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General effective transport coefficients and the thermoelectric figure of AiEfitr anisotropic systems are
derived. Sizable induced transverse fields on surfaces perpendicular to the current flow are shown to reduce the
effective transport coefficients. A microscopic electronic model relevant for multivalleyed materials with para-
bolic bands is considered in detail. Within the effective-mass and relaxation-time approximations but neglect-
ing the lattice thermal conductivity, , the thermopower and Lorenz number are shown to be independent of
the tensorial structure of the transport coefficients and are therefore iso#dpik also isotropic for vanishing
lattice thermal conductivity, . A similar result holds in lower dimensions. For nonvanishing but sufficiently
isotropic x,, ZT is ordinarily maximal along the direction of highest electrical conductivityMore general
numerical calculations suggest that maxiradl occurs along the principal direction with the largegic, . An
explicit bound onZT is derived. Consideration of the Esaki-Tsu model shows that nonparabolic dispersion in
superlattices has little effect on the thermopower at the carrier concentrations which maXimidewever,
strong anisotropies develop when the chemical potential exceeds the miniband width.
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[. INTRODUCTION to lattice thermal conductivityr/ k; is maximum. There are
also several surprising results. These include the formation

In the search to find systems with large thermoelectricof possibly large induced transverse electric fields and tem-
figures of meritZT (for isotropic materialZT=To S «, perature gradients, the fact thafl is strictly isotropic in
whereo is the electrical conductivity§is the Seebeck coef- anisotropic systems having parabolic bands if the lattice ther-
ficient, andx is the thermal conductivily the emphasis has mal conductivity is neglected, and that a nearly isotropic
been more on new materials than on material structures ghermopower and Lorenz number results under these condi-
crystallographic anisotropy. Typical of new structures are sutions even if the bands are extremely anisotropic and nonpa-
perlattices, quantum welfs® and quantum wire$° It has  rabolic.
been generally assumed that the direction of highest conduc- The purpose of this paper i$) to predict the effect of
tivity in an anisotropic material yields optimal thermoelectric transverse induced fields in anisotropic materials, which
properties. The correctness of this assumption is not obvioushould be observable experimentally without much difficulty,
since directions may exist along which the lattice thermaland (ii) to use the isotropy of the thermopow@&and ofZT,
conductivity is abnormally low and the thermopower is highwhich is predicted to hold in the limit when the lattice ther-
enough to result in largé T even though the electrical con- mal conductivity, intervalley scattering, and nonparabolic
ductivity is less than maximum. bands can be neglected, as a reference frame for gauging the

Some effects of anisotropic transport tensors have beeimportance of nonzero lattice thermal conductivity and inter-
predicted and observed. Kelvinpredicted the existence of valley scattering.
transverse temperature gradients due to off-diagonal terms in The macroscopic formalism, based on the tensorial form
the thermal conductivity. They were observed by Boreliusof the usual phenomenological transport equations, is pre-
and Lindh}? Bridgman'® and Terada and TsutstfiAnother ~ sented in Sec. II. The effects of sample boundaries for the
anisotropic effect is the Bridgman or internal Peltier rodlike geometry assumed throughout much of this paper are
effect’®>!% a contribution to the local evolution of heat that included by requiring that the transverse electric and heat
arises in nonuniform current flow. To the best of our knowl- currents vanish throughout the volume. Anisotropic and iso-
edge, the consequences of these anisotropic effects in givirigopic systems are shown to differ both qualitatively, through
rise to transverse electric fields and temperature gradientbe presence of induced transverse fields, and quantitatively,
have not been investigated previously. through the magnitude of the transport coefficients.

