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Magnetolocalization in disordered quantum wires

Stefan Kettemann and Riccardo Mazzarello
I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

~Received 5 September 2001; published 8 February 2002!

Magnetic-field-dependent localization in a disordered quantum wire is considered nonperturbatively. An
increase of an averaged localization length with the magnetic field is found, saturating at twice its value
without magnetic field. The crossover behavior is shown to be governed both in the weak- and strong-
localization regimes by the magnetic diffusion lengthLB . This function is derived analytically in closed form
as a function of the ratio of the mean free pathl, the wire thicknessW, and the magnetic lengthl B for a
two-dimensional wire with specular boundary conditions, as well as for a parabolic wire. The applicability of
the analytical formulas to resistance measurements in the strong localization regime is discussed. A comparison
with recent experimental results is included.
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I. INTRODUCTION

The phase-coherent movement of electrons in a diso
potential can result in strong localization due to quant
interference.1,2As soon as the localization lengthLc becomes
smaller than the size of the sampleL and the phase coher
ence lengthLf , the resistance increases exponentially.

The strong localization due to quantum interference
known to depend on the global symmetry of the disorde
electron system.3 In disordered quantum wires, the localiz
tion length is

Lc5bp\nSD0 , ~1!

whereb51, 2, and 4, corresponding to no magnetic fie
finite magnetic field, and strong spin-orbit scattering or m
netic impurities, respectively.n(E) is the electronic density
of states in the wire.D05tvF

2/d is the classical diffusion
constant of the electrons in the wire, witht the elastic scat-
tering time,vF the Fermi velocity, andd the dimension of
classical diffusion.S is the wire cross section. This result wa
first obtained by calculating the spatial decay of the den
correlation function for wires with diffuse cross sections a
many transversal channelsN@1. It can also be obtained b
calculating the transmission probability through thin, fe
channel wires.4,5 A correction of order 1/N gives Lc5(bN
122b) l ,6 wherel 5vFt is the mean free path, andb51, 2,
and 4, as defined above. This correction ensures that
localization length is for a single channel,N51, independent
of b, Lc52l .

Recently,7 a doubling of the localization length was ob
served in submicron thin wires of Sid-doped GaAs struc-
tures by Khavin, Gershenson and Bogdanov, who foun
continuously decreasing activation energy when the m
netic field is increased, saturating at one-half of its field-f
value.8 This symmetry dependence of the localization pro
erties of quantum wires allows one to test our present th
retical understanding by a detailed comparison with the
periment. The quantum wires used in the experiment h
mean free paths which are smaller than or comparabl
their thicknesses. Also, in addition to the disorder in the b
due to the random electrostatic potential of the donor im
0163-1829/2002/65~8!/085318~16!/$20.00 65 0853
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rities, there is an unspecified surface roughness which m
influence the classical mobility of the wires as well as
quantum transport properties. Therefore, a more deta
analysis of the localization length as a function of these
rameters is called for, in order to be able to compare
theory with the experimental results quantitatively.

In Sec. II, we review the known weak-localization corre
tions to the conductivity in disordered quantum wires a
their magnetosensitivity as a function of mobility, wire thic
ness, and electron density.9–12 In Sec. III, the nonperturbative
theory of localization in disordered electron systems2 is ex-
tended in order to allow the study of wires with ballist
cross sections.

In Sec. IV, the magnetic phase-shifting rate is introduc
and identified with a correlation function of the magne
vector potential, relating it to the coefficient of the tim
reversal symmetry-breaking term in the nonlinear sig
model. This expression for the magnetic phase shifting rat
calculated analytically for arbitrary ratios of the mean fr
path l and the width of the wireW, and compared with pre
viously derived analytical and numerical results10,12 for a
wire with specular boundary scattering. Next it is calculat
for a wire with a harmonic confinement which allows one
extend the analysis to stronger magnetic fields, when
cyclotron radiusl C is smaller than the wire thicknessW, but
still larger than the elastic mean free path. In this regime
enhancement mechanism for the magnetic phase-shi
rate, leading to a stronger magnetosensitivity, is identifie

In Sec. V, the autocorrelation function of the spectral d
terminants~ASD!13,14 is considered for a coherent disorder
quantum wire, which shows the expected crossover fr
Wigner-Dyson statistics,15 typical of a spectrum of extende
states in phase-coherent disordered metal systems,2 to Pois-
son statistics, corresponding to a spectrum of localiz
states,16–21 as the length of the wire is increased beyond
localization lengthLC , as reported earlier.22 This crossover
length scale to Poissonian statistics is used to derive the
eraged localization length of disordered quantum wires,
it is shown that it yields the correct symmetry dependen
@Eq. ~1!#. A comparison with the result of the supersymme
ric theory of the two-terminal conductance of a disorder
quantum wire is given. It is concluded that the definition
©2002 The American Physical Society18-1
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STEFAN KETTEMANN AND RICCARDO MAZZARELLO PHYSICAL REVIEW B65 085318
an averaged localization length, by the decay of an ene
level correlation function, can be used to consider anal
cally the magnetic-field dependence of the localizat
length. Thereby, analytical formulas for the localizati
length as a function of wire width, mean free path, and m
netic field are derived.

In Sec. VI the theory of finite temperature magnetores
tance in quantum wires is discussed. In particular,
variable-range-hopping conductivity in quantum wires is
viewed for various temperature and dimensional regimes
is shown that in a wide temperature regime the resistance
an activated behavior, and that therefore, the activation
can be directly measured and related to the localiza
length of the electrons in the wire. This allows a comparis
of the analytical results for the magnetic field dependenc
the localization length with these experimental results,
done in the seventh section.

In Appendix A, a functional integral representation of t
ASD by Grassmann integrals is given, and an averaging o
disorder is performed. In Appendix B a derivation of the
magnetic phase-shifting rate is given. In Appendix C a rep-
resentation of the matrix fieldsQ is given, and their Laplac-
ian is derived.

II. WEAK LOCALIZATION

Classically, the transport of a disordered conductor
characterized by its mobilitym5qt/m and the electron den
sity n related to the classical Drude conductivitys0
5nq2t/m. Alternatively, it can be characterized by the d
fusion constantD, which is in a metal related to the condu
tivity by the Einstein relations052q2nD.

When the electrons diffuse coherently, quantum inter
ence without magnetic field results in a suppression of
conductivity of a quantum wire of order1,23–27

Ds

s0
52

2

A2p3 S Atw

At
21D , ~2!

wheretf is the phase coherence time, that increases w
decreasing the temperature as a power law,

tf;T2g, ~3!

and defines the phase-coherence length, which an elec
diffuses coherently,Lf5(Dtf)1/2.

Quasielastic electron-electron scattering can be the do
nant low-temperature dephasing mechanism, and yieldg
52/3 for a one dimensional~1D! wire andg51 for a 2D
film.11,28At higher temperatures the exponent crosses ove
g54 due to electron-phonon scattering at temperatu
kBT!(\2/teF)VD , whereVD is the optical Debye phonon
frequency. This power can be smaller, due to the confi
ment, in quantum wires.

The above definition of the phase-coherence rate is
applicable when approaching the localized regime, and
phase-coherence length is larger than the localization le
Lc . Also, there are mechanisms which may lead to a sat
tion of tf below T51 K, as observed in a wide range o
conductors.29,30
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A magnetic field breaks the time-reversal symmet
Therefore, the magnetic phase accumulated in a Brown
motion of electrons enters effectively as an additive con
bution to the phase coherence rate, diminishing the we
localization corrections of the conductivity.25 For wires with
a diffusive width W. l , this varies quadratically with the
magnetic field, 1/tf(B)51/tf1D(q2/\2)SB2/KD , whereS
is the cross section of the wire, and the constantKD depends
on the geometry of the wire, the direction of the magne
field and the scattering mechanisms.9 For example, for a two-
dimensional wire of diffusive cross section in a perpendic
lar magnetic field, it yieldsKD53. In this way, the conduc-
tivity increases to its classical value, when the magnetic fi
is turned on.

For a wire with ballistic cross section and a magnetic fie
being perpendicular to its cross section, the magnetic-fi
dependence of the weak localization correction to the c
ductivity is weakened by flux cancellation effects due
boundary scattering.10 If the magnetic field is so small tha
less than one flux quantumf05h/e is penetrating an area
Wl, the effective dephasing rate 1/tf(B) quadratically in-
creases as for diffusive cross sections. Its slope was foun
be by at least a factorW/ l smaller, as a consequence of th
flux cancellation effect of edge to edge skipping orbits.10,12

When BWl@f0 , the effective dephasing rate 1/tf(B)
was found by a semiclassical method, to increase only
early with the magnetic fieldB in this regime.10,12 In the
presence of magnetic impurities, scattering the electrons w
a rate 1/tS , there is no temperature dependence of the c
ductivity, if 1/tS@1/tf .

