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Free-carrier and exciton Franz-Keldysh theory for one-dimensional semiconductors
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The optical properties of a one-dimensional semiconductor in the presence of a static electric field applied
along the long axis are calculated. An analytic, nonperturbative expression for the complex free-carrier dielec-
tric constant is obtained in terms of Airy functions. In addition, broadening of the dielectric constant is included
analytically. Analytic expressions for the numerical results of Hughes and CRtigs. Rev. Lett84, 4228
(2000] are presented. The characteristics of the Franz-Keldysh effect, i.e., oscillatory modulation of the
spectra and below-gap absorption, are clearly observed. It is demonstrated that these signatures of the electric
field may be much more pronounced than the corresponding effects in bulk materials. The influence of
electron-hole interaction is subsequently analyzed and exciton eigenstates of an effective Hamiltonian includ-
ing the one-dimensional Coulomb interaction and the electric field are obtained from an expansion in the
free-carrier basis. The exciton Franz-Keldysh effect is compared to the free-carrier result. It is concluded that
field-induced changes in the spectral region below the band gap are greatly suppressed in comparison to the
free-carrier case as a result of the large exciton binding energy. The oscillatory modulation of the spectra above
the band gap is found to be essentially intact, however. In agreement with experiments, the shift of absorption
resonances with electric field is found to behave very differently for discrete resonances below the gap and
continuum resonances.

DOI: 10.1103/PhysRevB.65.085201 PACS nuntder78.67.Lt, 78.20.Jq

[. INTRODUCTION were presented. This highly elegant procedure provides a
clear physical picture based on the temporal dynamics of
Several decades ago, Frarmand KeldysR independently electron-hole wave packets, which are excited by the optical
derived analytic, nonperturbative expressions for the influfield and subsequently propagate in an asymmetric fashion
ence of electrostatic fields on the optical properties of bulkdue to the electrostatic field. Being a numerical procedure,
semiconductors. In these early papers, the field-inducedowever, this method does not provide analytic expressions
change in the absorption coefficient of a simple semiconducfor the optical spectra and, hence, cannot easily be used for
tor near the band edge was considered. Following this workgomparison with various experimental data. In addition, the
Callaway’ and Tharmalingafhobtained closed-form expres- detailed dependence on the different parameters of the model
sions valid at arbitrary optical frequencies in terms of Airyis hard to extract. A semianalytic expression for the field
functions. Aspnes’ extended the earlier work in order to dependence of the imaginary part of the dielectric constant
treat anisotropic effective-mass tensors, nonparabolicity, andias given by Yamamotet all® in the form of a definite
broadening. In addition, he obtained an analytic expressiomtegral. No closed-form expression was obtained, however,
for the real part of the dielectric constant using Kramers-and the real part of the dielectric constant was not consid-
Kronig relations® Experimentally, extensive use of electro- ered. Weiser and Horvathhave presented analytic expres-
absorption and electroreflectance techniques on conjugatesibns for the field-induced changes of the optical spectra.
polymer systemgsee, e.g., Refs. 8,)%as recently led to While their free-carrier expressions yield the resonant part of
renewed interest in the influence of electric fields on thespectra, these authors omitted the nonresonant contributions
optical properties of materials. It has been demonstrated thaind, more seriously, exciton effects were neglected.
electroabsorption spectroscopy is particularly sensitive in The purpose of the present paper is twofold: First, we
these quasi-one-dimensional materials. In addition, the teclwish to provide analytic expressions for the free-carrier
nigues have been successfully applied to inorganic oneFranz-Keldysh effect including both real and imaginary parts
dimensional structures such as metal compl¥@sd porous  of the spectrum as well as broadening and nonresonant con-
silicon quantum wired? tributions. To this end, we consider a one-dimensional semi-
Despite these experimental advances there exists no futionductor in the presence of a strong electrostatic field di-
theoretical analysis of the Franz-Keldysh effect in one-rected along the long axis. A two-band model and the
dimensional organic and inorganic semiconductors. A feweffective-mass approximation are assumed to provide a rea-
papers(see, e.g., Refs. 12, 1Bave treated related cases in sonably accurate description of the semiconductor. In par-
which the electric field is applied perpendicular to the longticular, our framework will apply to simple conjugated poly-
axis. However, a theory for the Franz-Keldysh regime re-mers such atrans-polyacetylene with well-separated bands.
quires a nonperturbative inclusion of an electric field appliedSecond, we wish to apply our analytic framework derived for
along the long axis. In a recent paper describing the Franzhe free-carrier case to the exciton problem. In this manner,
Keldysh regime, Hughes and Cittfhhave calculated the in- excitonic effects are incorporated by solving a simple matrix
duced polarization from a numerical solution of the semicon-equation using the free-carrier solutions as a basis set. The
ductor Bloch equations. Both free-carrier and exciton spectraxciton binding energy in one-dimensional semiconductors is
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greatly enhanced over the bulk value due to quantum corprovided—L<z<L. Outside this interval the wave function

