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Coulomb interaction effects in spin-polarized transport
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We study the effect of the electron-electron interaction on the transport of spin-polarized currents in metals
and doped semiconductors in the diffusive regime. In addition to well-known screening effects, we identify two
additional effects, which depend on many-body correlations and exchange andreducethe spin-diffusion con-
stant. The first is the ‘‘spin Coulomb drag’’—an intrinsic friction mechanism which operates whenever the
average velocities of up-spin and down-spin electrons differ. The second arises from the decrease in the
longitudinal spin stiffness of an interacting electron gas relative to a noninteracting one. Both effects are
studied in detail for both degenerate and nondegenerate carriers in metals and semiconductors, and various
limiting cases are worked out analytically. The behavior of the spin-diffusion constant at and below a ferro-
magnetic transition temperature is also discussed.
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I. INTRODUCTION

The theory of spin-polarized transport is attracting the
tention of the physics community both for its potential app
cations to the emerging field of ‘‘spintronics’’1 and in rela-
tion to the intriguing field of quantum computation.2 In this
context Kikkawa et al.3,4 generated much excitement b
demonstrating optical injection and subsequent contro
packets of spin polarization in the conduction band
n-doped GaAs. Such packets could in principle be used
transport information between separate regions of a sys
Unlike ordinary electron-hole packets, whose mobility
limited by strong scattering in the hole component, the
unipolar electronic spin packets are both long lived~with
lifetime ts*10 ns) and highly mobile.4

From the theoretical point of view, most recent work
spin-transport phenomena is based on an independent
tron model, where, in general, the coupling between differ
spin channels is completely neglected. Flatte´ and Byers5

have recently discussed the behavior of spin packets in s
conductors in the framework of the Hartree approximati
where the Coulomb interaction is taken into account o
through the imposition of a charge neutrality constraint. T
constraint establishes an electrostatic coupling between
ferent spin channels. They neglect, however, all furt
many-body effects.

In this paper we go beyond the treatment by Flatte´ and
Byers by considering more subtle correlation~spin-drag! and
exchange~spin-softening! effects. Our objective is the deri
vation of drift-diffusion equations for spin packets in a fu
many-body context, i.e., allowing for correlation betwe
different spin channels. These equations contain the s
packet mobility and the diffusion constant as key paramet
We show that both exchange interactions and the drag e
between different spin populations6 concur in reducing the
value of the diffusion constant by a sizable amount, leav
at the same time the mobility basically unaffected. The m
0163-1829/2002/65~8!/085109~12!/$20.00 65 0851
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croscopic quantities responsible for this effect are thelongi-
tudinal spin stiffness~the second derivative of the free en
ergy with respect to magnetization, not to be confused w
the transverse spin stiffness of the ferromagnetic state! and
the spin-drag transresistivity. We discuss in detail the beh
ior of these quantities in various regimes and show how
portant the Coulomb effects are when dealing with dop
semiconductors~see Sec. III!.

This paper is organized as follows. In Sec. II we revie
the basic ideas underlying the spin-resolved drift-diffusi
equations and make use of the Landau transport equatio
elucidate the structure of the homogeneous spin resisti
matrix. In particular, we show that the off-diagonal eleme
of the spin-resistivity matrix~the spin transresistivity! is al-
most exclusively controlled by the Coulomb interaction: t
contribution from spin-flip scattering, while finite, is utterl
negligible for short-range scatterers.

In Sec. III we present the calculation of the Coulom
contribution to the spin trans-resistivity. The theory of Ref
is extended in various directions. First we study the sp
drag effect as a function of temperature going from the
generate regime~which is appropriate for ordinary metals! to
the nondegenerate regime, which is appropriate for lo
density/high-temperature doped semiconductors. Then,
calculate the spin drag in the ‘‘mixed’’ case in which on
spin component is degenerate while the other is nondege
ate: this is relevant to situations in which a strong spin p
larization exists.

Section IV is devoted to a description of the behavior
the longitudinal spin stiffness of the homogeneous elect
gas as a function of density and temperature.

In Sec. V we present a detailed derivation of the dri
diffusion equation for a macroscopic spin packet that exte
the results of Ref. 7. We give explicit expressions for t
mobility and diffusion constant in terms of microscop
quantities such as the spin stiffness and the spin transr
tivity discussing in detail the general case in which the m
©2002 The American Physical Society09-1
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mentum relaxation rates for the two spin populations m
differ. Section VI suggests experiments aimed at direc
measuring the spin transresistivity and the spin-diffus
constant in metals or semiconductors.

Electron-gas theory predicts that, at sufficiently low te
peratures and densities, the homogeneous electron gas u
goes a ferromagnetic transition.8,9 Such a transition could be
in principle, observed in a doped semiconductor. Section
examines the behavior of spin-diffusion constant in the pa
magnetic phase and how the occurrence of ferromagne
as a second-order phase transition would affect it. Our
culations show that the diffusion constant vanishes at
transition temperature and increases as the system bec
fully spin polarized with decreasing temperature.

II. GENERAL THEORY I

A. Drift-diffusion equation

The theory of diffusive transport in metals and semico
ductors is based on the assumption of a local linear relat
ship between the current densities of up- and down-spin e
trons and the gradient of the local electrochemical potenti

2eJWa~rW !52(
b

sab~rW !¹W cb~rW !. ~1!

Here e is the absolute value of the electron charg
JWa(rW) (a5↑ or ↓) are number currents,10 and theelectro-
chemicalpotentialsca(rW) are given by the electrostatic po
tential f(rW) plus the local chemical potential, which can b
spin dependent,

ca~rW !5f~rW !2
1

e

] f ~n↑ ,n↓ ,T!

]na
. ~2!

Here f (n↑ ,n↓ ,T) is the free energy per unit volume of
homogeneous interacting electron gas evaluated at the
spin densitiesna(rW) and uniform temperatureT;11 sab
[ limv→0sab(q50,v) is the homogeneous conductivit
matrix of the electron gas, whose structure, in the presenc
interactions, will be elucidated below.

Substituting Eq.~2! in Eq. ~1! and writing

¹W
] f ~n↑ ,n↓ ,T!

]na
5(

b

]2f ~n↑ ,n↓ ,T!

]na]nb
¹W nb , ~3!

we obtain

eJWa~rW !5(
b

@sab~rW !¹W f~rW !2eDab~rW !¹W nb~rW !#, ~4!

where the diffusion matrixDab is given by

e2Dab5(
g

sagSgb ~5!

and

Sab5
]2f ~n↑ ,n↓ ,T!