This paper develops a more general microscopic transport More detailed statements concerning optimal orientations
theory of thermoelectricity in anisotropic systems. Therequire use of a microscopic model. Section Ill introduces a
“highest-conductivity” assumption is found to be correct for model commonly used to study transport in semiconductors
materials having simple band structures typically of the parahaving multivalley, anisotropic parabolic band structures.
bolic variety and essentially isotropic lattice thermal conduc-The transport properties follow from the linearized Boltz-
tivities. However, the formalism developed here suggestsnann equation in the effective-mass and relaxation-time ap-
more generally that the optimal orientation corresponds t@roximations. Intervalley scattering is neglected. Somewhat
the principal direction along which the ratio of the electronic surprisingly, the thermopower and Lorenz number turn out to
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be isotropic. The same is true fa@T when the lattice thermal obviously applicable to a purely macroscopically described
conductivity x; is neglected. Section Il B shows that similar medium. Truesdeit has argued that, in crystalline solids of
results hold for two- and one-dimensional systems. The reakufficiently low symmetryx may be nonsymmetric. His ar-
istic case corresponding to finite, is considered in Sec. gument, however, relies only on group theory, and does not
Il C. If « is sufficiently isotropic, the maximal T is shown take into account the microscopic physics, in particular the
to occur for samples cut along the direction of highest elecfundamental principle of microscopic reversibility, on which
trical conductivity. This rather unsurprising result, however,the Onsager theory rests. A derivation of the Onsager rela-
may be modified if the anisotropy of, exceeds that of the tions from the linearized Boltzmann equation, in the natural
electrical conductivity, leading to the conjecture concerningframe for the problem given by the crystalline axes of an
ol k, mentioned above. An explicit expression for the upperanisotropic solid, is given elsewhefe.g., Ref. 22
bound onZT is also derived, which is a generalization of that ~We shall assume that the crystal, whatever its anisotropy,
previously obtainetf to anisotropic systems, and can serveis cut rectangularl§9 Then Cartesian axes are defined and
as a guideline for the search for anisotropic hfjhsystems. give the natural coordinate system in which to study the
This microscopic description has been applied elsewhergansport.
to several materials of current interééThe induced electric Transport in an anisotropic medium is modified by the
field and corresponding reduction of the effective electricalpresence of induced fields which arise via E@$.and(4) in
conductivity are shown in Ref. 17 to be important and po-response to the generalized forces resulting from, for ex-
tentially observable effects in buliktype Bi,Te; and HgTe/ ample, the accumulation of charges on the surface of the
HgCdTe superlatticeéSLs). In HgTe/HgCdTe SL's the an- sample. The induced fields are implicit in the treatment of
isotropy is tunable by varying the composition and width ofNye”® (See Ch. 11, Sec. 2, p. 19%s shown there, end
the barriers and wells. For sufficiently large anisotropy anceffects will be negligible if we assume that the length of the
for samples cut to a suitable angle with respect to the Sisample in the direction of transpoffongitudina) is large
planes, the induced electric field can be as large as or greatepmpared to the size of the transverse directions. In the rect-
than the external electric field. angular samples under consideration here, the induced elec-
The explicit effects of nonparabolicity and reduced band-tric field will be uniform, except within a screening length
width in superlattices on the thermopower and Lorenz numaway from the edges. Thus=£®4-£M and VT=V T
ber are investigated in Sec. IV. Both quantities remain nearly+ VT where£®is the external applied electric field!"
isotropic for small doping or carrier concentration. The ther-is the induced electric fieldy T®" is the external applied
mopower is also bounded by its values along the principatemperature gradient, arddT™ is the induced temperature
axes, supporting the conjecture that optir#dl is obtained gradient. The fluxes® andJ? generated by the total forces

along those directions. will therefore involve an induced part as well, and the net
result is that, for a given applied force, the total flux will be
Il. ELECTRONIC TRANSPORT THEORY smaller than would be the case in the absence of the induced

_ _ ~ fields. The induced fields vanish in samples cut along a prin-
We generahze conventional transport theory to anISO'Cipa| axis of the Conductivity tensor.

tropic media in order to calculate the modified thermoelectric  Consider an electric fiemext:(g” ,0,0) and temperature
figure of merit. The tensor equations describing the transpogradientv T¢= (V|T,0,0) applied along the longitudinal)(

of electrons and of heat in the presence of an electric eld djrection. LetF=(F,.F,,F,)=(F,F,) with F| the thermal
and temperature gradieR(T are and electric field along, and F, the induced transverse
fields. We assume experimental conditions in which the

