, uncorrelated impuritiesthe full supersymmetry method, but still contains some in-
in the sampleA=1/(vSL) is the mean level spacing. This formation on strong quantum localization, as shown
corresponds to a Gaussian distribution function recently?33:34

The statistics of discrete energy levels of a finite coherent,
T dx ) disordered metal particle is an efficient way to characterize
P(V):ex% T hA WV(X) ) its properties. This can be studied by calculating a disorder-
averaged autocorrelation function between two energies at a
of the disorder potential, defining the disorder average a#istancew in the energy-level spectrum. Thereby, an uncor-
(- W= [TI,dV P(V).... According to the central limit related spectrum of localized states can be distinguished
theorem, this is therefore a good description of the variousrom a correlated spectrum of extended states.
sources of randomness in the electrostatic potential, in which The autocorrelation function of the spectral determinant is
the electrons are moving. the most simple such spectral correlation function, which

The vector potential is used in the gaugd  allows one to explore complex quantum systems analytically,
=(—By,0,0), wherex is the coordinate along the wire of and still does contain nontrivial information on level statis-
lengthL, y the one in the direction perpendicular both to thetics and, thus, on localizatici:*31t is an oscillatory function
wire and the magnetic fielB, which is directed perpendicu- whose amplitude decays with a power law, when the energy
lar to the wire. The angular brackets denote averaging oveevels in the vicinity of the central enerdy are extended,
impurities. o is the electronic spin operator, aibd(x) is @  while a Gaussian decay is a strong indication that all states
random magnetic impurity fieldigg is the local electrostatic are localized. It is defined bﬁ(w)=€(w)/€(0), E(w)

field of impurities with large atomic numbe£, which do — (detE+w/2— H)detE—w/2—H)), whereE is a central

iV tr in-orbi i i - ) Lk .
'?ror?sa stronger spin-orbit coupling to the conduction elec energy. Since it is a product of two spectral determinants,

The Hamiltonian can be classified by its symmetry with and a spectral determinant can be written as a Gaussian func-

S . °
respect to time reversal and spin rotation as summarized iional integral over Grassmann variablgandy™, one does
Table I. It was noted that the averaged density of states or tHa€€d at least a two-component Grassmann field, one for each

averaged one-particle Green’s function does not contain angPectral determinant. _

information on the localization of eigenfunctions of the dis- !N general, 4-component Grassmann fields are needed to
ordered HamiltoniarH.%? The physical reason is, that the 9et the functional integral representation of the ASD. Here
one-particle Green’s function describes the propagation oft=1, when the Hamiltonian is independent of the spin of the
the wave-function amplitudeg(x). Elastic impurity scatter- €electrons, and each level is doubly spin degenerate. There is
ing randomizes the phase of the amplitude and therefore, thgne pair of Grassmann fields for each determinant in the
propagator decays on the scale of the mean free scatterifgSD, and each pair is composed of a Grassmann field and its
time 7. To catch classical diffusion and quantum localization,time-reversed one, as obtained by complex conjugaton.

at least the evolution of the density or amplitude square has 2 has to be considered, when the Hamiltonian does depend
to be averaged over the disorder, leading to a correlatioon spin, as for the case with moderately strong magnetic
function of two one-particle Green’s functions. While weak- impurity or spin-orbit scattering. This necessitates the use of
localization corrections can be calculated within a diagram-a vector of a spinor and the corresponding time reversed one.
matic perturbation expansion of such correlation The representation as a Gaussian functional integral over
functions®?” the study of strong-electron localization in a Grassmann variables is given explicitly far=1 in Appen-
disordered potential, necessitates a nonperturbative averagix A. There, the averaging over disorder and the decoupling
ing of such products of Green’s functions. This can beof the resulting/* interaction with a Gaussian integral over
achieved by means of the supersymmetry method, whereby matrix fieldQ is given. Thus the disorder averaged ASD is
the product of Green’s functions is written as a functionalgiven by a functional integral over a matrix fie@
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The matrixQ is element of the full symmetric space, in-  Expansion to first order in the energy differense@and to
cluding rotations between the subspace corresponding to th@cond order in the commutatof Hy,U] yields
left and the right spectral determinant. Therefore, the long-
wavelength modes o) do contain the nonperturbative in- 1 —
formation on the diffusion and Cooperon modes. FlU]=~ wa dx(X| TrGoeU AU[x)
In order to consider the action of long-wavelength modes
governing the physics of diffusion and localization, one can 1 ~
now expand around the saddle-point solution of the action, + Ej dx(X| TrGoeU[Ho,U][x)
satisfying forow=0,

1 _
Q=i/(mv)(X|UE—Hq+i#/(27)Q)|X). (5) +Zf dx(X|Tr(GoeU[Ho, UD?[%).  (8)

This saddle-point equation is found to be solved Qy = 2 TN (52 —
=A. For a=1, andB=0, at w=0, the rotationdJ, which Note that [Hoy]l (7 °12m) (V=U) = (A7/m) (VU)V

leave Q in the symplectic symmetric space yield the com-_(qﬁ/i_mc)(@AVU_UTsAV): The -first -ordfer term in
plete manifold of saddle-point solutions @s=UAU, where  U[Ho,U] vanishes for Gaussian white-noise isotropic scat-

UU=1, with Q'C=CQ. The modes which leava invari- terllrr:g. eneral, in order to account for the ballistic motion of
ant, elements of Sp(X)Sp(1) are surplus, or spontanously | general, in order _

. . . electrons in ballistic wires, or to account for different sources
broken, and can be factorized out, leaving the saddle-pomgf randomness. a directional dependence of the madrix
solutions to be elements of the symmetric space’ T b - Jerdf®
Sp(2)[ Sp(1)x Sp(1)].% =U(x.n), Wheren—p/_|p|, has to be consideret:™ How-

ever, for the geometries considered in this paper, we have
found that the form of the action derived below remains
valid for diffusive as well as ballistic cross sections, when
the vector fieldsS, as introduced in Refs. 38 and 39, are
integrated out. This will be presented in more detail in a

réeparate paper.

For a=2 the matrixC is, due to the time reversal of the
spinor, substituted bio-,7; .2% Both magnetic impurities and
spin-orbit scattering reduce th@ matrix to unity in spin
space. Thu< has effectively the formr;. The condition
Q'C=CQ therefore leads to a symmetry class when the spi
symmetry is broken but the time-reversal symmetry remain —
intact. This is the case for moderately strong spin-orbit scat- 11€n one can keep second-order termsvid and A,
tering. ThenQ are 4x 4 matrices on the orthogonal symmet- which turns out to be valid fpr t_he regime of weak dls_order,
ric SpaCGO(4)/[O(2)><O(2)],32 which is the nonperturba- |>1/k|: and for any mggnetlc fleld,B>1/k|:.. Thus, using
tive consequence of the sign change of a spinor componeff® saddle-point equatiofq. (5], one obtains
under time-reversal operation, which leads to the positive o [ dx
quantum correction to the conductivity in perturbation Fryj=— __J —TrAQ
theory?” With magnetic impurities both the spin and time- 4A)SL
reversal symmetry is broken, and t@ematrices are in the 1 22 i
unitary symmetric space (2)/[U(1)*xU(1)] as for a mod- + —f dx<x|Tr( GOEU[_(V )(V— _qATS)
erate magnetic field and spin-degenerate levels. The differ- 4 2m h
ence in the prefactorr remains. One can extend this ap- qh -
proach to other compact symmetric spaces with physical +—[73,UAV]
realizations; see Refs. 36 and 37 for a complete classifica- m
tion. . .

