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Free-carrier and exciton Franz-Keldysh theory for one-dimensional semiconductors
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The optical properties of a one-dimensional semiconductor in the presence of a static electric field applied
along the long axis are calculated. An analytic, nonperturbative expression for the complex free-carrier dielec-
tric constant is obtained in terms of Airy functions. In addition, broadening of the dielectric constant is included
analytically. Analytic expressions for the numerical results of Hughes and Citrin@Phys. Rev. Lett.84, 4228
~2000!# are presented. The characteristics of the Franz-Keldysh effect, i.e., oscillatory modulation of the
spectra and below-gap absorption, are clearly observed. It is demonstrated that these signatures of the electric
field may be much more pronounced than the corresponding effects in bulk materials. The influence of
electron-hole interaction is subsequently analyzed and exciton eigenstates of an effective Hamiltonian includ-
ing the one-dimensional Coulomb interaction and the electric field are obtained from an expansion in the
free-carrier basis. The exciton Franz-Keldysh effect is compared to the free-carrier result. It is concluded that
field-induced changes in the spectral region below the band gap are greatly suppressed in comparison to the
free-carrier case as a result of the large exciton binding energy. The oscillatory modulation of the spectra above
the band gap is found to be essentially intact, however. In agreement with experiments, the shift of absorption
resonances with electric field is found to behave very differently for discrete resonances below the gap and
continuum resonances.

DOI: 10.1103/PhysRevB.65.085201 PACS number~s!: 78.67.Lt, 78.20.Jq
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I. INTRODUCTION

Several decades ago, Franz1 and Keldysh2 independently
derived analytic, nonperturbative expressions for the in
ence of electrostatic fields on the optical properties of b
semiconductors. In these early papers, the field-indu
change in the absorption coefficient of a simple semicond
tor near the band edge was considered. Following this w
Callaway3 and Tharmalingam4 obtained closed-form expres
sions valid at arbitrary optical frequencies in terms of A
functions. Aspnes5–7 extended the earlier work in order t
treat anisotropic effective-mass tensors, nonparabolicity,
broadening. In addition, he obtained an analytic express
for the real part of the dielectric constant using Krame
Kronig relations.6 Experimentally, extensive use of electr
absorption and electroreflectance techniques on conjug
polymer systems~see, e.g., Refs. 8, 9! has recently led to
renewed interest in the influence of electric fields on
optical properties of materials. It has been demonstrated
electroabsorption spectroscopy is particularly sensitive
these quasi-one-dimensional materials. In addition, the te
niques have been successfully applied to inorganic o
dimensional structures such as metal complexes10 and porous
silicon quantum wires.11

Despite these experimental advances there exists no
theoretical analysis of the Franz-Keldysh effect in on
dimensional organic and inorganic semiconductors. A f
papers~see, e.g., Refs. 12, 13! have treated related cases
which the electric field is applied perpendicular to the lo
axis. However, a theory for the Franz-Keldysh regime
quires a nonperturbative inclusion of an electric field appl
along the long axis. In a recent paper describing the Fra
Keldysh regime, Hughes and Citrin14 have calculated the in
duced polarization from a numerical solution of the semic
ductor Bloch equations. Both free-carrier and exciton spe
0163-1829/2002/65~8!/085201~9!/$20.00 65 0852
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were presented. This highly elegant procedure provide
clear physical picture based on the temporal dynamics
electron-hole wave packets, which are excited by the opt
field and subsequently propagate in an asymmetric fash
due to the electrostatic field. Being a numerical procedu
however, this method does not provide analytic expressi
for the optical spectra and, hence, cannot easily be used
comparison with various experimental data. In addition,
detailed dependence on the different parameters of the m
is hard to extract. A semianalytic expression for the fie
dependence of the imaginary part of the dielectric cons
was given by Yamamotoet al.10 in the form of a definite
integral. No closed-form expression was obtained, howe
and the real part of the dielectric constant was not con
ered. Weiser and Horvath15 have presented analytic expre
sions for the field-induced changes of the optical spec
While their free-carrier expressions yield the resonant par
spectra, these authors omitted the nonresonant contribu
and, more seriously, exciton effects were neglected.