finement of electrons and holes. This effect is already seen imanishes. Herey andEg are the reduced mass and band gap,

two-dimensional quantum wells where the binding energyrespectively. If we introduce the scaled quantities

reaches four times the bulk value in the limit of perfectf=2ueF/#? and (c;nzz,u(En—Eg)/ﬁ2 the normalized

confinement® In one-dimensional semiconductors, however,eigenstates can be expressetf as

the exciton binding energy diverges logarithmically in this

limit, as shown already several decades ago by Loddém. e 16

this sense there is no theoretical upper limit for the binding _ i(FU3,— ¢ §203 _ 2mf )
; - ; - : . en(z) =apAi(f enf ), @n )

energy, but obviously the finite barriers and finite wire width 3(n—=1/4)

of any real material will limit the maximum obtainable 2

value. Still, the binding energy may be enhanced by an order

of magnitude over the bulk material value. Hence, excitonwhere Ai is the first Airy function and the corresponding

effects are indispensable in any qualitatively and quantitaeigenvalues are

tively correct theory of the optical properties of one-

dimensional semiconductors. We apply our quasianalytic o3

technique to calculate both real and imaginary part of the e :<37Tf(n_1/4)) —fL @)

excitonic optical susceptibility. In addition, the shift of ab- n 2 '

sorption maxima with increased field strength is analyzed

and important differences between the discrete and con-

tinuum part of the spectrum are demonstrated. . .
P D used in Ref. 18. We choose the following strategy for the

The outline of the paper is as follows: In the following . . ) ;
section, the free-carrier Franz-Keldysh effect for unbroad-.c""ICl"l"’ltlon of optical constants: As the primary step, the

ened transitions is analyzed. In Sec. lll, these results argnaginary part of the dielectric constastt(w) is calculated

generalized by the inclusion of broadening via the convolu!" the limit of vanishing broadening, i.e., as a sum of delta

tion technique. Then, in Sec. IV, Coulomb effects are intro_functlon terms. Then, the complex dielectric constant includ-

duced and the one-dimensional Hamiltonian for electroni"d Proadening is obtained via the convolution technique.

hole pairs in the presence of an electric field is constructed1€NCe: Fhe f|rs'5, step consists in evaluating the unbroadened
Also, the properties of the lowest exciton state are derive@*Pression foe”(w)

from a variational procedure. In Sec. V, we then present our

calculations for the excitonic optical susceptibility including 272

the effect of the static electric field. Numerical calculations e"(w)= —2—2A|pyc|22 lon(0)[28(Eq—fw), (4)

for moderate and strong fields are presented and the spectra oMo n

with and without electron-hole interaction are compared.

From the spectra, the shift of absorption maxima with fieldwhereeg is the vacuum permittivitym, is the free electron
strength are extracted and the differences between discreteass,A is the cross-sectional area of the one-dimensional
and continuum resonances are discussed. Finally, a summasgmiconductor, angd, is the effective interband momentum

Note that there is an error in the normalization constants

is given in Sec. VL. matrix element, which includes the overlap integral of the
transverse part of electron and hole wave functions.
Il. FREE-CARRIER FRANZ-KELDYSH THEORY Throughout, transverse excitations are neglected, i.e., only

the lowest eigenstates for the transverse directions are con-

The description of charge carriers in the presence of agidered. For later use in the convolution calculation it should
infinitely extended uniform electrostatic field is a compli- be noted that the above expression is valid for positive fre-
cated task because the accompanying potential is unboundegliencies only. If negative frequencies are allowed as well,
In order to handle this problem we follow Ref. 18. In this the combinatiore”(w) —&"(— ), wheree”(w) is given by
approach the separation of the electron-hole paie.—z,is  Eq. (4), should be used. To proceed, we insert Eg8s.and
restricted to an intervat-L<z<L. The potential due to an (3) into the above expression and convert the summation into
electric fieldF is given byeFz e>0 being the charge unit, an integral. This conversion requires that the separation be-
and by restricting the range dof the potential becomes tween adjacent levels,,,—&, is small. However, as seen
bounded by the valueseFL. L is assumed to be suffi- from Eq.(3), the values oh at which a transition is at reso-
ciently large that the electron-hole wave function vanishes ahance with%w are necessarily very large due to the sub-
the repulsive potential en=L (we assumd->0 through- tracted amounfL. Hence, the inverse density of states at
out). In this manner, the allowed eigenstates are determinethrgen values is given by
solely from the boundary condition at=—L and the final
expressions will be shown to be independentLofln the

2¢2 1/3
electron-hole pair picture the relative-motion wave function e —g ~ ﬁ:( 2mf ) — 2§13 (5)
satisfies the Schdinger equation ntloEnT on T\ 3(n—1/4) nto
h? d? i ~1/3 ot ;
1) which decreases as -~ and, hence, justifies the conversion

