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Thermoelectric properties of anisotropic semiconductors

W. E. Bies, R. J. Radtke,* and H. Ehrenreich
Physics Department and the Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 0

E. Runge
AG Halbleitertheorie, Institut der Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany

~Received 14 November 2000; revised manuscript received 11 June 2001; published 8 February 2002!

General effective transport coefficients and the thermoelectric figure of meritZT for anisotropic systems are
derived. Sizable induced transverse fields on surfaces perpendicular to the current flow are shown to reduce the
effective transport coefficients. A microscopic electronic model relevant for multivalleyed materials with para-
bolic bands is considered in detail. Within the effective-mass and relaxation-time approximations but neglect-
ing the lattice thermal conductivityk l , the thermopower and Lorenz number are shown to be independent of
the tensorial structure of the transport coefficients and are therefore isotropic.ZT is also isotropic for vanishing
lattice thermal conductivityk l . A similar result holds in lower dimensions. For nonvanishing but sufficiently
isotropick l , ZT is ordinarily maximal along the direction of highest electrical conductivitys. More general
numerical calculations suggest that maximalZT occurs along the principal direction with the largests/k l . An
explicit bound onZT is derived. Consideration of the Esaki-Tsu model shows that nonparabolic dispersion in
superlattices has little effect on the thermopower at the carrier concentrations which maximizeZT. However,
strong anisotropies develop when the chemical potential exceeds the miniband width.
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I. INTRODUCTION

In the search to find systems with large thermoelec
figures of meritZT ~for isotropic materialZT5TsS2/k,
wheres is the electrical conductivity,S is the Seebeck coef
ficient, andk is the thermal conductivity!, the emphasis ha
been more on new materials than on material structure
crystallographic anisotropy. Typical of new structures are
perlattices, quantum wells,1–8 and quantum wires.9,10 It has
been generally assumed that the direction of highest con
tivity in an anisotropic material yields optimal thermoelect
properties. The correctness of this assumption is not obvi
since directions may exist along which the lattice therm
conductivity is abnormally low and the thermopower is hi
enough to result in largeZT even though the electrical con
ductivity is less than maximum.

Some effects of anisotropic transport tensors have b
predicted and observed. Kelvin11 predicted the existence o
transverse temperature gradients due to off-diagonal term
the thermal conductivity. They were observed by Borel
and Lindh,12 Bridgman,13 and Terada and Tsutsui.14 Another
anisotropic effect is the Bridgman or internal Pelti
effect,13,15 a contribution to the local evolution of heat th
arises in nonuniform current flow. To the best of our know
edge, the consequences of these anisotropic effects in g
rise to transverse electric fields and temperature gradi
have not been investigated previously.

This paper develops a more general microscopic trans
theory of thermoelectricity in anisotropic systems. T
‘‘highest-conductivity’’ assumption is found to be correct f
materials having simple band structures typically of the pa
bolic variety and essentially isotropic lattice thermal cond
tivities. However, the formalism developed here sugge
more generally that the optimal orientation corresponds
the principal direction along which the ratio of the electron
0163-1829/2002/65~8!/085208~8!/$20.00 65 0852
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to lattice thermal conductivitys/k l is maximum. There are
also several surprising results. These include the forma
of possibly large induced transverse electric fields and te
perature gradients, the fact thatZT is strictly isotropic in
anisotropic systems having parabolic bands if the lattice th
mal conductivity is neglected, and that a nearly isotro
thermopower and Lorenz number results under these co
tions even if the bands are extremely anisotropic and non
rabolic.

The purpose of this paper is~i! to predict the effect of
transverse induced fields in anisotropic materials, wh
should be observable experimentally without much difficul
and~ii ! to use the isotropy of the thermopowerSand ofZT,
which is predicted to hold in the limit when the lattice the
mal conductivity, intervalley scattering, and nonparabo
bands can be neglected, as a reference frame for gaugin
importance of nonzero lattice thermal conductivity and int
valley scattering.