The purpose of the present paper is twofold: First,
wish to provide analytic expressions for the free-carr
Franz-Keldysh effect including both real and imaginary pa
of the spectrum as well as broadening and nonresonant
tributions. To this end, we consider a one-dimensional se
conductor in the presence of a strong electrostatic field
rected along the long axis. A two-band model and t
effective-mass approximation are assumed to provide a
sonably accurate description of the semiconductor. In p
ticular, our framework will apply to simple conjugated poly
mers such astrans-polyacetylene with well-separated band
Second, we wish to apply our analytic framework derived
the free-carrier case to the exciton problem. In this man
excitonic effects are incorporated by solving a simple ma
equation using the free-carrier solutions as a basis set.
exciton binding energy in one-dimensional semiconductor
©2002 The American Physical Society01-1
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THOMAS G. PEDERSEN AND THOMAS B. LYNGE PHYSICAL REVIEW B65 085201
greatly enhanced over the bulk value due to quantum c
finement of electrons and holes. This effect is already see
two-dimensional quantum wells where the binding ene
reaches four times the bulk value in the limit of perfe
confinement.16 In one-dimensional semiconductors, howev
the exciton binding energy diverges logarithmically in th
limit, as shown already several decades ago by Loudon.17 In
this sense there is no theoretical upper limit for the bind
energy, but obviously the finite barriers and finite wire wid
of any real material will limit the maximum obtainabl
value. Still, the binding energy may be enhanced by an o
of magnitude over the bulk material value. Hence, exci
effects are indispensable in any qualitatively and quant
tively correct theory of the optical properties of on
dimensional semiconductors. We apply our quasianal
technique to calculate both real and imaginary part of
excitonic optical susceptibility. In addition, the shift of a
sorption maxima with increased field strength is analyz
and important differences between the discrete and c
tinuum part of the spectrum are demonstrated.

The outline of the paper is as follows: In the followin
section, the free-carrier Franz-Keldysh effect for unbro
ened transitions is analyzed. In Sec. III, these results
generalized by the inclusion of broadening via the convo
tion technique. Then, in Sec. IV, Coulomb effects are int
duced and the one-dimensional Hamiltonian for electr
hole pairs in the presence of an electric field is construc
Also, the properties of the lowest exciton state are deri
from a variational procedure. In Sec. V, we then present
calculations for the excitonic optical susceptibility includin
the effect of the static electric field. Numerical calculatio
for moderate and strong fields are presented and the sp
with and without electron-hole interaction are compar
From the spectra, the shift of absorption maxima with fie
strength are extracted and the differences between dis
and continuum resonances are discussed. Finally, a sum
is given in Sec. VI.

II. FREE-CARRIER FRANZ-KELDYSH THEORY

The description of charge carriers in the presence of
infinitely extended uniform electrostatic field is a comp
cated task because the accompanying potential is unboun
In order to handle this problem we follow Ref. 18. In th
approach the separation of the electron-hole pairz5ze2zh is
restricted to an interval2L,z,L. The potential due to an
electric fieldF is given byeFz, e.0 being the charge unit
and by restricting the range ofz the potential become
bounded by the values6eFL. L is assumed to be suffi
ciently large that the electron-hole wave function vanishe
the repulsive potential endz5L ~we assumeF.0 through-
out!. In this manner, the allowed eigenstates are determ
solely from the boundary condition atz52L and the final
expressions will be shown to be independent ofL. In the
electron-hole pair picture the relative-motion wave functi
satisfies the Schro¨dinger equation

H 2
h2

2m

d2

dz2 1eFz1EgJ wn~z!5Enwn~z! ~1!
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provided2L,z,L. Outside this interval the wave functio
vanishes. Here,m andEg are the reduced mass and band g
respectively. If we introduce the scaled quantiti
f 52meF/\2 and «n52m(En2Eg)/\2 the normalized
eigenstates can be expressed as18

wn~z!5anAi~ f 1/3z2«nf 22/3!, an5S 2p2f

3~n21/4! D
1/6

,

~2!

where Ai is the first Airy function and the correspondin
eigenvalues are

«n5S 3p f ~n21/4!

2 D 2/3

2 f L. ~3!

Note that there is an error in the normalization consta
used in Ref. 18. We choose the following strategy for t
calculation of optical constants: As the primary step, t
imaginary part of the dielectric constant«9(v) is calculated
in the limit of vanishing broadening, i.e., as a sum of de
function terms. Then, the complex dielectric constant inclu
ing broadening is obtained via the convolution techniq
Hence, the first step consists in evaluating the unbroade
expression for«9(v)

«9~v!5
2pe2

«0m0
2v2A

upncu2(
n

uwn~0!u2d~En2\v!, ~4!

where«0 is the vacuum permittivity,m0 is the free electron
mass,A is the cross-sectional area of the one-dimensio
semiconductor, andpnc is the effective interband momentum
matrix element, which includes the overlap integral of t
transverse part of electron and hole wave functio
Throughout, transverse excitations are neglected, i.e., o
the lowest eigenstates for the transverse directions are
sidered. For later use in the convolution calculation it sho
be noted that the above expression is valid for positive
quencies only. If negative frequencies are allowed as w
the combination«9(v)2«9(2v), where«9(v) is given by
Eq. ~4!, should be used. To proceed, we insert Eqs.~2! and
~3! into the above expression and convert the summation
an integral. This conversion requires that the separation
tween adjacent levels«n112«n is small. However, as see
from Eq. ~3!, the values ofn at which a transition is at reso
nance with\v are necessarily very large due to the su
tracted amountfL. Hence, the inverse density of states
largen values is given by

«n112«n'
]«n

]n
5S 2p2f 2

3~n21/4! D
1/3

5an
2f 1/3, ~5!

which decreases asn21/3 and, hence, justifies the conversio
into an integral whenn is sufficiently large. In this manner
1-2
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FREE-CARRIER AND EXCITON FRANZ-KELDYSH . . . PHYSICAL REVIEW B65 085201
«9~v!5
2pe2

«0m0
2v2A

upncu2

3(
n

an
2Ai2~2«nf 22/3!

