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Quantum phase interference and parity effects at excited levels in biaxial spin models
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Tunnel splitting in excited states and resonant tunneling of biaxial spin models are investigated by spin-
coherent-state path integral with a generalized instanton method. It is found that the interference phase between
two symmetric tunneling paths is directly related to the quantization rule of excited states in consideration.
Parity effects of both tunneling in excited states and resonant tunneling in biaxial spin models are successfully

reproduced.
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Oscillatory tunnel splitting in nanospin systems has at- L[ﬁ]:—sﬁ(1—0080)¢—<ﬁ||:||ﬁ> 3

tracted considerable interest in recent yéarsOf special
interest is the molecular clustgftacn);Fe;0,(OH)4,]%" (or
shortly Fg) that shows very interesting parity effects in tun-
nel splitting? Theoretically Fg system was considered as a

and(n|H|n) can be found by large spin approximatidfi

biaxial spin model with a spis=10, and oscillations as a (n|A|nY=E(0,¢)
function of transverse fields applied along the hard axis in _ _
ground-state tunnel splitting was first predicted by Gamy =K,5%cog 0+ K,s%sirt g sirf p— as cosf. (4)

observed in the experimeffThis oscillation phenomena is

understood as a result of the interference between two synBy employing the well-known mapping techniqliee., by
metric tunneling paths, namely, instanton and anti-instafhton treating ($,%s cosé) as canonical variablé4® the propaga-
In fact, the interference phase comes from the well-knowrtor (2) is equivalent to

Wess-Zumino term in spin-coherent-state path integral,

which also leads to parity effect in ground-state tunneling

r_elated to Kramers’ degeneratyHowever, a Q|rect _apphca- Kb, T12;; ,—T/Z)INJ d[ p]e'Sert/?,

tion of the instanton method to tunnel splitting in excited

state§ did not reproduce the right parity effect$.Tunnel
splitting in excited states has been investigated alternatively T
by a generalized spin-coherent-state path intégradl by a seff=J Lori( &, )dt, (5
discrete WKB method. In the present paper, both tunnel 12

splitting in excited states and resonant tunneling in biaxial

spin model are studied by spin-coherent-state path integrayhere

with a generalized instanton method. We found that the in-

terference phase is directly related to the quantization rule of

excited states in consideration, and parity effects are success- Leti( b, ('1)) = Em(d,);ﬁz_v(d,) — @(4,)(';3,
fully reproduced by including the contribution of quantized 2
classical orbits. O(h)=5—am(¢) 6)

We first study the biaxial spin model with a field applied
on the hard axis, the Hamiltonian is given by

and
H=K,S2+K,2—aS,, K;>K,, 1
1S, +Ko§)—aS, 1~ Kz | 1) o2\ st

wherea=gugh<2K;s(1—\), A=K,/K;, andh is the ap- V(¢)=K,s’sirP¢— : ,

plied field® For a spin system, the Minkowski propagator 4Ky (1—\sine)

from an initial staten;) to a final statén;) can be written as

a spin-coherent-state path intedral m( )= _ _ )

2K, (1—\ sirf¢)
’CM(ﬁf,T/Z?ﬁia—T/Z):<ﬁf|eiHT/ﬁ|ﬁi>:f dQ eSir, The propagator in Eq(5) represents a particle with a
2) position-dependent mass(¢) moving in a double-well po-

tential V().

where Quantization of excited states in a spin system can be

done in the same way used for a double-well syste@las-
S[ﬁ]: JT/Z L[ﬁ]dt sical orbit$? of the Hamiltonian(1) are the intersections of
/2 ’ the energy surfack;S;+K,S;—aS,=E, and the sphere
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FIG. 1. (a) lllustration of classical orbits as
the intersections of energy surfagS?+K,S;
—aS,=E, and the spher&+S/+Si=s?. The
field angles of symmetric ellipses KY plane are
shown in the figure, these field angles are corre-
sponding to the turning points of the classical pe-
riodic orbits shown in(b). (b) lllustration of the
mapped double-well potential and classical peri-
odic orbits in zero-field condition(c) lllustration
of a complete tunneling for a spin from one quan-
tized classical orbit to another quasidegenerate
orbit. There are two symmetric tunneling paths,
path,: —s—B'—A’—-A—s; path: —s—B’
—B—A—s. For ground-state tunneling, two
quasidegenerate orbits shrink into two points
ando’, then two symmetric tunneling paths re-
duce to instanton and anti-instanton.