]na]nb
~6!
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is the static longitudinal spin-stiffness matrix—the inverse
the spin-susceptibility matrixxab . Equation~5! is the well-
known Einstein relation between the mobility and the diff
sion constant, generalized here to the case of spin-polar
transport. The first term of Eq.~4! is the drift current asso-
ciated with the electrostatic field, the second is the diffus
current associated with the gradient of the electronic de
ties. These two terms cancel out exactly in a situation
local equilibrium, due to the Einstein relation and the fa
that @x21#ab5Sab .

On a formal level the main effect of the Coulomb inte
action is the appearance of nonvanishingoff-diagonal ele-
mentsof the conductivity and spin-stiffness matrices.s↑↓
Þ0 implies that an electric field acting only on the up-sp
electrons must necessarily drag along a current of down-
electrons. Conversely, a current of up-spin electronsJ↑
Þ0) flowing against a background of stationary down-sp
electrons (J↓50) will necessarily induce a gradient of spin
down electrochemical potentialEW ↓52¹c↓5er↓↑JW ↑ , where
rab is the resistivity matrix, inverse tosab . We shall see
later how one can make use of these effects for a di
experimental measure of the spin Coulomb drag.

The other noteworthy feature isS↑↓Þ0: this means that
the chemical potential of up spins] f (n↑ ,n↓ ,T)/]n↑ is a
function of both up and down spin densities. Thus a distu
bance acting on one of the two spin populations will affe
the other through Coulomb correlation.

B. Structure of the resistivity matrix

Although the homogeneous resistivity matrix can be c
culated from first-principle Kubo formulas and/or transpo
equations its general structure~including the off-diagonal
terms, due mostly to the Coulomb interaction! is best under-
stood at the phenomenological level. We first present
phenomenological picture and then justify it from a mo
formal consideration of the Landau transport equation.

Let EW ↑(t) and EW ↓(t) be uniform effective electric fields
EW a52¹ca , that couple to up and down spins, respective
We restrict ourselves to the linear-response regime. IfvW a is
the velocity of the center of mass of electrons of spina, and
Na the number of such electrons, then the equation of mo
for vW a has the form

m* NavẆ a52eNaEW a1FW aā
C

2
m*

ta
NavW a1

m*

ta8
NāvW ā ,

~7!

wherem* is the effective mass of the carriers andā[2a.
Let us examine the meaning of the various terms in E

~7!. The first term on the right-hand side is the net for
exerted by the electric field on spin-a electrons.

The second term,FW aā
C , is the Coulomb force exerted b

spins of theoppositeorientationā on spin-a electrons. No-
tice that the net force exerted by spins of the same orie
tion vanishes by virtue of Newton’s third law. For exactly th
same reason we must haveFW aā

C
52FW āa

C , and by Galilean
9-2
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invariance this force can only depend on the relative velo
of the two components. Hence, in the linear approximati
we can write

FW aā
C

52gm* Na

nā

n
~vW a2vW ā!, ~8!

where n5n↑1n↓ is the total density. Equation~8! defines
the spin-drag coefficientg.

The third term on the right-hand side of Eq.~7! combines
two distinct physical effects. One is the net force exerted
spin-a electrons by electron-impurity collisions thatdo not
flip the spin of the incoming electrons. The other is the r
at which momentum is lost to thea component as a result o
electron-impurity collisions that flip the spin froma to ā.
Accordingly, the momentum relaxation rateta

21 is written as
the sum of non-spin-flip and spin-flip contributions:ta

21

5tn f ,a
21 1ts f,a

21 . Spin-flip times have been found to be ve
long both in metals@ts f,a;1 ns ~Ref. 12!# and in semicon-
ductors@ts f,a;10 ns~Refs. 3 and 4!#, whereas non-spin-flip
times are usually much shorter~of the order 1023–1024 ns).
Thus, for most practical purposes,ta

21'tn f ,a
21 .

Finally, the last term on the right-hand side of Eq.~7!
represents the rate at which momentum is fed into thea
on
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-
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component by electron-impurity collisions that flip the sp
from ā to a. Because electrons emerging from collisio
have a randomized momentum distribution with nearly z
average, we expect (ta8 )21 to be smaller than even the a
ready small spin-flip ratets f,a

21 . Indeed, we shall see in th
next section that (ta8 )21 vanishes for short-range scattere
in the Born approximation.

Fourier transforming the equation of motion~7! for the
current densityjWa(v)52enavW a(v), we find

iv jWa~v!52
nae2

m*
EW a~v!1S nā

n
g1

1

ta
D jWa~v!

2S na

n
g1

1

ta8
D jW ā~v!. ~9!

The resistivity matrixraa8 is defined as the coefficient o
proportionality between the electric field and the current, i
EW a5(a8raa8 jWa8 . A quick comparison between this defin
tion and Eq.~9! shows that the complete form of the resi
tivity matrix rab is
r5S 2 iv
m*

e2n↑
1

m*

n↑e2t↑
1

n↓
n↑

m*

ne2 g 2
m*

n↑e2t↑8
2

m*

ne2 g

2
m*

n↓e2t↓8
2

m*

ne2 g 2 iv
m*

e2n↓
1

m*

n↓e2t↓
1

n↑
n↓

m*

ne2 g
D . ~10!
elf-
ho-
the

n-
ri-
Notice that this matrix is symmetric, due to the relati
1/n↓t↓851/n↑t↑8 , which will be proved in the next section.

Due to the extreme smallness of the spin-flip rates 1/ta8 ,
the off-diagonal resistivity~also referred to as ‘‘spin transre
sistivity’’ ! is controlled almost entirely by the Coulomb in
teraction term, i.e., we can safely assume

r↑↓52
m*

ne2 g ~11!

andg is directly proportional to the spin transresistivity. B
then, Galilean invariance and Newton’s third law dema
that the samer↑↓ appear also as a correction to the ordina
diagonal resistivity. This effect is quite distinct from th
‘‘trivial’’ renormalizations due to the electronic screening
these interactions.

C. Derivation from Landau transport equation

In this section we provide a microscopic justification
the phenomenological Eq.~7! and give explicit expression
for the electron-impurity relaxation rates. We start from t
linearized transport equation for the quasiparticle distribut
d

n

function in Landau theory of Fermi liquid.13 This is simply
the classical Boltzmann equation for quasiparticles in a s
consistent field described by Landau parameters. In the
mogeneous case the self-consistent field coincides with
classical electric field and the distribution functionf a(kW ,t)
obeys the well-known kinetic equation

] f a~kW ,t !

]t
2eEW a•

] f a
(0)~kW !