e_| 11 21
P=L7EA L=V, (1) transverse ) electrical and thermal currents vanish
JQ:E125+E22( —VTIT). @) throughout the volume. Then
T
Here J® is the electric current density? is the heat current J|T F 0| Ood F
density, andE“B are the matrices of Onsager coefficients. 0|79\ F |T\ooa o ||F 5
With the notationL™=c and L>’=TgS, whereo is the - - +
electrical conductivity tensor andl is the Seebeck tensdt, and
Eqg. (1) becomes
T
e~ ;(E-SVT)=0F 3) P TSI = kYT = KoaV . T
, - - - 0| =| TSI - koaWT—x, V., T | (6)
Equation(2) can be put into the forf{*° - - =
IR=TIJe— kVT (4) where o is the component of the conductivity along tke

direction, ando, is a 2x2 tensor for the transversgz
if we eliminate€ in favor of J%, use the notatioh*>=I1 o,  directions. The X 1 off-diagonal termo,4 and its transpose
wherell is the Peltier tensor, and define the thermal conducappear since the full conductivity tensor is not block diago-
tivity tensor to bex=(1/T)L?*—1II ¢ S. As yet, we have not nal. The tensok has a similar decomposition. We have in-
assumed the Onsager relatioh$?=(LA*)T, which are voked the Onsager relations in E@) by writing II=TS'.

equivalent toc=0", k=«', and[1=TS'. These are not The Onsager relations also imply that the conductivity tensor
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is symmetric, so that, in Eq. (5) is symmetric as well. The

same applies to the tensorsand hence, in Eq. (4). How- Ji= 140, -I—S(l) g E&—(§— Sgd)KflKod)V”T)
ever, the Seebeck tensor (15)
1
:( S §E)d)) 0 =0eff( &)= SeV| T)- (16)
§E>2d) S From the properties of;, 0<oey< o). Therefore, induced

fields and temperature gradients always reduce the effective
conductivity. Also,Sg in Eq. (16) is the same aSg in Eq.
(13) because¢, and henceiil are symmetric.

The results of Eqs(13) and (16) are of importance be-
1 cause they show that in an anisotropic crystal the parallel
FL=—0,"00dF. ®) component of the electronic current can still be expressed by
an expression having the form of E¢8) and(4) but with all
transport coefficients replaced by effective quantitieg,

B Keff, andSqg.

ﬁmd_ TodFL = _Eldﬂ 1Eod':ll ©) In the steady state, Domenicali’s continuity equation for
the energy density in an anisotropic medium, as obtained by
generalizing Mahan’s treatmetitreads

need not be symmetrfc.
To calculate the electric conductivity we note that Ex).
leads to

The off-diagonal elements of induce a current

along thex direction. The total current

e ext e ind

J‘? i Jj —(U“—ggdgilgod)FHE(TlFH. (10 Jegfl\]e-l-V-(EVT):O. 17)

. . It can be shown that this reduces to
To calculate the effective thermal conductivity, we note

that Eq.(6) yields the induced temperature gradients UgﬁlJﬁer KeﬁVﬁT=0. (18)
V. T=x, M(TSETIF~ koaY T). (12) The thermoelectric figure of merit becomes
Substituting back into Eq(6) gives ZT=ToeSol ket (19

with the help of Eqs(16), (13), and(18). The form ofZT

Qiind_ _ - (1)Tqe_ . . .
Iy KogVuT= = Kour | (TSed I~ KoV T), remains the same, but again the transport coefficients are

(12 simply replaced by their effective versions.
whence
1l. MICROSCOPIC MODEL: PARABOLIC BANDS
:T(Sﬂ_fgdfi s )T)JH (KH_EIdEI 1£od)VHT A. Three-dimensional structures
=TS~ ket T (13 According to semiclassical transport theory, the Boltz-

mann equation in the relaxation-time approximation yields

whereS.; and «¢ are “effective” transport coefficients to be the electronic transport coefficients
discussed further below. Observe tlgt Eq. (10), and ks,
Eq. (1_3), have the same form._ Sinczia_T an_dlgj1 have pqsi— o :ezf de(—afolde)Sj(e) (20)
tive eigenvalues, the quadratic fora o, “0oq IS positive
definite. Thus, the induced current opposes the external cur-
rent Jj = gF). The induced figlds_therefore Igad to a re- T(U'S)ij:ef de(—afolae)Si(e)(e—p),  (21)
duced conductivityo,<o. If Sis diagonal,o; is the ef-
fective conductivity; otherwise, the induced temperature
gradients give rise to additional terms considered below. In o _ - N2
the isotropic case, the induced fields vanish, arqd:cr” Trojj fds( Ifolde)ij(2)(e=p)% (22
Note that in generalr;=0 becausecrlF”—JHFH—F - J8
=FT.o-F=0. As in the case of, the induced temperature
gradients produce an induced heat current atondpich op-
poses the external heat current V|T. The net result is a 2d3k
reduced effective thermal conductivity<Ocep< x| - ,J (e)= f(z )3v (k)E 71 (K)v (k) dle —e(k)]