S§+ S§+ S§=52, which show as symmetric ellipses in Fig. introducing the Bohr-Sommerfeld quantization ridei.e.,
1(a). In the mapped double-well system, such classical orbit$ pdx=n2#, or §scosédép=n2. In generalp(or s cosé)
represents classical periodic orbits inside the ¥vals shown can be expressed as a functionEf and ¢ by the relation
in Fig. 1(b). Quantization of classical orbits can be done byE(6,¢)=E,, then the quantization condition reads as

085313-2



QUANTUM PHASE INTERFERENCE AND PARITY . .. PHYSICAL REVIEW B5 085313

¢n -
ZJ_¢ dép(Ey.¢)
7'r+¢n
=2f L d¢p(En, ¢)
=n27#, n=0,12..., n<s (8) 1 ; o
1 1 I
where ¢, is determined by(¢,)=E, . In the present case, ATiC : Relt]
we have © :
\ .
D |- B (T/2,-T,)
P(En,d)/h={2m($)[E,— V() ]} V?+ U T, 1
) n (1—\sirfg)’
o
1T 2K ©

FIG. 2. lllustration for the contour of path integration to ensure
that each propagator in E¢LO) can be evaluated by saddle-point
Sincep(E, ,¢+ 7)=p(E,, @), the quantized levels found in approximation.
this way are pairs of quasidegenerate levels. By taking the
anisotropic parameters suitable foryfe=10)? it is found ~ whereT; is the time interval for Euclidean propagatdr,
that the first four pairs of quasidegenerate excited levels de:fgf¢nd¢m(¢)/|p(En,¢)|, while ¢, and ¢, are turning

termined by the above scheme are in good agreement Withointns By symmetry. there are two svmmetric tunnelin
the diagonalization of the Hamiltoniafthe error is within P - BY sy Y y 9

1%) paths frome; to ¢, namely,

Now we consider tunneling between two quantized path : i — dn— T— dr— by ;
quasidegenerate excited spin states with endfgy As
shown in Fig. 1c), the situation is different from the ground path,: i — — pp— T+ bp— b5, (12)

state where both the initial and final state are points in the o ) o ]
sphere surface, in the case of excited state, however, tunndich play similar rple155 as instanton and anti-instanton in
ing happens between two quantized classical orbits. Cafiround-state tunneling’ "> The propagator of pathand
such a tunneling be described by an imaginary time tunnelPatly can be found by using Eq&6) and(10), and the con-
ing A—B (or A’—B’') as in the case of ground state? Thetour shown in Fig. 2. Up to one loop approximation, we have
answer isno. It is because that the Hamiltonidh) has two E, o

fold rotation symmetry aroundz axis [i.e., H(8,¢+ ) K¢t TI2=1T1: 1, T12)
=H(#0,¢)], the two quasidegenerate excited spin states . o i/n)Sh2
should have the same symmetry. Consequently, tunneling =1(0T/2-iT;;0,-T/2)elMS™, (12
should be described by a propagatii‘rf,ln(qsf ,T/12;¢;,  wherel(0,T/2—iT,;0,—T/2) is the well-known fluctuation
—T/2) with ¢;— ¢;= 7, where¢; and¢; are two symmetric functional integral that can be found by the shifting
points in two quasidegenerate quantized orbits as shown ifethod;>**while

Fig. 1(c). Hence a complete description for tunneling in ex- . .
cited states should include both imaginary and real-time S'=—Oh+iS;—En(T—iTy)
propagatol® Such a kind of propagator was first evaluated bn b

by McLaughlin* by choosing a contour in the lower half +<J +J )d¢>p(En,¢),
complext plane joining— T/2 to T/2 in such a way that Ift) ¢ Jmdn

decreases. The contour suitable for the present case is shown
in Fig. 2, then by McLaughlin’s resulf, we have

(13

SP=0h+iS,—E,(T—iT,)

_¢n ¢f
. E + f "‘f )dd)p(En,¢), (14
fILILTIOIC Mn(¢f ,T/2,¢| ,_T/Z) i T+
and
— i En L T
_f!ILnof fd(ﬁld(ﬁZICM((bl!tl!(ﬁli T/Z) O=sm— 03, aszsfo am(¢)d¢,
X’CEn(d’thl_iTl;d’lvtl) o
XIC:\EAH( b TI2—iT1 o ti—iTy), (10) Sc= f¢n dd’\/zm( P V(o) —E,l. (15
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The total transition amplitude from one quantized orbit to
another orbit can be found by an integration ovgr(and
thus ¢¢),Y i.e.,