]kW
5S ] f a~kW ,t !

]t
D

coll

, ~12!

where f a
(0)(kW ) is the equilibrium distribution function.

The collision term @] f a(kW ,t)/]t#coll has contributions
from the Coulomb interaction as well as spin-flip and no
spin-flip electron-impurity interactions. The various cont
butions are listed below.

Coulomb collisions:

S ] f a~kW ,t !

]t
D

coll

C

52 (
pW kW8pW 8,ba8b8

WC~kWa,pW b;kW8a8,pW 8b8!

3dkW1pW ,kW81pW 8da1b,a81b8$ f a~kW ! f b~pW !

3@12 f a8~kW8!#@12 f b8~pW 8!#2@12 f a~kW !#
9-3
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3@12 f b~pW !# f a8~kW8! f b8~pW 8!%

3d~eka1epb2ek8,b82ep8b8!, ~13!

whereWC(kWa,pW b;kW8a8,pW 8b8) is the probability of the Cou-
lomb scattering processkWa,pW b→kW8a8,pW 8b8 and eka is the
energy of a particle of momentumkW and spina relative to
the chemical potential. The conservations of momentum,
ergy, and spin are explicitly displayed.

Non-spin-flip electron-impurity collisions:

S ] f a~kW ,t !

]t
D

coll

n f

52(
kW8

Wn f~kWa,kW8a!@ f a~kW !2 f a~kW8!#

3d~eka2ek8a!, ~14!

where Wn f(kWa,kW8a) is the probability of the non-spin-flip
~nf! scattering processkWa→kW8a.

Spin-flip electron-impurity collisions:

S ] f a~kW ,t !

]t
D

coll

s f

52(
kW8

Ws f~kWa,kW8ā !@ f a~kW !2 f ā~kW8!#

3d~eka2ek8ā!, ~15!

where Ws f(kWa,kW8ā) is the probability of the spin-flip~sf!
scattering processkWa→kW8ā.

In order to obtain a closed equation of motion for t
currents, such as Eq.~9!, we must multiply both sides of Eq
~12! by 2ekW /m* , sum overkW , and then express the inte
grated collision term

FW a[(
kW

kW S ] f a~kW ,t !

]t
D

coll

~16!

back in terms of the currents. Of course, this cannot be d
rigorously, but for an isotropic system slightly perturb
from equilibrium one can assume14 that the distribution func-
tion of the state with currentsjWa52enavW a is given by

f a~kW ,t !5 f a
(0)~eka!2

] f a
(0)~eka!

]eka
vW a~ t !•kW . ~17!

Substituting this into Eqs.~13!–~15!, and linearizing with
respect to the currents wherever needed, we arrive, afte
dious but straightforward manipulations, at the desired eq
tion of motion ~9!, with the following expressions for the
various relaxation times:

g5
n

m* Nanā
(

kWpW kW8pW 8

~kW2kW8!2

2dkBT

3WC~kWa,pW ā;kW8a,pW 8ā !dkW1pW ,kW81pW 8

3d~eka1epā2ek8,a2ep8ā! f a
(0)~eka!

3 f ā
(0)

~epā! f a
(0)~2ek8a! f ā

(0)
~2ep8ā!, ~18!

whered is the number of spatial dimensions;
08510
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tn f ,a
52(

kW

] f a
(0)~eka!

]eka

k2

nad (
kW8

Wn f~kWa,kW8a!

3~12 k̂• k̂8!d~eka2ek8a!, ~19!

wherek̂ andk̂8 are unit vectors in the directions ofkW andkW8;

1

ts f,a
52(

kW

] f a
(0)~eka!

]eka

k2

nad (
kW8

Ws f~kWa,kW8ā !

3d~eka2ek8ā!, ~20!

1

ta8
52

1

nād
(

kW

] f a
(0)~eka!

]eka
(
kW8

Ws f~kWa,kW8ā !kW•kW8

3d~eka2ek8ā!. ~21!

Notice that 1/ts f,a and 1/ta8 arise, respectively, from the
first and the second term on the right side of Eq.~15!. The
key difference between these two relaxation rates is that
expression for the latter involves an angular average of
scattering probability with weight factork̂• k̂85cos(u). This
average vanishes in the Born approximation for short-ra
scatterers, since the scattering probability becomes isotr
~independent ofkW andkW8) in this special case. Quite gene
ally, one can expect 1/ta8 to be much smaller than 1/ts f,a in
agreement with the qualitative arguments given in the pre
ous section. This means that the spin transresistivity is
most entirely a Coulomb interaction effect, and therefore
measurement can shed light on the nature of the Coulo
correlation between up- and down-spin electrons. This is
of the main points we wanted to make in this section.

Finally, notice that Eq.~21! implies the identity

1

n↓t↓8
5

1

n↑t↑8
~22!

which guarantees the symmetry of the resistivity matrix E
~10!.

III. CALCULATION OF THE SPIN TRANSRESISTIVITY

The theory of the spin transresistivity has been work
out in Ref. 6. This theory closely parallels the theory of t
ordinary Coulomb drag between parallel two-dimensio
electron or hole-gas layers15 but differs in some importan
details, as the fact that electrons of opposite spin inte
with the sameset of impurities, so that certain electron
impurity terms which appear in the Kubo formulation of th
transresistivity do not vanish upon disorder averaging. F
tunately, it turned out that these terms cancel out exactl
low frequency (v!EF) and to leading order in the electron
electron and electron-impurity interactions.6

The final outcome of Ref. 6 was that the spintransresis
ity, for v50, is given by
9-4



r-

-

i-
is
n

b

li-

i
d

q
re
re

r

d
a

t
n

n be
es,

ss-

ly
i
is

ncy
n-

in
ou-
ple,
m-
far
re-

In
ne

i-

in
han
tor
en-

e

re

ty:

COULOMB INTERACTION EFFECTS IN SPIN- . . . PHYSICAL REVIEW B65 085109
r↑↓~T!5
b

n↑n↓e2

1

V (
qW

q2

3
vq

2 1

2

3E
0

`dv8

p

x0↑9 ~q,v8!x0↓9 ~q,2v8!

u«~q,v8!u2sinh2~bv8/2!
, ~23!

where b51/kBT, kB is the Boltzmann constant,vq
54pe2/q2e is the Fourier transform of the Coulomb inte
action withe the dielectric constant of the material,V is the
volume of the system,x0a(q,v) is the noninteracting spin
resolved density-density response function, and«(q,v)51
2vqx0↑(qW ,v)2vqx0↓(qW ,v) is the random-phase approx
mation ~RPA! dielectric function. This expression, which
based on an approximate decoupling of a four-point respo
function ~generalized RPA, see Ref. 6!, is valid in the weak
Coulomb and impurity scattering regime, characterized
\/tD!kBT, where tD5(n↑ /n)t↑1(n↓ /n)t↓ . Because of
the ‘‘high’’ temperature, weak-localization effects are neg
gible.