Strong spin-orbit scattering reverses the sign of the qu
tum correction to the conductivity.31 The conductivity is then
larger than classically expected. This can be observed
increasing an external magnetic field, which destroys ti
reversal invariance and acts through an effective deco
ence time 1/tf(B)51/tf as noted above. In the case of mo
erately strong spin-orbit scattering, the conductivity d
creases therefore when the magnetic field is turned on.11

At low temperatures, when the dephasing rate 1/tf be-
comes smaller than the typical energy scale of strong lo
ization, the local level spacingDC51/(nWLC), a perturba-
tion theory in the elastic scattering rate 1/t is no longer
appropriate, and a nonperturbative treatment of disorde
called for, as the scaling theory of localization indicates.23,24

III. NONPERTURBATIVE THEORY OF LOCALIZATION
IN DISORDERED QUANTUM WIRES

In this section, the nonperturbative theory of disorder
noninteracting electrons in quantum wires is derived.2,26,32Its
action, governed by the long-wavelength modes correspo
ing to diffusion, the nonlinear sigma model is rederived, e
tending previous derivations, to allow for a description
quantum wires with ballistic cross sections.

The Hamiltonian of disordered noninteracting electrons

H5e~p2qA!1V~x!1sbs~x!1suSO3p, ~4!

where q is the electron charge. In the following, we wi
generally approximate the electronic dispersione(p2qA)
8-2
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TABLE I. Relation between symmetry of the Hamiltonian and the gap of the quasi-1D NLSM. TR is time reversal and SR
reversal.

Class Symmetry Symmetric space Cartan class GapEG

Ordinary TR SR Sp~2!/@Sp~1!3Sp~1!# CII 16/LCU

Ordinary No TR SR U(2)/@U(1)3U(1)# ~Sphere! AIII 8/ LCU

Ordinary TR No SR O(4)/@O(2)3O(2)# BDI 4/LCU

Ordinary No TR No SR U(2)/@U(1)3U(1)# AIII 4/ LCU
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by (p2qA)2/(2m), wherem is the effective electron mass
but note that higher moments are sometimes needed to r
larize the correlation functions, calculated below.

V(x) is taken to be a Gaussian distributed random fu
tion ^V(x)&50, and^V(x)V(x8)&5\DSL/(2pt)d(x2x8),
which models randomly distributed, uncorrelated impurit
in the sample.D51/(nSL) is the mean level spacing. Thi
corresponds to a Gaussian distribution function

P~V!5expS 2
pt

\D E dx

Vol.
V~x!2D

of the disorder potential, defining the disorder average
^¯&V5*PxdV P(V)... . According to the central limit
theorem, this is therefore a good description of the vari
sources of randomness in the electrostatic potential, in wh
the electrons are moving.

The vector potential is used in the gaugeA
5(2By,0,0), wherex is the coordinate along the wire o
lengthL, y the one in the direction perpendicular both to t
wire and the magnetic fieldB, which is directed perpendicu
lar to the wire. The angular brackets denote averaging o
impurities. s is the electronic spin operator, andbs(x) is a
random magnetic impurity field.uSO is the local electrostatic
field of impurities with large atomic numberZ, which do
give a stronger spin-orbit coupling to the conduction el
trons.

The Hamiltonian can be classified by its symmetry w
respect to time reversal and spin rotation as summarize
Table I. It was noted that the averaged density of states o
averaged one-particle Green’s function does not contain
information on the localization of eigenfunctions of the d
ordered HamiltonianH.32 The physical reason is, that th
one-particle Green’s function describes the propagation
the wave-function amplitudec(x). Elastic impurity scatter-
ing randomizes the phase of the amplitude and therefore,
propagator decays on the scale of the mean free scatte
time t. To catch classical diffusion and quantum localizatio
at least the evolution of the density or amplitude square
to be averaged over the disorder, leading to a correla
function of two one-particle Green’s functions. While wea
localization corrections can be calculated within a diagra
matic perturbation expansion of such correlati
functions,9,27 the study of strong-electron localization in
disordered potential, necessitates a nonperturbative ave
ing of such products of Green’s functions. This can
achieved by means of the supersymmetry method, whe
the product of Green’s functions is written as a function
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integral.2 Thus the average over the form of the disord
potential can be done right at the beginning as a Gaus
integral, exactly.

Here, for simplicity, we present the derivation of a simp
correlation function, which does not necessitate the use
the full supersymmetry method, but still contains some
formation on strong quantum localization, as show
recently.22,33,34

The statistics of discrete energy levels of a finite cohere
disordered metal particle is an efficient way to character
its properties.2 This can be studied by calculating a disorde
averaged autocorrelation function between two energies
distancev in the energy-level spectrum. Thereby, an unc
related spectrum of localized states can be distinguis
from a correlated spectrum of extended states.

The autocorrelation function of the spectral determinan
the most simple such spectral correlation function, wh
allows one to explore complex quantum systems analytica
and still does contain nontrivial information on level stat
tics and, thus, on localization.22,33It is an oscillatory function
whose amplitude decays with a power law, when the ene
levels in the vicinity of the central energyE are extended,
while a Gaussian decay is a strong indication that all sta

are localized. It is defined byC(v)5C̄(v)/C̄(0), C̄(v)
5^det(E1v/22H)det(E2v/22H)&, where E is a central
energy. Since it is a product of two spectral determinan
and a spectral determinant can be written as a Gaussian f
tional integral over Grassmann variablesc andc* , one does
need at least a two-component Grassmann field, one for e
spectral determinant.

In general, 4a-component Grassmann fields are needed
get the functional integral representation of the ASD. He
a51, when the Hamiltonian is independent of the spin of t
electrons, and each level is doubly spin degenerate. The
one pair of Grassmann fields for each determinant in
ASD, and each pair is composed of a Grassmann field an
time-reversed one, as obtained by complex conjugationa
52 has to be considered, when the Hamiltonian does dep
on spin, as for the case with moderately strong magn
impurity or spin-orbit scattering. This necessitates the use
a vector of a spinor and the corresponding time reversed

The representation as a Gaussian functional integral o
Grassmann variables is given explicitly fora51 in Appen-
dix A. There, the averaging over disorder and the decoup
of the resultingc4 interaction with a Gaussian integral ove
a matrix fieldQ is given. Thus the disorder averaged ASD
given by a functional integral over a matrix fieldQ.
8-3
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STEFAN KETTEMANN AND RICCARDO MAZZARELLO PHYSICAL REVIEW B65 085318
The matrixQ is element of the full symmetric space, in
cluding rotations between the subspace corresponding to
left and the right spectral determinant. Therefore, the lo
wavelength modes ofQ do contain the nonperturbative in
formation on the diffusion and Cooperon modes.

In order to consider the action of long-wavelength mod
governing the physics of diffusion and localization, one c
now expand around the saddle-point solution of the act
satisfying forv50,

Q5 i /~pn!^xu1/~E2H01 i\/~2t!Q!ux&. ~5!

This saddle-point equation is found to be solved byQ0
5L. For a51, andB50, at v50, the rotationsU, which
leaveQ in the symplectic symmetric space yield the co
plete manifold of saddle-point solutions asQ5ŪLU, where
UŪ51, with QTC5CQ. The modes which leaveL invari-
ant, elements of Sp(1)3Sp(1) are surplus, or spontanous
broken, and can be factorized out, leaving the saddle-p
solutions to be elements of the symmetric spa
Sp(2)/@Sp(1)3Sp(1)#.35

For a52 the matrixC is, due to the time reversal of th
spinor, substituted byis2t1 .26 Both magnetic impurities and
spin-orbit scattering reduce theQ matrix to unity in spin
space. ThusC has effectively the formt1 . The condition
QTC5CQ therefore leads to a symmetry class when the s
symmetry is broken but the time-reversal symmetry rema
intact. This is the case for moderately strong spin-orbit sc
tering. ThenQ are 434 matrices on the orthogonal symme
ric spaceO(4)/@O(2)3O(2)#,32 which is the nonperturba
tive consequence of the sign change of a spinor compo
under time-reversal operation, which leads to the posi
quantum correction to the conductivity in perturbati
theory.27 With magnetic impurities both the spin and tim
reversal symmetry is broken, and theQ matrices are in the
unitary symmetric spaceU(2)/@U(1)3U(1)# as for a mod-
erate magnetic field and spin-degenerate levels. The di
ence in the prefactora remains. One can extend this a
proach to other compact symmetric spaces with phys
realizations; see Refs. 36 and 37 for a complete classifi
tion.

