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Quantum phase interference and parity effects at excited levels in biaxial spin models
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Tunnel splitting in excited states and resonant tunneling of biaxial spin models are investigated by spin-
coherent-state path integral with a generalized instanton method. It is found that the interference phase between
two symmetric tunneling paths is directly related to the quantization rule of excited states in consideration.
Parity effects of both tunneling in excited states and resonant tunneling in biaxial spin models are successfully
reproduced.
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Oscillatory tunnel splitting in nanospin systems has
tracted considerable interest in recent years.1–9 Of special
interest is the molecular cluster@(tacn)6Fe8O2(OH)12#

81~ or
shortly Fe8) that shows very interesting parity effects in tu
nel splitting.2 Theoretically Fe8 system was considered as
biaxial spin model with a spins510, and oscillations as a
function of transverse fields applied along the hard axis
ground-state tunnel splitting was first predicted by Garg3 and
observed in the experiment.2 This oscillation phenomena i
understood as a result of the interference between two s
metric tunneling paths, namely, instanton and anti-instant3

In fact, the interference phase comes from the well-kno
Wess-Zumino term in spin-coherent-state path integ
which also leads to parity effect in ground-state tunnel
related to Kramers’ degeneracy.4,5 However, a direct applica
tion of the instanton method to tunnel splitting in excit
states6 did not reproduce the right parity effects.2,7 Tunnel
splitting in excited states has been investigated alternati
by a generalized spin-coherent-state path integral8 and by a
discrete WKB method.9 In the present paper, both tunn
splitting in excited states and resonant tunneling in biax
spin model are studied by spin-coherent-state path inte
with a generalized instanton method. We found that the
terference phase is directly related to the quantization rul
excited states in consideration, and parity effects are succ
fully reproduced by including the contribution of quantize
classical orbits.

We first study the biaxial spin model with a field applie
on the hard axis, the Hamiltonian is given by

Ĥ5K1Ŝz
21K2Ŝy

22aŜz , K1.K2 , ~1!

wherea5gmBh,2K1s(12l), l5K2 /K1, andh is the ap-
plied field.6 For a spin system, the Minkowski propagat
from an initial stateun̂i& to a final stateun̂f& can be written as
a spin-coherent-state path integral3–6

KM~ n̂f ,T/2;n̂i ,2T/2!5^n̂f ueiĤT/\un̂i&5E dV eiS[ n̂]/\,

~2!

where

S@ n̂#5E
2T/2

T/2

L@ n̂#dt,
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L@ n̂#52s\~12cosu!ḟ2^n̂uĤun̂&, ~3!

and ^n̂uĤun̂& can be found by large spin approximation3,10

^n̂uĤun̂&.E~u,f!

5K1s2cos2u1K2s2sin2u sin2f2as cosu. ~4!

By employing the well-known mapping technique@i.e., by
treating (f,\s cosu) as canonical variables#,10 the propaga-
tor ~2! is equivalent to

KM~f f ,T/2;f i ,2T/2!5N1E d@f#eiSe f f /\,

Se f f5E
2T/2

T/2

Le f f~f,ḟ !dt, ~5!

where

Le f f~f,ḟ !5
1

2
m~f!ḟ22V~f!2Q~f!ḟ,

Q~f!5s2am~f!, ~6!

and

V~f!5K2s2sin2f2
a2l sin2f

4K1~12l sin2f!
,

m~f!5
1

2K1~12l sin2f!
. ~7!

The propagator in Eq.~5! represents a particle with
position-dependent massm(f) moving in a double-well po-
tential V(f).