2u

\2dS «n2
2m

\2 ~\v2Eg! D
5

2pe2

«0m0
2v2A f1/3 upncu2

3E Ai2~2« f 22/3!
2m

\2 dS «2
2m

\2 ~\v2Eg! Dd«,

~6!

where the cancellation betweenan
2f 1/3 and (]«n /]n)21 has

been utilized. Because of the delta function, the integra
readily evaluated yielding the result

«9~v!5
23/2pe2m1/2

«0m0
2\v2Ef

1/2A
upncu2Ai2S Eg2\v

Ef
D , ~7!

where we have introduced thefield energy Ef given by Ef
5\2f 2/3/(2m). This formula constitutes our simple, close
form expression for the imaginary part of the dielectric co
stant of a one-dimensional semiconductor in the presenc
a static longitudinal field. From this result, the absorpti
coefficienta~v! measured in experimental electroabsorpt
studies is readily obtained via the relationa(v)
5v«9(v)/(nc), wheren is the refractive index. In passin
it is noted that, in fact, the integral expression used in Ref
can be shown to coincide with the above result using cer
relations derived by Aspnes in Ref. 5.

It is well known18 that the optical properties of one
dimensional~1D! semiconductors are characterized by t
square-root singularity at the band edge. In the present c
this fact is easily demonstrated in the limitf→0 since

lim
f→0

1

Ef
1/2Ai2S Eg2\v

Ef
D

5
u~\v2Eg!

pA\v2Eg

sin2F2

3 S \v2Eg

Ef
D 3/2

1
p

4 G , ~8!

whereu(x) is the step function. Thus, the square-root sing
larity emerges as the envelope of the spectrum. Howeve
rapidly oscillating term with a period proportional to the a
plied field modulates the spectrum. Hence, strictly speak
the limit f→0 does not exist. This unphysical result is due
our neglect of broadening, however. Naturally, if broaden
is included, the rapid oscillations will be smeared out on
the period is much less than the broadening. Hence, we
turn to the influence of broadening on the spectrum.

III. BROADENING OF THE FREE-CARRIER SPECTRUM

The complex dielectric constant«G(v) including broad-
ening can be obtained from the convolution between the
broadened quantity«~v! and a Lorentzian of widthG,
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L~n2v!5
G/p

~n2v!21G2 . ~9!

The numeratorG/p ensures that the limiting behavior of th
line-shape function asG→0 is a delta functiond(n2v).
The imaginary part of«~v! is already given in Eq.~7! and a
Kramers-Kronig transformation provides us with the re
part«8(v). Since an integral over both positive and negat
frequencies is involved, care should be taken that the exp
sion«9(v)2«9(2v) is used for the imaginary part. Henc
two contributions to the result are obtained. By a simple s
change in the second term, however, the final expression
the transformation reads as

«8~v!511
2

p
PE

2`

`

«9~n!
n

n22v2 dn, ~10!

where«9 is given by Eq.~7! andP denotes taking the prin
ciple value. The combined actions of the Lorentzian con
lution and the Kramers-Kronig transformation can be sho
to lead to the following simple transformation.

«G~v!511
2

p E
2`

`

«9~n!
n

n22~v1 iG!2 dn, ~11!

which provides both real and imaginary parts of the bro
ened dielectric constant. In order to evaluate the integral,
expand in partial fractions and utilize the relation~derived
from results in Ref. 5!

E
2`

` Ai2~2x!

x2z1 ig
dx

52 ip sgn~g!Ai2~2z1 ig!1pAiBi~2z1 ig!,

~12!

with the shorthand notationAiBi(x)[Ai(x)Bi(x), Bi being
the second Airy function. By summing the various pole co
tributions, we consequently obtain the result

«G~v!511CFS \~v1 iG!

Eg
,

Ef

Eg
D , ~13!

whereC is a material-dependent constant given by

C5
23/2pe2\m1/2

«0m0
2Eg

5/2A
upncu2, ~14!

andF is a complexsusceptibility functiongiven by

F~x,y!5
1

y1/2x2 H AiBiS 12x

y D1 iAi 2S 12x

y D
1AiBiS 11x

y D2 iAi 2S 11x

y D22AiBiS 1

yD J .