In addition to these gapless transversal modes there
massive longitudinal modes withQ2Þ1, which for N@1,
can be integrated out,2 and the ASD thereby reduces to
functional integral over the transverse modesU. Now the
action of finite frequencyv and spatial fluctuations ofQ
around the saddle-point solution can be found by an exp
sion of the actionF @Eq. ~A7!#. InsertingQ5ŪLU into Eq.
~A7!, and performing the cyclic permutation ofU under the
trace Tr, yields

F52
1

2 E dx^xuTr ln~G0
212U@H0 ,Ū#1vULŪ !ux&,

~6!

where

G0
215E2H01

i\

2t
L. ~7!
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Expansion to first order in the energy differencev and to
second order in the commutatorU@H0 ,Ū# yields

F@U#52
1

2
vE dx^xuTrG0EULŪux&

1
1

2 E dx^xuTrG0EU@H0 ,Ũ#ux&

1
1

4 E dx^xuTr~G0EU@H0 ,Ū# !2ux&. ~8!

Note that @H0 ,Ū#52(\2/2m)(¹2Ū)2(\2/m)(¹Ū)¹
2(q\/ imc)(t3A¹Ū2Ūt3A¹). The first order term in
U@H0 ,Ū# vanishes for Gaussian white-noise isotropic sc
tering.

In general, in order to account for the ballistic motion
electrons in ballistic wires, or to account for different sourc
of randomness, a directional dependence of the matrixU
5U(x.n), wheren5p/upu, has to be considered.38,39 How-
ever, for the geometries considered in this paper, we h
found that the form of the action derived below remai
valid for diffusive as well as ballistic cross sections, wh
the vector fieldsS, as introduced in Refs. 38 and 39, a
integrated out. This will be presented in more detail in
separate paper.

Then one can keep second-order terms in¹Ū and A,
which turns out to be valid for the regime of weak disord
l @1/kF and for any magnetic field,l B@1/kF . Thus, using
the saddle-point equation,@Eq. ~5!#, one obtains

F@U#52
p

4

v

D E dx

SL
TrLQ

1
1

4 E dx ^xuTrH G0EUF \2

2m
~¹Ū !S ¹2

i

\
qAt3D

1
q\

m
@t3 ,ŪA¹#G J 2

ux&. ~9!

Next one can separate the physics on different len
scales, noting that the physics of diffusion and localization
governed by spatial variations ofU on length scales large
than the mean free pathl. The smaller length scale physics
then included in the correlation function of Green’s fun
tions, being related to the conductivity by the Kub
Greenwood formula

sab~v!5
\

pSL

q2

m2 (
p,p8

^pu~pa2qAa!G0E
R up8&

3^p8u~pb82qAb!G0E1v
A up&, ~10!

where p5(\/ i )¹. The remaining averaged correlators i
volve productsG0E

R G0E1v
R andG0E

A G0E1v
A and are therefore

smaller by a factor\/(tE) than the conductivity, and can b
disregarded for small disorder\/t!E. In the bulk of this
article we are interested in the weak-magnetic-field lim
wherevct!1, with the cyclotron frequencyvc5qB/m. In
8-4
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this limit we can disregard the nondiagonal Hall conductiv
and the explicit magnetic-field dependence of the longitu
nal conductivity.

In order to insert the Kubo-Greenwood formula in
the saddle-point expansion of the nonlinear sigma mo
it is convenient to rewrite the propagator inF
as G0E5 1

2G0E
R (11L)1 1

2G0E
A (12L). Then we can

use that Tr@(s56(11sL)U(¹aŪ)(12sL)U(¹aŪ)#
52Tr@(¹aQ)2#, and

Tr†(s56~11sL!U@t3 ,Ū#‡~12sL!U@t3 ,Ū#

52Tr†@t3 ,Q#2
‡.

For wires of thicknessW not exceeding the length sca
LCU5LC(b52)52p\nWD0 , the variations of the fieldQ
can be neglected in the transverse direction, and the ac
reduces to the one of a one-dimensional nonlinear sig
model. Thereby we can rewrite Eq.~9! as

F@Q#52
p

4

v

D E dx

L
TrLQ

2
1

4 E Wdx Tr@¹Q~x!#2^xuG0E
R \2

2m

3S ¹2
i

\
qADG0E

A \2

2m S ¹2
i

\
qAD ux&

2
1

4 S q\

m D 2E Wdx Tr†@t3 ,Q~x!#2
‡

3^xuG0E
R A¹G0E

A A¹ux&1c.c. ~11!

Using the Kubo formula,@Eq. ~10!#, this functional ofQ thus
simplifies, forvct!1, to

F5
p\

16q2 s~v50!WE
0

L

dxS Tr@¹xQ~x!#2

2^Ax* Ax&
q2

\2 Tr@t3 ,Q~x!#2D . ~12!

The prefactor of the time-reversal symmetry breaking te
the correlation function

^Ax* Ax&5B2^y* y&

5
~^xuG0E

R A¹G0E
A A¹ux&1c.c.

^xuG0E
R @¹2~ i /\!~qA!#G0E

A ~¹2~ i /\!qA!ux&
,

~13!

is increasing with the magnetic fieldB, suppressing mode
with @Q,t3#Þ0, the Cooperon modes, arising from the se
interference of closed diffusion paths. Accordingly, the sy
metry of theQ-fields is broken from Sp~2!/@Sp~1!3Sp~1!# to
U(2)/@U(1)3U(1)#. In Sec. IV we show that this prefacto
is related to the magnetic phase-shifting rate, and is ev
ated for a disordered quantum wire.

IV. MAGNETIC PHASE-SHIFTING RATE

It can be seen that the prefactor of the symmetry break
term in Eq. ~12! is proportional to the effective phase
08531
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shifting rate 1/tB , governing the weak-localization suppre
sion by a magnetic field. To this end, one can use the su
symmetric version of the above nonlinear sigma mod
obtained by substituting the matrixQ by supermatrices, and
the trace over matrices Tr by the supertraceSTr, but keeping
all coefficients the same as in Eq.~12!. Then, the weak-
localization corrections to the conductivity can be calcula
as outlined Ref. 2, by an expansion ofQ around the classica
saddle pointQc5L. Thus the magnetic phase-shifting ra
1/tB can be identified as

1/tB54D
q2

\2 ^Ax* Ax&, ~14!

where the Einstein relations52q2nD of the classical con-
ductivity s to the classical diffusion constantD has been
used.

A. 2D wire with specular boundary conditions

The general expression for the correlation function^y*y&,
is found by inserting the momentum eigenstates of the w
and summing the correlation functions of Green’s functio
for l B@W in Eq. ~15!. It is thus obtained to be given for
two-dimensional wire of widthW in momentum representa
tion by

^y* y&5 (
kx ,ky ,ky8

kx
2@G0E

R ~kx ,ky!G0E
A ~kx ,ky8!1c.c.#

3 z^kyuyuky8& z2Y (
kx ,ky

S kx2
q

\
AxD 2

3G0E
R ~kx ,ky!G0E

A ~kx ,ky!. ~15!

HereG0E
R/A(kx ,ky)5„E2\2(kx

21ky
2)/(2m)6 i /(2t)…21.

Keeping all corrections for finite number of transver
channelsN5kFW/p and effective mean free pathl5kFl , in
the weak disorder limitE@\/t, for N@1 we obtain the
expression

^y* y&5W2X 1

12
K2

1

2p2 K12
l2

p2N2 K2

1
4

p4

l3

N4 (
s51

N
s2

N2 S 12
s2

N2D 1/2

ImS s2

N2 1 i
2

l D 1/2

3tanH pN

2 F S s2

N2 1 i
2

l D 1/2

2
s

NG J CY K0 , ~16!

where the definition of the constantsKi is given in Appendix
B. Its dependence on the mean free path parameterl5kFl is
shown in Fig. 1.

Note that, althoughN@1 is required for the validity of
the nonlinear sigma model, Eq.~16! is valid for arbitrary
ratios of the width of the wireW and the mean free pathl,
since the motion remains diffusive along the wire axis
large length scales, even ifl @W. For diffusive wire cross
8-5
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sections,l ,W, ^y* y&→y25W2/12 which results exactly in
the known result for the magnetic phase-shifting rate 1tB

54D(q2/\2)y2B.31,12

The above derivation is more general, and applies for
bitrary ratios of the wire thicknessW and the mean free pat
l, as long as the magnetic lengthl B is both larger than the
width W and the elastic mean free pathl, and for a large
number of transverse channelsN5kFW/p@1.

For ballistic wire cross sections,l .W, Eq. ~16! shows
that the effect of the magnetic field becomes weaker asW/ l
decreases. This is a result of the flux cancellation eff
discussed in the limit of weak localization in Refs. 10 a
12: the matrix element of the vector potential^kuAuk8& van-
ishes fork5k8, sinceA5(2By,0,0) is antisymmetric in the
coordinate perpendicular to the wire,y. Thus elastic impurity
scattering is needed to mix different momentum states
contribute finite matrix elements of the magnetic vector p
tential.