The macroscopic formalism, based on the tensorial fo
of the usual phenomenological transport equations, is p
sented in Sec. II. The effects of sample boundaries for
rodlike geometry assumed throughout much of this paper
included by requiring that the transverse electric and h
currents vanish throughout the volume. Anisotropic and i
tropic systems are shown to differ both qualitatively, throu
the presence of induced transverse fields, and quantitativ
through the magnitude of the transport coefficients.

More detailed statements concerning optimal orientati
require use of a microscopic model. Section III introduce
model commonly used to study transport in semiconduc
having multivalley, anisotropic parabolic band structur
The transport properties follow from the linearized Bolt
mann equation in the effective-mass and relaxation-time
proximations. Intervalley scattering is neglected. Somew
surprisingly, the thermopower and Lorenz number turn ou
©2002 The American Physical Society08-1
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be isotropic. The same is true forZT when the lattice therma
conductivityk l is neglected. Section III B shows that simila
results hold for two- and one-dimensional systems. The r
istic case corresponding to finitek l is considered in Sec
III C. If k l is sufficiently isotropic, the maximalZT is shown
to occur for samples cut along the direction of highest el
trical conductivity. This rather unsurprising result, howev
may be modified if the anisotropy ofk l exceeds that of the
electrical conductivity, leading to the conjecture concern
s/k l mentioned above. An explicit expression for the upp
bound onZT is also derived, which is a generalization of th
previously obtained16 to anisotropic systems, and can ser
as a guideline for the search for anisotropic high-ZT systems.

This microscopic description has been applied elsewh
to several materials of current interest.17 The induced electric
field and corresponding reduction of the effective electri
conductivity are shown in Ref. 17 to be important and p
tentially observable effects in bulkn-type Bi2Te3 and HgTe/
HgCdTe superlattices~SL’s!. In HgTe/HgCdTe SL’s the an
isotropy is tunable by varying the composition and width
the barriers and wells. For sufficiently large anisotropy a
for samples cut to a suitable angle with respect to the
planes, the induced electric field can be as large as or gre
than the external electric field.

The explicit effects of nonparabolicity and reduced ban
width in superlattices on the thermopower and Lorenz nu
ber are investigated in Sec. IV. Both quantities remain ne
isotropic for small doping or carrier concentration. The th
mopower is also bounded by its values along the princ
axes, supporting the conjecture that optimalZT is obtained
along those directions.

II. ELECTRONIC TRANSPORT THEORY

We generalize conventional transport theory to ani
tropic media in order to calculate the modified thermoelec
figure of merit. The tensor equations describing the trans
of electrons and of heat in the presence of an electric fieE
and temperature gradient¹T are

Je5L11E1L21~2¹T/T!, ~1!

JQ5L12E1L22~2¹T/T!. ~2!

HereJe is the electric current density,JQ is the heat curren
density, andLab are the matrices of Onsager coefficien
With the notationL115s and L215TsS, where s is the
electrical conductivity tensor andS is the Seebeck tensor,20

Eq. ~1! becomes

Je5s~E2S¹T![sF. ~3!

Equation~2! can be put into the form18,19

JQ5PJe2k¹T ~4!

if we eliminateE in favor of Je, use the notationL125P s,
whereP is the Peltier tensor, and define the thermal cond
tivity tensor to bek5(1/T)L222P s S. As yet, we have not
assumed the Onsager relationsLab5(Lba)T, which are
equivalent tos5sT, k5kT, and P5TST. These are not
08520
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obviously applicable to a purely macroscopically describ
medium. Truesdell21 has argued that, in crystalline solids o
sufficiently low symmetry,k may be nonsymmetric. His ar
gument, however, relies only on group theory, and does
take into account the microscopic physics, in particular
fundamental principle of microscopic reversibility, on whic
the Onsager theory rests. A derivation of the Onsager r
tions from the linearized Boltzmann equation, in the natu
frame for the problem given by the crystalline axes of
anisotropic solid, is given elsewhere~e.g., Ref. 22!.