Equation~23! will be our starting point: at variance with
the calculation of Ref. 6 we present our results not only
the low-temperature limit~which is relevant to metals an
whereg;T2), but also in the nondegeneratekBT@EF and
quasidegeneratekBT;EF regimes ~which are relevant to
doped semiconductors!, whereEF5\2(3p2n)2/3/2m* is the
Fermi energy.16

A. Numerical evaluation

To calculater↑↓ at finite temperature, we have used in E
~23! the temperature-dependent expression for the th
dimensional noninteracting spin-resolved density-density
sponse function

x0a9 ~q,v;T!52
1

16p

1

q̄a* 3Ry
H v̄2

1

bRy

3 ln
11eb$~1/eq!@~\v1eq!/2#22ja%

11eb$~1/eq!@~\v2eq!/2#22ja%J , ~24!

where a* is the effective Bohr radius,q̄5qa* , v̄
5\v/Ry, Ry5e2/2a* is the effective Rydberg,ja is the
chemical potential for thea spin population, andeq
5\2q2/2m* . Equation~24! follows directly from the defini-
tion

x0a9 ~q,v;T!52
p

V(
kW

~nkWa2nkW1qW a!d~\v1ek2ek1q!,

~25!

wherenqW a51/$exp„b(eq2ja)…11% is the average numbe
of a-spin electrons with energyeq .

Figure 1 showsur↑↓u as a function of temperature an
density.17 The data are calculated in the paramagnetic ph
and for semiconductor parameters~GaAs!, i.e., m* 50.067,
e512, and carrier densityn151.531018 cm23, n251.5
31017 cm23, and n351.531016 cm23. r↑↓ peaks at abou
the Fermi temperatureTF , underlying the crossing betwee
08510
se

y

n

.
e-
-

se

the degenerate and the nondegenerate regimes. As ca
seen,r↑↓ is strongly enhanced as the density decreas
mainly due to the prefactor dependence;1/n2. In fact its
maximum increases of almost two orders of magnitude, pa
ing from 0.3 mV cm for n5n1 to 14 mV cm for n5n3. In
the calculations of the following sections, we will main
focus on the density valuen5n2, corresponding to a Ferm
temperatureTF5178 K. The inset of Fig. 1 presents for th
density value the comparison betweenr↑↓ and its nondegen-
erate analytical approximation~dashed lines! discussed in
detail in Secs. III C.

We now turn to a quantitative assessment of the releva
of the spin Coulomb drag. First of all it is necessary to u
derline that the spin drag is anintrinsic effect of spin-
polarized transport: that is, while impurity scattering could
principle be suppressed in a perfect crystal, the spin C
lomb drag will always be present, even in the purest sam
and dominate over phonon scattering at sufficiently low te
perature. However, since available samples are usually
from perfection, it is reasonable to ask how the spin trans
sistivity compares to the more familiar Drude resistivity.
metals, as we shall show in detail in the next section, o
finds, at most,r↑↓;1022mV cm so thatr↑↓ /rD is of the
order of few percent. The situation is very different for sem
conductors: since both the Fermi temperature~at whichr↑↓
peaks! and the carrier density are considerably lower than
metals,r↑↓ can become comparable and even greater t
rD . This strong variation depends on specific semiconduc
characteristics, such as the effective mass, mobility, and d
sity of the carriers.

In Fig. 2 we show the effect of the carrier mobilitym on
the ratior↑↓ /rD . We plotr↑↓ /rD in respect to temperatur
for an n-doped semiconductor as GaAs (m* 50.067me , e
512, and n51.531017 cm23; upper panel! and for a
p-doped semiconductor, as~Ga,Mn!As (m* 50.5me , e
512, n51.231019 cm23; lower panel!. Each curve corre-
sponds to a different mobility value as reported in the figu
caption. The values increase from ‘‘A’’ to ‘‘D.’’ In particular

FIG. 1. Spin transresistivityr↑↓ as a function of temperature
~rescaled byTF) for GaAs parameters (m* 50.067me , e512, m
533103 cm2/V s). Each curve corresponds to a different densi
n151.531018 cm23, n251.531017 cm23, n351.531016 cm23.
Inset: comparison betweenr↑↓ and its analytical approximation in
the nondegenerate regime vs temperature~rescaled byTF) for n
5n2.
9-5
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the valuem533103 cm2/V s ~labeled as ‘‘C’’!, corresponds
to the value measured for a spin packet in Ref. 4. As can
seen, changing the material it is possible to increase the
r↑↓ /rD by an order of magnitude, to the point that the sp
transresistivity can become greater than the Drude resisti

In Fig. 3 we show the dependence on the ratior↑↓ /rD on
the carrier density for GaAs. The results are presented
two different temperatures (T520 K, dashed lines andT
5300 K, solid line! and two different values of the mobility

FIG. 2. Upper panel:r↑↓ /rD as a function of temperature fo
GaAs parameters (m* 50.067me , e512, n51.531017 cm23).
Each curve corresponds to a different mobility:A5102 cm2/V s,
B5103 cm2/V s, C533103 cm2/V s, D5104 cm2/V s, as la-
beled. Lower panel: same as upper panel but for~Ga,Mn!As param-
eters (m* 50.5me , e512, n51.231019 cm23).

FIG. 3. r↑↓ /rD as a function of carrier density for GaAs param
eters (m* 50.067me , e512!. The solid curves are calculated at th
temperatureT5300 K, while the dashed curves atT520 K. For
each temperature two different mobilities are considered,C53
3103 cm2/V s andD5104 cm2/V s, as labeled.
08510
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or

~as labeled in the figure!. Each curve peaks at a density su
that TF5T.

In conclusion, our calculations demonstrate that in se
conductors, atT'TF , the spin Coulomb drag must defi
nitely be considered an important contribution to the res
tivity for spin polarized currents.