Quantization of excited states in a spin system can
done in the same way used for a double-well system.11 Clas-
sical orbits12 of the Hamiltonian~1! are the intersections o
the energy surfaceK1Sz

21K2Sy
22aSz5En and the sphere
©2002 The American Physical Society13-1
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FIG. 1. ~a! Illustration of classical orbits as
the intersections of energy surfaceK1

2Sz
21K2Sy

2

2aSz5En and the sphereSx
21Sy

21Sz
25s2. The

field angles of symmetric ellipses inXY plane are
shown in the figure, these field angles are cor
sponding to the turning points of the classical p
riodic orbits shown in~b!. ~b! Illustration of the
mapped double-well potential and classical pe
odic orbits in zero-field condition.~c! Illustration
of a complete tunneling for a spin from one qua
tized classical orbit to another quasidegener
orbit. There are two symmetric tunneling path
path1 : 2s→B8→A8→A→s; path2 : 2s→B8
→B→A→s. For ground-state tunneling, two
quasidegenerate orbits shrink into two pointso
and o8, then two symmetric tunneling paths re
duce to instanton and anti-instanton.
g.
bi

by
Sx
21Sy

21Sz
25s2, which show as symmetric ellipses in Fi

1~a!. In the mapped double-well system, such classical or
represents classical periodic orbits inside the well11 as shown
in Fig. 1~b!. Quantization of classical orbits can be done
08531
ts
introducing the Bohr-Sommerfeld quantization rule,12 i.e.,
rpdx5n2p\, or rs cosudf5n2p. In general,p~or s cosu)
can be expressed as a function ofEn andf by the relation
E(u,f)5En , then the quantization condition reads as
3-2
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2E
2fn

fn
dfp~En ,f!

52E
p2fn

p1fn
dfp~En ,f!

5n2p \, n50,1,2, . . . , n,s ~8!

wherefn is determined byV(fn)5En . In the present case
we have

p~En ,f!/\5$2m~f!@En2V~f!#%1/21
u0

~12l sin2f!
,

u05
a

2K1s
. ~9!

Sincep(En ,f1p)5p(En ,f), the quantized levels found in
this way are pairs of quasidegenerate levels. By taking
anisotropic parameters suitable for Fe8 (s510),2 it is found
that the first four pairs of quasidegenerate excited levels
termined by the above scheme are in good agreement
the diagonalization of the Hamiltonian~the error is within
1%!.

Now we consider tunneling between two quantiz
quasidegenerate excited spin states with energyEn . As
shown in Fig. 1~c!, the situation is different from the groun
state where both the initial and final state are points in
sphere surface, in the case of excited state, however, tun
ing happens between two quantized classical orbits.
such a tunneling be described by an imaginary time tun
ing A→B ~or A8→B8) as in the case of ground state? T
answer isno. It is because that the Hamiltonian~1! has two
fold rotation symmetry aroundz axis @i.e., H(u,f1p)
5H(u,f)#, the two quasidegenerate excited spin sta
should have the same symmetry. Consequently, tunne
should be described by a propagatorK M

En(f f ,T/2;f i ,
2T/2) with f f2f i5p, wheref i andf f are two symmetric
points in two quasidegenerate quantized orbits as show
Fig. 1~c!. Hence a complete description for tunneling in e
cited states should include both imaginary and real-ti
propagator.13 Such a kind of propagator was first evaluat
by McLaughlin14 by choosing a contour in the lower ha
complext plane joining2T/2 to T/2 in such a way that Im~t!
decreases. The contour suitable for the present case is s
in Fig. 2, then by McLaughlin’s result,14 we have

lim
\→0

K M
En~f f ,T/2;f i ,2T/2!

5 lim
\→0

E E df1df2K M
En~f1 ,t1 ;f i ,2T/2!

3K E
En~f2 ,t12 iT1 ;f1 ,t1!

3K M
En~f f ,T/22 iT1 ;f2 ,t12 iT1!, ~10!
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whereT1 is the time interval for Euclidean propagator,T1

5*fn

p2fndfm(f)/up(En ,f)u, while f1 and f2 are turning

points. By symmetry, there are two symmetric tunneli
paths fromf i to f f , namely,

path1 :f i→fn→p2fn→f f ;

path2 :f i→2fn→p1fn→f f , ~11!

which play similar roles as instanton and anti-instanton
ground-state tunneling.3,15,16 The propagator of path1 and
path2 can be found by using Eqs.~6! and ~10!, and the con-
tour shown in Fig. 2. Up to one loop approximation, we ha

K1,2
En~f f ,T/22 iT1 ;f i ,2T/2!