AS =(E,. |exd —iA(T—iTy/4]|E, )

:ffd¢id¢f P (d)Ve,

X (¢ (b, TI2=T 50, —TI2),  (16)

where \PEnt(¢i'f)=(¢iyf|Eni> represent quasidegenerate
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E
+

AB —ex —iE(T—iTy)/4]

><ml+m2:odd [02 i(T—iTl)]m1+m2

mim, my!mo!
X exd im;St/h +im,S2/# ]

=exdiE,(T—iTq)/f]sinh

excited states in consideration. By employing the expansion

KE( e TI2=T ;1 ,—T/2)

=ﬁ’En2 V()W i(pp)exd —iE(T—iTy/R], (17)

X[cX(eSeh +eiSIh) i (T—iT /], (23
Comparing with Eq(18), one can read off
AEn:2|CZ(eiSé/h+eiS§/h)|
=4c%e %/ cog (s—n)m—65]|, n<s. (24

This result shows that tunnel splitting of timth quantized
excited level will oscillate with the transverse field in exactly

|5En means that we take only terms with energy closest tahe same way as the ground stéite., whenn=0), and thus

E,, then in the same way as that of instanton methd@we
can find

E
+

A nzexp[—iEn(T—iTl)/ﬁ]sinr{%AEni(T—iTl)/h},
(18)

whereAE,, represents the tunnel splitting.
In the following, we use the WKB approximation

Ve (6)=— pﬁ‘bi ddP(En, )
£ (d)=—— exg— P(En. )|,
n ,l('ﬁi h —¢n
Ve ()= — p“m dgp(E ¢>} (19
£ (¢r)=—— exg— P(En.¢) |,
T Vg
where
n 1 1/2
c-2=T/2:f¢ do [Em(ﬁé)/[En_V(d’)]] - (20

Substituting Eqs(12) and(19) into Eqg.(16), and evaluating
the integration ovekp; ( or ¢¢) by the method of steepest
descent®!” we can find

L2 o
Ai”zzczexp[iEn(T—iTl)/h]e'Si mO(T=iTy),

St2=—Oh+iSc+ Ao, (21)
where
én
3= [ " dop(En ) =nah,
7T+¢n
A2=—f s dop(E,,¢)=—nmh, (22)

then the total transition amplitude can be found-ty*®

reproduces analytically what has been found by numerical
diagonalization of the Hamiltoniah’ As a matter of fact, the
interference phasp(s—n)w— 6] has been found by Garg
using a discrete WKB methotlbut here there is no con-
straintn<<s. Furthermore, the above derivation clearly shows
that the extra factor- n comes from the quantization rule
of excited statesi.e., Eq.(8)], our result thus indicates that
the interference between spin trajectories of quasidegenerate
excited states is directly related to the quantization rule of
excited states.

The above analysis can be directly generalized to resonant
tunneling when the Hamiltonian is given bfa(is the field
along the easy axis

H=K;S+K,§- S, a;=gugh,. (25

To follow both mapping technique and quantization scheme
given above, we can use the approximation 6sin
=/1—cog6=1—ico<h, owing to the fact that the spin vec-
tor lies almost inXY plane. The position-dependent mass
and potential are now given by

1
2K, (1—\ SirPe) + (ay /s)cosd

my(¢)

V() =K,8?Sirn? ¢ — a,S COSep, (26)
since V(¢+ ) #V,(¢), quantization condition(8) will
produce two sets of quantized levéE’} and{E2}, which
represent excited levels belong to two unsymmetric wells.
By tuning h; to some appropriate values, classical
resonanck happens between timeth quantized excited state
of one well and thenth level in the other well, namelg},
=E2, (m—n)=N. Sinceh, does not affect the rotation
symmetry around the easy axis, there will still be two sym-
metric tunneling paths: path ¢;— ¢p— 7— d— ¢ and
path: ¢i— — ¢p— 7+ ¢p,— ¢ . The situation is the same
as we have done for the symmetric wells except that two
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degenerate orbits are unsymmetric, which leads to modificaresult tells that tunneling will be suppressed whah
tion, Ay=mw#, A,=—nwh. The tunnel splitting is now =1,3,5..., inanalogy with the ground-state tunneling for
given by half-integer spin as found in the experiménin fact, the
predicted parity effects have been found by numerical diago-
nalization of the Hamiltoniaf.