One can check that Eq.~16! is also valid in the weak
disorder limit, by Taylor expanding the correlation functio
in 1/(kFl ), giving ^y* y&5(W2/10)(N3/l2), showing that it
vanishes for l@N2, corresponding to \/t
!p2\2/(2mW2), when the disorder does not mix transve
sal modes, like 1/l2, as seen in Fig. 1. In the intermedia
regime,N,l, it was argued in Refs. 10 and 12, that 1/tB
should be reduced by a factor linear inN/l, resulting, for a
two-dimensional wire with a perpendicular magnetic field,
a disorder independent expression

1

tB
5

1

C

W3vF

l B
4 , ~17!

where l B5(\/(qB))1/2 is the magnetic length. For specul
boundary condition, as considered in this paper, it was fo
numerically that C59.5.12 Correspondingly, the function
^y* y&/W2 should approacĥy* y&/W2→(p/2C)N/l or, for
N5100, ^y* y&/W2→16.5/l. The result@Eq. ~14!# indeed
agrees with this behavior, in a regimeN!l!N2, although
the best fit gives a different prefactor 14.5, corresponding

FIG. 1. The dependence of the correlation function^y* y&/W2

on the dimensionless mean free pathl5kFl for N5100 channels.
For comparison, the line corresponding to a disorder-indepen
phase-shifting rate, approximately valid forN!l!N2, is shown.
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C510.8. The analytical result shows, furthermore, that t
behavior is only an approximation and that there is a cro
over to the perturbative regime, discussed above, wh
^y* y&/W2 decays like;1/l2; see Fig. 1. Note that this re
sult is accurate up to corrections of order 1/N.

B. Parabolic wire

As long as the elastic scattering rate exceeds the cyclo
frequency, 1/t@vc , or correspondingly,l ! l Cyc where l Cyc

5kFl B
2 is the cyclotron path, determining the length scale

which ballistic paths start to bend due to the Lorentz for
the magnetic-field dependence of the classical diffusion c
stant and the density of states can be neglected; for a
dimensional wireD5tvF

2/2 andn(E)5m/(2p\2), respec-
tively.

However, the cyclotron length can be small compared
the width of the wire,l Cyc,W, while exceeding the elastic
mean free pathl Cyc. l , when the cross section of the wire
diffusive, l ,W. Thus the localization length can depen
sensitively on the ratio of these length scales, even in
weak-magnetic-field limit, where the density of states a
classical conductivity are insensitive to the magnetic field.
order to study the crossover as function of the magnetic fi
the dependence of the eigenfunctions on the magnetic
therefore have to be taken into account. This regime is m
conveniently studied for a parabolic wire, having a harmo
confinement

H05
1

2m
~p2qA!21

1

2
mv0

2y2, ~18!

and energy eigenvalues

En,k5\veff~n11/2!1
1

2m*
\2k2, ~19!

where the effective mass ism* 5mveff
2 /v0

2, and the effective
frequency isveff5(vB

21v0
2)1/2, wherevB5qB/m is the cy-

clotron frequency. The spatial center of the electron eig
states are shifted by the guiding centeryk5k\vB /(mveff

2 ).
Thus the width of the wire is at constant Fermi energyEF
dependent on the magnetic fieldB. Defining the width of the
wire W at fixed Fermi energy asW25max(̂ n,kuy2un,k&) with
En,k5EF , for the parabolic wire one finds

W2~B!5 l eff
2 maxF2

EF

\veff

vB
2

v0
2 1~n11/2!S 12

vB
2

v0
2D G .

~20!

For a large magnetic fieldvB@v0 , this approaches exactl
twice the value at zero magnetic field; thus

W~vC@v0!5&W~0!5@2EF /~\v0!#1/2l 0 . ~21!

Thus the wire width is a slowly varying function of the pa
rametervc /v05W(B50)/l Cyc.

The presence of impurities smooths this function furth
and we can thus assume the width to be practically magn
field independent:

nt
8-6
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W5A2EF /me/v0 . ~22!

This allows us to study the various regimes of interest a
function of the wire widthW, the magnetic lengthl B and the
average mean free pathl 5(2EF/m)1/2t.

Naturally, the classical conductivity in such a wire is a
isotropic. We find that

sxx5
11v0

2t2

11veff
2 t2 q2tne /m ~23!

and

syy5
1

11veff
2 t2 q2tne /m, ~24!

wherene5(2/3p)(meE/\2v0) is the average electron den
sity in the wire, which is taken to be approximately indepe
dent of the magnetic field. Since we consider magnetic fie
where vCt!1, the classical conductivity is magnetic fie
independent,sxx5q2tne /m, andsyy5sxx /(11v0

2t2).
Thus the condition that the localization is governed by

one-dimensional nonlinear sigma model is changed
LCU /(11v0

2t2).W. With v0t5 l /W, it follows that the
one-dimensional localization condition requiresl ,2NW in
the weak-disorder regimekFl @1.

Rederiving the nonlinear sigma model in the represen
tion of a clean parabolic wire, using the definition of th
correlation function@Eq. ~15!#, where the sum over trans
verse momenta is substituted by the sum over the band
dex,n, ky→n, we find the result

^yy&5W2
2

5 S 1

11v0
2t2 13

vc
2

v0
2D

5W2
2

5 S 1

11 l 2/W2 13
W2

l Cyc
2 D . ~25!

Note that, sincev0
2t25 l 2/(W2), the ballistic cross section

limit l .W coincides for the parabolic wire with the clea
wire limit, where transversal modes are not mixed by
disorder\t,\v0 . Thus the flux cancellation effect leads
the parabolic wire to a suppression of the phase-shifting
by a factorW2/ l 2 as found for a wire with specular bound
aries in the clean wire limit as seen in the previous subs
tion.

Thus it is not surprising that the behavior of the magne
phase-shifting rate, as known from weak-localization corr
tions for a wire with ballistic cross sectionW, l and hard
wall boundary conditions, is not reproduced when consid
ing a parabolic wire. In the former case, there is a regi
W2, l B

2,Wl, implying l B, l , where the magnetic phase
shifting rate is given by

1

tB
5

W2

C2t l B
2,

W3vF

ClB
4 , ~26!

where C2524/5. This is smaller than expected from E
~17!, and is not obtained for the parabolic wire.
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Instead, we find that there is a regime, where the magn
field sensitivity of localization becomes stronger, when t
cyclotron lengthl Cyc becomes comparable to the width of th
wire W. Whenl , l Cyc,W the magnetic phase-shifting rate
found to increase with the magnetic field likeB4:

1

tB
5

24

5
D

q2

\2 B2
W4

l Cyc
2 . ~27!

When the magnetic field becomes so strong that the
clotron lengthl Cyc becomes comparable to or smaller th
the mean free pathl, or vct.1, the diffusion constant and
the density of states becomes functions of the magnetic fi
Then the spatial modes of the nonlinear sigma model perp
dicular to the wire can become soft, and contribute to
functional integral, and thus, the nonlinear sigma model
comes effectively two dimensional. In this limit, a quantu
Hall wire, the approach used in this paper can yield qual
tive information on the location and size of localized sta
in a quantum Hall system,33 and will be reconsidered in a
forthcoming work.

V. MAGNETOLOCALIZATION IN DISORDERED
QUANTUM WIRES

It is known that the localization length depends on t
global symmetry of the wire,3 Lc5bp\nSD0 , where b
51, 2, and 4, corresponding to no magnetic field, finite m
netic field, and strong spin-orbit scattering or magnetic i
purities, respectively.n(E) is the electronic density of state
in the wire.1,2 D0 is the classical diffusion constant of th
electrons in the wire, andS its cross section. This result wa
obtained by calculating the spatial decay of the density c
relation function for wires whose thickness exceeds the m
free pathl.

Here, we use an extension of a recent nonperturba
calculation, to obtain the localization length as a function
the magnetic field, using the fact that the ASD shows a cro
over from an oscillating behavior, decaying with a pow
law,13,14 typical of Wigner-Dyson energy-level statistics,15 to
a Gaussian decaying function when the length of the w
is increased beyond the localization length,22 as seen in
other measures of correlations in the discrete energy le
spectrum of a phase-coherent disordered elec
system.2,18–21

Taking the representation of the ASD derived below@Eq.
~A6!#,

C̄~v!5E ) dQ~x!exp~2F@Q# !, ~28!

whereF as given by Eq.~12! can be rewritten conveniently
in terms of the diffusion length, an electron would diffus
classically in the magnetic phase-shifting timetB , LB

5ADtB:

F@Q#5a
1

16
LCUE

0

L

dx TrF @¹xQ~x!#22
1

4LB
2 @Q,t3#2G

1 ia
p

4

v

D E dx

L
TrL3Q~x!. ~29!
8-7
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where LCU5LC(b52)52p\nSD0 is the localization
length in a wire in a moderately strong magnetic field.3

In the limit whenLB,LC , a moderately strong magnet
field, Q is reduced to a 232 matrix by the broken time-
reversal symmetry. This reduces the space ofQ to
U(2)/@U(1)3U(1)#.