Returning to Eq(10), we have

where fq is the Fermi-Dirac distributiorfy(e)=14exd (e
—w)/ksT]+1}, u the chemical potential, and

(23

F”:(é’”—SﬂV”T—Sgld)VLT). (14)  are the components of the transport distribution tensor, the

- generalization of the function discussed by Mahan and
Substituting Eq(11) into Eq.(14) leads with the help of Eq. Sofo!® Here e(k) is the electronic dispersion relation,
(10) to vi(k)=%"19e(k)/ok; the electronic group velocity, and
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7(k) the relaxation time. In keeping with the standardtering, and the relaxation-time approximation used here. The
literaturé® and cyclotron resonance experiménis Si and terms inside the square brackets in EB8) are evaluated
Ge, the relaxation time is an anisotropic tensor. For the sakesing the identity
of simplicity we shall assume that the matrix elements- of
depend ork only through the energy and that they all have _a(_jdetx(n)z(detx(n))xgp)—l (30)
the same energy dependence; ig (k) = 7 ¢ (k) JU;; where TR -
U is a constant dimensionless matrix. This form is as gener . _ o
as required in the papers cited abé$é> And the change of variable = yX™k. Thus,

Note thatx, is the electronic thermal conductivity at zero S(e)=ATe) (31)
electrochemical potential gradient inside the samplehe - -
usual electronic thermal conductivity at zero electric currentWith
Ke, IS given in terms ofkcy by ko= Ko— TS"o S. The lattice

N
conductivity, «, , is not considered in this section. _ 71/2 S (Y (1 1 (M) (M) =1y T
The microscopic model to be used here assumes the con- A nz’l (m detM UM ) (32
duction to be taking place in a single band havihglegen-
erate parabolic valleys centeredkd® ,n=1, ... N, respec- and
tively. The dispersion relation for each valley is 2%/2mY2
Ne)= 5 g5z e *1(2). (33

M(K)=gq+ (%2 ki—kMyM M~k — k(™
€ &

(k)=eo( )IEJ (= kMG~ k™) The constant, dimensionless matAxcontains the full ten-
(29 sorial structure associated with the crystal symmetry and

with M(M~1 the inverse effective-mass tensor. The corre—Separates It fro_m_ the energy dependence(i).
The conductivity then becomes

sponding group velocity is

— a2 _ =
J

For silicon and germanium this expression reduces to that
Intervalley scattering will be neglected. Thus the transporgiven by Smithet al?®
distribution tensor involves just a sum over tNevalleys. The Seebeck tensor is therefore necessaliropicsince
Then independent of crystal orientation we have

0S=(eIT) [ de(— dtole) T} (o - )A=AdiS,

sorer3, [ 2y M UM @
iy’
xkole—e(k+k™)] (26) S=o0 toS=51. (36)
Further, using Eqs23) and(32), ko=Ax, and hence
S)hZEl IZ M|(|n’) 1U(n)M(n) 1 EeZEO_T§TU_SEéKe (37)
d3k fOf Ke= KO_TO'()S(Z).

xf ki ki 8(e— kx(”)k) (27) These results lead to the following surprising conclusion:
(2m)? When the lattice thermal conductivity is neglected, then,

within the effective-mass approximation as specified here,
the thermoelectric figure of merZT is independent of the
sample orientation. Note that

=[27(8)ﬁ2/(2'n')3]