. Next one can separate the physics on different length
malgsi?/id:gcr)\gittg d?ggf;gﬁgfﬁitggisie:/\S/ﬁ!crr?c;g?il :>hire a%%ales, noting that the physics of diffusion and localization is

. governed by spatial variations &f on length scales larger
can pe mtggrated odtand the ASD thereby reduces to a than the mean free pathThe smaller length scale physics is
functional integral over the transverse modgsNow the

i f finite f d tial fluctuati then included in the correlation function of Green’s func-
action ot finite frequencyw and spatial fuctuations R tions, being related to the conductivity by the Kubo-
around the saddle-point solution can be found by an expa

. . ) ) "Greenwood formula
sion of the actiorF [Eq. (A7)]. InsertingQ=UAU into Eq.

2
} [%). 9

(A7), and performing the cyclic permutation bf under the g2 _
trace Tr, yields Top(0)= E_Wz (pl(Pa—AAL)Goelp")
p.p’
1 — — ’ r_ A
F=— EJ dx(x|TrIn(Gg 1~ U[Ho, U7+ wUAU)|x), X(P'l(P5~ A Gae +ulP). 19

(6) where p=(#/i)V. The remaining averaged correlators in-
volve productsGR-G§: ., , andGy-Gh¢ . , and are therefore

where smaller by a factofi/( 7E) than the conductivity, and can be
. disregarded for small disordér/ 7<E. In the bulk of this

Gl—E—H +EA 7 article we are interested in the weak-magnetic-field limit,
0 0277 where w.7<<1, with the cyclotron frequencyw.=qgB/m. In
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this limit we can disregard the nondiagonal Hall conductivity shifting rate 1fg, governing the weak-localization suppres-

and the explicit magnetic-field dependence of the longitudision by a magnetic field. To this end, one can use the super-

nal conductivity. symmetric version of the above nonlinear sigma model,
In order to insert the Kubo-Greenwood formula into obtained by substituting the matr@ by supermatrices, and

the saddle-point expansion of the nonlinear sigma modekhe trace over matrices Tr by the supertr&de, but keeping

it is convenient to re\//Avrlte the propagator iF g coefficients the same as in E(L2). Then, the weak-

as Goe=3Gpe(1+A)+3Goe(1-A). Then we can |gcalization corrections to the conductivity can be calculated

use that T2, (1+sA)U(Y, U)(l sA)U(V, U)] as outlined Ref. 2, by an expansion@faround the classical

=-Tr(V,Q)?], and saddle pointQ.=A. Thus the magnetic phase-shifting rate

— — 1/7g can be identified as
T2+ (1+sA)U[73,U]](1-sA)U[ 73,U]
— 2 2
= —T[75,QJ) 17g=4D 15 (A A, (14
For wires of thicknes8V not exceeding the length scale
Leu=Lc(B=2)=2mhvWDy, the variations of the fiel®@ \here the Einstein relationr=2g2vD of the classical con-

Odﬂjctlwty o to the classical diffusion constall has been
reduces to the one of a one-dimensional nonlinear &gmased

model. Thereby we can rewrite E) as

FlQ]=— =2 J Z1AQ A. 2D wire with specular boundary conditions
The general expression for the correlation funcijpry),
2 is found by inserting the momentum eigenstates of the wire
- Zf Wdx Tr[VQ(x)]2<x|G§E2— and summing the correlation functions of Green’s functions
m for Ig=>W in Eq. (15). It is thus obtained to be given for a
i A %2 i two-dimensional wire of widthW in momentum representa-
X V—qu>GOEﬁ(V—qu)|X> tion by
- —( ) f Wdx Tr[[ 73,Q(x)1?] (yxy)= 2 K GHc(ky,ky)Ghoe(ky k) +c.C]
Ky 1Ky 1Ky
X (X|GRAVGHAV|x)+c.c. (12) q \?
Using the Kubo formula,Eq. (10)], this functional ofQ thus ><|<ky|Y|ky>|2/ kZ? (kx_ gAx)
simplifies, forw,7<1, to Xy
X Goe(ky ,ky) GoE(Ky Ky). (15

mh 2
= 160° T O)Wf dx( THQMX)] Here Gie (K ky) = (E—A2(k;+K2)/(2m) =i/(27)) ™.
2 Keeping all corrections for f|n|te number of transverse
—(AZFA) %Tr[ 7-3,Q(x)]2) (12) channeldN=kW/ and effective mean free pak=Kkgl, in

h the weak disorder limitE>#/7, for N>1 we obtain the
The prefactor of the time-reversal symmetry breaking termexpression

the correlation function

_g? 1 1 A2
(A A)=Byy) <y*y>zwz(l_,<_ﬁ,< ok,

((X|GR-AVGHAV|x) +c.c.

= N
(XIGEL[V — (i/)(qA) 1GRe(V — (iIh)GA)[X) LANS S S\ (S 2
03 N X B VA
is increasing with the magnetic fiel, suppressing modes aN[(s* 2\ s
with [Q, 73] #0, the Cooperon modes, arising from the self- xXtan —- |ty N } Ko, (16

interference of closed diffusion paths. Accordingly, the sym-

metry of theQ-fields is broken from Si)/[ SP(1)x Sp(1)] to where the definition of the constaris is given in Appendix

U(2)/[U(1)XU(1)]. In Sec. IV we show that this prefactor B. Its dependence on the mean free path parametde.| is
is related to the magnetic phase-shifting rate, and is evalushown in Fig. 1.

ated for a disordered quantum wire. Note that, althougiN>1 is required for the validity of

the nonlinear sigma model, E@16) is valid for arbitrary
ratios of the width of the wirdV and the mean free path

It can be seen that the prefactor of the symmetry breakingince the motion remains diffusive along the wire axis on
term in Eq. (12) is proportional to the effective phase- large length scales, even li&=W. For diffusive wire cross

IV. MAGNETIC PHASE-SHIFTING RATE
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1

"Ny=100 —— C=10.8. The analytical result shows, furthermore, that this
14.5/(kF 1) - behavior is only an approximation and that there is a cross-
0.1 F | over to the perturbative regime, discussed above, where

(y*y)/W? decays like~1/\?; see Fig. 1. Note that this re-
sult is accurate up to corrections of ordeN1/

ERRUON: 1

A N . .
e . B. Parabolic wire
> 0001 i

As long as the elastic scattering rate exceeds the cyclotron
frequency, 14> w., or correspondinglyl <l . wherelcy.
0.0001 - ) 1 =kFI§ is the cyclotron path, determining the length scale on
which ballistic paths start to bend due to the Lorentz force,
the magnetic-field dependence of the classical diffusion con-

1e-05 . . . . .
1 10 100 1000 10000 100000 1e+06 stant and the density of states can be neglected; for a two-
KF1 dimensional wireD = 7v2/2 and v(E)=m/(27%?), respec-
tively.