~15!

The real and imaginary parts of the susceptibility function
the unbroadened limitx'\v/Eg are illustrated in Fig. 1. In
this figure, a rather large field energy;0.1Eg is used and as
a consequence the square-root singularity is severely
torted. The oscillatory component, which is a hallmark of t
1-3
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THOMAS G. PEDERSEN AND THOMAS B. LYNGE PHYSICAL REVIEW B65 085201
Franz-Keldysh effect, is clearly visible. In contrast to t
bulk Franz-Keldysh effect,18 the modulation of the spectrum
due to the oscillations is 100% in the sense that the im
nary part goes to zero at the valleys. As discussed above
result should be interpreted with care since it requires
field energy to be much larger than the broadening. Oth
wise, broadening will smear out the oscillations and there
reduce the modulations. Another hallmark is the appeara
of absorption below the band gap, which can be interpre
as a result of field-induced tunneling across the band g
This effect is also clearly visible in Fig. 1 and from an ana
sis of the asymptotic behavior of the Airy function it can
shown to decay approximately exponentially as

«9~v!}expS 2
4

3 S Eg2\v

Ef
D 3/2D , \v!Eg . ~16!

This result is perfectly analogous to the bulk case.1,2 At this
point we pause to notice that the expressions propose
Ref. 15 contain only the first and second of the five terms
Eq. ~15!. This amounts to retaining only the resonant part
the expression whereas our result includes the nonreso
part as well. While the imaginary part of the spectrum at a
above the band gap may be approximated by the reso
contribution alone, a considerable error is found for the r
part, as the nonresonant terms are comparable to the res
ones. If only the field-inducedchangeof the spectrum is
considered, however, the error is approximately cance
Hence, the full expression should be used for the dielec
constant itself, but the field-induced change may be appr
mated by the resonant contribution alone.

In Figs. 2 and 3, we have plotted imaginary and real pa
of this susceptibility function for a broadening of\G
50.03Eg . For comparison, the results of the zero-field e
pression for the dielectric constant

«G,F50~v!511
C

2px2 H 1

A12x
1

1

A11x
22J ~17!

FIG. 1. Imaginary and real parts of the complex susceptibi
functionF0 for a one-dimensional semiconductor in the presence
an electric field. The ratio of field energyEf to band gapEg is taken
as 0.1.
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have been included in the plots. The dielectric spectra in
presence of an electric field are seen to oscillate around
zero-field value for optical frequencies above the band g
Below the band gap, field-induced absorption is clearly v
ible even in the presence of broadening. Numerically,
general expression Eq.~15! is found to agree perfectly with
Eq. ~17! if Ef!\G, i.e., when the effects of the field ar
completely dominated by spectral broadening. WhenEf and
\G are comparable, as in Figs. 2 and 3, the character
oscillations are still visible. However, as a consequence
broadening the modulation is somewhat reduced. Assum
material parameters given byEg52 eV andm50.1m0 ~see
below!, the parameters used in Figs. 2 and 3 correspond
broadening of \G560 meV and an applied field ofF
'15 mV/Å. It is noted that our results in Fig. 2 are in goo
agreement with the numerical results shown in Fig. 2 of R
14 for the case of vanishing excitonic effects. This confir
the correctness of the present analytic theory.

Before ending the free-carrier analysis, we wish to co
pare our results for the broadened spectra to the usual
expressions for the Franz-Keldysh effect. When broaden
is included, the results of Aspnes6 read

f
FIG. 2. Imaginary part of the broadened susceptibility functi

FG for a field energy ofEf50.1Eg and a broadening of\G
50.03Eg . For comparison the usual zero-field result is shown
the dashed line.

FIG. 3. Same as Fig. 2 but for the real part.
1-4
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FREE-CARRIER AND EXCITON FRANZ-KELDYSH . . . PHYSICAL REVIEW B65 085201
«G
~3D!~v!511

21/2e2m3/2

p«0m0
2\Eg

3/2 upncu2F ~3D!S \~v1 iG!

Eg
,
Ef

Eg
D

~18!

with

F ~3D!~x,y!5
py1/2

x2 H x21

y FAiBiS 12x

y D1 iAi 2S 12x

y D G
1Ai8Bi8S 12x

y D1 iAi 82S 12x

y D
2

x11

y FAiBiS 11x

y D2 iAi 2S 11x

y D G
1Ai8Bi8S 11x

y D2 iAi 82S 11x

y D
1

2

y
AiBiS 1

yD22Ai8Bi8S 1

yD J . ~19!