We shall assume that the crystal, whatever its anisotro
is cut rectangularly.20 Then Cartesian axes are defined a
give the natural coordinate system in which to study
transport.

Transport in an anisotropic medium is modified by t
presence of induced fields which arise via Eqs.~3! and~4! in
response to the generalized forces resulting from, for
ample, the accumulation of charges on the surface of
sample. The induced fields are implicit in the treatment
Nye20 ~See Ch. 11, Sec. 2, p. 199!; as shown there, end
effects will be negligible if we assume that the length of t
sample in the direction of transport~longitudinal! is large
compared to the size of the transverse directions. In the r
angular samples under consideration here, the induced e
tric field will be uniform, except within a screening lengt
away from the edges. ThusE5E ext1E ind and ¹T5¹Text

1¹Tind whereE ext is the external applied electric field,E ind

is the induced electric field,¹Text is the external applied
temperature gradient, and¹Tind is the induced temperatur
gradient. The fluxesJe andJQ generated by the total force
will therefore involve an induced part as well, and the n
result is that, for a given applied force, the total flux will b
smaller than would be the case in the absence of the indu
fields. The induced fields vanish in samples cut along a p
cipal axis of the conductivity tensor.

Consider an electric fieldE ext5(Ei ,0,0) and temperature
gradient¹Text5(¹iT,0,0) applied along the longitudinal (i)
direction. LetF5(Fx ,Fy ,Fz)5(F i ,F') with F i the thermal
and electric field alongx, and F' the induced transvers
fields. We assume experimental conditions in which
transverse (') electrical and thermal currents vanis
throughout the volume. Then

S Ji
e

0 D 5sS F i

F'D 5S s i sod
T

sod s' D S F i

F'
D ~5!

and

S Ji
Q

0 D 5S TSiJi
e2k i¹iT2kod

T ¹'T

TSod
(1)TJi

e2kod¹iT2k'¹'TD , ~6!

wheres i is the component of the conductivity along thex
direction, ands' is a 232 tensor for the transversey,z
directions. The 231 off-diagonal termsod and its transpose
appear since the full conductivity tensor is not block diag
nal. The tensork has a similar decomposition. We have i
voked the Onsager relations in Eq.~6! by writing P5TST.
The Onsager relations also imply that the conductivity ten
8-2
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is symmetric, so thats' in Eq. ~5! is symmetric as well. The
same applies to the tensorsk and hencek' in Eq. ~4!. How-
ever, the Seebeck tensor

S5S Si Sod
(1)

Sod
(2) S'

D ~7!

need not be symmetric.23

To calculate the electric conductivity we note that Eq.~5!
leads to

F'52s'
21sodF i . ~8!

The off-diagonal elements ofs induce a current

Ji
e,ind5sod

T F'52sod
T s'

21sodF i ~9!

along thex direction. The total current

Ji
e5Ji

e,ext1Ji
e, ind5~s i2sod

T s'
21sod!F i[s1F i . ~10!

To calculate the effective thermal conductivity, we no
that Eq.~6! yields the induced temperature gradients

¹'T5k'
21~TSod

(1)TJi
e2kod¹iT!. ~11!

Substituting back into Eq.~6! gives

Ji
Q, ind52kod

T ¹'T52kod
T k'

21~TSod
(1)TJi

e2kod¹iT!,
~12!

whence

Ji
Q5T~Si2kod

T k'
21Sod

(1)T!Ji
e2~k i2kod

T k'
21kod!¹iT

[TSeffJi
e2keff¹iT , ~13!

whereSeff andkeff are ‘‘effective’’ transport coefficients to be
discussed further below. Observe thats1, Eq. ~10!, andkeff ,
Eq. ~13!, have the same form. Sinces' ands'

21 have posi-
tive eigenvalues, the quadratic formsod

T s'
21sod is positive

definite. Thus, the induced current opposes the external
rent Ji

e,ext5s iF i . The induced fields therefore lead to a r
duced conductivity:s1<s i . If S is diagonal,s1 is the ef-
fective conductivity; otherwise, the induced temperatu
gradients give rise to additional terms considered below
the isotropic case, the induced fields vanish, ands15s i .
Note that in generals1>0 becauses1F i

25Ji
eF i5FT

•Je

5FT
•s•F>0. As in the case ofs1, the induced temperatur

gradients produce an induced heat current alongx which op-
poses the external heat current2k i¹iT. The net result is a
reduced effective thermal conductivity: 0<keff<k i .