- = + + = . . . - .
2u dZ2 eFztEq( on(2)=Enen(2) into an integral whem is sufficiently large. In this manner
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, B 2re? ) L B VK 9
€ (M—Wmd (V—w)—m- 9

2u 2u The numeratol’/7 ensures that the limiting behavior of the
X Y, alAid(—enf 23 ?5(%— F(ﬁw—Eg)) line-shape function a¥—0 is a delta functiond(v— w).
" The imaginary part o&(w) is already given in Eq(7) and a

2 re? Kramers-Kronig transformation provides us with the real
= —W|Puc|2 parte’(w). Since an integral over both positive and negative

frequencies is involved, care should be taken that the expres-
2u 2u sione”(w)—&"(— w) is used for the imaginary part. Hence,
X f Ai%(—ef~23) 27 5( s— 27 (ho— Eg)) de, two contributions to the result are obtained. By a simple sign
change in the second term, however, the final expression for
(6) the transformation reads as

where the cancellation betweedf'® and (@s,/an) ' has L = v
been utilized. Because of the delta function, the integral is g'(w)=1+ ;Pf,wg () 22 dv, (10

readily evaluated yielding the result o ] )
wheree” is given by Eq.(7) andP denotes taking the prin-

ciple value. The combined actions of the Lorentzian convo-

0322, 112 E_7 ) ' .
&"(w)= —2;2'“12—|pm|2m2( g w), (7) lution and the Kramers-Kronig transformation can be shown
goMah o Ef A to lead to the following simple transformation.

where we have introduced thHield energy E given by E; 2 (= v

=%2f2/%/(2u). This formula constitutes our simple, closed- er(w)=1+ P fﬁmsn(”) md”- 1D

form expression for the imaginary part of the dielectric con-

stant of a one-dimensional semiconductor in the presence #fhich provides both real and imaginary parts of the broad-

a static longitudinal field. From this result, the absorptionened dielectric constant. In order to evaluate the integral, we

coefficienta(w) measured in experimental electroabsorptionexpand in partial fractions and utilize the relatiterived

studies is readily obtained via the relatiom(w)  from results in Ref. b

=we"(w)/(nc), wheren is the refractive index. In passing L A2

it is noted that, in fact, the integral expression used in Ref. 10 f L__X)dx

can be shown to coincide with the above result using certain J-<X—2Z+1y

relations derived by Aspnes in Ref. 5. . : . . .
It is well knowr):18 tr?at the optical properties of one- = —imsgny)Ai*(=z+iy)+ mAiBi(—z+iy),

dimensional(1D) semiconductors are characterized by the (12

square-root singularity at the band edge. In the present case N A : —
this fact is easily demonstrated in the linfit=0 since With the shorthand notatioAiBi(x) =Ai(x)Bi(x), Bi being

the second Airy function. By summing the various pole con-
tributions, we consequently obtain the result

] 1, Eg—fho
lim =A% —F h(w+il') E;
f—0 Ef f er(w)=1+CF|l——, =, 13
Eq Eq
_ _pE 32 ) ) )
_ O(ho—Egy) E ho—Ey ™ whereC is a material-dependent constant given by
sir'| 5| —¢ 7l ®
mVho—Eg f 232,162 1,12
C=——5m |Pucl® 14
whered(x) is the step function. Thus, the square-root singu- somSES A [Pud 14
larity emerges as the envelope of the spectrum. However, ; o —
rapidly oscillating term with a period proportional to the ap- &ndF is a complexsusceptibility functiorgiven by
plied field modulates the spectrum. Hence, strictly speaking 1 o (lexy o 1-x
the limit f —0 does not exist. This unphysical resultis due to  F(X,y)= y7532 AiBi v +iAi v
our neglect of broadening, however. Naturally, if broadening
is included, the rapid oscillations will be smeared out once 1+ [ 1X (1
the period is much less than the broadening. Hence, we now +AIBI Ty —IAi Ty —2AiBi v [
turn to the influence of broadening on the spectrum. 15
IIl. BROADENING OF THE FREE-CARRIER SPECTRUM The real and imaginary parts of the susceptibility function in

the unbroadened limit~# w/E4 are illustrated in Fig. 1. In
The complex dielectric constaet-(w) including broad-  this figure, a rather large field energy0.1E is used and as
ening can be obtained from the convolution between the una consequence the square-root singularity is severely dis-
broadened quantity(w) and a Lorentzian of width’, torted. The oscillatory component, which is a hallmark of the
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FIG. 1. Imaginary and real parts of the complex susceptibility =~ FIG. 2. Imaginary part of the broadened susceptibility function
functionF, for a one-dimensional semiconductor in the presence of-r for a field energy ofE;=0.1E; and a broadening ofil’
an electric field. The ratio of field enerd to band gafE, is taken ~ =0.03,. For comparison the usual zero-field result is shown as
as 0.1. the dashed line.