Here, a prime denotes the derivative with respect to the
gument. A direct comparison between susceptibility fun
tions for the three- and one-dimensional cases is show
Fig. 4 using identical parameters. The characteristic squ
root and inverse square-root behaviors are clearly dis
guished. It is noted, however, that the modification of t
spectrum is much more pronounced in the one-dimensio
case. This, obviously, is a consequence of the larger osc
tory modulation in the one-dimensional case. The comp
son demonstrates that an increased contrast is observed
in the presence of broadening. Thus, in agreement with
periments, one-dimensional systems are found to be hig
sensitive to the perturbing field. Physically, the increas
sensitivity of electrons in one-dimensional systems to
presence of long-axis fields is a result of the reduced deg
of freedom. Hence, in a one-dimensional system the e
trons are forced to move along the field and the motion
severely affected. In contrast, the motion of electrons in b
materials is less perturbed as only one out of three degree

FIG. 4. Comparison between the Franz-K˙ eldysh effect in one-
dimensional and three-dimensional semiconductors. Notice the
creased contrast of the oscillations in the one-dimensional cas
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freedom is affected. This physical picture and the en
analysis so far ignores the role of the Coulomb interacti
however. Obviously, the attractive electron-hole interact
will counteract the field-induced charge separation a
thereby increases the overlap. This effect is expected to
particularly pronounced in one-dimensional materials a
result of the increased exciton binding energy. Thus, a co
petition between field-induced exciton dissociation and
tractive Coulomb forces determines the properties. T
analysis of this competition is the subject of the remain
part of this paper.

IV. ONE-DIMENSIONAL COULOMB EFFECT

We now include the Coulomb interaction and present
effective one-dimensional Hamiltonian from which electro
hole states are derived. For three- and two-dimensional
terials the role of electron-hole interactions in the Fran
Keldysh effect was studied several decades ago.19,20 The
one-dimensional case requires extra care, however, du
the singular behavior of the one-dimensional Coulom
interaction.17 Since we only consider long-axis fields th
electric field does not influence the transverse part of
wave function. The Coulomb interaction, however, coup
the transverse and longitudinal motion. To circumvent t
complication, we apply the technique used previously in
particle-in-a-box model of one-dimensional excitons21 as
well as by Hughes and Citrin.14 In this approach, the con
finement is assumed to be sufficiently strong that the tra
verse part of the wave function is unaffected by the Coulo
interaction potential. Accordingly, the longitudinal part of th
wave function is calculated from an effective on
dimensional Coulomb potential obtained by averaging
bare three-dimensional potential over the transverse dim
sions weighted by the transverse electron-hole probab
density. An additional complication arises from the fact th
Coulomb screening in one-dimensional semiconductors
generally anisotropic, in particular in conjugated polyme
In the particle-in-a-box model21 this fact was taken into ac
count by simply using the long-axis dielectric constant rat
than the three-dimensional average. Thisad hocprocedure is
not correct, however. In fact, if the long axis is taken as
z axis so that the dielectric tensor is of the form«J
5diag(«x ,«x ,«z) the appropriate dielectric constant for th
long-range tail of the interaction is«x . This follows from the
solution of Poisson’s equation in a uniaxial anisotrop
material,22 which yields a Coulomb interaction between tw
point charges of magnitude1e and2e

V3D~x,y,z!52
e2

4p«0A«x«zx
21«x«zy

21«x
2z2

. ~20!

Thus, whenever the long-axis separationuzu is much larger
than the transverse separationAx21y2 the screening is de
termined by«x rather than«z . On the other hand, the lowes
excitons are sharply localized nearz50 and, hence, the ef
fective screening for these states is a combination of«x and
«z . From a weighted transverse average of the bare th

n-
1-5
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THOMAS G. PEDERSEN AND THOMAS B. LYNGE PHYSICAL REVIEW B65 085201
dimensional potential above we now obtain the effect
one-dimensional Coulomb interaction as

V1D~z!5E
2`

` E
2`

` E
2`

` E
2`

`

V3D~xe2xh ,ye2yh ,z!

3uwe~xe ,ye!u2uwh~xh ,yh!u2dxedyedxhdyh ,

~21!

wherewe(xe ,ye) andwh(xh ,yh) are the transverse electro
and hole wave functions, respectively. In order to simpl
the notation, we introduce the Coulomb functionC(z) via

C~z!5E
2`

` E
2`

` E
2`

` E
2`

` uwe~xe ,ye!u2uwh~xh ,yh!u2

A~xe2xh!21~ye2yh!21z2

3dxedyedxhdyh . ~22!

In this manner, the one-dimensional interaction reads as

V1D~z!52V0C~zA«x /«z!, ~23!

where

V05
e2

4p«0A«x«z

. ~24!