As we knew, a complete description for thegFg/stem

AE= 2c§e‘scl/h|e‘i(5_”)”+ ei(s—n)q-re—i(m—n)ﬂ—|

20—Sey Ifi _ —n=N=
_ 4026 Heog(s=myall, m—n=N=2k, needs to include the higher-order term suclC4s® +S?),?
4cte Sa/tsin(s—n)7]|, m-n=N=2k+1, we can show that the conclusion on parity effects will not be
27) modified by the higher-order term by following the way we

have done. In both resonate tunneling and zero-field condi-
tion, one can find thas cosd can be expressed as a purely
- real functioq ofg, _anqu in the clagsical alloyved regio_n, bpt
Scl:f nd¢\/2m(¢)[vl(¢)— Eﬁ]], pure]y imaginary in classical forb@den region. T_hls implies
bm the interference phase of tunneling path is given sy

+ [.aScoséde, the integration is bounded in the classical
allowed regions that can be determined by the quantization
rule (8), hence the interference phase is exactly the same as
. e _we have found. The present work can be considered as a
The above result provides a complete description for parityeneralized instanton method suitable for tunneling in ex-
effects in tunneling of biaxial spin model. Whéh=0 (i.e.,  jted states and resonant tunneling, and applications to other

h,=0), the result reduces to that of EQ4) with 6;=0. In spin systems will be presented elsewhere.
resonance caseN@E 0), parity effect depends on both the

spins andN. For integer spin, tunneling will be suppressed
whenN is odd, while for half-integer spin, tunneling will be
suppressed wheN is even. Taking the experimental setup
for Fe; (s=10) system as an examgl@gsonance happens

wherek=0,1,2 ..., and

bm
2= [ astmamER Vi o (29

ACKNOWLEDGMENTS

This work was supported by Nanoscale Science and Tech-

between the ground state£{0) of the well centered ap

nology in CAS. The author is grateful to Professor F.C. Pu

= and theNth excited state in the other well, the above and Professor J.-Q. Liang for helpful discussions.

lproceedings of the Meeting on Quantum Tunneling of''R.F. Dashen, B. Hasslacher, and A. Neveu, Phys. Re&, @114

Magnetization—QTM’94Vol. 301 of NATO Advanced Studies

Institute Series, edited by L. Gunther and B. Barb@dfhiwer,
Dordrecht, 199b

2W. Wernsdorfer and R. Sessoli, Scierz@4, 133(1999.

3A. Garg, Europhys. Let22, 209 (1993.

4D. Loss, D.P. DiVincenzo, and G. Grinstein, Phys. Rev. L&.
3232(1992.

5Jan von Delft and C.L. Henley, Phys. Rev. Lé&®, 3236(1992.

6G.H. Kim, Phys. Rev. B50, R3728(1999.

7Zhi-De Chen and Shu-Qun Zhang, Chin. Ph§s848 (2000).

8M.N. Leuenberger and D. Loss, cond-mat/00060mpub-
lished.

9A. Garg, Phys. Rev. LetB83, 4385(1999.

10 M. Chundnovski and L. Gunther, Phys. Rev. L&, 661
(1988.

(1974; A. Patrascioiujbid. 12, 523 (1975; A. Lapedes and E.
Mottola, Nucl. Phys. B203 58 (1982.

123.L. van Hemmen and A."$ny J. Phys. A31, 10 029(1998; 32,
4321(1999.

3Recently such a kind of propagator was used to investigate the
ground-state tunneling of the biaxial spin model with a large
field on the hard axis. See E.M. Chudnovsky and X. Martinez-
Hidalgo, Europhys. Lett50, 395 (2000.

14D.W. McLaughlin, J. Math. Physl3, 1099(1972.

15E. Gildener and A. Patrascioiu, Phys. RevlB 423(1977).

165, Coleman, inAspects of Symmetr{Cambridge University
Press, Cambridge, UK, 1985

173.-Q. Liang and H.J.W. Mier-Kirsten, Phys. Rev. DI5, 4685
(1992.

085313-5