B. Degenerate limit

The only regime of practical importance in ordinary hig
density metals is the low-temperature (kBT!EF) and low-
frequency (\v!EF) one. In this regime the spin-Coulom
drag coefficient is controlled by a subset of all the proces
that lead to the finite lifetime of a quasiparticle at the Fer
surface, namely, the processes in which the quasiparticl
question exchanges momentum with an electron of oppo
spin ~scattering processes between parallel spin electron
not cause relaxation of the spin current!. Since the inverse
quasiparticle lifetime at the Fermi surface is known in Ferm
liquid theory to scale as (kBT/EF)2 we expect the same sca
ing to hold for the spin drag coefficient at low temperatu
This expectation is confirmed by the detailed calculatio6

which, atv50 gives

r↑↓~T!52
\a*

e2

2p2~kBT!2

3~Ry!2 •

1

24p3n̄↓n̄↑

3E
0

2kFa* dq̄

q̄2

1

u«~ q̄/a* ,0!u2
, ~26!

where kF[min(kF↑ ,kF↓), with kFa the a spin population
Fermi wave vector andn̄a[naa* 3. Equation ~26! shows
that, in the absence of impurities,r↑↓(T) is proportional to
T2. This dependence is not affected by modifications in
form of x0a(q,v) due to the presence of impurities.6 For
r s*5, r s the usual electron-gas parameter, the spin tran
sistivity is appreciable@ ur↑↓(T*40 K)u*0.01mV cm6#. For
r s55, the Coulomb scattering time from Eq.~11! is g21

'10213 s while ds /vF'10210 s whereds is the spin relax-
ation length:g21 is several orders of magnitude smaller th
the spin-flip time, confirming that neglecting spin-flip pro
cesses is indeed a good approximation for this kind of me

C. Nondegenerate limit

The nondegenerate limit is characterized byT@TF . First
of all we calculate the nondegenerate limit of the nonint
acting temperature-dependent spectral function Eq.~24!:
starting from the definition Eq.~25!, we use the classica
expression for the fugacity exp(bja)5na•8p3(b/2m* p)3/2,
and obtain

x0a9 ~q,v;T!52
A2pbm* na

\q
expS 2

beq

4 D
3expS 2

b\2v2

4eq
D sinhS b\v

2 D . ~27!

In addition, in order to calculate the nondegenerate lim
r↑↓ , we have used the classical limit for the dielectric co
stant«(q,v)511(4pe2/eq2)(n/kBT). The final result is
9-6
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r↑↓~T!5
8e2Am*

A2p3~kBT!3/2e2
E

0

`

dx
x exp~2x!

~x1l!2 ~28!

'
8e2Am*

A2p3~kBT!3/2e2
@212C2 ln~l!#, ~29!

where the second expression, Eq.~29!, is valid in the limit
l!1, l5\2kD

2 /kBT4m* , kD
2 [4pe2n/ekBT is the inverse

of the squared Debye screening length andC'0.577 is the
Euler’s constant. Notice that, in the nondegenerate limit,r↑↓
becomes almost independent of the total densityn and inde-
pendent of the spin-density componentsna , while a
quantum-mechanical dependence on\ survives even in this
regime.r↑↓ tends to zero as (kBT)23/2ln(kBT) asT→`. The
inset of Fig. 1 illustrates the comparison betweenr↑↓ and its
asymptotic form. This approximation becomes valid forT
@TF , but, sinceTF;n2/3, such limit is fulfilled only at very
low carrier densities.

D. Mixed „degenerateÕnondegenerate… case

A very interesting limit is the one corresponding to a sp
polarization process, for whichn↑→n and n↓→0. This is
indeed relevant for one of the problems we want to analy
i.e., a semiconductor with strongly spin-polarized carrie
This system is in a very peculiar state: its minority dow
spin population is nondegenerate, i.e.,kBT@EF↓ , EFa
5\2(6p2na)2/3/2m* , while, for low enough temperatures
the majority up-spin population is degenerate, i.e.,kBT
!EF↑ . The expression for the noninteracting spin-resolv
density-density response functions entering the spin tran
sistivity Eq. ~23! can then be taken from the previous su
sections and are given by

x0↑9 ~q,v8;T!52
m* 2

4p\3

v8

q
for 0,q,2kF↑ , ~30!

50 otherwise ~31!

and

x0↓9 ~q,v8;T!52S pm*

2 D 1/2

b3/2n↓expS 2
bm* v82

2q2 D v8

q
,

~32!

where Eq.~30! is valid up to first order inv8 and Eq.~32!
represents the classical limit (\→0) of Eq. ~27!. Using Eqs.
~30!–~32!, and the approximation, due to the small density
down-spin carriers«(q,v8)'«↑(q,0), the expression for the
spin transresistivity becomes

r↑↓~T!52
\a*

e2

2Ap

9

~kBT!1/2

~Ry!1/2

1

n̄↑

3E
0

2kF↑a* dq̄

q̄2

1

u«↑~ q̄/a* ,0!u2
. ~33!
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Equation~33! is very similar to Eq.~26!, the result obtained
when both components are degenerate. This is a consequ
of the fact that, in the appropriate regime, the nondegene
spectral function Eq.~32! presents the same dependence
v8 andq as the degenerate one. We want to underline tha
this limit, r↑↓(T) is independent ofn↓ and that in any case
r↑↓→0 for T→0.

IV. SPIN STIFFNESS OF AN INTERACTING
SPIN-POLARIZED ELECTRON GAS

The other ingredient entering the drift-diffusion expre
sion for the current, Eq.~4!, is the longitudinal spin stiffness
matrix Sab . In particular we are interested in the combin
tion S5]2f (n,m,T)/]m25(S↑↑2S↑↓1S↓↓2S↓↑)/4, where
m5n↑2n↓ , which gives the curvature of the free energ
with respect to the magnetization at constant density. T
quantity coincides with the inverse of the longitudinal sp
susceptibility of the uniform electron gas.

We evaluatedS numerically starting from the formula
provided by Tanaka and Ichimaru,18 who calculated the free
energy density of the three-dimensional electron gas a
function of temperature, density, and spin polarization.

Figure 4 showsS divided by its noninteracting valueSni
as a function of the dimensionless temperatureT/TF for vari-
ous densities, starting withn54.231017 cm23 for the upper
curve~labelednh) down ton54.231011 cm23 for the low-
est one~labelednl), decreasing by two orders of magnitud
from one curve to the next.