It is seen that the anisotropic screening leads to a scalin
the z dependence in Eq.~23!. For simplicity, however, we
will ignore this scaling and set«x5«z[«. The expression
for the Coulomb function obviously depends on the mo
used for the transverse confinement. Following Ref. 21,
assume infinite barrier confinement for which

C~z!'
12exp~2uzu/h!

uzu
, ~25!

whereh'a/4.758 86,a being the width of the potential well
It may be noticed that, if Gaussian wave functions of t
form w(x)5(2/p)1/4exp(2x2/h2)/h1/2 are assumed as in Re
14, the Coulomb function becomes

C~z!5p1/2exp~z2/h2!
12F~ uzu/h!]

h
, ~26!

whereF is the error function. The behavior of the two Co
lomb functions Eqs.~25! and ~26! is qualitatively similar in
that both choices are finite at the originz50 and approach
1/uzu as uzu→` or h→0.

We now turn to the calculation of eigenstates for the
citon Hamiltonian. Before analyzing the influence of t
electric field we briefly discuss the eigenstates for the unp
turbed electron-hole pair. For an infinite one-dimensio
semiconductor the appropriate Schro¨dinger equation reads a

H 2
\2

2m

d2

dz22V0C~z!1Eg2EexJ fex~z!50. ~27!

The eigenvaluesEex and eigenfunctionsfex cannot be found
analytically but an excellent approximation to the grou
state, which is by far the most important one for the opti
properties, is provided by the ansatz
08520
e

of

l
e

e

-

r-
l

l

fex~z!5
1

Al
exp~2uzu/l!, ~28!

where l is a variational parameter. This simple form ma
appear surprising as the asymptotic solutions to Eq.~27! be-
have asuzuexp(2uzu/l) for large uzu. However, the ground-
state solution is sufficiently localized that the behavior
largeuzu is of minor importance. Using Eq.~28! and choosing
Eq. ~25! for the Coulomb function, we obtain the followin
expression for the energy

Eex5Eg1
\2

2ml22
2V0

l
lnS 11

l

2h D . ~29!

Denoting thel value, which minimizes the energy, byl0 ,
the ground-state energy is given by the expression

Eex5Eg2
\2

2ml0
22

2V0

2h1l0
. ~30!

With the parametersV051 eV Å, h51.0 Å, and m
50.1m0 , which will be used as a typical parameters in t
following section, the binding energyEb5Eex2Eg and de-
cay length are20.15 eV and 23 Å, respectively. Experimen
tally, the binding energy in conjugated polymers has bee
matter of controversy. For the well-characterized mate
poly~para-phenylene vinylene! values ofuEbu ranging from
,0.1 eV~Ref. 23! to 0.2 eV~Ref. 24! and even higher have
been reported. Hence, the value 0.15 eV taken here is
sumed to be roughly representative of this class of mater
Also, the band gap of these materials typically lies in t
rangeEg52 – 3 eV and we will takeEg52 eV throughout.
The reduced mass is probably a conservative estimate
may be lower in some materials. Note that a lower redu
mass leads to a larger influence of the electric field due to
scaling of the field energyEf5(\eF)2/3/(2m)1/3. Them21/3

dependence is rather weak, however.
We now include the electric field applied along the po

tive z direction. The field couples to the electron-hole dipo
and leads to a modified Schro¨dinger equation given by

H 2
\2

2m

d2

dz2 1eFz2V0C~z!1Eg2EexJ fex~z!50.

~31!

No analytic solutions to this equation have been fou
Hence, an alternative strategy has to be followed. The p
cedure is based on an expansion of the exciton states
basis formed by the solutions to the free-carrier Schro¨dinger
equation including the electric field given by Eq.~1!. In the
wn basis, the matrix elements of the full Hamiltonian a
given by

Hnm5Endnm2V0^wnuC~z!uwm&. ~32!

Unfortunately, the matrix elements of the Coulomb functi
cannot be evaluated analytically except in the case of
tremely strongly binding potentials where

^wnuC~z!uwm&522@g1 ln~ f 1/3h!#wn~0!wm~0!, ~33!
1-6
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whereg50.5772... is Euler’s constant. In the general ca
we evaluate the matrix elements numerically using Gaus
quadrature with at least 1000 points in the interval2L,z
,L. Note that an extremely accurate numerical procedur
required since the integrand is highly oscillatory and the
gion aroundz50 must be adequately sampled. The Ham
tonian matrix is diagonalized numerically and from t
eigenvectors exciton states of the form

fex~z!5(
n

cnwn~z! ~34!

are formed. In turn, these states and the corresponding e
values provide the information needed to calculate the e
ton Franz-Keldysh effect in the following section.

V. EXCITON FRANZ-KELDYSH EFFECT

In the present section, the optical properties of the o
dimensional semiconductor including electron-hole inter
tions are calculated. No analytic expression for the spect
can be derived in this case. Thus, we calculate directly
normalized complex susceptibility functionF(v) including
broadening from the expression

F~v!5
\Eg

5/2

~2m!1/2(
ex

ufex~0!u2

Eex@Eex
2 2\2~v1 iG!2#

. ~35!