Franz-Keldysh effect, is clearly visible. In contrast to thehave been included in the plots. The dielectric spectra in the
bulk Franz-Keldysh effect the modulation of the spectrum Presence of an electric field are seen to oscillate around the
due to the oscillations is 100% in the sense that the imagizero-field value for optical frequencies above the band gap.
nary part goes to zero at the valleys. As discussed above, thizelow the band gap, field-induced absorption is clearly vis-
result should be interpreted with care since it requires théble even in the presence of broadening. Numerically, the
field energy to be much larger than the broadening. Otherdeneral expression E¢L5) is found to agree perfectly with
wise, broadening will smear out the oscillations and therebyed. (17) if Et<#I', i.e., when the effects of the field are
reduce the modulations. Another hallmark is the appearanceompletely dominated by spectral broadening. Wherand
of absorption below the band gap, which can be interpreted!’ are comparable, as in Figs. 2 and 3, the characteristic
as a result of field-induced tunneling across the band gagscillations are still visible. However, as a consequence of
This effect is also clearly visible in Fig. 1 and from an analy- broadening the modulation is somewhat reduced. Assuming
sis of the asymptotic behavior of the Airy function it can be material parameters given ;=2 eV andu=0.1m, (see
shown to decay approximately exponentially as below), the parameters used in Figs. 2 and 3 correspond to a
broadening of Al'=60 meV and an applied field oF
4 ~15mV/A. Itis noted that our results in Fig. 2 are in good
8,/(w)o<ex;< 3 , hw<Eg. (16 agreement with the numerical results shown in Fig. 2 of Ref.
14 for the case of vanishing excitonic effects. This confirms

This result is perfectly analogous to the bulk ca8ét this theBc?rrectneds_s ofr:hef present analytilc t_heory. ish

point we pause to notice that the expressions proposed in efore ending the free-carrier analysis, we wish to com-

Ref. 15 contain only the first and second of the five terms irfPare our results for the broadened spectra to the usual pulk
Eq. (15). This amounts to retaining only the resonant part ofeXpressions for the Franz-Keldysh effect. When broadening

Eg— fiw\ 32
E¢

the expression whereas our result includes the nonresona'r?t'ncmded’ the results of Asprfesead
part as well. While the imaginary part of the spectrum at and
above the band gap may be approximated by the resonar
contribution alone, a considerable error is found for the real
part, as the nonresonant terms are comparable to the resonag
ones. If only the field-induced¢hangeof the spectrum is
considered, however, the error is approximately canceled 5§
Hence, the full expression should be used for the dielectric™”
constant itself, but the field-induced change may be approxi-=
mated by the resonant contribution alone.

In Figs. 2 and 3, we have plotted imaginary and real parts
of this susceptibility function for a broadening dfl’
=0.0%,. For comparison, the results of the zero-field ex-

pression for the dielectric constant 03 . ‘ . . . . . . .
0.5 1.0 15 2.0 25 3.0

c 1 X 1 , . ha)/Eg
2mx* Vi—=Xx  1+Xx FIG. 3. Same as Fig. 2 but for the real part.
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e
=N

. - . - freedom is affected. This physical picture and the entire

analysis so far ignores the role of the Coulomb interaction,

however. Obviously, the attractive electron-hole interaction

will counteract the field-induced charge separation and

thereby increases the overlap. This effect is expected to be
particularly pronounced in one-dimensional materials as a
3-D 1 result of the increased exciton binding energy. Thus, a com-
petition between field-induced exciton dissociation and at-

tractive Coulomb forces determines the properties. The
analysis of this competition is the subject of the remaining

part of this paper.

Imaginary parts
1-D E/E=0.1, iI'/E,= 0.03

e
~
T
L

Susceptibility function F
=)

05 10 L5 20 25 30 IV. ONE-DIMENSIONAL COULOMB EFFECT
fiw/ Eg

We now include the Coulomb interaction and present the
FIG. 4. Comparison between the Frahg“{ysh effect in one- €effective one-dimensional Hamiltonian from which electron-
dimensional and three-dimensional semiconductors. Notice the indole states are derived. For three- and two-dimensional ma-
creased contrast of the oscillations in the one-dimensional case. terials the role of electron-hole interactions in the Franz-

Keldysh effect was studied several decades 'dg®.The

122 312 (w+il) E one-dimensional case requires extra care, however, due to
(3D) 2=(3D) ( ) Eq . - . .
er (w)=1+ pp—— Ip.cl°F E E. the singular behavior of the one-dimensional Coulomb
0™ =g 9 9 interaction!’ Since we only consider long-axis fields the