5I ~0,T/22 iT1 ;0,2T/2!e( i /\)S1,2
, ~12!

where I (0,T/22 iT1 ;0,2T/2) is the well-known fluctuation
functional integral that can be found by the shiftin
method,11,15 while

S152Q\1 iSc2En~T2 iT1!

1S E
f i

fn
1E

p2fn

f f D dfp~En ,f!, ~13!

S25Q\1 iSc2En~T2 iT1!

1S E
f i

2fn
1E

p1fn

f f D dfp~En ,f!, ~14!

and

Q5sp2us , us5sE
0

p

am~f!df,

Sc5E
fn

p2fn
dfA2m~f!@V~f!2En#. ~15!

FIG. 2. Illustration for the contour of path integration to ensu
that each propagator in Eq.~10! can be evaluated by saddle-poi
approximation.
3-3
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The total transition amplitude from one quantized orbit
another orbit can be found by an integration overf i ~and
thusf f),

17 i.e.,

A
12

En 5^En1uexp@2 iĤ ~T2 iT1!/\#uEn2&

5E E df idf fCEn1
* ~f f !CEn2

3~f i !K M
En~f f ,T/22 iT1 ;f i ,2T/2!, ~16!

where CEn6
(f i , f)5^f i , f uEn6& represent quasidegenera

excited states in consideration. By employing the expans

K M
En~f f ,T/22 iT1 ;f i ,2T/2!

5 P̂En(j
C j* ~f i !C j~f f !exp@2 iE j~T2 iT1!/\#, ~17!

P̂En
means that we take only terms with energy closes

En , then in the same way as that of instanton method,15,16we
can find

A
12

En .exp@2 iEn~T2 iT1!/\#sinhF1

2
DEni ~T2 iT1!/\G ,

~18!

whereDEn represents the tunnel splitting.
In the following, we use the WKB approximation

CEn
~f i !5

c

Aḟ i

expF i

\
E

2fn

f i
dfp~En ,f!G ,

CEn
~f f !5

c

Aḟ f

expF i

\
E

p2fn

f f
dfp~En ,f!G , ~19!

where

c225T/25E
2fn

fn
df H 1

2
m~f!/@En2V~f!#J 1/2

. ~20!

Substituting Eqs.~12! and~19! into Eq. ~16!, and evaluating
the integration overf i ~ or f f) by the method of steepes
descent,15,17 we can find

A1,2
En.c2exp@ iEn~T2 iT1!/\#eiSc

1,2/\ i ~T2 iT1!,

Sc
1,252Q\1 iSc1D1,2, ~21!

where

D15E
2fn

fn
dfp~En ,f!5np\,

D252E
p2fn

p1fn
dfp~En ,f!52np\, ~22!

then the total transition amplitude can be found by4,15,16
08531
n

o

A
12

En 5exp@2 iEn~T2 iT1!/\#

3 (
m1m2

m11m2 :odd
@c2 i ~T2 iT1!#m11m2

m1!m2!

3exp@ im1Sc
1/\1 im2Sc

2/\#

5exp@ iEn~T2 iT1!/\#sinh

3@c2~eiSc
1/\1eiSc

2/\!i ~T2 iT1!/\#. ~23!

Comparing with Eq.~18!, one can read off

DEn52uc2~eiSc
1/\1eiSc

2/\!u

54c2e2Sc /\ucos@~s2n!p2us#u, n,s. ~24!