Returning to Eq.~10!, we have

F i5~Ei2Si¹iT2Sod
(1)¹'T!. ~14!

Substituting Eq.~11! into Eq.~14! leads with the help of Eq
~10! to
08520
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Ji
e5

s1

11s1TSod
(1)k'

21Sod
(1)T „Ei2~Si2Sod

(1)k'
21kod!¹iT…

~15!

[seff~Ei2Seff¹iT!. ~16!

From the properties ofs1 , 0<seff<s i . Therefore, induced
fields and temperature gradients always reduce the effec
conductivity. Also,Seff in Eq. ~16! is the same asSeff in Eq.
~13! becausek' and hencek'

21 are symmetric.
The results of Eqs.~13! and ~16! are of importance be-

cause they show that in an anisotropic crystal the para
component of the electronic current can still be expressed
an expression having the form of Eqs.~3! and~4! but with all
transport coefficients replaced by effective quantitiesseff ,
keff , andSeff .

In the steady state, Domenicali’s continuity equation
the energy density in an anisotropic medium, as obtained
generalizing Mahan’s treatment,19 reads

Jes21Je1¹•~k¹T!50. ~17!

It can be shown that this reduces to

seff
21Ji

e21keff¹ i
2T50. ~18!

The thermoelectric figure of merit becomes

ZT5TseffSeff
2 /keff , ~19!

with the help of Eqs.~16!, ~13!, and ~18!. The form ofZT
remains the same, but again the transport coefficients
simply replaced by their effective versions.

III. MICROSCOPIC MODEL: PARABOLIC BANDS

A. Three-dimensional structures

According to semiclassical transport theory, the Bol
mann equation in the relaxation-time approximation yie
the electronic transport coefficients

s i j 5e2E d«~2] f 0 /]«!S i j ~«!, ~20!

T~s•S! i j 5eE d«~2] f 0 /]«!S i j ~«!~«2m!, ~21!

Tk0,i j 5E d«~2] f 0 /]«!S i j ~«!~«2m!2, ~22!

where f 0 is the Fermi-Dirac distributionf 0(«)51/$exp@(«
2m)/kBT#11%, m the chemical potential, and

S i j ~«!5E 2d3k

~2p!3 v i~k!(
l

t j l ~k!v l~k!d@«2«~k!#

~23!

are the components of the transport distribution tensor,
generalization of the function discussed by Mahan a
Sofo.16 Here «(k) is the electronic dispersion relation
v i(k)5\21]«(k)/]ki the electronic group velocity, and
8-3
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t(k) the relaxation time. In keeping with the standa
literature24 and cyclotron resonance experiments25 in Si and
Ge, the relaxation time is an anisotropic tensor. For the s
of simplicity we shall assume that the matrix elements ot
depend onk only through the energy and that they all ha
the same energy dependence; i.e.,t i j (k)5t@«(k)#Ui j where
U is a constant dimensionless matrix. This form is as gen
as required in the papers cited above.24,25

Note thatk0 is the electronic thermal conductivity at ze
electrochemical potential gradient inside the sample;16 the
usual electronic thermal conductivity at zero electric curre
ke , is given in terms ofk0 by ke5k02TSTs S. The lattice
conductivity,k l , is not considered in this section.

The microscopic model to be used here assumes the
duction to be taking place in a single band havingN degen-
erate parabolic valleys centered atk(n),n51, . . . ,N, respec-
tively. The dispersion relation for each valley is

« (n)~k!5«01~\2/2!(
i , j

~ki2ki
(n)!Mi j

(n)21~kj2kj
(n)!