X M(n,) 1u(n)M(n) 1
21 UE ! Ke' 0 '=Ake- AT og=(Kel00)1=LoT1, (39

9 . where the Lorenz numberlg=k./0oT. Thus, Ke,ij
—WJ 0 (e —kXMk)d k} (28) =LoToyj and ke=LoToeys as expected. Finally, sincg is

il isotropic, Ses=Sy. Combining these effective transport coef-
ficients yields

2[23/27(8)83/2/3772ﬁ3]
ZT=ToeS%! keir= S5/ Lo, (39
[ ) 1
X E E detM U(n)M(n) (29) a constant independent of direction. The isotropy is lost if

either a nonzero lattice thermal conductivity or nonzero in-
whereX({" are the components of" = (4%/2)M(W~1 This  tervalley scattering is included. Thus,=0 with no interval-
transformatlon relies explicitty on the validity of the ley scattering provides a baseline; for typical thermoelectic
effective-mass approximation, the neglect of intervalley scatmaterials the lattice thermal conductivity and intervalley
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scattering will be small and hence by E&9) the figure of same. Moreover, all transport coefficients are scalar. The
merit ZT will be less anisotropic than naively expected. transport distribution function is found to be

N
B. Lower-dimensional structures _ 2 2e
o - 2(s)—n§=‘,l o N rzmme): 43
Dimensionality enters the transport coefficients through y X
the k-space integrals d%, (2m/L)d’k, and  jyst as in two dimensions, theLL, factor leads to an en-

[(2m)?/L,L,]dk for three, two, or one dimensions, respec- hancement of the density of states and thugsffor thin
tively, whereL, andL, are the sample sizes in thygandz  yjres?

directions. Dimensionality also enters through the confine-
ment energies and effective masses for carriers constrained
to move in a lower-dimensional system.

For the two-dimensional case with=(¢,£,) andVT We shall now derive an upper bound @ of the Mahan
=(V|T,V,T), the induced fields are given by Eq&) and and Sofo form® and show that the highest-conductivity di-
(11), and the transport coefficients by E¢s3) and(16) with rection gives optimal values fa&T. An isotropiclattice ther-
o, replaced byo,y, ando,g replaced byo,; it is similar m_al conduct'ivityfq, which cause<T to lose its isotropy,
for the other transport coefficients. The analogue of 8  Will now be included.
for the components of the transport distribution tensor is ob- The figure of merit including an isotropic lattice thermal
tained within the effective-mass approximation: conductivity x;= x;1 may be written in the form of E19)

whereog; and Sy are as in Sec. Il andeg= x5 + &, . Let

C. Implications for ZT

27(s)h? & B .
Sy(e)= RS S MO oM o W
4 LZ n:1irl-,| } J . — (44)
—€ | Kod Ki
X | d2kk; k 8(e —kXMk). 40 . .
f kiole —kXTk) 40 and[in analogy with Eq(13)]
This expression has the same form as B4) with K= KI\_fgd(EL+ K&)flﬁod_ (45)

N x; defines the electronic thermal conductivity in the pres-
A=Y JdetMm@(UMMO-1H)T (41)  ence of the nonvanishing, and the sample boundaries. As
n=1 shown in the Appendix, the upper bound Bf is given by
and ZT$a0K0/K| . (46)
Te)=e(e)lwhL,. (42)  The dimensionless quantity, is defined by Eq(A2). In the
isotropic casé® a,=1; in the present cas@, is of order
unity. The maximum value is obtained when the param&ter
%s defined by EqA12), approaches unity. This is the case if
and only if7(&) is proportional to a function. In the more
physical case7(e)xe" with r varying between-0.5 and 2,
which encompasses many of the common scattering mecha-
nisms in semiconductors. Numerical computations show that
o 5 JEPCYN L o & tends to 1 agu/kgT— —o0 and to zero ag/kgT—o0. For
= ToeiSerl ke= So/ Lo IS again independent of direction, as | T— 0 ¢ ranges from 0.5 to 0.8. Thus, the upper bound

in three dimensions. at £=1 can be reached at the cost of going to low carrier

It is seen tha}t the two-dimensional and three'dimenSiOnaéoncentrations, whereas higher carrier concentrations imply
results are entirely analogous and that the former are Ol%'mallerg

tained from the latter by taking the limit as one of the effec-  \yio now show that. in the effective-mass. relaxation-time

tive masses tends to infinity. In this limit, the ellipsoidal sur-, intervalley scattering, and isotropic-thermal-conductivity

face in k space of constant energy becomes increasinglyg,noyimationsZT is highest in the direction of maximum

prolate, until it reaches the edge of the Brillouin zone, aﬁerelectrical conductivity. In the anisotropic case,; and e

which it ‘assumes a cylindrical shape extending fromy, e an angular dependency; does not because in our
— /L 10 /L, upon further increase in the effective-mass njcroscopic modes is isotropic.Z T is therefore also aniso-