Two regimes are clearly visible. For densities larger th
a critical valuenc.4.231013 cm23 the spin stiffness de-
creases monotonically with decreasing temperature set
to a finite value in the ground state~top two curves!. For
densities lower thannc a second-order ferromagnetic trans
tion occurs: the critical temperatureTc raises from;0 at n
5nc to a sizeable fraction of the Fermi temperature atn
54.231011 cm23. As in any second-order transition, th
spin stiffness vanishes at the transition temperature.19 For T

,Tc the spontaneous magnetizationm̄ is given by thestable
minimum of the free energy, which satisfies the condition

FIG. 4. Spin stiffnessS, rescaled by its noninteracting approx
mation Sni vs T/TF and for different carrier densities. The lowe
carrier density isnl54.231011 cm23. The density increases by
factor 100 for each curve up to the valuenh54.231017 cm23 for
the upper curve. The cusp corresponds to the onset of ferrom
netism.
9-7
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] f ~n,m,T!

]m U
m5m̄

50,

S̄5
]2f ~n,m,T!

]m2 U
m5m̄

.0. ~34!

Obviously, ferromagnetism shows up only at extremely l
densities, and the electron-gas model may break down
before getting to such densities: it is nevertheless instruc
to study the repercussions of the behavior ofS on the spin-
diffusion constant both above and below the critical dens

Let us now consider the limiting behaviors of the sp
stiffness at high (T@TF) and low (T!TF) temperatures.

A. High-temperature limit

In the high-temperature limit@T@TF(n)# the free-energy
density of the electron gas has the following expansion:

f ~n↑ ,n↓ ,T!.kBT(
a

na@ ln~nalT
3!21#

1
kBT

23/2 (
a

na
2lT

322p2e2lT
2

3(
a

na
22

2p1/2

3

e3n3/2

~kBT!1/2
, ~35!

where lT[(2p\2/m* kBT)1/2 is the thermal wavelength
The first term is the free energy of the classical ideal gas,
second term is the leading quantum correction for nonin
acting Fermions;20 the third term is the leading quantum
interaction correction, namely, the high-temperature
change free energy,21 the last term is the leading classic
interaction correction from Debye-Huckel theory. Only t
first three terms depend on the magnetization, and there
contribute to the spin stiffness. Taking a second deriva
with respect to magnetization we find, after simple calcu
tions,

S

Sc
511

n↑n↓
n2 FnlT

3

21/2
2

8p2e2n1/3

kBT
~nlT

3!2/3G , ~36!

whereSc is the Curie spin stiffness of an ideal classical g
of densityn:

Sc5
kBTn

4n↑n↓
. ~37!

Notice that the leading interaction correction to the nonint
acting spin stiffness is negative, in agreement with the
havior seen in Fig. 4.

B. Low-temperature limit

Let us now examine what happens in the limitT→0.
Above the critical densitync the spin stiffness simply tend
08510
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to a constant zero-temperature limit, smaller than the non
teracting value, in agreement with the Landau theory
Fermi liquids.

For n,nc the low-temperature phase is ferromagnet
and in this case the density of majority spin electrons (n↑)
approaches the total density, while the density of minor
spin electrons (n↓) tends to zero forT→0. To understand the
behavior of the spin stiffness shown in Fig. 4 we assu
that, in the nearly 100% polarized limit the free energy c
be written as the sum of the ground-state energy of the
generate interacting up-spin gas plus the free energy o
infinitely dilute noninteracting down spin gas:

f ~n↑ ,n↓ ,T!.e0~n↑!2kBTn↓ln~12z!1const, ~38!

wheree0(n) is the ground-state energy density of a dege
erate liquid of up-spin electrons, andz5(n↑2n↓)/(n↑
1n↓) is the degree of spin polarization. Obviously, this a
proximation ignores the correlation between down- and
spin electrons, or, more precisely, presumes that this corr
tion is smaller than the entropic termkBTn↓ln(12z) for z
→1.

Starting from Eq.~38! it is trivial to show that the minor-
ity spin density vanishes forT→0 as

n↓;nee08(n)/kBT, ~39!

wheree08(n)5de0(n)/dn,0 at low density, while the spin
stiffness goes as

S;
kBT

4n↓
, ~40!

which diverges exponentially forT→0. This is precisely
what our numerical calculations, based on the formulas
Ref. 18, indicate. As we shall see, this result is importan
understanding the behavior of the diffusion constant o
unipolar spin packet when the system is fully spin polariz

V. EVOLUTION OF A SPIN PACKET

We will now examine the motion of a spin packet und
the effect of a uniform electric field. We are going to gen
alize the derivation sketched in Ref. 7 discussing also
subtleties involved in the implementation of the charge n
trality constraint. At variance with Ref. 7, we will focus o
the general case of different scattering times for the two s
populations. Additionally we will underline how familia
concepts such as the relationship between mobility and c
ductivity or the Einstein relationship are modified by inclu
ing Coulomb interaction between different spin populatio

We are going to describe the time evolution of a sp
packet obtained by injecting anexcessspin density near the
origin at timet50. To solve this problem we start from th
generalized continuity equations for the spin-density com
nents,

]Dna~rW,t !

]t
52

Dna~rW,t !

ts f,a
1

Dnā~rW,t !

ts f,ā

2¹W •JWa~rW !, ~41!
9-8
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COULOMB INTERACTION EFFECTS IN SPIN- . . . PHYSICAL REVIEW B65 085109
where Dna(rW,t)[na(rW,t)2na
(0) , na

(0) is the equilibrium
value of thea-density component andts f,a is its spin-flip
relaxation time. Substituting in this equation the dri
diffusion expression for the current Eq.~4!, we obtain the
two equations

]Dna~rW,t !

]t
52

Dna~rW,t !

ts f,a
1

Dnā~rW,t !

ts f,ā

1
E

e (
b

]s̃a

]nb
¹~Dnb!1s̃a

¹•E

e

1(
b

@¹Dab¹nb1Dab¹2~Dnb!#, ~42!

~a5↑ or ↓! where

s̃a5(
b

sab . ~43!

Equation ~42! includes the term s̃a¹•E/e5s̃a(Dn↑
1Dn↓)/e. This term is ‘‘dangerous’’ because it contains t
product of a large quantitys̃a times a small quantity, the
space chargeDn↑1Dn↓ , the product itself being of the or
der of the other quantities of interest in the calculation.

It is tempting, but wrong, to invoke the local charge ne
trality constraint

Dn↑~r !52Dn↓~r ! ~44!

at this point. Instead, we will first combine the two comp
nents of Eqs.~42! to eliminate the space charge (¹•E) term,
and only after doing that we can impose, without serious l
of accuracy, the charge neutrality constraint. To eliminate
¹•E term we multiply each component of Eq.~42! by the
conductivitys̃ ā of the opposite channel, and, in order to g
the equation of motion for the excess spin density, we s
tract the equation fora spins from the equation forā spins.
Only at this point we impose the local charge neutrality co
straint Eq.~44!. With this procedure we obtain the corre
drift-diffusion equation

]Dm~rW,t !