~24!

with M (n)21 the inverse effective-mass tensor. The cor
sponding group velocity is

v i
(n)~k!5\21]«~k!/]ki5\(

j
M i j

(n)21~kj2kj
(n)!. ~25!

Intervalley scattering will be neglected. Thus the transp
distribution tensor involves just a sum over theN valleys.
Then independent of crystal orientation we have

S i j ~«!5t~«! (
n51

N E 2d3k

~2p!3 \2 (
i 8, j 8,l

M ii 8
(n)21ki 8U j j 8

(n)M j 8 l
(n)21

3kld@«2«~k1k(n)!# ~26!

5t~«!\2(
n51

N

(
i 8 j 8 l

M ii 8
(n)21U j j 8

(n)M j 8 l
(n)21

3E ki 8kld~«2kX(n)k!
2d3k

~2p!3 ~27!

5@2t~«!\2/~2p!3#

3 (
n51

N

(
i 8 j 8 l

M ii 8
(n)21U j j 8

(n)M j 8 l
(n)21

3F2
]

]Xi 8 l
(n)E Q~«2kX(n)k!d3kG ~28!

5@23/2t~«!«3/2/3p2\3#

3 (
n51

N

(
l

AdetM (n)U jl
(n)Mli

(n)21 , ~29!

whereXi j
(n) are the components ofX(n)5(\2/2)M (n)21. This

transformation relies explicitly on the validity of th
effective-mass approximation, the neglect of intervalley sc
08520
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terms inside the square brackets in Eq.~28! are evaluated
using the identity

]

]Xi j
(n)detX(n)5~detX(n)!Xi j

(n)21 ~30!

and the change of variablek85AX(n)k. Thus,

S~«!5AT~«! ~31!

with

A5 (
n51

N

~m0
21/2AdetM (n)!~U (n)M (n)21!T ~32!

and

T~«!5
23/2m0

1/2

3p2\3 «3/2t~«!. ~33!

The constant, dimensionless matrixA contains the full ten-
sorial structure associated with the crystal symmetry a
separates it from the energy dependence inT(«).

The conductivity then becomes

s5e2E d«~2] f 0 /]«!T~«!A[s0A. ~34!

For silicon and germanium this expression reduces to
given by Smithet al.26

The Seebeck tensor is therefore necessarilyisotropicsince

s S5~e/T!E d«~2] f 0 /]«!T~«!~«2m!A[As0S0 ,

~35!

S5s21 s S5S0 1. ~36!

Further, using Eqs.~23! and ~32!, k05Ak0 and hence

ke5k02TSTs S[Ake ~37!

for ke5k02Ts0S0
2.

These results lead to the following surprising conclusio
When the lattice thermal conductivity is neglected, the
within the effective-mass approximation as specified he
the thermoelectric figure of meritZT is independent of the
sample orientation. Note that

ke•s215Ake•A21/s05~ke /s0!1[L0T1, ~38!

where the Lorenz numberL05ke /s0T. Thus, ke,i j
5L0Ts i j and keff5L0Tseff as expected. Finally, sinceS is
isotropic,Seff5S0. Combining these effective transport coe
ficients yields

ZT5TseffSeff
2 /keff5S0

2/L0 , ~39!

a constant independent of direction. The isotropy is los
either a nonzero lattice thermal conductivity or nonzero
tervalley scattering is included. Thus,k l50 with no interval-
ley scattering provides a baseline; for typical thermoelec
materials the lattice thermal conductivity and intervall
8-4
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scattering will be small and hence by Eq.~39! the figure of
merit ZT will be less anisotropic than naively expected.

B. Lower-dimensional structures

Dimensionality enters the transport coefficients throu
the k-space integrals d3k, (2p/Lz)d

2k, and
@(2p)2/LyLz#dk for three, two, or one dimensions, respe
tively, whereLy and Lz are the sample sizes in they and z
directions. Dimensionality also enters through the confi
ment energies and effective masses for carriers constra
to move in a lower-dimensional system.