Earamgt(ejr. Furthﬁ rmforET inf tWO. dirrr:en;iong Ca? be en- tropic. Now letP be any symmetric and positive matrix and
anced due to the factor o 13/ in the density of states, » g 4 positive number; then by the properties of positive
which, as pointed out in Ref. 1, becomes large for smal atrices P~ '=(P+\1)"L. P=«, and\=x;. Thus

’_ = r = . ___L - .

thicknesses.

In the one-dimensional case there is no transport in the
transverse direction. Thus there are no transverse fields and
the microscopic and effective transport coefficients are thand consequently for any,,

These equations are to be compared with EG®) and
(33) for the three-dimensional case. Thus, analogously t
Egs. (34), (36), and (37), c=Acy, S=Sy1, and k.=Ax,
where the two-dimensionah and 7(¢) must be used in
defining o, Sy, andkg. Finally, keo 1=L,T1 S0 thatkegs
=LoToes. AlsO, Seg=S, becauses is isotropic in two di-
mensions as well. The corresponding figure of merit

T -1 T -1
fod(ﬁi—'—’(ll) KodSSKogK | “Kod (47)
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K5 (k)= K (1)=0) = (Kol 00) T (48) 10!
This shows that the ratig} /o is minimized when the axis 10° @
of current flow in the steady state lies along one of the prin- N
cipal directions, where, whatever the value gf, the o5 aft N~ T
induced-field related terms vanish and so equality is obtaine :‘F 10 N
in Eq. (48). Writing ZT in the form < — ¢=0 .
, 5 107 ¢ e o = m/4 (xx) AN E
ZT=— SO , (49) 10—3 L q) : /A4 \\\ |
Ke/TO'eff+ K| /TO’eﬁ === <|)—7'l5/2 \\

A S
the second term in the denominator is seen to be smalle 104 : : : : »
along the principal direction with largest electrical conduc- o (b)
tivity. ThereforeZ T is maximized for current flow along this Metallic Limit
direction. >

By contrast, for a sufficiently anisotropic lattice thermal &
conductivity the favored direction might be determined by =
y’s minimum rather than that of the highest electrical con- &
ductivity. For crystals in which two of the principal values of :3
the electrical conductivity are equal, such asT®; and 1t i
SL’s, numerical results show that as long as the anisotropy ¢
x, is smaller than that ofr, the optimumZT is still to be
found in the direction of greatest electrical conductivity. This 0 ' : ' '
suggests that, generally speaking, the figure of merit will be -0.1 0.0 0.1 0.2 0.3 0.4
maximized in the principal crystal direction in which the Chemical Potential (eV)

ratio o/ ; is greatest, where; and | ; are the principal _ )
values of the electrical and lattice thermal conductivity ten- F'C- 1. (@) Effective thermopoweS,q and (b) effective Lorenz
sors obtained from summing over valleys numberl o o= Kot/ T T @s a function of chemical potential for the

' superlattice described in Sec. IV, neglecting lattice thermal conduc-

tivity. Shown are samples cut along=0 (heavy solid ling, =/4
IV. MICROSCOPIC MODEL: NONPARABOLIC BANDS (heavy dotted ling and /2 (heavy dashed linewhere ¢ is the

ey P . . . angle between the direction of maximum conductivity,, and the
Within the effective-mass approximation, the analysis 0fexternal fieldE®. The results forp= /4 neglecting the effects of
Sec. Il showed that the thermopower and Lorenz number arg - induced field | saht dotted ling. labeled b
isotropic when the lattice thermal conductivity is neglected © Induced Nields are aiso pr_esc_an_( ght dotted ing, la >led by
IS0 . ‘(xx) in the legend. The metallic limit df 4/ (kg /€)?=7/3 is indi-
To see how a nonparabolic band structure affects these cofz,4 in(b)
clusions, consider an electronic dispersion relation of the '

Esaki-Tsu formf’