As described in the preceding section, the exciton states
derived under the restriction that the electron-hole separa
is limited to the interval2L,z,L. For a particular value of
L, the free-carrier energy spectrum is given by Eq.~3!. For
the optical properties in the neighborhood of the band e
only a small part of the spectrum is needed, however.
dominant contributions are those for which«n'0 corre-
sponding to excitation energies close toEg . Thus, for a
given L the relevant part of the spectrum is located arou
the quantum numberN for which

«N50 ⇒ N' intF 2

3p
~ f L3!1/2G . ~36!

Hence, upon restricting the size of the basis set to 100
ments we have found that by retaining the rangenP@N
220,N179# the relevant exciton states are adequately
scribed. The separation between energy levelsDE decreases
approximately asn21/3 for large values ofL as shown by Eq.
~5!. The magnitude ofL should thus be large enough that t
level separation is much less than the level broadening,
DE!\G. On the other hand, the range of levels, which fo
the basis set, becomes increasingly narrow asL is increased.
Consequently, for very large values ofL only excitons very
close to the band edge are correctly described. It follows
a compromise should be used and in practice values aro
L53500 Å are found to be satisfactory.

Before examining the effect of the electric field, we loo
at the influence of electron-hole interaction on the zero-fi
optical properties of the semiconductor. As explained abo
the band gap is taken asEg52 eV, the reduced mass asm
50.1m0 and the broadening as\G50.02Eg . A broadening
08520
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of this magnitude is reasonable for well-ordered sample
relatively low temperatures. The quantities describing
Coulomb interaction are taken asV0 /h51 eV and h
51.0 Å. For a vanishingly small electric field, the imagina
part of Eq.~35! yields the spectra shown in Fig. 5 for th
cases with and without electron-hole interaction. The fr
carrier spectrum is characterized by the broadened squ
root singularity at the band edge. In comparison, the exc
spectrum is clearly red shifted and the fundamental pea
much more intense. The maximum of this spectrum is
cated at\v'0.93Eg in accordance with the exciton bindin
energy of20.15 eV. In addition, the exciton line shape
much more symmetric than the free-carrier curve. Thus,
inclusion of electron-hole interaction leads to a complete
arrangement of the spectrum and the role of excitons
tainly cannot be ignored.

We now include the presence of an electric field and
vestigate the role of electron-hole interaction on the opti
properties in this case. The results shown in Figs. 6 and 7
obtained using field energies ofEf50.05Eg and Ef50.1E,
respectively. Note that the exciton binding energyEex2Eg is
approximately20.075Eg . Therefore, the results shown i
the figures correspond to cases withEf,uEex2Egu and Ef
.uEex2Egu, respectively. The upper and lower panels
these figures illustrate the imaginary and real parts of
normalized susceptibility. It is clearly seen that the trends
the zero-field case~Fig. 5! survive in the case of a finite field
In fact, the red shift and magnification of the fundamen
peak is practically as pronounced in the case withEf
50.05Eg ~Fig. 6! as in theEf50 case. For the larger field in
Fig. 7, only the red shift remains intact and the magnificat
is somewhat reduced. The influence of electron-hole inte
tions on the hallmarks of the Franz-Keldysh effect can
deduced from a comparison of free carrier and exciton sp
tra in Figs. 6 and 7. As demonstrated in the first part of t
paper, two significant effects of the electric field are notic
in the free-carrier case, viz., the presence of increased
sorption below the band gap and the appearance of an o
latory modulation of the spectra above the gap. Wh

FIG. 5. Illustration of the influence of electron-hole interactio
on the zero-field optical properties. The parameter valuesV0

51 eV Å, h51.0 Å, andm50.1m0 are applied and correspond t
an exciton binding energy of approximately20.075Eg .
1-7
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electron- hole interaction is taken into account, these feat
are clearly less pronounced. In particular, the spectral reg
below the fundamental exciton transition remains practica
unchanged by the electric field. The main effect is a sm
Stark shift, which will be discussed below. From a compa
son of Figs. 5–7 it is seen that the intensity of the fundam
tal exciton peak is slightly reduced atEf50.05Eg and ap-
proximately reduced by 50% atEf50.1Eg . This is a
consequence of the reduced electron-hole overlap in the e
tric field, which acts to increase to electron-hole separat
On the other hand, if the electric field is too weak to ov
come the strong Coulomb attraction of the electron-hole p
the field only weakly perturbs the exciton. This demonstra
that whenever the field energyEf is much less than the ex
citon binding energy, the field-induced modification of t

FIG. 6. Real and imaginary parts of the susceptibility functi
calculated with~solid lines! and without ~dashed lines! electron-
hole interaction. The value of the field energy isEf50.05E and the
remaining parameters are identical to those in Fig. 5.