For the two-dimensional case withE5(Ei ,E') and ¹T
5(¹iT,¹'T), the induced fields are given by Eqs.~8! and
~11!, and the transport coefficients by Eqs.~13! and~16! with
s' replaced bysyy , andsod replaced bysyx ; it is similar
for the other transport coefficients. The analogue of Eq.~23!
for the components of the transport distribution tensor is
tained within the effective-mass approximation:

S i j ~«!5
2t~«!\2

4p2Lz
(
n51

N

(
i 8 j 8 l

M ii 8
(n)21U j j 8

(n)M j 8 l
(n)21

3E d2kki 8kld~«2kX(n)k!. ~40!

This expression has the same form as Eq.~31! with

A5 (
n51

N

AdetM (n)~U (n)M (n)21!T ~41!

and

T~«!5«t~«!/p\2Lz . ~42!

These equations are to be compared with Eqs.~32! and
~33! for the three-dimensional case. Thus, analogously
Eqs. ~34!, ~36!, and ~37!, s5As0 , S5S01, andke5Ake
where the two-dimensionalA and T(«) must be used in
definings0 , S0, andk0. Finally, kes

215L0T1 so thatkeff
5L0Tseff . Also, Seff5S0 becauseS is isotropic in two di-
mensions as well. The corresponding figure of meritZT
5TseffSeff

2 /keff5S0
2/L0 is again independent of direction, a

in three dimensions.
It is seen that the two-dimensional and three-dimensio

results are entirely analogous and that the former are
tained from the latter by taking the limit as one of the effe
tive masses tends to infinity. In this limit, the ellipsoidal su
face in k space of constant energy becomes increasin
prolate, until it reaches the edge of the Brillouin zone, af
which it assumes a cylindrical shape extending fro
2p/Lz to p/Lz upon further increase in the effective-ma
parameter. FurthermoreZT in two dimensions can be en
hanced due to the factor of 1/Lz in the density of states
which, as pointed out in Ref. 1, becomes large for sm
thicknesses.

In the one-dimensional case there is no transport in
transverse direction. Thus there are no transverse fields
the microscopic and effective transport coefficients are
08520
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same. Moreover, all transport coefficients are scalar. T
transport distribution function is found to be

S~«!5 (
n51

N
2

pLyLz
A 2«

\2mx
(n)t~«!. ~43!

Just as in two dimensions, the 1/LyLz factor leads to an en
hancement of the density of states and thus ofZT for thin
wires.9

C. Implications for ZT

We shall now derive an upper bound forZT of the Mahan
and Sofo form16 and show that the highest-conductivity d
rection gives optimal values forZT. An isotropic lattice ther-
mal conductivityk l , which causesZT to lose its isotropy,
will now be included.

The figure of merit including an isotropic lattice therm
conductivityk l5k l1 may be written in the form of Eq.~19!
whereseff andSeff are as in Sec. II andkeff5ke* 1k l . Let

ke5S k i kod
T

kod k' D ~44!

and @in analogy with Eq.~13!#

ke* 5k i2kod
T ~k'1k l1!21kod . ~45!

ke* defines the electronic thermal conductivity in the pre
ence of the nonvanishingk l and the sample boundaries. A
shown in the Appendix, the upper bound onZT is given by

ZT<a0k0 /k l . ~46!

The dimensionless quantitya0 is defined by Eq.~A2!. In the
isotropic case,16 a051; in the present case,a0 is of order
unity. The maximum value is obtained when the parametej,
as defined by Eq.~A12!, approaches unity. This is the case
and only ifT(«) is proportional to ad function. In the more
physical case,T(«)}« r with r varying between20.5 and 2,
which encompasses many of the common scattering me
nisms in semiconductors. Numerical computations show
j tends to 1 asm/kBT→2` and to zero asm/kBT→`. For
m/kBT50, j ranges from 0.5 to 0.8. Thus, the upper bou
at j51 can be reached at the cost of going to low carr
concentrations, whereas higher carrier concentrations im
smallerj.