For v/D,LCU /L, corresponding tov,EC , whereEC
52pD/L2 is the Thouless energy scale of classically fr
diffusion through the wire of lengthL, the spatial variation of
Q can be neglected, and one retains the same ASD as
random matrices of orthogonal or unitary symmet
respectively.13,14 Increasing the length of the wireL, a cross-
over in the autocorrelation function can be seen as the w
exceeds the length scaleLc .22

In order to study quantum localization along the wire, t
functionC(v) should be thus considered as a function of
finite lengthL of the wire and spatial variations ofQ along
the wire have to be considered, as described by the one
mensional nonlinear sigma model derived above. To this e
the impurity averaged ASD can be written as a partit
function33

C̄~v!5Tr exp~2LH̄@Q# !, ~30!

where H̄ is an effective Hamiltonian of matricesQ on a
compact manifold, determined by the symmetries of
Hamiltonian H of disordered electrons. Thus the proble
reduces to the one of finding the spectrum of the effec
HamiltonianH̄.

We can derive the corresponding HamiltonianH̄ by
means of the transfer-matrix method, reducing the o
dimensional integral over a matrix fieldQ @Eq. ~28!# to a
single functional integral. Thus the ASD is obtained in t
simple form of Eq.~30!, with the effective Hamiltonian

H̄~v50!5
1

aLCU
S 24DQ

R2
1

16
X2TrQ@Q,t3#2D . ~31!

DQ
R is that part of the Laplacian on the symmetric spa

which does not commute with Tr@L3Q#. The time-reversal
symmetry breaking due to the external magnetic field is g
erned by the parameterX5aLCU /(2LB).

The problem is now equivalent to a particle with ‘‘mas
(a/8)LCU(E) moving on the symmetric space ofQ in a har-
monic potential with ‘‘frequency’’ 1/(2LB), and, in an exter-
nal field ia(p/4)v/(LD), in ‘‘time’’ x, the coordinate along
the wire. To find the ASD as a function ofv and the length of
the wire L, one can do a Fourier analysis in terms of t
spectrum and eigenfunctions of the effective Hamiltonian
zero frequency,H̄(v50).40

There is a finite gapEG between the ground-state ener
and the energy of the next excited state ofH̄(v50). For a
long wire, LEG@1, the ASD becomesC(v)5exp(2const
3Lv2/EG), where both const3v25z^0uH̄(v)2H̄(0)u1& z2,
and the gap between the ground state and the first exc
state,EG5E12E0 , does depend on the symmetry of th
HamiltonianH̄. This exponential decay withLv2 is typical
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of a spectrum of localized states.33 In the other limitLEG

!1, all modes ofH̄ do contribute to the trace in the partitio
function @Eq. ~30!# with equal weight, yielding the correla
tion function of a spectrum of extended states.22 Thus the
crossover length is entirely determined by the gapEG ,
throughjc51/EG , and can be identified with an average
localization length.

In order to derive the eigenvalues of the effective Ham
tonian at zero frequency,H̄(v50), we need to introduce a
representation of the matrixQ and evaluate the Laplacian i
its parameters. This is done in Appendix C.

Without a magnetic field,B50, the Laplacian is obtained
to be

DQ
R5]lC

~12lC
2 !]lC

12
12lC

2

lC
]lC

1
1

lC
2 ]lD

~12lD
2 !]lD

,

~32!

wherelC,DP@21,1#. Its ground state is 1 and its first ex
cited state islClD . Thus the gap is

EG~B50!516/LCU . ~33!

For a moderate magnetic field, with the conditio
LCU(^yy&)1/2B@f05h/q, all degrees of freedom arisin
from time-reversal invariance are frozen out, due to the te
TrQ@Q,t3#2516(lC

2 21), which fixeslC
2 51. Then the La-

placian reduces to

DQ
R5]lD

~12lD
2 !]lD

. ~34!

Its eigenfunctions are the Legendre polynomials. There
gap above the isotropic ground state of magnitude

EG~X@1!58/LCU . ~35!

For moderate magnetic impurity scattering, exceeding
local level spacing, 1/ts.DC , a52, and the Laplacian is
given by Eq.~34!.

Thus, due toa52, the gap is reduced toEG(1/tS.DC)
54/LCU . For moderately strong spin-orbit scattering 1/tSO
.DC , the Laplace operator is

DQ
R5 (

l 51,2
]l l

~12l l
2!]l l

, ~36!

wherel1,2P@21,1#. The ground state isc051, the first ex-
cited state is doubly degenerate,c115l1 andc125l2 . Thus
the gap is the same as for magnetic impurities,

EG~1/tSO.DC!54/LCU . ~37!

An external magnetic field lifts this degeneracy but does
change the gap.

Thus, using the crossover in energy-level statistics as
definition of a localization length as above, we obtain in
quasi-1D wire

jc51/EG~b!5~1/16!bLCU , ~38!

whereb51, 2, and 4, corresponding to no magnetic field
finite magnetic field, and strong spin-orbit scattering or ma
netic impurities, respectively. Comparing with the know
8-8
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MAGNETOLOCALIZATION IN DISORDERED QUANTUM WIRES PHYSICAL REVIEW B65 085318
equation for the localization lengthLc @Eq. ~1!#, we find that
the dependence of the ratiosb on the symmetry are in perfec
agreement with the result as obtained from the spatial de
of the density-density-correlation function,3 while it defers
by an overall constant18.

This relation can be proven directly. The ASD at ze
frequencyC̄(0)L of the wire of lengthL, becomes, when the
wire is divided into two parts,C̄(0)L/2

2 . For L→`, we find
that the relative difference is

f ~L !5
C̄~0!L/2

2

C̄~0!L

2152p exp~2LEG/2!, ~39!

exponentially decaying with the lengthL. Herep is the de-
generacy of the first excited state ofH̄(v50). f (L) can be
estimated, following an argument by Mott and Davis41

When the two halves of the wire are connected~see Fig. 2!,
the eigenstates of the two separate halves become hybrid
and the eigenenergy of a statecn is changed by6DC exp
(22xn /LC). xn is random, depending on the position of a
eigenstate with closest energy in the other half of the w
Thus averaging overxn gives

f ~L !;1exp~24L/LC!. ~40!

Comparison with Eq.~39! indeed yields 1/LC58EG .
It is thus a remarkable fact that this length scale, defin

as the crossover length of the spectral autocorrelation fu
tion and related to the excitation gap of the compact non
ear sigma model, has exactly the same symmetry depend
as the localization length, defined through the exponen
decay of the spatial density correlation function found

FIG. 2. Schematic visualization of the energy-level spectrum
localized states in~a! a disordered quantum wire of lengthL, when
divided into two parts, and~b! for the same wire when both part
are connected and the eigenstates are hybridized.
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Ref. 3. This is especially surprising since the nonperturba
derivation of the disorder average of the quanti
^r(r ,t)r(r 8,t8)&2^r(r )2&, necessitates the use of the sup
symmetry method, resulting in a nonlinear sigma model
supermatrices, having, in addition to a compact sector~the
one considered here!, a noncompact sector where the matr
is parametrized on a semi-infinite interval. The full sup
symmetry furthermore allows rotations between this comp
sector and a noncompact sector which are parametrize
Grassmann numbersj, having the propertyj250. Apart
from this increase of the manifold of the matrix fieldsQ to
the supersymmetric space, the structure of the theory
equivalent. In particular, the free energy of the supersymm
ric nonlinear sigma model has exactly the same form as
~29!, replacingQ by supermatrices, and the trace overQ by a
supertraceSTr, giving the opposite sign to the noncompa
sector.2

Studying localization in a wire with this supersymmetr
nonlinear sigma model, the transfer-matrix method yields
effective Hamiltonian of supermatricesQ, of the same form
as Eq.~31!, where the Laplacian is now defined on the r
spective supersymmetric manifold. In full analogy, the sp
trum of H̄ accordingly determines the properties of a dis
dered quantum wire, and was derived in Ref. 40 for the p
ensembles. The partition functionZ5STr exp(2LH̄) is a
generating function of spectral correlation functions.21,42 In
order to derive spatial correlation functions like the dens
correlation function, in addition, the eigenfunctions of t
respective diffusion equation on the supersymmetric ma
fold,

@2]x1H̄~Q!#c~x;Q!50, ~41!

have to be found.3 In this way, a formula for the conductanc
of a finite disordered wire attached to two leads at a dista
L, has been derived;40 also see Ref. 2. In the limit of a wire
which is perfectly coupled to the leads, the formula for t
average conductance simplifies to

^g&5
1

2a E dm~ l i !E~ l i !expS 2
L

16
E~ l i ! D , ~42!

where E( l i) are the eigenvalues of the supersymmet
Hamiltonian H̄(v50), anddm( l i) the corresponding inte
gration measure of the discrete and continuous eigenva
of the angular momentum operator on the compact and n
compact sectors, respectively. They were found to be gi
for B50 by40