(18) electric fielq does not influenge the transverse part of the
wave function. The Coulomb interaction, however, couples
with the transverse and longitudinal motion. To circumvent this
12 (41 1 1 com.plicqtion, we apply the technique u;ed previo_usly in the
F(30)(x.y) = 7'ry2 {X—[AiBi(—X +iAi2<—X) particle-in-a-box model of _one-dlm_ensmnal excittnss
' X y y y well as by Hughes and Citril{. In this approach, the con-
finement is assumed to be sufficiently strong that the trans-
verse part of the wave function is unaffected by the Coulomb
interaction potential. Accordingly, the longitudinal part of the
wave function is calculated from an effective one-
dimensional Coulomb potential obtained by averaging the
bare three-dimensional potential over the transverse dimen-
sions weighted by the transverse electron-hole probability
- - density. An additional complication arises from the fact that
y Coulomb screening in one-dimensional semiconductors is
2 1 1 generally anisotropic, in particular in conjugated polymers.
+ —AiBi(—) —2Ai’Bi’(—) J (19 In the particle-in-a-box mod®&! this fact was taken into ac-
count by simply using the long-axis dielectric constant rather
Here, a prime denotes the derivative with respect to the athan the three-dimensional average. Tadshocprocedure is
gument. A direct Comparison between Susceptib”ity func-hot correct, however. In fact, if the Iong axis is taken as the
tions for the three- and one-dimensional cases is shown i& axis so that the dielectric tensor is of the foré
Fig. 4 using identical parameters. The characteristic square= diag(ey,&x.e,) the appropriate dielectric constant for the
root and inverse square-root behaviors are clearly distinlong-range tail of the interaction is.. This follows from the
guished. It is noted, however, that the modification of thesolution of Poisson’s equation in a uniaxial anisotropic
spectrum is much more pronounced in the one-dimensionanaterial®® which yields a Coulomb interaction between two
case. This, obviously, is a consequence of the larger oscillgoint charges of magnitude e and —e
tory modulation in the one-dimensional case. The compari-
son demonstrates that an increased contrast is observed even
in the presence of broadening. Thus, in agreement with ex- V3p(X,Y,2)=— 5 —
periments, one-dimensional systems are found to be highly Ameg\ege X2+ egey?+erz
sensitive to the perturbing field. Physically, the increased
sensitivity of electrons in one-dimensional systems to thelhus, whenever the long-axis separatignis much larger
presence of long-axis fields is a result of the reduced degredban the transverse separatigr?+y? the screening is de-
of freedom. Hence, in a one-dimensional system the eledermined bye, rather thare,. On the other hand, the lowest
trons are forced to move along the field and the motion isexcitons are sharply localized nez+0 and, hence, the ef-
severely affected. In contrast, the motion of electrons in bulKective screening for these states is a combinatios,cdnd
materials is less perturbed as only one out of three degrees of. From a weighted transverse average of the bare three-

o [1=x\ 1—x
+A|’B|’(—)+|A|’2(—
y y

[ 1+xy 0 [1+X
A|B|(—> —|A|2(—
y y

1+x

X+1

I S b A R
+A|’B|’(T)—|A|’2

eZ

(20
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dimensional potential above we now obtain the effective

1
one-dimensional Coulomb interaction as bex(2) = Texp(— |z|/N), (29
A
VlD(z)=f f f f V3p(Xe=—Xn,Ye™ Yn»2) where \ is a variational parameter. This simple form may
TS TS appear surprising as the asymptotic solutions to(Ed). be-
X | 0e(Xe Vo) 12 on(Xn ) |20 %edyed X d i have as|z|exp(—|z//\) for large |2. However, the ground-

state solution is sufficiently localized that the behavior at
(21 large|Z is of minor importance. Using E428) and choosing
where go(Xe,Ye) and on(Xpn,yn) are the transverse electron Ed. (25) for the Coulomb function, we obtain the following
and hole wave functions, respectively. In order to simplify €xpression for the energy
the notation, we introduce the Coulomb functiGfz) via 52 oy
0

4+
w e (= (= [@e(Xe Yo 2l @n(Xn,Yi) |2 9" 2uN2 A
C(z)=

—=\(Xe=Xn)*+ (Ye—Yn)*+2° Denoting the\ value, which minimizes the energy, by,
the ground-state energy is given by the expression

A
1+ —

In 77

. (29

Ee—=E

X dx.dydx,dyy . (22
In this manner, the one-dimensional interaction reads as h? 2Vq
Eex: Eg— mg— m (30)
Vip(2) = —VoC(zveyxle,), (23
where With the parametersVo=1eVA, 7=1.0A, and u
=0.1m,, which will be used as a typical parameters in the
e? following section, the binding enerdy,=E.—E, and de-
Vo=——. (24 cay length are-0.15 eV and 23 A, respectively. Experimen-
Ameg\exe, tally, the binding energy in conjugated polymers has been a

Jpatter of controversy. For the well-characterized material

It is seen that the anisotropic screening leads to a scaling : .
poly(para-phenylene vinylenevalues of|E,| ranging from

the z dependence in Eq23). For simplicity, however, we .
will ignore this scaling and set,=s,=¢. The expression ~0-1 eV (Ref. 23 to 0.2 eV(Ref. 24 and even higher have

for the Coulomb function obviously depends on the modeP€€n reported. Hence, the value 0.15 eV taken here is as-
used for the transverse confinement. Following Ref. 21, Wec,umed to be roughly representative of this class of materials.

assume infinite barrier confinement for which Also, the band gap of these materials typically lies in the
rangeEg=2-3 eV and we will takeE,=2 eV throughout.