We now show that, in the effective-mass, relaxation-tim
no intervalley scattering, and isotropic-thermal-conductiv
approximations,ZT is highest in the direction of maximum
electrical conductivity. In the anisotropic case,seff and keff
have an angular dependence.Seff does not because in ou
microscopic modelS is isotropic.ZT is therefore also aniso
tropic. Now letP be any symmetric and positive matrix an
l>0 a positive number; then by the properties of posit
matrices,P21>(P1l1)21. P5k' andl5k l . Thus

kod
T ~k'1k l1!21kod<kod

T k'
21kod ~47!

and consequently for anyk l ,
8-5
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ke* ~k l !>ke* ~k l50!5~ke /s0!seff . ~48!

This shows that the ratioke* /seff is minimized when the axis
of current flow in the steady state lies along one of the p
cipal directions, where, whatever the value ofk l , the
induced-field related terms vanish and so equality is obtai
in Eq. ~48!. Writing ZT in the form

ZT5
S0

2

ke* /Tseff1k l /Tseff
, ~49!

the second term in the denominator is seen to be sma
along the principal direction with largest electrical condu
tivity. ThereforeZT is maximized for current flow along thi
direction.

By contrast, for a sufficiently anisotropic lattice therm
conductivity the favored direction might be determined
k l ’s minimum rather than that of the highest electrical co
ductivity. For crystals in which two of the principal values
the electrical conductivity are equal, such as Bi2Te3 and
SL’s, numerical results show that as long as the anisotrop
k l is smaller than that ofs, the optimumZT is still to be
found in the direction of greatest electrical conductivity. Th
suggests that, generally speaking, the figure of merit will
maximized in the principal crystal direction in which th
ratio s i /k l ,i is greatest, wheres i and k l ,i are the principal
values of the electrical and lattice thermal conductivity te
sors obtained from summing over valleys.

IV. MICROSCOPIC MODEL: NONPARABOLIC BANDS

Within the effective-mass approximation, the analysis
Sec. III showed that the thermopower and Lorenz number
isotropic when the lattice thermal conductivity is neglecte
To see how a nonparabolic band structure affects these
clusions, consider an electronic dispersion relation of
Esaki-Tsu form:27

«~k!5\2ki
2/2mi1D~12coskzd! ~50!

with wave vectork5(kicosw,kisinw,kz). This relation mod-
els a superlattice of periodd. The in-plane dispersion is para
bolic with massmi , and that along the growth directionz has
a tight-binding form with bandwidth 2D5@«(0,0,p/d)
2«(0,0,0)#. Since the mass along the growth directionmz
5\2/Dd2, the anisotropy can be increased by reducingD.

In the principal frame of the SL, the transport distributio
tensor@Eq. ~23!# is diagonal with components

Sgrowth~«!

5
midt~«!

2p2\4

3H D2cos21~12«/D!1~«2D!A«~2D2«!, «,2D,

pD2, «>2D

~51!

along the growth direction and
08520
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e

S in plane~«!

5
t~«!

p2\2d

3H ~«2D!cos21~12«/D!1A«~2D2«!, «,2D,

p~«2D!, «>2D

~52!

along the planes. The transport coefficients are obtained f
Eqs. ~20!–~22! in the principal frame and then transforme
into the sample frame. As in Sec. III, the relaxation tim
t(k) is assumed to be a function of energy only. Direct co
putation witht}« r indicates that the qualitative features di
cussed below are independent of the choice ofr. Quantita-
tively, the thermopower is an approximately linear functio
of r at fixed sample orientation and chemical potentialm and
increases by approximately 50% asr goes from 0 to 1.5. In
what follows, r 50, d5100 Å , mi /m050.021, andD
557 meV, corresponding to theC1 subband in a
50-Å Hg0.75Cd0.25Te/50-Å Hg0.7Cd0.3Te SL.