E~ l i !50,
4

LCU
2~e211!,

4

LCU
~l21e1

21e2
211!, ~43!

wherel 53,5,..., ande.0, e1.0, ande2.0.
For time-reversal symmetry-broken wiresX.1, the ei-

genvalues were found to be

E~ l i !50,
4

aLCU
~ l 21e2!, ~44!

wherel 51,3,5,..., ande.0.

f
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If spin symmetry is broken, but time-reversal symme
conserved, in the presence of spin-orbit scattering the eig
values were found to be

E~ l i !50,
4

2LCU
2~ l 21!2,

4

2LCU
~ l 1

21 l 2
21e221!,

~45!

wherel 53,5,...,l i51,3,5,...,i 51 and 2, ande.0.
In this case it can be seen that for a distance between

leads much exceeding the localization length,L@LCU , the
conductance decays exponentially, and that this is enti
determined by the compact gapẼG , between the lowest an
gular momentum eigenstates of the compact sector. The
tegration over the continuous eigenvalues of the noncom
sector, leads only to a prefactor, decaying as a power of
length ;1/L3/2. Indeed, the gap between the ground-st
value E50 and the first excited state is seen, from E
~43!–~45!, to be ẼG58/LCU for B50, ẼG54/LCU for X

.1, ẼG52/LCU for magnetic impurity scattering,a52, and
ẼG52/LCU for moderate spinorbit scattering, coincidin
with the symmetry dependence of the compact gap der
above. However, this coincidence might appear as m
chance, since, in fact, the Laplacian of the supersymme
matrix Q cannot be written as a sum of the one of the
spective compact nonlinear sigma models@Eqs. ~32!, ~34!,
and~36!# and noncompact ones, because the metric tensĝ
on the supersymmetric space contains mixed factors of c
pact and noncompact parameters. Therefore, the discret
genvalues of2DQ are not eigenvalues of the square of t
angular momentum on a compact sphere.40 Only in the limit
of infinite noncompact parameters does one recover the
spective Laplacian on the compact symmetric space,@Eqs.
~32!, ~34!, and~36!#.

Thus, having shown that the ASD yields the correct sy
metry dependence of the localization length, we can now
this approach to obtain an analytical solution for the cro
over behavior of the localization length and the local le
spacing as a magnetic field is turned on, and there is
spin-orbit scattering. While a self-consistent approach,43 a
semiclassical analysis,44 and numerical studies45,46 showed a
continuous increase of the localization length, an analyt
result47 indicated that both limiting localization length
Lc(b51) andLc(b52) are present in the crossover regim
and that there is no single parameter scaling. This is
plained by arguing that the far tails of the wave functions
cover a large enough area to have fully broken time-reve
symmetry, decaying with a length scaleLc(b52) even if the
magnetic field is too weak to affect the properties of the b
of the wave function, which does decay at smaller len
scales with the shorter localization lengthLc(b51), corre-
sponding to the time-reversal symmetric case. The quan
studied there is the impurity-averaged correlation function
local wave-function amplitudes, and its momenta at a fix
energye: Y(e)5^(auca(0)u2uca(r )u2d(e2ea)&. It is aver-
aged over a distribution of eigenfunctions in different imp
rity representations. Thus each eigenfunction could decay
ponentially with a single localization length, but having
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distribution which has two maxima, atLc(b51) andLc(b
52), whose weight is a function of the magnetic field in t
crossover regime. While the distribution function
ln@uca(0)u2uca(r)u2# is known to be Gaussian in both limitin
cases of conserved and fully broken time-reversal symme
centered around the valuer /LC(b), b51 and 2, respec-
tively, it is not yet known in this crossover regime.20 The
average value of moments,uca(0)ukuca(r )uk, decays more
slowly than its typical value, and does not depend on
order of the moment;k. This was taken as a proof that mo
ments are determined by states with anomalously large lo
ization lengths, on the order of the system size.20 Therefore,
the result of Ref. 47 can be a property of such rare states
anomalously large localization lengths, and it remains to
if the full distribution function scales with two length
Lc(b), b51, and 2, or a single one, changing continuou
with the magnetic field,Lc(B).

While we cannot resolve this question by calculating
spectral autocorrelation function like the ASD, this is anoth
motivation to see if the energy-level statistics is governed
a single parameter as the magnetic field is varied. An eff
tive Hamiltonian for moderate magnetic fields is found, wit
out spin dependent scattering,a51, using Tr@Q,t3#2

516(12lC
2 ) to be given by

H̄5
1

LCU
@24DQ

R1X2~12lC
2 !#, ~46!

where the Laplacian is Eq.~32! andX5LCU /(2LB).
In the limit X→0 the ground state and first excited sta

approach 1 andlClD , respectively. In the limitX@1, lC
2

becomes fixed to 1. Thus the ansatzc0(lC);exp@A0X
2(1

2lC
2)# andc1(lC ,lD);lClD exp@A1 X2(12lC

2)#, whereA0

,0, A1,0 are negative constants, solvesH̄c5Ēc to first
order in z5X2(12lC

2 ). One finds that the two lowes
magnetic-field-dependent eigenvalues areE054/LCU(25
1A251X2) andE154/LCU(231A491X2), and the eigen-
functions are given as above withA052LCUE0 /(16X2) and
A15(12LCUE1/16)/X2, yielding the right limits forX→0
and X@1, respectively. Thus there is a magnetic-fie
dependent gapEG5E12E0 of magnitude

EG~X!54~21A491X22A251X2!/LCU . ~47!

This solution is valid in both the limitsX!1 and X@1,
interpolating the regionX'1.

With the magnetic diffusion lengthLB5(DtB)1/2, and the
magnetic phase-shifting rate, as given by Eq.~14!, we obtain

X5LCU /~2LB!5LCU

q

\
A^y* y&B, ~48!

which isA^yy&/W times the number of flux quanta penetra
ing a localization areaLCUW. From Eq.~47! it follows that
the magnetic change of the localization length isdLC(B)
;B2 for small and;1/B at large magnetic fields, which
agrees with the result of the self-consistent method obtai
by Bouchaud.43
8-10
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VI. RESISTANCE OF DISORDERED QUANTUM WIRES

In the limit of zero temperature,T50, the resistivity of a
disordered quantum wire, having only localized states at
Fermi energy, is infinite. For finite temperature,T.0, in the
strong-localization regimekBT,DC, the mechanism of con
duction is hopping of electrons between localized sta
Then the resistivity increases exponentially with tempe
ture. According to the resistor network model,48,49 each pair
of localized statesi and j is linked by a resistanceRi j ,

Ri j 5expS 2r i j

Lc
1

e i j

kBTD , ~49!

where r i j 5ur i2r j u and e i j 5(ue i2mu1ue j2mu1ue i
2e j u)/2kBT ~r i ande i are the position and energy of the sta
i, and m is the Fermi energy!. Because of the exponentia
dependence ofR on r i j ande i j , percolation theory method
can be applied.50–52 In 2D and 3D systems, the dependen
of R on temperatureT shows a crossover from an activate
behavior to a variable-range-hopping regime. In this regi
the temperature is so low that the typical resistances betw
neighboring states are large because of the second ter
Eq. ~49!. Therefore, electrons tunnel to distant states wh
energies are close to the Fermi level. If we neglect electr
electron interactions the resistivity is described by Mo
law,50,53

R~T!5R0 exp@~gT0 /T!1/~d11!#, ~50!

whered is the dimensionality of the system,g is a numerical
coefficient which depends ond, T051/nLc

d , and nd is the
dimension dependent density of states. However, in
quasi-1D case and for sufficiently long wires the varia
range hopping result@Eq. ~50!# cannot be used due to th
presence of exponentially rare segments inside which all
localized states have energies far from the Fermi level.54–56

These large resistance segments~LRS’s! do not strongly af-
fect the resistivity of 2D and 3D systems because they ca
circumvented by the current lines. In one dimension this
not possible and the total resistance of a wire is given by
sum of the resistances of all the LRS’s. This sum yields
activated type dependence ofR on T ~Ref. 55! for infinite
wires:

R5R0

L

Lc
S T0

T D 1/2

exp~T0/2T!, ~51!

wherekBT051/nLc5Dc coincides with the local level spac
ing, andL is the length of the wire. Equation~51! is valid
provided that the number of optimal LRS’s@i.e., those LRS’s
which give the largest contribution toR ~Ref. 55!# within the
length of the sample! is large. But for a finite wire length this
condition fails to be fulfilled at very low temperatureT, and
the resistance of the chain is determined by smaller LRS’s
this regime Eq.~51! is replaced by54,55

R'R0 expXH 2
T0

T
logF L

Lc
S T

T0
D 1/2

log1/2S L

Lc
D G J 1/2C,

~52!
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which is valid below a temperature

T15
T0

2 ln~L/Lc!
~53!

approaching Mott’s law@Eq. ~50!# at lower temperatures
T,T1 .