1—exp—|z|/n) The reduced mass is probably a conservative estimate and

C(z)~ T (25 may be lower in some materials. Note that a lower reduced
mass leads to a larger influence of the electric field due to the
wheren~a/4.758 86 a being the width of the potential well. scaling of the field energi;= (2eF)?%(2u)Y3. The u 13
It may be noticed that, if Gaussian wave functions of thedependence is rather weak, however.
form ¢(x) = (2/m)Y*exp(—x?/77)/n"? are assumed as in Ref.  We now include the electric field applied along the posi-
14, the Coulomb function becomes tive z direction. The field couples to the electron-hole dipole
and leads to a modified Schinger equation given by
o o 1=@(|2) )]
C@)=m2expZlnt)—— ——. (@9 W2 o
——->teFz—V,C(z2)+E;—E z)=0.

where® is the error function. The behavior of the two Cou- 2p d7? 0C(2) By~ Beyf el 2
lomb functions Eqs(25) and (26) is qualitatively similar in (31)
that both choices are finite at the origirrO and approach No analytic solutions to this equation have been found.
1/|z| as|z|—= or —0. Hence, an alternative strategy has to be followed. The pro-

We now turn to the calculation of eigenstates for the ex-cedure is based on an expansion of the exciton states in a
citon Hamiltonian. Before analyZing the influence of the basis formed by the solutions to the free-carrier Sdhnfger
electric field we briefly discuss the eigenstates for the unperequation including the electric field given by Ed). In the

turbed e|eCtI’0n-h0|e pail’. For an |nf|n|te One-dimensionalcpn basiS, the matrix elements of the full Hamiltonian are
semiconductor the appropriate Sctirger equation reads as given by

2 42

— ;L_ME_VOC(Z)"'EQ_Eex bex(2)=0. (27 Hnm=Endnm= Vo{@n|C(2)| o). (32)
Unfortunately, the matrix elements of the Coulomb function

The eigenvaluek,, and eigenfunctiong,, cannot be found cannot be evaluated analytically except in the case of ex-

analytically but an excellent approximation to the groundtremely strongly binding potentials where

state, which is by far the most important one for the optical

properties, is provided by the ansatz (onlC(2)|emy=—2[ y+In(f35) 10n(0) om(0), (33

085201-6



FREE-CARRIER AND EXCITON FRANZ-KELDYSH . .. PHYSICAL REVIEW B5 085201

where y=0.5772... is Euler’s constant. In the general case, 4 ' . - . ' . - -
we evaluate the matrix elements numerically using Gaussiar
guadrature with at least 1000 points in the intervdl <z
<L. Note that an extremely accurate numerical procedure i
required since the integrand is highly oscillatory and the re-
gion aroundz=0 must be adequately sampled. The Hamil-
tonian matrix is diagonalized numerically and from the
eigenvectors exciton states of the form

With e-h interaction

10N

3r - - - - Without e-h interaction R

tn

Susceptibility funct

G

¢ex<z>=; Cnn(2) (34)

are formed. In turn, these states and the corresponding eiger
values provide the information needed to calculate the exci- :
ton Franz-Keldysh effect in the following section. m‘)/Eg

08 0.9 1.0 1.1 12 13

FIG. 5. lllustration of the influence of electron-hole interaction
on the zero-field optical properties. The parameter valvgs

In the present section, the optical properties of the one=1eVA, »=1.0A, andu=0.1m, are applied and correspond to
dimensional semiconductor including electron-hole interacan exciton binding energy of approximatety0.075 .
tions are calculated. No analytic expression for the spectrum ) )
can be derived in this case. Thus, we calculate directly th@f this magnitude is reasonable for well-ordered samples at
normalized complex susceptibility functidf(w) including relatively low temperatures. The quantities describing the

V. EXCITON FRANZ-KELDYSH EFFECT

broadening from the expression Coulomb interaction are taken a¥,/n=1eV and %
=1.0 A. For a vanishingly small electric field, the imaginary
ﬁES/Z | pex(0)|? part of Eq.(35) yields the spectra shown in Fig. 5 for the
F(w)= (35 cases with and without electron-hole interaction. The free-

172 2 ; '