FIG. 1. The dependence of the correlation functigny)/W?
on the dimensionless mean free path kgl for N=100 channels. However, the cyclotron length can be small compared to

For comparison, the line corresponding to a disorder-independelji{1e width of the wire|c,<W, while exceeding the elastic

phase-shifting rate, approximately valid k< \ <N2, is shown. mean free pathc,>1, when the cross section of the wire is
diffusive, I<W. Thus the localization length can depend

sections) <W. (y*y>—>37:W2/12 which results exactly in sensitively on the ratio of these length scales, even in the

the known result for the magnetic phase-shifting rates 1/ weak-magnetic-field limit, where the density of states and
=4D(q2/ﬁZ)FB 31,12 classical conductivity are insensitive to the magnetic field. In

rprder to study the crossover as function of the magnetic field,
the dependence of the eigenfunctions on the magnetic field
therefore have to be taken into account. This regime is most
conveniently studied for a parabolic wire, having a harmonic

confinement

The above derivation is more general, and applies for a
bitrary ratios of the wire thicknes4/ and the mean free path
[, as long as the magnetic lendth is both larger than the
width W and the elastic mean free pathand for a large
number of transverse chann@®s= ke W/ 7> 1.

For ballistic wire cross section$>W, Eq. (16) shows 1 1
that the effect of the magnetic field becomes weakewas Ho==—(p—gA)%+ = mwdy?, (18
decreases. This is a result of the flux cancellation effect, 2m 2
discussed in the limit of weak localization in Refs. 10 andgnq energy eigenvalues
12: the matrix element of the vector potentf&| A|k’) van-
ishes fork=k’, sinceA=(—By,0,0) is antisymmetric in the
coordinate perpendicular to the wine, Thus elastic impurity Enk=Tfiwer(n+1/2) +
scattering is needed to mix different momentum states and
contribute finite matrix elements of the magnetic vector po-where the effective mass ie* =mwZ24/w3, and the effective
tential. frequency iswes=(w3+wj)"? wherewg=qB/m is the cy-

One can check that Eq16) is also valid in the weak clotron frequency. The spatial center of the electron eigen-
disorder limit, by Taylor expanding the correlation function states are shifted by the guiding cenygr ki wg /(MwZy).
in 1/(kel), giving (y* y>=2(W2/10)(N3/)\2),_ showing that it Thys the width of the wire is at constant Fermi enefgy
vanishes ~ for  A>N% ~ corresponding  t0 %/7  dependent on the magnetic fiedd Defining the width of the

<7?h?/(2mW?), when the disorder does not mix transver- yire W at fixed Fermi energy ad/?=max(n,Ky?n,k) with
sal modes, like N?, as seen in Fig. 1. In the intermediate E, «=Eg, for the parabolic wire one finds

regime,N<<A\, it was argued in Refs. 10 and 12, thatgl/

1°k?, (19

2m*

should be reduced by a factor linearNd\, resulting, for a . é wé
two-dimensional wire with a perpendicular magnetic field, in ~ W?(B)= 12, ma ZW — +(n+1/2)| 1-—] |.
a disorder independent expression eff ¥o “o (20
1 1 Wee e :
— - ’F (17) For a large magnetic fieldg> wg, this approaches exactly
8 C |‘é ' twice the value at zero magnetic field; thus
wherelg=(%/(qB))Y? is the magnetic length. For specular W(w0e> wg)=VIW(0) =[2E+ /(hwg) ¥4, (21)

boundary condition, as considered in this paper, it was found

numerically thatC=9.5' Correspondingly, the function Thus the wire width is a slowly varying function of the pa-
(y*y)/W? should approacklyy)/W?— (m/2C)N/X or, for  rameterw./wo=W(B=0)/l¢,.

N=100, (y*y)/W?—16.5A. The result[Eq. (14)] indeed The presence of impurities smooths this function further,
agrees with this behavior, in a regime<\ <N?, although and we can thus assume the width to be practically magnetic
the best fit gives a different prefactor 14.5, corresponding tdield independent:
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W= 2E¢ /mJ wg. (22) Instead, we find that there is a regime, where the magnetic
field sensitivity of localization becomes stronger, when the
This allows us to study the various regimes of interest as @yclotron lengtH ¢, becomes comparable to the width of the
function of the wire widthW, the magnetic lengths and the  wire W. Whenl <I¢,,<W the magnetic phase-shifting rate is

average mean free path (2E£/m)?r. found to increase with the magnetic field liB&:
Naturally, the classical conductivity in such a wire is an- ) 4
isotropic. We find that 1_24 9 ,W
—=7D2B%%. (27)
B 5 ﬁ I
2.2 Cyc
UXXZWQ ™e/m (23 When the magnetic field becomes so strong that the cy-
@efT clotron lengthl ¢, becomes comparable to or smaller than
and the mean free path or w.7>1, the diffusion constant and

the density of states becomes functions of the magnetic field.

Then the spatial modes of the nonlinear sigma model perpen-
q*mne/m, (24 dicular to the wire can become soft, and contribute to the

functional integral, and thus, the nonlinear sigma model be-
wheren,= (2/37)(m.E/%%w,) is the average electron den- comes effectively two dimensional. In this limit, a quantum
sity in the wire, which is taken to be approximately indepen-Hall wire, the approach used in this paper can yield qualita-
dent of the magnetic field. Since we consider magnetic field§ve information on the location and size of localized states
where we7<1, the classical conductivity is magnetic field in @ quantum Hall systerft, and will be reconsidered in a
independentg,,=g*me/m, anday,= o,/ (1+ w§7?). forthcoming work.

Thus the condition that the localization is governed by the
one-dimensional nonlinear sigma model is changed to
Leu/(1+ 057%)>W. With wor=I/W, it follows that the
one-dimensional localization condition requires2NW in It is known that the localization length depends on the
the weak-disorder regimie-1>1. global symmetry of the wiré,L.=BmhvSD,, where 8

Rederiving the nonlinear sigma model in the representa=1, 2, and 4, corresponding to no magnetic field, finite mag-
tion of a clean parabolic wire, using the definition of the netic field, and strong spin-orbit scattering or magnetic im-

correlation function[Eq. (15)], where the sum over trans- pyrities, respectivelys(E) is the electronic density of states
verse momenta is substituted by the sum over the band inn the wire>? Dy is the classical diffusion constant of the

OyWw=T——"">3
w1+ wgﬁTz

V. MAGNETOLOCALIZATION IN DISORDERED
QUANTUM WIRES

dex,n, ky—n, we find the result electrons in the wire, an8its cross section. This result was
) obtained by calculating the spatial decay of the density cor-
(yy) :sz 43 We relation function for wires whose thickness exceeds the mean
5|1+ 057~ w} free pathl.