FIG. 1. ~a! Effective thermopowerSeff and ~b! effective Lorenz
numberL0,eff5keff /seffT as a function of chemical potential for th
superlattice described in Sec. IV, neglecting lattice thermal cond
tivity. Shown are samples cut alongf50 ~heavy solid line!, p/4
~heavy dotted line!, and p/2 ~heavy dashed line! where f is the
angle between the direction of maximum conductivitysmax and the
external fieldEext. The results forf5p/4 neglecting the effects of
the induced fields are also presented~light dotted line!, labeled by
~xx! in the legend. The metallic limit ofL0 /(kB /e)25p2/3 is indi-
cated in~b!.
8-6
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The anisotropy in the resulting effective thermopowerSeff
@Eq. ~13!# and Lorenz numberL0,eff5keff /seffT is shown in
Fig. 1. Form,0, Seff along the growth and in-plane direc
tions differ by,10%. This near isotropy is expected, sin
the carriers determiningSeff are near the zone center, whe
the effective-mass approximation is good. The anisotropy
creases substantially asm increases past 2D, a region where
the bands are appreciably nonparabolic, reaching over 6
at m50.4 eV. From Fig. 1~b!, the anisotropy inL0,eff is at
most 30% and goes to zero in the large-m limit, approaching
the metallic value of (p2/3)(kB /e)2. As ZT for this band
structure is maximal form;0, the anisotropies inSeff and
L0,eff in the relevant parameter range are small.
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APPENDIX

We present here a derivation of an upper bound of
Mahan and Sofo form16 for an anisotropic material. From
s5As0 @see Eq.~35!# we infer

seff5s0a0 ~A1!

with

a05Axx2Axy

AyxAzz2AyzAzx

AyyAzz2AyzAzy
2Axz

AzxAyy2AzyAyx

AzzAyy2AyzAzy
.

~A2!

When thek l dependence in Eq.~45! is taken into account,
we find similarly

ke* 5kea~k l ! ~A3!

with a(k l50)5a0 and

a~k l !5Axx2Axy

Ayx~Azz1k l /ke!2AyzAzx

~Ayy1k l /ke!~Azz1k l /ke!2AyzAzy

2Axz

Azx~Ayy1k l /ke!2AzyAyx

~Ayy1k l /ke!~Azz1k l /ke!2AyzAzy
. ~A4!
,

y

ys

0852
n-

00

is
.
n

e

Therefore

ZT5
Ts0S0

2a0

~k02Ts0S0
2!a~k l !1k l

. ~A5!

Following Mahan and Sofo, we introduce dimensionless
tegrals

I n5E
2m/kBT

`

dx
ex

~ex11!2 s~x!xn, s~x!5\r 0T~m1xkT!,

~A6!

wherer 0 is the Bohr radius. In terms of these moments,

s05s̃0I 0 , ~A7!

s0S05~kB /e!s̃0I 1 , ~A8!

k05~kB /e!2Ts̃0I 2 , ~A9!

wheres̃05e2/\r 0 has dimensions of conductivity. Then

ZT5
ãI 1

2/I 0

~ ãI 22ãI 1
2/I 0!a~k l !/a011/a0

~A10!

5
j

~12j!a~k l !/a01B
~A11!

with ã5(kB /e)2Ts̃0 /k l ,

j5I 1
2/I 0I 2 , ~A12!

and B51/ãI 2a05k l /k0a0. By the Cauchy-Schwarz in
equality, 0<j<1. The limit asj tends to 1 maximizes the
figure of merit by maximizing the numerator and minimizin
the denominator in Eq.~A11!. From Eq.~A4! it may be seen
that for k l /ke5k l /(kB /e)2Ts̃0I 2(12j) sufficiently large,
a(k l) tends toAxx , and certainly this condition is met as
2j tends to zero. Thus asj→1 we have that

ZT→ j

~12j!Axx /a01B
<

1

B
5

k0a0

k l
. ~A13!
1

s

-
dy-
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