]t
52

Dm~rW,t !

ts
1

(
a

s̃ā¹@D̃a¹Dm~rW,t !#

(
a

s̃a

1

(
a

s̃ām̃a

(
a

s̃a

EW •¹W Dm~rW,t !, ~45!

where Dm(rW,t)[m(rW,t)2m(0) is the excess spin densit
following spin injection, m(0)5n↑

(0)2n↓
(0) and m(rW,t)

5n↑(rW,t)2n↓(rW,t) is the net spin density at pointrW and
time t. In Eq. ~45!, ts5(1/ts f,↑11/ts f,↓)21 is the spin-
relaxation time, which is very long,4,12
08510
-
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e

t
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D̃a5Daa2Daā , ~46!

m̃a5maa1maā , ~47!

EW is an externally applied electric field, and the matrixmab
is defined as

emab[
]sab

]na
2

]sab

]nā

~48!

562
]sab

]m
, plus if a5↑, minus otherwise. ~49!

This is a generalization of the familiar relation between m
bility and conductivity: it takes into account the dependen
of the mobility mab on both spin-density components. Th
second term in Eq.~48! accounts for the reduction of th
mobility in the a channel due to the drag of thea spin
population on theā population.

The electrostatic field has the same sign for both s
components, while the density gradients have opposite s
@see Eq.~44!#: as a consequence the mobilities enter Eq.~45!
as a spin symmetric combination@Eq. ~47!# while the diffu-
sion constants are in a spin-antisymmetric combination@Eq.
~46!#.

If we consider the linear regime—i.e., we neglect terms
the order of (¹na)2—Eq. ~48! reduces to the more familia

sab5enamab ~50!

and Eq.~45! reduces to the expression calculated in Ref.
i.e.,

]Dm~rW,t !

]t
52

Dm~rW,t !

ts
1Ds¹

2Dm~rW,t !1msEW •¹W Dm~rW,t !,

~51!

where

ms5

(
a

s̃ām̃a

(
a

s̃a

~52!

5
1

e

n

n↑n↓

1

(
a

~1/s̃a!

~53!

and

Ds5

(
a

s̃āD̃a

(
a

s̃a

~54!

5
S

e2

4

(
a

r̃a

5
kBT

e2n
•

S

Sc
•

1

@~n↑n↓ /n2!~rD↑1rD↓!2r↑↓#
,

~55!
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IRENE D’AMICO AND GIOVANNI VIGNALE PHYSICAL REVIEW B 65 085109
are the effective mobility and diffusion constants.22 Here
r̃a[raa2raā , Sc is given by Eq.~37!, rDa5m* /ne2ta is
the ordinary Drude resistivity associated with thea spin
channel, andr↑↓—a negative number—is the spin-drag tra
sresistivity discussed in Sec. III.

We underline that in reality the range of validity of E
~51! extends beyond the linear approximation into the cl
sical regime, i.e., to high carrier densities or high tempe
tures, since in that regime the relationship between den
and conductivity is linear. The solution of Eq.~51!, with the
initial condition Dm(rW,0)5DMd(rW), has the form of a
Gaussian packet that drifts under the effect of the elec
field EW with a pace determined byms , and spreads in time a
a rate determined byDs .7 The mobility and diffusion con-
stants of electron-hole packets of similar shape can be m
sured through the Haynes-Shockley experiment:23 a similar
experiment can then determinems andDs independently.

We stress that Eqs.~52!–~55! apply to the general case i
which the scattering times for the two spin componentsta’s
may differ. Equations~52! and ~54! show that the mobility
and the diffusion constants of the packet are weighted a
ages of, respectively, the mobilitiesm̃a and diffusion con-
stantsD̃a of the two spin channels, the weight being t
conductivity s̃ ā of the oppositechannel. This is due to the
local charge neutrality constraint Eq.~44!, that forces the two
components of the disturbance to travel together, so that
conductivity of each spin channel is strongly influenced
the motion of the disturbance in the other channel. In
noninteracting limit Eqs.~52! and~54! reduce to the expres
sions presented in Ref. 5.

Equation~53! can be seen as the generalization to a s
packet of the ordinary relationship between mobility a
conductivity, while Eq.~55! is the corresponding generaliza
tion of the Einstein relation. Notice that, because the up-
down-spin components diffuse in opposite directions, fr
tion arises between them, implying that the spin transre
tivity enters Eq.~55! to decrease the packet diffusion. Mor
over the spin stiffnessS is reduced by Coulomb interaction
~see Fig. 4!, and so it will be the rate of diffusion of the spi
packet. It is interesting to notice that the presence ofr↑↓ in
Eq. ~55! represents an intrinsic mechanism by which diff
sion is regulated~i.e., remains finite! even when the system
is very pure andrDa→0. To derive the last expression in E
~55!, we made use explicitly of the structure of the mat
rab discussed in Sec. II B.

If t↑5t↓5tD , the expression ofms andDs is simplified,
and we obtain7

Ds5
mskBT

e

S

Sc

1

12r↑↓ /rD
, ~56!

whererD5m* /ne2tD is now the ordinary Drude resistivity
and ms5etD /m* , which shows that, under the assumpti
that up-spin and down-spin electrons have equal mobilit
the mobility of the packet coincides with the ordinary hom
geneous mobility.
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VI. EXPERIMENTAL OBSERVATION OF INTERACTION
EFFECTS IN SPIN-POLARIZED TRANSPORT

A. Direct observation of spin Coulomb drag

In Ref. 6 we proposed an experiment aimed at detec
the effect of the spin Coulomb drag and measuring the s
transresistivity. We described the experiment as it could
done on metals, but the same scheme could be applie
semiconductors~in which the drag effect is larger!, provided
that an appropriate method of injecting spin current is us

The central idea is to use a paramagnetic metal film
thicknessL!ds sandwiched between two ferromagnets p
larized in the same direction. If a battery is connected to
ferromagnets, it will induce aspin-polarizedcurrent12 from
the first ferromagnet~‘‘injector’’ ! through the paramagne
and toward the second ferromagnet~‘‘receiver’’ !.24 If the
injector and receiver are chosen to behalf metals, i.e.,
they have only electron states of spin↑ at the Fermi level,
the circuit will behave as an open circuit for spin↓ electrons.
These electrons, due to the spin Coulomb drag eff
only, will accumulate in the direction of the receiver creatin
a gradient in the spin↓ density. As the stationary state
approached, the resulting electrochemical potential will
actly compensate the spin-drag force. By measuring
built-up electrochemical potential due to spin↓ electrons, it
will be possible to have a direct measure of the s
transresistivity.6

As shown by our calculations, we expect, in metals
resistivity of the order of 1022 mV cm proportional toT2

~degenerate regime!, while in semiconductors a resistivity a
high as 1022–1023 V cm for T'TF .