Here, we use an extension of a recent nonperturbative
calculation, to obtain the localization length as a function of
the magnetic field, using the fact that the ASD shows a cross-
over from an oscillating behavior, decaying with a power

Note that, sinces?72=12/(W?), the ballistic cross section law,'***typical of Wigner-Dyson energy-level statistitsto
limit 1>W coincides for the parabolic wire with the clean @ Gaussian decaying function when the length of the wire
wire limit, where transversal modes are not mixed by theis increased beyond the localization lenfthas seen in
disorderf 7<7%w,. Thus the flux cancellation effect leads in other measures of correlations in the discrete energy level
the parabolic wire to a suppression of the phase-shifting ratepectrum of a phase-coherent disordered electron
by a factorw?/12 as found for a wire with specular bound- Systent:*®~
aries in the clean wire limit as seen in the previous subsec- Taking the representation of the ASD derived beldq.
tion. (AB)],

Thus it is not surprising that the behavior of the magnetic
phase-shifting rate, as known from weak-localization correc- E(w): f H dQ(x)exp(—F[Q]), (29
tions for a wire with ballistic cross sectiow<!| and hard
wall boundary conditions, is not reproduced when considerwhereF as given by Eq(12) can be rewritten conveniently
ing a parabolic wire. In the former case, there is a regimen terms of the diffusion length, an electron would diffuse
W2<|2<WI, implying Ig<I, where the magnetic phase- classically in the magnetic phase-shifting timg, Lg
shifting rate is given by =D 7g:

2
=W2—
W5

1 +3W2 25
T+1ZW2 " T2 ) @9

1w <W30F
TB_CZTIB C|4 '

FIQl=a L de T [V, 2 1 2
(26) [Ql=aglcu , 9% M [VQ(x)] _4_L§[Q’T3]

where C,=24/5. This is smaller than expected from Eq. , zgf dx
(17), and is not obtained for the parabolic wire. Tla 4 A L TrA5Q(). (29)
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where Lcy=Lc(B=2)=2n%vSD, is the localization of a spectrum of localized stat&$in the other limitLEg

length in a wire in a moderately strong magnetic fiéld. <1, all modes oH do contribute to the trace in the partition
In the limit whenLg<<Lc, a moderately strong magnetic function [Eq. (30)] with equal weight, yielding the correla-

field, Q is reduced to a 2 matrix by the broken time- tjon function of a spectrum of extended stateghus the

reversal symmetry. This reduces the space @fto  crossover length is entirely determined by the dag,

U(2)/[U(1)xU(1)]. through £,=1/Eg, and can be identified with an averaged
For w/A<Lcy/L, corresponding taw<E., whereEc localization length.

=27D/L? is the Thouless energy scale of classically free |n order to derive the eigenvalues of the effective Hamil-

diffusion through the wire of length, the spatial variation of tonian at zero frequencﬁ(w:O), we need to introduce a

Q can be neglected, and one retains the same ASD as oL, eqentation of the matri@ and evaluate the Laplacian in
random matrices of orthogonal or unitary symmetry,

. 314 . . its parameters. This is done in Appendix C.
respectively***Increasing the length of the wilg a cross- Without a magnetic field3=0, the Laplacian is obtained
over in the autocorrelation function can be seen as the wirg) pa '
exceeds the length scallg .?

In order to study quantum localization along the wire, the 1_)\é
functionC(w) should be thus considered as a function of the Ag= ﬁxc(l—)\%)&xc+2)\—&>\c+ F(?AD(l—A%)rAD.
finite lengthL of the wire and spatial variations & along € c (32
the wire have to be considered, as described by the one di-
mensional nonlinear sigma model derived above. To this endyhere\c p [ —1,1]. Its ground state is 1 and its first ex-

the impurity averaged ASD can be written as a partitioncited state isS\chp. Thus the gap is
functior?®
Eg(B=0)=16L,. (33

C(w)=Trexp —LH[Q]), (300 For a moderate magnetic field, with the condition
Lcu({(yy)¥?B> ¢po=hlq, all degrees of freedom arising

where H is an effective Hamiltonian of matrice® on a  from time-reversal invariance are frozen out, due to the term
compact manifold, determined by the symmetries of theTfolQ.73]°=16(\&—1), which fixes\&=1. Then the La-
Hamiltonian H of disordered electrons. Thus the problem placian reduces to
reduces to the one of finding the spectrum of the effective
HamiltonianH.

We can derive the corresponding Hamiltoni&h by  Its eigenfunctions are the Legendre polynomials. There is a
means of the transfer-matrix method, reducing the onegap above the isotropic ground state of magnitude
dimensional integral over a matrix fiel@d [Eqg. (28)] to a

AG= 0y (1-\B)dy,. (34)

single functional integral. Thus the ASD is obtained in the Ec(X>1)=8/Lcy. (35
simple form of Eq.(30), with the effective Hamiltonian For moderate magnetic impurity scattering, exceeding the
local level spacing, >A., «=2, and the Laplacian is
_ 1 1 iven by Eq.(34).
o R Lo 5 given by Eq
H(w=0)= alcy 4Aq 16X TrolQ.75]%). (3D Thus, due tow=2, the gap is reduced tBg(1/7s>A()

=4/Lcy. For moderately strong spin-orbit scattering-g4

AS is that part of the Laplacian on the symmetric space>Ac, the Laplace operator is
which does not commute with [TA3Q]. The time-reversal
symmetry breaking due io the external magnetic field is gov- Ag: 2 ¢9x,(1_7\|2)¢9x,: (36)
erned by the parametet=alLcy/(2Lg). 1512

The problem is now equivalent to a particle with “mass”
(a/8)Lcy(E) moving on the symmetric space @fin a har-
monic potential with “frequency” 1/(2g), and, in an exter-
nal fieldi a(7/4)w/(LA), in “time” X, the coordinate along
the wire. To find the ASD as a function efand the length of Eo(1/rso>Ac)=4lLcy. (37)

the wire L, one can do a Fourier analysis in terms of the o ) )
spectrum and eigenfunctions of the effective Hamiltonian af\n €xternal magnetic field lifts this degeneracy but does not

zero frequencyH (w=0).% change the gap.

There is a finite gajEg between the ground-state ener Thus, using the crossover in energy-level statistics as the
gafte 9 9 definition of a localization length as above, we obtain in a

and the energy of the next excited statel-_dfw=0). For a quasi-1D wire

long wire, LEg>1, the ASD become€&(w)=exp(—const

XLw?%Eg), where both constw?=|(0|H(w)—H(0)1), &=1Eg(B)=(116BLcy, (38)
and the gap between the ground state and the first eXCit‘iﬂhere,B=1, 2, and 4, corresponding to no magnetic field, a
state,Eg=E; —E,, does depend on the symmetry of the finjite magnetic field, and strong spin-orbit scattering or mag-
HamiltonianH. This exponential decay withw? is typical  netic impurities, respectively. Comparing with the known

where\; ,e[—1,1]. The ground state igy=1, the first ex-
cited state is doubly degeneratle,,=\, andy,=\,. Thus
the gap is the same as for magnetic impurities,
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Ref. 3. This is especially surprising since the nonperturbative
o derivation of the disorder average of the quantity,

- ° ‘e o ° {p(r,)p(r',t"))—{p(r)?), necessitates the use of the super-

0 L2 L symmetry_method, _resu_lting in_ a nonlinear sigma model of
supermatrices, having, in addition to a compact se(ttoe