(20) & B[ Eq (@ +iT)7] carrier spectrum is characterized by the broadened square-
As described in the preceding section, the exciton states af€ot singularity at the band edge. In comparison, the exciton
derived under the restriction that the electron-hole separatiofPectrum is clearly red shifted and the fundamental peak is
is limited to the interval- L<z<L. For a particular value of much more intense. The maximum of this spectrum is lo-
L, the free-carrier energy spectrum is given by B). For ~ cated atiw~0.93, in accordance with the exciton binding
the optical properties in the neighborhood of the band edg&nergy of —0.15 eV. In addition, the exciton line shape is
only a small part of the spectrum is needed, however. Th&uch more symmetric than the free-carrier curve. Thus, the
dominant contributions are those for whieh~0 corre- inclusion of electron-hole interaction leads to a complete re-
sponding to excitation energies close Ey. Thus, for a arrangement of the spectrum and the role of excitons cer-

given L the relevant part of the spectrum is located around@inly cannot be ignored. o _
the quantum numbeX for which We now include the presence of an electric field and in-

vestigate the role of electron-hole interaction on the optical
2 1o properties in this case. The results shown in Figs. 6 and 7 are
3, (L7 (36 obtained using field energies & =0.0%, and E;=0.1E,

respectively. Note that the exciton binding enekgy—Eg is
Hence, upon restricting the size of the basis set to 100 eleapproximately—0.07%,. Therefore, the results shown in
ments we have found that by retaining the range[N the figures correspond to cases WiEh<|E,—Eg4| and Es
—20N+79] the relevant exciton states are adequately de=|E,—E,|, respectively. The upper and lower panels in
scribed. The separation between energy lexdisdecreases these figures illustrate the imaginary and real parts of the
approximately as 3 for large values of. as shown by Eq. normalized susceptibility. It is clearly seen that the trends in
(5). The magnitude of should thus be large enough that the the zero-field caséFig. 5) survive in the case of a finite field.
level separation is much less than the level broadening, i.ein fact, the red shift and magnification of the fundamental
AE<#TI'. On the other hand, the range of levels, which formpeak is practically as pronounced in the case wih
the basis set, becomes increasingly narrow &sincreased. =0.05E, (Fig. 6) as in theE;=0 case. For the larger field in
Consequently, for very large values lofonly excitons very  Fig. 7, only the red shift remains intact and the magnification
close to the band edge are correctly described. It follows thas somewhat reduced. The influence of electron-hole interac-
a compromise should be used and in practice values arounibns on the hallmarks of the Franz-Keldysh effect can be
L=3500 A are found to be satisfactory. deduced from a comparison of free carrier and exciton spec-

Before examining the effect of the electric field, we look tra in Figs. 6 and 7. As demonstrated in the first part of this

at the influence of electron-hole interaction on the zero-fielchaper, two significant effects of the electric field are noticed
optical properties of the semiconductor. As explained abovein the free-carrier case, viz., the presence of increased ab-
the band gap is taken &,=2 eV, the reduced mass as  sorption below the band gap and the appearance of an oscil-
=0.1my and the broadening dsl'=0.0&,. A broadening latory modulation of the spectra above the gap. When

SNZO = N=int
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4 2.0 T
IMAGINARY PART E =
o —— With e-h interaction '_‘bo 1 frE=00l
3
- - - - Without e-h interaction ILE‘ oil
E/E =005 )
51 C) @ 16 | E/E=0022]
= [
.2 = o
1t o £/E=003%4
g 3 1 ‘
“; =1 ol
z 0 < 12F 08 10 1z 14 16 7
= = Hw /E
B8 Qo w /B,
= ol REAL PART 8
% ‘With e-h interaction m
a - - - - Without e-h interaction u u L L u
m= 08 1 n 1 n 1 n 1 1
0.01 0.02 0.03 0.04 0.05 0.06
Field energy £ ./ E,
FIG. 8. Shift of absorption resonances with field enekgy

0.50 0.75 1.00 1.25 1.50 1.75 2.00 o« (field strengthj’® using parameters identical to those in Fig. 5.
‘iia)/E‘g Notice the different behavior below and above the band gap. The
inset shows the frequency dependence of the imaginary part of the
FIG. 6. Real and imaginary parts of the susceptibility function susceptibility(on a log scalgfor three different values of the field
calculated with(solid lineg and without(dashed lineselectron-  energy.
hole interaction. The value of the field energyEs=0.05E and the

remaining parameters are identical to those in Fig. 5. spectral region below the band gap will be greatly sup-

pressed compared to the free-carrier result. The characteristic

: L : oscillations in the continuum above the band gap are clearly
electron- hole interaction is taken into account, these fe"’ltur‘%'fisible both with and without electron-hole interaction. Their

are clearly less pronounceo_l. In partigglar, the ;pectral r.egiogmplitude in the former case is slightly reduced, however. In
below the fundamental exciton transition remains practically, ddition, the oscillations are stretched compared to the free-

unchanged by the electric field. The main effect is a Sma."@arrier case. This is because the Coulomb interaction tends to

Starkfsglft, V\éh'(;h.tv.v'” be d'ticﬁﬁeq l:;elovx. Frfotr;: afco(;nparl-red shift the lower transitions and thereby enlarges the oscil-
son of FIgs. 5—F1LIS seen that the intensity of Ine fundameny, ;. , period. These features are observed in both real and
tal exciton peak is slightly reduced &% =0.05E4 and ap- imaginary parts of the spectra

proximately reduced by 50% aE=0.1E,. Th'S. IS a Experimentally, the excitonic Franz-Keldysh effect in a
consequence of the reduced electron-hole overlap in the ele8-n

tric field, which acts to increase to electron-hole separation e-dimensional semiconductor has been observed most
' ) o e learly in polydi len lyméersby Horvathet al. Th
On the other hand, if the electric field is too weak to over—C early in polydiacetylene poly by Horvathet a ©