So far, electron-electron interactions have not been ta
into account. This approximation is valid if the Coulom
interaction is screened over distances of the order of the h
ping length, as by a metal gate electrode deposited on to
the wires at a distance smaller than the typical hopp
lengths. When this is not the case, long-range electr
electron interactions affect both the density of states and
resistance of the samples.57,58

VII. COMPARISON WITH EXPERIMENTAL RESULTS

The magnetic-field-dependent activation energy was m
sured recently in transport experiments of Sid-doped GaAs
quantum wires.8 As an example, here we discuss sample 5
Ref. 8, with a widthW50.2mm, a localization lengthLCO
50.61mm, a lengthL540mm, andN530 channels. The
activation energy coincides with the local level spaci
kBT05Dc51/(nWLc), and is estimated for sample 5 to b
T050.34 K.

Thus, according to the theory outlined in Sec. VI, there
an activated resistance in an order of magnitude tempera
rangeT150.04K,T,T050.34 K, allowing to a good ap-
proximation a direct measurement of the magnetic-fie
dependent activation energyDc(B), and thus the magnetic
field dependence of the localization lengthLC(B). The ratio
of the cyclotron frequency and the elastic scattering ra
vCt5 l /(kFl B

2)!1, is small in the whole range of magnet
fields considered there, so that the classical conducta
would be magnetic field independent:s5ne2t/m(1
1vC

2 t2)21'ne2t/m.
The mean free pathl;0.02m is small compared to the

width of the sample,W50.2mm. The magnetic length is
l B50.026mm(B/T)21/2. Thus, whilevCt!1, the magnetic
length becomes smaller than the width of the sample at m
netic fieldsB.0.0165 T.

The experimental magnetic-field dependence of the r
of activation energies is shown in Fig. 3 together with t
theoretical curve for the ratio of local energy-level spacin
DC(B)/DC(0)5EG(B)/EG(0), asderived above, Eq.~36!,
using the results of a two-dimensional wire with specu
boundary conditions@Eq. ~14!# for the magnetic phase
shifting rate, and, for comparison, the one derived for a pa
bolic wire @Eq. ~25!#.

There is a quantitative discrepancy between the bes
X50.036B/G, and X52pf/f0 , f5m0HLCU(y2)(1/2),
when using the analytical formula@Eq. ~14!#. With the ex-
perimental parametersa51, LCO50.61mm, width W
50.2mm of sample 5 in Ref. 8, andy25W2/12 for a two-
dimensional wire, it yieldsX50.010B/G. We note that a
smooth confinement can givey2.W2/12. A similar discrep-
ancy was observed betweenW as obtained from the sampl
resistance and estimated from the analysis of the we
8-11
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localization magnetoresistance, which also depends ony2.59

We note that the agreement, when using the experime
parameters, for the parabolic wire, is better. The cyclot
lengthl Cyc5kFl B

250.32/(B/T) mm is found to be larger than
the mean free pathl for B,15T and larger than the wire
width for B,1.5T. For the parabolic wire we findX
50.024 @0.9911.3331028(B/G)2#1/2B/G. The enhance-
ment of the magnetic phase-shifting rate in a parabolic w
@Eq. ~25!# is thus too weak to be seen at the magnetic fie
used in the experiment,B,0.2T, as shown in Fig. 3, and
thus seems not to be the origin of the increase in the deca
the activation gap, at about 0.1T.

An extension of the derivation given in Sec. IV, to includ
a dependence of the eigenfunctions on the magnetic
also for a two-dimensional wire with specular boundary co
ditions, has to be done, in order to make the comparison w
the experiment more quantitative, and draw conclusi
from the magnetolocalization on the form of the confinem
potential in these Sid-doped GaAs quantum wires. Howev
our results may indicate that the harmonic confinem
model of the parabolic wire is a better description of t
wires in sample 5.

VIII. SUMMARY AND OPEN PROBLEMS

A formula for the magnetic phase-shifting rate has be
derived, which allows its calculation for arbitrary wire g
ometries and ratios of the elastic mean free path, the w
width, and the magnetic length. For a quantum wire w
specular boundary conditions and harmonic confinem
this formula has been evaluated explicitly, and compa
with previous analytical and numerical results for the ma
netic phase-shifting rate.

The localization length is derived as the crossover len
scale from correlated to uncorrelated energy-level statis
as studied with the autocorrelation function of spectral de

FIG. 3. The activation gap ratioT0(H)/T0(0) as a function of
the magnetic fieldB in G of sample 5 measured at a temperatu
T50.3 K, as reported in Ref. 1, together with the theoretical cur
for a parabolic wire, using the parameters of sample 5, and a
wire with specular boundary conditions for a best fit valueX
50.036B/G, and the value obtained from the experimental para
eters,X50.010B/G.
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minants. It is shown that its symmetry dependence coinci
exactly with the localization length as defined by the exp
nential decay of the averaged two-terminal conductance
derived with the supersymmetry method.

Therefore, the ASD can be used to obtain analytical inf
mation about the magnetic-field dependence of the local
tion length, which is shown to be governed by the magne
phase-shifting rate, and thus strongly dependent on the
ometry of the wire and the ratios of the elastic mean f
path, the wire width, and the magnetic length. A comparis
with the magnetic field dependence of the activation gap
observed in low-temperature resistance measurements
d-doped GaAs wires, indicates that the electrons move
potential which is closer to a harmonic than a hard w
confinement.

An enhancement of the sensitivity of the localization to
magnetic field is found analytically when the cyclotro
length is comparable with its width. The physical reason
this enhancement is found to be the magnetic-fie
dependent shift of the guiding centers of the electronic eig
states in the quantum wire, even at moderate magnetic fie
when the classical conductivity is still independent of t
magnetic field.

It remains to extend the derivation to include random s
face scattering45 and the effect of correlated, smoot
disorder,60 in order to allow for a more quantitative compar
son with the experiment. Both effects necessitate a deriva
of the nonlinear sigma model, which allows for a direction
dependence of the matrix fieldQ. This was recently intro-
duced for a system with broken time-reversal symmetry
the study of localization in correlated disorder,38 and the
spectral statistics of quantum billards with surfa
scattering.39 In both cases one is led to a nonlinear sigm
model, where variations of the matrixQ on ballistic length
scales are taken into account.61–63 The application of this
approach to the magnetolocalization in disordered quan
wires will be presented in a future publication.
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APPENDIX A

Here the derivation for a spinless case,a51, is given in
detail. For compactness we use vectors of anticommu
variables,

c~x!5S j~x!

j* ~x!

h~x!

h* ~x!

D ,

c̄~x!5@j* ~x!,2j~x!,h* ~x!,2h~x!#. ~A1!

s
D

-
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Note thatc̄5(Cc)T, where the matrixC interchanges the
Grassmann fields with their conjugate one, and has thus
form

C5S 0 21 0 0

1 0 0 0

0 0 0 21

0 0 1 0

D .

Thus the ASD is written as

C̄~v!5E )
x

dc~x!expF2
1

2 E dx c̄~x!

3S E1
1

2
vL2Ĥ02V~x! Dc~x!G . ~A2!

Here the diagonal Pauli matrixL5(0
1

21
0 ) has been intro-

duced for compactness, its diagonal elements projecting
the respective spectral determinant of the ASD. The kin
Hamiltonian becomes a matrix

Ĥ05~ p̂2qt3A!2/2/m, ~A3!

where the diagonal Pauli matrixt3 had to be introduced
since each vector has elements of the Grassmann field
the time-reversed one, and the diamagnetic termpA/m in the
Hamiltonian changes sign, asp→2p, breaking the time-
reversal invariance: To summarize the notation here an
the following,L i are the Pauli matrices in the subbasis of l
and right spectral determinantt i the matrices in the subbas
spanned by time reversal, ands i the matrices in the subspac
spanned by the spinor fori 51, 2, and 3.

Note that a global transformation of the Grassmann v
tors c⇒c̃5Ac does leave the functional integral forv50
invariant, as long asA1A51, andA1TC5CA, restricting
the matricesA to be symplectic ones, being elements
Sp~2!, commuting with the antisymmetric matrixC. A finite
frequency breaks this symmetry group, and only symple
transformations of each field of a single spectral determin
separately, Sp~1!3Sp~1!, do leave the functional integral in
variant.