E one considered herea noncompact sector where the matrix

is parametrized on a semi-infinite interval. The full super-
symmetry furthermore allows rotations between this compact
sector and a noncompact sector which are parametrized by
— Grassmann numberg having the propertyé?=0. Apart
i— from this increase of the manifold of the matrix fiel@sto
: — the supersymmetric space, the structure of the theory is
equivalent. In particular, the free energy of the supersymmet-
E - ric nonlinear sigma model has exactly the same form as Eq.
b) | ——— - (29), replacingQ by supermatrices, and the trace o@by a
supertraceSTr, giving the opposite sign to the noncompact
sectoP
E— Studying localization in a wire with this supersymmetric
nonlinear sigma model, the transfer-matrix method yields an
effective Hamiltonian of supermatric€g, of the same form
X as Eq.(31), where the Laplacian is now defined on the re-
FIG. 2. Schematic visualization of the energy-level spectrum Ofspectlve_supersymmetrlc manifold. In full analogy, the spec-
localized states ita) a disordered quantum wire of lengthwhen  trum of H accordingly determines the properties of a disor-
divided into two parts, andb) for the same wire when both parts dered quantum wire, and was derived in Ref. 40 for the pure
are connected and the eigenstates are hybridized. ensembles. The partition functiod=STrexp(—LH) is a
generating function of spectral correlation functiéhé? In
equation for the localization length, [Eq. (1)], we find that  order to derive spatial correlation functions like the density
the dependence of the rati@on the symmetry are in perfect correlation function, in addition, the eigenfunctions of the
agreement with the result as obtained from the spatial decayspective diffusion equation on the supersymmetric mani-
of the density-density-correlation functidnyhile it defers fold,
by an overall constarg.
This relation can be proven directly. The ASD at zero [—ax+H(Q)1(x;Q)=0, (41)

fr(.equ_ency(_:(O)L. of the wire of_Iength_, becomes, wher_1 the " ave to be found.in this way, a formula for the conductance
wire is divided into two partsC(0){,,. ForL—c, we find  of 5 finite disordered wire attached to two leads at a distance

a) | T —

that the relative difference is L, has been derivetf.also see Ref. 2. In the limit of a wire
o which is perfectly coupled to the leads, the formula for the
C(0)2), average conductance simplifies to
f(L)y=— —1=2pexp —LEg/2), (39
C(O)L

1 L
, . , <9>=2—fdu(li)E(li)eXP<—l—6E(li)), (42)
exponentially decaying with the length Herep is the de- @
generacy of the first excited state l8{w=0). f(L) can be  where E(l;) are the eigenvalues of the supersymmetric

estimated, following an argument by Mott and Dats: HamiltonianH(w=0), anddu(l;) the corresponding inte-
When the two halves of the wire are connectsele Fig. 2, gration measure of the discrete and continuous eigenvalues
the Eigenstates of the two Separate halves become hybrldlzgqal the angu|ar momentum operator on the compact and non-
and the eigenenergy of a statg is changed by=Acexp  compact sectors, respectively. They were found to be given
(=2%,/L¢). X, is random, depending on the position of anfor B=0 by*°

eigenstate with closest energy in the other half of the wire.

Thus averaging ovex, gives 4 4
ging ovetn 9 E(|i):o,L—2(62+1),L—(|2+e§+e§+1), (43
f(L)~+exp —4L/Lg). (40) eV cv
) ) ) ) wherel =3,5,..., ande>0, €,>0, ande,>0.
Comparison with Eq(39) indeed yields 1/c=8Eg. _ For time-reversal symmetry-broken wireée>1, the ei-
Itis thus a remarkable fact that this length scale, definedyenyalues were found to be

as the crossover length of the spectral autocorrelation func-
tion and related to the excitation gap of the compact nonlin-
ear sigma model, has exactly the same symmetry dependence E(l)=0,
as the localization length, defined through the exponential
decay of the spatial density correlation function found inwherel=1,3,5,..., and>0.

(1°+ €?), (44)

aLCU
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If spin symmetry is broken, but time-reversal symmetrydistribution which has two maxima, &t.(8=1) andL (8
conserved, in the presence of spin-orbit scattering the eigen=2), whose weight is a function of the magnetic field in the
values were found to be crossover regime. While the distribution function of

In[|4,(0)?|,(r)[] is known to be Gaussian in both limiting
4 4 cases of conserved and fully broken time-reversal symmetry,
E(l)=0, T2(|—1)2,T(|§+|§+ €-1), centered around the valugL(B), B=1 and 2, respec-
(45) tively, it is not yet known in this crossover regii®The
average value of momenthy,(0)[¥|,(r)|¥, decays more
wherel=3,5,....1,=1,3,5,...i=1 and 2, ande>0. slowly than its typical value, and does not depend on the

In this case it can be seen that for a distance between tHyder of the momentk. This was taken as a proof that mo-
leads much exceeding the localization lendtbs Lcy, the ments are determined by states with anomalously large local-
conductance decays exponentially, and that this is entirel{g@tion lengths, on the order of the system sfz@herefore,

determined by the compact g&,, between the lowest an- he result of Ref. 47 can be a property of such rare states with

ular momentum eigenstates of the compact sector. The inqnomalously large localization lengths, and it remains to see
9 . ger . P : if the full distribution function scales with two lengths
tegration over the continuous eigenvalues of the noncompact

. «(B), B=1, and 2, or a single one, changing continuously
sector, leads only to a prefactor, decaying as a power of th\?vith the magnetic fieldL ,(B).

1 32 )
length ~1/L"*. Indeed, the gap between the ground-state While we cannot resolve this question by calculating a

value E=0 and the first excited state is seen, from Eqs'spectral autocorrelation function like the ASD, this is another

(43)—(45), to be Eg=8/Lcy for B=0, Eg=4/Lcy for X  mpotivation to see if the energy-level statistics is governed by
>1, Eg=2/Lcy for magnetic impurity scatteringg=2, and  a single parameter as the magnetic field is varied. An effec-
Eg=2/Lcy for moderate spinorbit scattering, coinciding tive Hamiltonian for moderate magnetic fields is found, with-
with the symmetry dependence of the compact gap derive@ut spin dependent scatteringy=1, using TfQ, 73]
above. However, this coincidence might appear as mere 16(1—\2) to be given by

chance, since, in fact, the Laplacian of the supersymmetric

matrix Q cannot be written as a sum of the one of the re- — 1 R . U2 )

spective compact nonlinear sigma modggss. (32), (34), H= L_CU[_4AQ+X (1-20)1 (46)
and(36)] and noncompact ones, because the metric tefpsor

on the supersymmetric space contains mixed factors of conwhere the Laplacian is E432) andX=L¢y/(2Lg).

pact and noncompact parameters. Therefore, the discrete ei- In the limit X—0 the ground state and first excited state
genvalues of-Ag are not eigenvalues of the square of theapproach 1 andc\p, respectively. In the limitX>1, )\(2:

angular momentum on a compact sph&@nly in the limit  pecomes fixed to 1. Thus the ansatg(\ c) ~ exd AgX3(1
of infinite noncompact parameters does one recover the re;)\%)] and ¥, (e, Ap) ~Achp exr[Alxz(l—)\%)],_wherer