This result shows that tunnel splitting of thenth quantized
excited level will oscillate with the transverse field in exac
the same way as the ground state~i.e., whenn50), and thus
reproduces analytically what has been found by numer
diagonalization of the Hamiltonian.2,7As a matter of fact, the
interference phase@(s2n)p2us# has been found by Garg
using a discrete WKB method,9 but here there is no con
straintn!s. Furthermore, the above derivation clearly sho
that the extra factor2np comes from the quantization rul
of excited states@i.e., Eq.~8!#, our result thus indicates tha
the interference between spin trajectories of quasidegene
excited states is directly related to the quantization rule
excited states.

The above analysis can be directly generalized to reso
tunneling when the Hamiltonian is given by (h1 is the field
along the easy axis!

Ĥ5K1Ŝz
21K2Ŝy

22a1Ŝx , a15gmBh1 . ~25!

To follow both mapping technique and quantization sche
given above, we can use the approximation siu
5A12cos2u.121

2cos2u, owing to the fact that the spin vec
tor lies almost inXY plane. The position-dependent ma
and potential are now given by

m1~f!5
1

2K1~12l sin2f!1~a1 /s!cosf
,

V1~f!5K2s2sin2f2a2s cosf, ~26!

since V1(f1p)ÞV1(f), quantization condition~8! will
produce two sets of quantized levels$Em

1 % and $En
2%, which

represent excited levels belong to two unsymmetric we
By tuning h1 to some appropriate values, classic
resonance12 happens between themth quantized excited stat
of one well and thenth level in the other well, namely,Em

1

5En
2 , (m2n)5N. Sinceh1 does not affect the rotation

symmetry around the easy axis, there will still be two sy
metric tunneling paths: path1 : f i→fm→p2fn→f f and
path2 : f i→2fm→p1fn→f f . The situation is the same
as we have done for the symmetric wells except that t
3-4
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degenerate orbits are unsymmetric, which leads to modifi
tion, D15mp\, D252np\. The tunnel splitting is now
given by

DE52c1
2e2Sc1 /\ue2 i (s2n)p1ei (s2n)pe2 i (m2n)pu

5H 4c1
2e2Sc1 /\ucos@~s2n!p#u, m2n5N52k,

4c1
2e2Sc1 /\usin@~s2n!p#u, m2n5N52k11,

~27!

wherek50,1,2, . . . , and

Sc15E
fm

p2fn
dfA2m~f!@V1~f!2Em

1 #,

c1
225E

2fm

fm
df$ 1

2 m1~f!/@Em
1 2V1~f!#%1/2. ~28!

The above result provides a complete description for pa
effects in tunneling of biaxial spin model. WhenN50 ~i.e.,
h150), the result reduces to that of Eq.~24! with us50. In
resonance case (NÞ0), parity effect depends on both th
spin s andN. For integer spin, tunneling will be suppress
whenN is odd, while for half-integer spin, tunneling will b
suppressed whenN is even. Taking the experimental setu
for Fe8 (s510) system as an example,2 resonance happen
between the ground state (n50) of the well centered atf
5p and theNth excited state in the other well, the abo
o

08531
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result tells that tunneling will be suppressed whenN
51,3,5, . . . , in analogy with the ground-state tunneling fo
half-integer spin as found in the experiment.2 In fact, the
predicted parity effects have been found by numerical dia
nalization of the Hamiltonian.2,7

As we knew, a complete description for the Fe8 system
needs to include the higher-order term such asC(S2

4 1S1
4 ),2

we can show that the conclusion on parity effects will not
modified by the higher-order term by following the way w
have done. In both resonate tunneling and zero-field co
tion, one can find thats cosu can be expressed as a pure
real function ofEn andf in the classical allowed region, bu
purely imaginary in classical forbidden region. This impli
the interference phase of tunneling path is given bysp
1*cas cosudf, the integration is bounded in the classic
allowed regions that can be determined by the quantiza
rule ~8!, hence the interference phase is exactly the sam
we have found. The present work can be considered a
generalized instanton method suitable for tunneling in
cited states and resonant tunneling, and applications to o
spin systems will be presented elsewhere.
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