Zin plane(s)
e(k)=h2kf/2m;+ A(1— cosk,d) (50 (e)
T(E
with wave vectork = (kjcose,ksing,k,). This relation mod- =_w2ﬁ2d

els a superlattice of periadl The in-plane dispersion is para-

bolic with massm;, and that along the growth directiarhas (e—A)cos H(1—e/A)+e(2A—g), e<2A,

a tight-binding form with bandwidth 2=[&(0,0,7/d) [ _ N

—¢(0,0,0)]. Since the mass along the growth direction m(e—A), e>2

=#2/Ad?, the anisotropy can be increased by reduaing (52)
In the principal frame of the SL, the transport distribution

tensor(Eq. (23] is diagonal with components along the planes. The transport coefficients are obtained from

Egs. (200—(22) in the principal frame and then transformed

> growt( &) into the sample frame. As in Sec. lll, the relaxation time
7(k) is assumed to be a function of energy only. Direct com-
m”dT(S) . . P — .
= putation withrx¢" indicates that the qualitative features dis-
2mh cussed below are independent of the choice.d@uantita-

2 lia _ — tively, the thermopower is an approximately linear function
Afcos H(1-e/A)+(e—A)Ve(2h—e), 8<2A, ¢ 5 fived sample orientation and chemical potentiaind

mA2, e=2A increases by approximately 50% agoes from 0 to 1.5. In
(51 What follows, r=0, d=100 A, m/my=0.021, andA
=57 meV, corresponding to theCl subband in a
along the growth direction and 50-A Hgy 7£Cdy ,:Te/50-A Hg Cd, sTe SL.
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The anisotropy in the resulting effective thermopoBgy  Therefore
[Eq. (13)] and Lorenz numbek g ¢4= Ko/ e T is shown in
Fig. 1. Foru<0, S along the growth and in-plane direc- Taosgao
tions differ by <10%. This near isotropy is expected, since ZT= _ 2 ' (A5)

. - (ko= TooSpalk)) + k|

the carriers determinin8.¢ are near the zone center, where
the effective-mass approximation is good. The anisotropy inFollowing Mahan and Sofo, we introduce dimensionless in-
creases substantially asincreases past/®, a region where tegrals
the bands are appreciably nonparabolic, reaching over 6000
at ©=0.4 eV. From Fig. (b), the anisotropy irLq . is at o e* .
most 30% and goes to zero in the largdimit, approaching n= Jl " dems(x)x » S(X)=AToT(pu+xKT),
the metallic value of €2/3)(kg/e)?. As ZT for this band re

A6
structure is maximal fop~0, the anisotropies B and (A6)
Loes in the relevant parameter range are small. wherer is the Bohr radius. In terms of these moments,
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APPENDIX Where50=e2/hr0 has dimensions of conductivity. Then
We present here a derivation of an upper bound of the 12/
Mahan and Sofo forf} for an anisotropic material. From ZT= — — o (A10)
a=Ao, [see Eq(35)] we infer (al,—al?/1g)a(k))/ag+ 1/a,
Oeff= 0ol (A1) ¢
with =(1— da(k))/ag+B (AL1)
0= A~ Asy AyxPzz— AyzAzx_AXZAzxAyy_AzyAyx. with a=(kg/€)?Too /K, ,
AyyAz z Ay zAzy A szy_ Ay zAzy
(A2) E=131gl,, (A12)
When thek,; dependence in Eq45) is taken into account, - )
we f|nd Sim"a”y and B= 1/61" ZaO: K) /Koao. By the CaUChy-SChwarZ n-
equality, O<¢=<1. The limit as¢ tends to 1 maximizes the
Ky = Kkea( k) (A3)  figure of merit by maximizing the numerator and minimizing

the denominator in EQA11). From Eq.(A4) it may be seen

ith =0)= d ~
with a(x;=0)=a, an that for x,/k.= K /(Kg/€)?Tool,(1—€) sufficiently large,

A A Ay(Az+ k1 ko) = Ay Ay a(k,) tends toA,,, and certainly this condition is met as 1
a( k) = Axx Y (Agyt 11 ke) (Agrt ki 1K)~ AyPy — ¢ tends to zero. Thus &—1 we have that
A, A(Ayyt K1 re) = AgyAyy . (Ad) i 3 < L = Ko_ao_ (A13)
(Ayyt K11 ko) (A Ky Te) = Ay Ay (1-&An/ap+B B K|
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