?gg?t('gi),l‘:ﬁgi(gg?_ on the compact symmetric spaEgs. <0, A1_<0 are2 negagive constgnts, solvdgy=E to first
Thus, having shown that the ASD yields the correct sym-Order n Z.:X (1=1g). Ong finds that the two lowest
metry dependence of the localization length, we can now usB'agnetic-field-dependent eigenvalues dtg=4/Lcy(—5
this approach to obtain an analytical solution for the cross-H V291 X%) andE; =4/ cy(—3+ y49+X?), and the2e|gen—
over behavior of the localization length and the local levelfunctions are given aSZab(_)VG.WIA’@): —LcuEo/(16X7) and
spacing as a magnetic field is turned on, and there is nf1=(1—LcyE1/16)/X%, yielding the right limits forXx—0
spin-orbit scattering. While a self-consistent approfich, ~and X>1, respectively. Thus there is a magnetic-field-
semiclassical analysfé,and numerical studié¥*showed a  dependent gafis=E,—E, of magnitude
continuous increase of the localization length, an analytical
resulf’ indicated that both limiting localization lengths Ec(X)=4(2+ V49+ X*— 25+ X?)/Lcy. (47
L.(B=1) andL.(B=2) are present in the crossover regime, . Lo o
and that there is no single parameter scaling. This is ex] NS solution is valid in both the limitX<1 and X>1,
plained by arguing that the far tails of the wave functions ddntérpolating the regior~1. s
cover a large enough area to have fully broken time-reversal With the magnetic diffusion lengthg= (D 75) ™, and the
symmetry, decaying with a length scalg(8=2) evenifthe ~Mmagnetic phase-shifting rate, as given by Bd), we obtain
magnetic field is too weak to affect the properties of the bulk
of the wave function, which does decay at smaller length
scales with the shorter localization lendth(8=1), corre-
sponding to the time-reversal symmetric case. The quantity
studied there is the impurity-averaged correlation function ofwhich is \(yy)/W times the number of flux quanta penetrat-
local wave-function amplitudes, and its momenta at a fixedng a localization are& - yW. From Eq.(47) it follows that
energye: Y(€)=(Z,|1,(0)|?|.(r)|?5(e—e,)). Itis aver-  the magnetic change of the localization lengthdisc(B)
aged over a distribution of eigenfunctions in different impu-~B? for small and~1/B at large magnetic fields, which
rity representations. Thus each eigenfunction could decay exagrees with the result of the self-consistent method obtained
ponentially with a single localization length, but having aby Bouchaud?

XZ'—(:U/(ZLB):Lcugq V(y*y)B, (48)
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VI. RESISTANCE OF DISORDERED QUANTUM WIRES which is valid below a temperature
In the limit of zero temperaturd, =0, the resistivity of a To
disordered quantum wire, having only localized states at the T, (53

Fermi energy, is infinite. For finite temperatufie;> 0, in the 2In(L/L)

strong-localization regimkgT<<A, the mechanism of con- approaching Mott's law[Eg. (50)] at lower temperatures
duction is hopping of electrons between localized statesT<T, .
Then the resistivity increases exponentially with tempera- So far, electron-electron interactions have not been taken
ture. According to the resistor network mod@f;° each pair into account. This approximation is valid if the Coulomb
of localized states andj is linked by a resistanch;; , interaction is screened over distances of the order of the hop-
ping length, as by a metal gate electrode deposited on top of
R-:exp{ 21y +i the wires at a distance smaller than the typical hopping
'l L. kgT lengths. When this is not the case, long-range electron-
electron interactions affect both the density of states and the
where ry=[ri—rj| and &;=(l&—u[+|e—ul+le  resistance of the sampl&®
—€j|)/2kgT (r; ande; are the position and energy of the state
i, and u is the Fermi energy Because of the exponential
dependence dR onr;; andej;, percolation theory methods
can be applied?~>?In 2D and 3D systems, the dependence The magnetic-field-dependent activation energy was mea-
of R on temperaturd shows a crossover from an activated sured recently in transport experiments of&iloped GaAs
behavior to a variable-range-hopping regime. In this regimequantum wire$.As an example, here we discuss sample 5 of
the temperature is so low that the typical resistances betweeRef. 8, with a widthw=0.2um, a localization length. g
neighboring states are large because of the second term #0.61um, a lengthL =40um, andN=30 channels. The
Eq. (49). Therefore, electrons tunnel to distant states whos@ctivation energy coincides with the local level spacing
energies are close to the Fermi level. If we neglect electronk,T,=A.=1/(vWL,), and is estimated for sample 5 to be
electron interactions the resistivity is described by Mott'sT =0.34K.
law,>0>3 Thus, according to the theory outlined in Sec. VI, there is
an activated resistance in an order of magnitude temperature
R(T)=Rgexf (yTo/T)Me* V], (500 rangeT,;=0.0K<T<T,=0.34K, allowing to a good ap-
whered is the dimensionality of the system,is a numerical proximation a direct measurement of the magnetic-field-
coefficient which depends od, T — 1LY and v, is the erendent activation energyc.(B)', and thus the magnepc-
0 ¢ d field dependence of the localization length(B). The ratio

d|me_nS|0n dependent dens_lt_y of states. _However, n th%f the cyclotron frequency and the elastic scattering rate,
quasi-1D case and for sufficiently long wires the variable (ko2 <1 | Iin the whol f :
wcT=1/(kglg) <1, is small in the whole range of magnetic

range hopping resultEq. (50)] cannot be used due to the . ?

presence of exponentially rare segments inside which all thgeIdS considered th.ere,. SO that the classmalegonductance
localized states have energies far from the Fermi lgk&f ~ Would be magnetic field - independentor=ne*s/m(1
These large resistance segme(itRS’s) do not strongly af- +wgr?) " t~netr/m. )

fect the resistivity of 2D and 3D systems because they can be_1he mean free path~0.02 is small compared to the
circumvented by the current lines. In one dimension this jgvidth of the Samplel;\éV=0.2,um. ‘The magnetic length is
not possible and the total resistance of a wire is given by thée=0-026um(B/T) "= Thus, whilewc7<1, the magnetic
sum of the resistances of all the LRS’s. This sum yields ariength becomes smaller than the width of the sample at mag-

activated type dependence Bfon T (Ref. 59 for infinite  Netic fieldsB>0.0165T. o _
wires: The experimental magnetic-field dependence of the ratio

of activation energies is shown in Fig. 3 together with the
To| M2 theoretical curve for the ratio of local energy-level spacings
RZROL—(?) exp(To/2T), (51)  A.(B)/Ac(0)=Eg(B)/Eg(0), asderived above, Eq(36),
¢ using the results of a two-dimensional wire with specular
wherekgTo=1/vL.= A, coincides with the local level spac- boundary conditiondEq. (14)] for the magnetic phase-
ing, andL is the length of the wire. Equatiof51) is valid  shifting rate, and, for comparison, the one derived for a para-
provided that the number of optimal LRSise., those LRS's  bolic wire [Eq. (25)].
which give the largest contribution ® (Ref. 5] within the There is a quantitative discrepancy between the best fit
length of the sampleis large. But for a finite wire length this X=0.03@B/G, and X=2m¢/ ¢y, ¢=puoHLcy(y?) M2,
condition fails to be fulfilled at very low temperatufe and  when using the analytical formuldeqg. (14)]. With the ex-
the resistance of the chain is determined by smaller LRS's; iperimental parametersx=1, Lco=0.61um, width W
this regime Eq(51) is replaced by*%° =0.2um of sample 5 in Ref. 8, ang?=W?/12 for a two-
" i dimensional wire, it yieldsX=0.01B/G. We note that a
ReR.exd! 2 10d = 1] jogvd & smooth confinement can giwé>W?/12. A similar discrep-
0 T o9¢ To 9 L ' ancy was observed betwegtias obtained from the sample
(52 resistance and estimated from the analysis of the weak-