FIG. 7. Same as Fig. 6 but for a field energy ofEf50.1E.
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spectral region below the band gap will be greatly su
pressed compared to the free-carrier result. The characte
oscillations in the continuum above the band gap are cle
visible both with and without electron-hole interaction. The
amplitude in the former case is slightly reduced, however
addition, the oscillations are stretched compared to the f
carrier case. This is because the Coulomb interaction tend
red shift the lower transitions and thereby enlarges the os
lation period. These features are observed in both real
imaginary parts of the spectra.

Experimentally, the excitonic Franz-Keldysh effect in
one-dimensional semiconductor has been observed m
clearly in polydiacetylene polymers25 by Horvathet al. The
trends of the measured electroabsorption spectra are qu
tively very similar to the present theoretical results. Th
below the band gap the experimental spectrum displays
crete exciton lines and their vibronic replicas. In the prese
of the electric field, the only discernable modification
these transitions is a small Stark red shift, which simply d
places the exciton line by a small amount. Above the ba
gap, however, the Franz-Keldysh effect is clearly visib
Hence, in the continuum part of the spectrum a number
distinct oscillations appear and, furthermore, the oscillat
modulation shifts with the magnitude of the electric field.
order to compare with the Franz-Keldysh effect, Horva
et al.have plotted the shift of the oscillatory modulation wi
the electric field, confirming the predictedF2/3 dependence.
In Fig. 8, we have used the present theory to plot the ca
lated shift of the absorption maxima as a function of the fi
energyEf5\2f 2/3/(2m) normalized by the band-gap energ
It is readily seen that the field dependence is in qualitat
agreement with the experimental results. The lowest cu
corresponding to the fundamental exciton transition sho
practically no variation with the electric field. In fact, there
a small negative shift due to the Stark effect, which is har
noticeable in the figure. For the resonances in the continu
on the other hand, there is a distinct dependence on the
energy. The slope is slightly sublinear due to the Coulo

FIG. 8. Shift of absorption resonances with field energyEf

}(field strength)2/3 using parameters identical to those in Fig.
Notice the different behavior below and above the band gap.
inset shows the frequency dependence of the imaginary part o
susceptibility~on a log scale! for three different values of the field
energy.
1-8
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interaction, which adds a small red shift to the lower part
the continuum transitions. To a high degree of accura
however, the shift is seen to vary linearly withF2/3. The inset
shows the calculated spectra~on a log scale! for three values
of the field energy. Again, the distinctly different behavior
discrete and continuum resonances is noticed. We conc
from the agreement between experiment and theory tha
present model is able to account for several aspects of
exciton Franz-Keldysh effect in one-dimensional semic
ductors.

VI. SUMMARY

In the present paper, a detailed analysis of the free ca
and exciton Franz-Keldysh effect in one-dimensional se
conductors has been presented. A two-band effective-m
model is assumed for the electronic system. In the fr
carrier case, we have derived an analytic, nonperturba
expression for the influence of a static electric field on
optical properties. Hence, our result constitutes the o
dimensional analog of the classic bulk Franz-Keldysh effe
A simple closed-form formula for the complex dielectr
constant including broadening has been obtained in term
Airy functions. It is found that the electric field severe
distorts the characteristic square-root singularity at the b
edge. In addition, the hallmarks of the Franz-Keldysh effe
i.e., an oscillatory modulation of the spectra and the app
ance of absorption below the band gap, are clearly visible
is predicted that the field-induced modulations may be m
more pronounced for a one-dimensional semiconductor t
for a bulk material. As an example, a comparison shows
the oscillatory modulation of the one-dimensional spectr
F.
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has a much larger contrast than the corresponding th
dimensional spectrum, even in the presence of broadeni

The exciton Franz-Keldysh effect is tackled by expand
exciton states in the free-carrier basis. Real and imagin
parts of the optical susceptibility are calculated and res
with and without electron-hole interaction are compare
When electron-hole interaction is included the fundamen
exciton line below the gap completely rearranges the sp
trum. Due to the large exciton binding energy this spec
region is only weakly susceptible to any external pertur
tion. Thus, at low or moderate field strength the domin
effect of the electric field is the Stark Shift, which simply re
shifts the exciton line rigidly. In the continuum above th
gap, however, the characteristic oscillatory modulation p
vails. The amplitude of the oscillations is comparable to
free-carrier case and a slight stretching of the period is
served. By plotting the shift of absorption maxima with fie
energy the distinctly different behavior of discrete excit
lines and continuum resonances is highlighted. In agreem
with experimental electroabsorption spectra, the small S
red shift of the discrete lines is contrasted by a blue s
varying approximately as (field strength)2/3 of the continuum
resonances.
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