B. Haynes-Shockley experiment

The Haynes-Shockley experiment23 demonstrated the drif
and diffusion of minority carriers in a doped semiconduct
The experiment allows a direct and independent measur
the minority carrier diffusion and mobility coefficients. Afte
a pulse of excess carriers is created at some point in
semiconductor, it drifts under the action of an electric fie
for a known distanceL, after which it is monitored. By mea
suring the drift time and the width of the packet, it is the
possible to compute both the mobility and the diffusion co
stant of the packet, which coincide with those of the minor
carriers.

The experiments of Ref. 4 can be seen as a Hayn
Shockley-type experiment, since they are based on a d
monitoring in space and time of unipolar spin packets.
these experiments, Kikkawa and Awschalom were able
measure independently the diffusion and the mobility of
spin packets. In the next section we are going to compare
theoretical results with their experimental findings.

VII. PARAMAGNETIC SEMICONDUCTORS AND
SPONTANEOUS FERROMAGNETIC TRANSITION

We will now focus on the results of our calculations f
the diffusion constant of the spin packet in the paramagn
regime (n↑5n↓). In order to single out the interaction con
tribution to Ds , in Fig. 5 we plot the ratioDs /Dni , where
9-10
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COULOMB INTERACTION EFFECTS IN SPIN- . . . PHYSICAL REVIEW B65 085109
Ds represents the fully interacting calculation according
Eq. ~56! andDni is the noninteracting diffusion constant, a
in Ref. 5. The figure shows results forn-doped GaAs, at
three different temperatures and for densities relevan
the experiments of Ref. 4. As expected, we see t
Ds /Dni,1 always; moreover the interaction correction c
be as high as 50%. The solid lines correspond to the ca
lations performed at a temperatureT5300 K, the dashed
lines to T520 K, and the dotted lines toT51.6 K. The
curves marked with ‘‘SD’’ correspond to the case in whi
interactions inDs are taken into account only through th
spin Coulomb drag effect. The figure shows clearly that
low temperatures the most important many-body contri
tion to the diffusion is due to the softening of the spin sti
ness, while, already at 20 K the spin-drag contribution
comes relevant, to represent most of the interaction effec
room temperature. Despite the significant reduction due
the interaction correction,Ds remains still considerably
larger thanDc ,7 consistent with experimental observation4

We see thatDs /Dni→1 for high densities. This is due t
the enhancement of screening in this regime, so that the
ticles tend to behave as noninteracting ones. In the h
density regimeS'Sni , as can be seen in Fig. 4. If the tem
perature is high enough, the spin drag still reduces
diffusion constant by a sizable amount, but eventually, e
this contribution disappears with increasing density, andDs
→Dni . At low density, the system enters the nondegene
regime T@TF(n), so that both Ds→Dc and Dni→Dc ,
whereDc5mskBT/e is the classical noninteracting diffusio
constant. However, in the noninteracting theory5 the nonde-
generate limitD/Dc→1 is approached from above, while
due to the spin Coulomb drag,Ds /Dc→1 from below
always.7

We want to stress thatDs also displays a marked depe
dence on the sample mobility that affects the diffusion c
stant through Drude resistivityrD @see Eq.~56!#. As we al-

FIG. 5. The interacting diffusion constant of a spin packetDs

rescaled by its noninteracting approximationDni vs density for dif-
ferent temperatures: solid lines correspond toT5300 K, dashed
lines toT520 K and dotted lines toT51.6 K. For each tempera
ture, we plot also the curve obtained considering interactions o
through the spin Coulomb drag effect~labeled SD!. In all the cal-
culations the dielectric constant of the semiconductor ise512 and
the mobility ism533103 cm2/V s.
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ready underlined in Sec. III A, the higher the mobility, th
more important becomes the ratiour↑↓u/rD , that can reach
values even greater than 1~see Figs. 2 and 3!. The diffusion
constant in these cases is then regulated by the spin-
effect that cannot be neglected.

By looking at the behavior of the spin stiffness~Fig. 4!
and at Eqs.~55! and ~56!, it is clear that, when the electro
gas undergoes a ferromagnetic transition,Ds will display
large variations.7 In fact S ~and soDs) vanishes at the tran
sition temperatureTc and increases sharply as the syste
settles in the fully polarized state. In the case of intrin
ferromagnetism, the critical behavior ofDs is completely due
to Coulomb interactions among carriers: in this regime
extremely low carrier density in fact, even whenT'Tc ,
Dni'Dc . On the other side, as the system fully polariz
n↓→0, r↓↑ /rD→0, andS/Sc→1, as demonstrated in Se
IV B, so thatDs reduces to the diffusion constant of carrie
of minority orientation~which are nondegenerate!, i.e., to the
classical valueDc5kBTm/e.7

As a final remark, we would like to underline that sem
conductors doped withmagnetic impurities ~for example,
Mn! can undergo a ferromagnetic transition at rather h
carrier densities,25,26n;1020 cm23 for ~Ga,Mn!As, and tem-
peraturesT,Tc;110 K.25 Our theory on the dynamics of
spin packet can be extended to these systems with sim
results.7 This extension will not be pursued here.

VIII. CONCLUSIONS

In this paper, we have tried to demonstrate the importa
of many-body effects in spin-polarized transport. We ha
discussed in detail the spin Coulomb drag effect, an intrin
source of friction in spin transport that can limit spin curren
even in the purest materials. We have worked out the beh
ior of the spin transresistivityr↑↓ in different physical re-
gimes and shown that it ranges from 1028 V cm in metals to
1023–1022 V cm in semiconductors. Moreover, the rat
r↑↓ /rD , which is only a few percents in metals, becom
comparable to, or evenlarger than unityin semiconductors.
We hope that an experimental group will soon take up
challenge of measuring the spin transresistivity, for exam
through the experiment we suggest, in order to confirm
theory.

We have also demonstrated the importance of includ
Coulomb interactions in aquantitativetheory of spin diffu-
sion, and shown that a measure ofDs for a unipolar spin
packet would be a sensitive probe of many-body effects s
as the spin Coulomb drag and the Coulomb enhancemen
the spin susceptibility.

Finally we have discussed the behavior ofDs at and be-
low a spontaneous ferromagnetic ordering transition a
found thatDs exhibits a critical behavior.
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