, (49

VIl. COMPARISON WITH EXPERIMENTAL RESULTS

c
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1.05

minants. It is shown that its symmetry dependence coincides

Parabolic Wire . . . .
1 e _sample 5, T=3 K — . exactly with the localization length as defined by the expo-
095 L e X=0 1 nential decay of the averaged two-terminal conductance and
. X=.036 X .
09 | derived with the supersymmetry method.
Therefore, the ASD can be used to obtain analytical infor-
g 085 1 mation about the magnetic-field dependence of the localiza-
g 08r tion length, which is shown to be governed by the magnetic
g, 075 phase-shifting rate, and thus strongly dependent on the ge-
@ 07t ometry of the wire and the ratios of the elastic mean free
065 L path, the wire width, and the magnetic length. A comparison
06 - with the magnetic field dependence of the activation gap, as
' observed in low-temperature resistance measurements in Si
055 ¢ N s-doped GaAs wires, indicates that the electrons move in a
0-51 0 100 1000 10000 potential which is closer to a harmonic than a hard wall

confinement.
An enhancement of the sensitivity of the localization to a
FIG. 3. The activation gap rati®,(H)/To(0) as a function of magnetic field is found analytically when the cyclotron
the magnetic fieldB in G of sample 5 measured at a temperaturelength is comparable with its width. The physical reason for
T=0.3K, as reported in Ref. 1, together with the theoretical curveghis enhancement is found to be the magnetic-field-
for a parabolic wire, using the parameters of sample 5, and a 2Rlependent shift of the guiding centers of the electronic eigen-
wire with specular boundary conditions for a best fit valde states in the quantum wire, even at moderate magnetic fields,
=0.038/G, and the value obtained from the experimental param-hen the classical conductivity is still independent of the
eterS,XZO.OJ.(B/G. magnetic field.
_ It remains to extend the derivation to include random sur-
localization magnetoresistance, which also dependg’cfl  face scatterin] and the effect of correlated, smooth
We note that the agreement, when using the experimentalisorder®® in order to allow for a more quantitative compari-
parameters, for the parabolic wire, is better. The cyclotrorson with the experiment. Both effects necessitate a derivation
lengthl cyc= kel 5=0.32/B/T) um is found to be larger than of the nonlinear sigma model, which allows for a directional
the mean free path for B<15T and larger than the wire dependence of the matrix fiel@d. This was recently intro-
width for B<1.5T. For the parabolic wire we findX duced for a system with broken time-reversal symmetry in
=0.024 [0.99+1.33x 10 8(B/G)?]¥?B/G. The enhance- the study of localization in correlated disord&rand the
ment of the magnetic phase-shifting rate in a parabolic wirespectral statistics of quantum billards with surface
[Eq. (25)] is thus too weak to be seen at the magnetic fieldscattering®® In both cases one is led to a nonlinear sigma
used in the experimenB<0.2T, as shown in Fig. 3, and model, where variations of the matr@ on ballistic length
thus seems not to be the origin of the increase in the decay stales are taken into acco@ht®® The application of this
the activation gap, at about 0.1 approach to the magnetolocalization in disordered quantum
An extension of the derivation given in Sec. IV, to include wires will be presented in a future publication.
a dependence of the eigenfunctions on the magnetic field
also for a two-dimensional wire with specular boundary con- ACKNOWLEDGMENTS
ditions, has to be done, in order to make the comparison with
the experiment more quantitative, and draw conclusion%
from the magnetolocalization on the form of the confinememi<
potential in these Sh-doped GaAs quantum wires. However
our results may indicate that the harmonic confinemen
model of the parabolic wire is a better description of the
wires in sample 5.
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VIIl. SUMMARY AND OPEN PROBLEMS

. - APPENDIX A
A formula for the magnetic phase-shifting rate has been

derived, which allows its calculation for arbitrary wire ge-  Here the derivation for a spinless cases 1, is given in
ometries and ratios of the elastic mean free path, the wireetail. For compactness we use vectors of anticommuting
width, and the magnetic length. For a quantum wire withvariables,

specular boundary conditions and harmonic confinement,

this formula has been evaluated explicitly, and compared £(x)
with previous analytical and numerical results for the mag- W(xX) = & ()
netic phase-shifting rate. n(x) |’
The localization length is derived as the crossover length 7* (X)
scale from correlated to uncorrelated energy-level statistics, .
as studied with the autocorrelation function of spectral deter- P(X)=[E*(x),— &%), 7 (X),— p(X)]. (AL)

085318-12



MAGNETOLOCALIZATION IN DISORDERED QUANTUM WIRES PHYSICAL REVIEW B65 085318

Note thatZ=(Cz/;)T, where the matrixC interchanges the Now, the resulting/* interaction term can be decoupled
Grassmann fields with their conjugate one, and has thus tH&y introducing another Gaussian integral over an auxiliary

form field. Clearly, the field should not be a scalar, otherwise we
would simply reintroduce the Gaussian integral over the ran-
0 -1 0 0 dom potentialV. Rather, in order to go a step forward, the
auxiliary field should capture the full symmetry of the auto-
c— 10 0 0 correlation function. Therefore, the Gaussian integral is cho-
“lo o o —-1)° sen to be over a ¥4 matrix Q. 4, Which is itself an ele-
0 o0 1 ment of the respective symmetric space, as the marix
which leaves the functional integral invariant. Thus, allowing
) ) for a spatial dependence @ one can decouple the interac-
Thus the ASD is written as tion term:
_ 1 _ 1 hA —
C(w)=f 1:[ dlp(x)exp[—zj dx i(x) ex _ETSLJ Ax[ () X g (x)]
1 R _ 1—[ T dx 2
x| E+ EwA—HO—V(x)> P(X)|. (A2 = 1 dQuxa()exp — 77 | < TQaxa(X)
1 —
Here the diagonal Pauli matrix= (3 °,) has been intro- +i 5 AXTrQaxa(X) Y(X) X ¢h(X) | (AS)

duced for compactness, its diagonal elements projecting on

the respective spectral determinant of the ASD. The kineti@nticipating, however, that the functional integral over the
Hamiltonian becomes a matrix matricesQ cannot be performed exactly, but rather only an
integral over slowly varying modes around a saddle-point
solution, it is necessary to separate fast and slowly varying
modes before decoupling the interaction tég. (A5)].2° It
turns out that there are two equivalent slowly varying inter-
%tion terms, corresponding to diffusion, and one finally ob-
tains, after a Gaussian decouplingady a factor3, shal-
lower nonlinear coupling 2. %

Next one can perform the Gaussian integral over the
assmann vectorg(x), and for the ASD, rescalin@,x4
—27/hQux4, ONe obtains the representation

Ho=(p—qrsA)?/2/m, (A3)

where the diagonal Pauli matrix; had to be introduced
since each vector has elements of the Grassmann field a
the time-reversed one, and the diamagnetic tefrm in the
Hamiltonian changes sign, gs— —p, breaking the time-
reversal invariance: To summarize the notation here and i%r
the following, A; are the Pauli matrices in the subbasis of left
and right spectral determinant the matrices in the subbasis
spanned by time reversal, angdthe matrices in the subspace .
spanned by the spinor for=1, 2, and 3. C(w)zf H dQsx4(X)exp—F[Q]), (AB)

Note that a global transformation of the Grassmann vec-
tors == Ay does leave the functional integral far=0  With
invariant, as long ad"A=1, andA"TC=CA, restricting
the matricesA to be symplectic ones, being elements of _Zﬁf % 2

L : . e F[Q]= T Qaxa(X)*]

Sp(2), commuting with the antisymmetric matr@. A finite 8 ArJ SL
frequency breaks this symmetry group, and only symplectic

transformations of each field of a single spectral determinant + Ef dx(x| Tr IN[G(%,P)]|X) (A7)
separately, Si)XSp(1), do leave the functional integral in- 2 ' ’
variant. Where

Now the averaging over the disorder potential can be
done, integrating Eq(A2) over the Gaussian distribution 1 (p—qrsA)2 Z
function of the random potentid. Thus, the averaged ASD G(f(,f))zl/ (EQ’A_ —_— i 2—Q4X4($<)
is found to be given by a functional integral over interacting T (A8)
Grassmann fieldg,

2m

is the propagator matrix. We used the operator notatioin
1 order to stress that the terms in the inverse propagator do not
E+ EwA commute with each other.