Now the averaging over the disorder potential can
done, integrating Eq.~A2! over the Gaussian distributio
function of the random potentialV. Thus, the averaged ASD
is found to be given by a functional integral over interacti
Grassmann fieldsc,

C̄~v!5E )
x

dc~x!expF2
1

2 E dx c̄~x!S E1
1

2
vL

2 p̂2/2/mDc~x!GexpS 2
1

16p

\D

t
SLE dx

3Tr@c~x!3c̄~x!#2D . ~A4!
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Now, the resultingc4 interaction term can be decouple
by introducing another Gaussian integral over an auxili
field. Clearly, the field should not be a scalar, otherwise
would simply reintroduce the Gaussian integral over the r
dom potentialV. Rather, in order to go a step forward, th
auxiliary field should capture the full symmetry of the aut
correlation function. Therefore, the Gaussian integral is c
sen to be over a 434 matrix Q434 , which is itself an ele-
ment of the respective symmetric space, as the matriA
which leaves the functional integral invariant. Thus, allowi
for a spatial dependence ofQ, one can decouple the interac
tion term:

expS 2
1

16p

\D

t
SLE dx@c~x!3c̄~x!#2D

5E )
x

dQ434~x!expS 2p
t

\D E dx

SL
TrQ434~x!2

1 i
1

2
dx TrQ434~x!c~x!3c̄~x! D . ~A5!

Anticipating, however, that the functional integral over t
matricesQ cannot be performed exactly, but rather only
integral over slowly varying modes around a saddle-po
solution, it is necessary to separate fast and slowly vary
modes before decoupling the interaction term@Eq. ~A5!#.26 It
turns out that there are two equivalent slowly varying int
action terms, corresponding to diffusion, and one finally o
tains, after a Gaussian decoupling toa by a factor 1

2, shal-
lower nonlinear coupling TrQ2. 26

Next one can perform the Gaussian integral over
Grassmann vectorsc(x), and for the ASD, rescalingQ434
→2t/\Q434 , one obtains the representation

C̄~v!5E ) dQ434~x!exp~2F@Q# !, ~A6!

with

F@Q#5
p

8

\

Dt E dx

SL
Tr@Q434~x!2#

1
1

2 E dx^xuTr ln@G~ x̂,p̂!#ux&, ~A7!

where

G~ x̂,p̂!51Y S 1

2
vL2

~ p̂2qt3A!2

2m
1 i

\

2t
Q434~ x̂! D

~A8!

is the propagator matrix. We used the operator notationx̂, in
order to stress that the terms in the inverse propagator do
commute with each other.

APPENDIX B

For a clean wire with hard wall boundaries, the transv
sal eigenmodes for2W/2,y,W/2 are^kyuy&5coskyy for
ky5ps/W, s being an odd integer, and̂kyuy&5sinkyy for
8-13
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ky5ps/W, s being an even integer. One obtains

z^kyuyuky8& z25
1

W2 S 1

~ky2ky8!2 2
1

~ky1ky8!2D 2

, ~B1!

whenky5ps/W andky85ps8/W, s being even ands8 odd,
or vice versa. Then, the sum overky8 in Eq. ~15! can be
performed by use of the Matsubara trick, fors even and odd
integers, separately. The remaining sum overkx ,ky can be
transformed as 1/(WL)Skx ,ky

5*de n(e)*(dêk /Vk), noting
that the unit vectorêk can point only in discrete directions
Thus, while in two dimensions*(dêk /Vk)5*0

2p(du/2p)
54/(2p)*0

1dy1/(12y2)(1/2), for a finite number of trans
verse channelsN5kFW/p there is sum, *(dêk /Vk)
52/(pN)Ss.01/(12s2/N2)(1/2). Thusky5ps/W5kFs/N
and kx5kF(12s2/N2)(1/2). Finally performing an integra
over e for E@\/t one arrives at Eq.~16!, where

K05
2

pN
Ss50

N A12~s2/N2!,

K5
2

pN
Ss51

N A12~s2/N2!,

K15
2

pN
Ss51

N A12~s2/N2!/s2 ,

and

K25
2

pN
Ss51

N A12~s2/N2!s2/N2.

APPENDIX C

In order to derive the Laplacian in the respective rep
sentation of the matrix fieldQ, its general definition in an
arbitrary parametrization is

DQ5
1

Ag
(
i ,k

]kg
ikAḡ] i , ~C1!

where the matrixg is the metric tensor, being defined by th
quadratic formds251/4TrdQ2 of the representation

ds25dxTg dx, ~C2!

wherex is the vector of parameters of the representation
For BÞ0, Q is an element ofU(2)/@U(1)3U(1)#, ob-

tained by enforcing the conditionsQ251, QTC5CQ, and
Q15Q, @Q,t3#50. It can be parametrized as

Q5S cosu eix sinu

e2 ix sinu 2cosu D ,

whereuP@0,p# andxP@0,2p#. Thus

ds25du21sin2 udx2 ~C3!

and

g5S 1 0

0 sin2 u D .

Thus, with Eq.~C1!, it follows that
08531
-

DQ5]lD
~12lD

2 !]lD
1

1

12lD
2 dx2, ~C4!

wherelD5cos(u).
Note that the autocorrelation function depends on the

ergy differencev through the couplingTrLQ52* 2lD , so
that only that part of the Laplacian which does not comm
with TrLQ;

DQ
R5]lD

~12lD
2 !]lD

~C5!

enters into the frequency dependence of the autocorrela
function of spectral determinants@Eq. ~30!#. Since
U(2)/@U(1)3U(1)#5S2 , the 2 sphere, this is equivalent t
a treatment of spherically symmetric potentials, and the
placian can be identified with the square of the angular m
mentum,2DQ5L2, and L z5 i ]x /(12lD

2 ) does commute
with the Hamiltonian,

H̄521/~2m!L21 ia
p

4

v

D
z, ~C6!

since z5cosuD does commute withLz . Therefore,vÞ0
does not break the azimuthal symmetry of rotations aro
the z axis,nz .

For B50, Q is an element of the symplectic symmetr
space, Sp(2)/@Sp(1)3Sp(1)#, obtained by enforcing the
conditionsQ251, QTC5CQ, andQ15Q. One obtains

Q5S c1 A

A1 2c1D ~C7!

with

A5S a b

b* 2a* D ,

whereuau21ubu21c251.
A matrix Q with the above symmetries can be represen

as

Q5U21Qc
0U, ~C8!

with

U5VCUD , ~C9!

where

UD5VD
21TD

0 VD , ~C10!

where

Qc
05S cosuC i sinuCt2

i sinuCt2 2cosuC
D , ~C11!

and

TD
0 5S cosuD/2 i sinuD/2

i sinuD/2 cosuD/2 D ~C12!

and

VC,D5S exp~ ifC,Dt3! 0

0 1 D ~C13!
8-14
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andt i , i 51, 2, and 3, are the Pauli matrices. Such a rep
sentation was first given by Altland, Iida, and Efetov64 to
study the crossover between the spectral statistics of Ga
ian distributed random matrices as the time-reversal sym
try is broken, within the supersymmetric nonlinear sigm
model. Here, in order to study the ASD, we need to consi
only the compact block of the representation given there

We find that ds25Tr dQ2/45duC
2 1cos2 uCduD

2

1sin2 uCfC
21cos2 uC sin2 uDdfD

2 and thereby, with Eq.~C1!,
the part of the Laplace operator which does not comm
with TrlQ54lClD is given by Eq.~32!,

DQ
R5]lC

~12lC
2 !]lC

12
12lC

2

lC
]lC

1
1

lC
2 ]lD

~12lD
2 !]lD

,

~C14!

wherel i5cosui , i 5C, D.
For moderately strong spin-orbit scattering 1/tSO.DC , in

the functional integral representation of the spectral deter
nants by Grassmann vectors a spin degree of freedoma
52, is introduced and the matrixC is due to the time reversa
of the spinor, substituted byis2t1 .26 The spin-orbit scatter-
ing reduces theQ matrix to unity in spin space. Thus th
matrix C effectively has the formt1 . The conditionQTC
5CQ therefore leads to a symmetry class when the s
symmetry is broken but the time-reversal symmetry rema
intact. ThenQ are 434 matrices on the orthogonal symme
ric spaceO(4)/@O(2)3O(2)#.32

A matrix Q with the above symmetries can be represen
as

Q5V21Q0V, ~C15!
ms
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,
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.
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with

Qc
05S cosû sinû

sinû 2cosû
D , ~C16!

where

û5S u1 u2

u2 u1
D , ~C17!

with u iP@0,p#, i 51 and 2, and

V5S V1 0

0 V2
D , ~C18!

where

Vi5exp~ ix it3!, ~C19!

with x iP@0,2p#, i 51 and 2.
Thus we findds25TrQ2/45S i 51,2du i

21dxTĝxx, where

ĝx5S sin2 u11sin2 u2 2sin2 u11sin2 u2

2sin2 u11sin2 u2 sin2 u11sin2 u2
D .

~C20!

Thus the part of the Laplace operator which does not co
mute with TrlQ54l1l2 is given by Eq.~36!,

DQ
R5 (

t51,2
]l l

~12l l
2!]l l

, ~C21!

wherel i5cosui , i 51 and 2.
Zy-

or.
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