, .trends of the measured electroabsorption spectra are qualita-
come the strong Coulomb attraction of the electron-hole palrtively very similar to the present theoretical results. Thus,
Helow the band gap the experimental spectrum displays dis-
crete exciton lines and their vibronic replicas. In the presence
of the electric field, the only discernable modification of
these transitions is a small Stark red shift, which simply dis-

that whenever the field enerdy; is much less than the ex-
citon binding energy, the field-induced modification of the

2.5 , ‘ ‘ ' - places the exciton line by a small amount. Above the band
20k MAGINARY PART | | gap, however, the Franz-Keldysh effect is clearly visible.

e menction Hence, in the continuum part of the spectrum a number of
L57 E/E-01 1 distinct oscillations appear and, furthermore, the oscillatory

modulation shifts with the magnitude of the electric field. In
order to compare with the Franz-Keldysh effect, Horvath
et al. have plotted the shift of the oscillatory modulation with
the electric field, confirming the predictdt?’® dependence.

1.0¢
0.5}

Susceptibility function

(1)'27 ——— ] In Fig. 8, we have used the present theory to plot the calcu-
' —— With e-h interaction lated shift of the absorption maxima as a function of the field
Lo 77T Withouteh imersction | 1 energyE¢=%2f?%(2u) normalized by the band-gap energy.
0.5t — It is readily seen that the field dependence is in qualitative
0.0l agreement with the experimental results. The lowest curve
05l corresponding to the fundamental exciton transition shows
' practically no variation with the electric field. In fact, there is
0.50 075 1.00 125 150 175 2.00 a small negative shift due to the Stark effect, which is hardly
Tiw/E, noticeable in the figure. For the resonances in the continuum,
on the other hand, there is a distinct dependence on the field
FIG. 7. Same as Fig. 6 but for a field energyEyf=0.1E. energy. The slope is slightly sublinear due to the Coulomb
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interaction, which adds a small red shift to the lower part ofhas a much larger contrast than the corresponding three-
the continuum transitions. To a high degree of accuracydimensional spectrum, even in the presence of broadening.
however, the shift is seen to vary linearly wi&”. The inset The exciton Franz-Keldysh effect is tackled by expanding
shows the calculated specti@n a log scalgfor three values exciton states in the free-carrier basis. Real and imaginary
of the field energy. Again, the distinctly different behavior of parts of the optical susceptibility are calculated and results
discrete and continuum resonances is noticed. We concludeith and without electron-hole interaction are compared.
from the agreement between experiment and theory that th&/hen electron-hole interaction is included the fundamental
present model is able to account for several aspects of thexciton line below the gap completely rearranges the spec-
exciton Franz-Keldysh effect in one-dimensional semicontrum. Due to the large exciton binding energy this spectral
ductors. region is only weakly susceptible to any external perturba-
tion. Thus, at low or moderate field strength the dominant
VI. SUMMARY effect of the electric field is the Stark Shift, which simply red
. ) _shifts the exciton line rigidly. In the continuum above the
In the present paper, a detailed analysis of the free carrigjap, however, the characteristic oscillatory modulation pre-
and exciton Franz-Keldysh effect in one-dimensional semiyjis. The amplitude of the oscillations is comparable to the
conductors has been presented. A two-band effective-magge-carrier case and a slight stretching of the period is ob-
model is assumed for the electronic system. In the freeseryed. By plotting the shift of absorption maxima with field
carrier case, we have derived an analytic, nonperturbativenergy the distinctly different behavior of discrete exciton
expression for _the influence of a static elect.ric field on thgjnes and continuum resonances is highlighted. In agreement
optical properties. Hence, our result constitutes the oneyjith experimental electroabsorption spectra, the small Stark
dimensional analog of the classic bulk Franz-Keldysh effectyaq shift of the discrete lines is contrasted by a blue shift

A simple closed-form formula for the complex dielectric yarying approximately as (field strengtf)of the continuum
constant including broadening has been obtained in terms ¢ksonances.

Airy functions. It is found that the electric field severely
distorts the characteristic square-root singularity at the band
edge. In addition, the hallmarks of the Franz-Keldysh effect,
i.e., an oscillatory modulation of the spectra and the appear-
ance of absorption below the band gap, are clearly visible. It Financial support from the Danish Technical Science
is predicted that the field-induced modulations may be muct€ouncil STVF, talent Grant No. 56-00-0290 is gratefully ac-
more pronounced for a one-dimensional semiconductor thaknowledged. The authors wish to thank J.-W. van der Horst
for a bulk material. As an example, a comparison shows thafor helpful comments concerning the correct implementation
the oscillatory modulation of the one-dimensional spectrunof anisotropic screening.
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