Clw)=| [] de(x)ex 1 dx g(x)
< 2

> ) p( 1 AA APPENDIX B
—pe2Im | y(X) |ex ———SLJ dx
16m 7 For a clean wire with hard wall boundaries, the transver-
. sal eigenmodes for W/2<y<W/2 are(k,|y)=coskyy for
X Tr[ (X)X 4//(x)]2). (Ad)  ky=ms/W, s being an odd integer, ang,|y)=sinky for
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ky=ms/W, s being an even integer. One obtains

gt (1 1
|< y|y| y>| _W2 (ky_kg/)z (ky+k;,)2 )

whenk, = ms/W and k§= 7s'/W, s being even and’ odd,
or vice versa. Then, the sum ovk(; in Eq. (15 can be
performed by use of the Matsubara trick, foeven and odd
integers, separately. The remaining sum okg/k, can be
transformed as L)X K =[de v(e)f(dek/Qk) noting
that the unit vectog, can pomt only in discrete directions.
Thus, while in two dimensiond (d&./Q,)=[37(d6/2)
=4/(277)f$dy1/(1—y2)(1/2), for a finite number of trans-
verse channelsN=k:W/7 there is sum, [(d&/Q))
=2/(mN) 2= o1/(1—s?/N?)(1/2). Thusk,=7s/W=kes/N
and k,=kg(1—s%/N?)(1/2). Finally performmg an integral
over e for E>#/7 one arrives at Eq(16), where

2
0= ﬁzs'\LOVl_(S IN?),

2

(B1)

K
2
= —N22'=1\/1—(57/N7),

2
= SN V1-(s?IN?)/s?

and
2
— SN V1—(s?IN?)s?IN2,

K2=

APPENDIX C

In order to derive the Laplacian in the respective repre-

sentation of the matrix field, its general definition in an
arbitrary parametrization is

A= [E 39" \gd;,

where the matrixg is the metric tensor, being defined by the
quadratic formds®=1/4TrdQ? of the representation

ds’=dx"g dx, (C2
wherex is the vector of parameters of the representation.
For B#0, Q is an element ofJ(2)/[U(1)XU(1)], ob-
tained by enforcing the conditior®?=1, Q"C=CQ, and
Q"=Q, [Q,75]=0. It can be parametrized as
e'Xsin 6)

—cosf |’

(CD

cosd
o

wherefe[0,7] and y €[0,27]. Thus
ds?=d#?+sir? dy>
1

0
9=lo sirg)
Thus, with Eq.(C1), it follows that

iXsing

(C3)
and

PHYSICAL REVIEW B65 085318

1
Aq=dy (1-A\B)or + ﬁgdxz, (C4)
where\ p=cos().

Note that the autocorrelation function depends on the en-
ergy differencew through the coupling rAQ=2*2\y, so
that only that part of the Laplacian which does not commute
with TrAQ;

AG=0r,(1-\3)dn, (C5)

enters into the frequency dependence of the autocorrelation
function of spectral determinantdEq. (30)]. Since
U(2)/[U(1)xXU(1)]=S,, the 2 sphere, this is equivalent to

a treatment of spherically symmetric potentials, and the La-
placian can be identified with the square of the angular mo-
mentum, —Ao=L2, andL,=id,/(1—\3) does commute
with the Hamiltonian,

—1/(2m)L2+|a (Co)

4 A A2
since z=cosfy does commute with.,. Therefore,w+#0
does not break the azimuthal symmetry of rotations around
the z axis, n,.

For B=0, Q is an element of the symplectic symmetric
space, SE@)/[Sp(1)XSp(1)], obtained by enforcing the
conditionsQ?=1, Q"C=CQ, andQ*=Q. One obtains

cl A
At —al €7
with
a b
A= b* —a* ’

where|a|?+ |b|?2+c?=1.
A matrix Q with the above symmetries can be represented
as

Q=U"'QU (C8)
with
U=VcUp, (C9)
where
Up=Vp'T2Vp, (C10
where
QOZ(. c.osec i sin ecrz) 11
¢ \isinfc7, —coséc
and
1o ( .co-seD/Z i sin 0D/2) €12
i sinfp/2 cosbp/2
and
expi¢eprs) O
Vep= ( 0 ]1) (C13
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andr, i=1, 2, and 3, are the Pauli matrices. Such a reprewith
sentation was first given by Altland, lida, and Efetbwo

study the crossover between the spectral statistics of Gauss- cosf  sind
ian distributed random matrices as the time-reversal symme- Qc:( A - ) , (C16
try is broken, within the supersymmetric nonlinear sigma sing  —cosé
model. Here, in order to study the ASD, we need to considejyhere
only the compact block of the representation given there.
We find that ds’=TrdQ%4=d6%+ cos 6.dd . (01 6
+Sir? o+ cos b sir? pdgd and thereby, with Eq(CY), o= 0, 6,/ (€17
the part of the Laplace operator which does not commute .
with T’AQ=4\c\p, is given by Eq.(32), with #;€[0,7], i=1 and 2, and
1-)\2 1 Vi 0
AS=&AC(1—>\?;MC+2X—CC8XC+)\—%ﬁxD(l—hé)&xD, v_( 0 v2>’ (C18
(C14 where
where\j=cosé, i=C, D. .
For moderately strong spin-orbit scattering<g> A, in Vi=expixits), (C19

the functional integral representation of the spectral determigjith y. e[0,2], i=1 and 2.
nants by Grassmann vectors a spin degree of freedom  THus we findds*=TrQ4=3;_, 467+ dx"d,x, where
=2, is introduced and the matrXis due to the time reversal ’
of the spinor, substituted biyr,7;.2% The spin-orbit scatter-
ing reduces the&) matrix to unity in spin space. Thus the
matrix C effectively has the formr;. The conditionQ'C (C20
=CQ therefore leads to a symmetry class when the spin
symmetry is broken but the time-reversal symmetry remaing hus the part of the Laplace operator which does not com-
intact. ThenQ are 4x 4 matrices on the orthogonal symmet- mute with TRQ=4\\, is given by Eq.(36),
ric spaceO(4)/[0(2)x0(2)].%2

A matrix Q with the above symmetries can be represented
as

A Sir? 6, +sirf 6,  —sir? 6+ sir? 92)

I —sir? 6,+sir 6,  sir? 6,+sirt 6,

Ag=t;12¢9xl(1—)\|2)axl, (C21)

(C19

Q=V1QuV, where\;=cosé, i=1 and 2.
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