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We study the effect of the electron-electron interaction on the transport of spin-polarized currents in metals
and doped semiconductors in the diffusive regime. In addition to well-known screening effects, we identify two
additional effects, which depend on many-body correlations and exchangedarakthe spin-diffusion con-
stant. The first is the “spin Coulomb drag”™—an intrinsic friction mechanism which operates whenever the
average velocities of up-spin and down-spin electrons differ. The second arises from the decrease in the
longitudinal spin stiffness of an interacting electron gas relative to a noninteracting one. Both effects are
studied in detail for both degenerate and nondegenerate carriers in metals and semiconductors, and various
limiting cases are worked out analytically. The behavior of the spin-diffusion constant at and below a ferro-
magnetic transition temperature is also discussed.
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[. INTRODUCTION croscopic quantities responsible for this effect areltimeyi-
tudinal spin stiffness(the second derivative of the free en-
The theory of spin-polarized transport is attracting the at-ergy with respect to magnetization, not to be confused with
tention of the physics community both for its potential appli- the transverse spin stiffness of the ferromagnetic statel
cations to the emerging field of “spintronics’and in rela-  the spin-drag transresistivity. We discuss in detail the behav-
tion to the intriguing field of quantum computatiénn this  ior of these quantities in various regimes and show how im-
context Kikkawa et al®* generated much excitement by portant the Coulomb effects are when dealing with doped
demonstrating optical injection and subsequent control osemiconductorgsee Sec. l|l.
packets of spin polarization in the conduction band of This paper is organized as follows. In Sec. Il we review
n-doped GaAs. Such packets could in principle be used tthe basic ideas underlying the spin-resolved drift-diffusion
transport information between separate regions of a systemequations and make use of the Landau transport equation to
Unlike ordinary electron-hole packets, whose mobility iselucidate the structure of the homogeneous spin resistivity
limited by strong scattering in the hole component, thesematrix. In particular, we show that the off-diagonal element
unipolar electronic spin packets are both long livédith  of the spin-resistivity matrixXthe spin transresistivijyis al-
lifetime 7s=10 ns) and highly mobilé. most exclusively controlled by the Coulomb interaction: the
From the theoretical point of view, most recent work on contribution from spin-flip scattering, while finite, is utterly
spin-transport phenomena is based on an independent elategligible for short-range scatterers.
tron model, where, in general, the coupling between different In Sec. Ill we present the calculation of the Coulomb
spin channels is completely neglected. Flagied Byers  contribution to the spin trans-resistivity. The theory of Ref. 6
have recently discussed the behavior of spin packets in semis extended in various directions. First we study the spin-
conductors in the framework of the Hartree approximationdrag effect as a function of temperature going from the de-
where the Coulomb interaction is taken into account onlygenerate regimévhich is appropriate for ordinary metat®
through the imposition of a charge neutrality constraint. Thisthe nondegenerate regime, which is appropriate for low-
constraint establishes an electrostatic coupling between diflensity/high-temperature doped semiconductors. Then, we
ferent spin channels. They neglect, however, all furthercalculate the spin drag in the “mixed” case in which one
many-body effects. spin component is degenerate while the other is nondegener-
In this paper we go beyond the treatment by Flattel  ate: this is relevant to situations in which a strong spin po-
Byers by considering more subtle correlatiepin-drag and  larization exists.
exchange(spin-softening effects. Our objective is the deri- Section IV is devoted to a description of the behavior of
vation of drift-diffusion equations for spin packets in a full the longitudinal spin stiffness of the homogeneous electron
many-body context, i.e., allowing for correlation betweengas as a function of density and temperature.
different spin channels. These equations contain the spin- In Sec. V we present a detailed derivation of the drift-
packet mobility and the diffusion constant as key parametersliffusion equation for a macroscopic spin packet that extend
We show that both exchange interactions and the drag effethe results of Ref. 7. We give explicit expressions for the
between different spin populatichsoncur in reducing the mobility and diffusion constant in terms of microscopic
value of the diffusion constant by a sizable amount, leavingjuantities such as the spin stiffness and the spin transresis-
at the same time the mobility basically unaffected. The mi-ivity discussing in detail the general case in which the mo-

0163-1829/2002/68)/08510912)/$20.00 65 085109-1 ©2002 The American Physical Society



IRENE D’AMICO AND GIOVANNI VIGNALE PHYSICAL REVIEW B 65085109
mentum relaxation rates for the two spin populations mayis the static longitudinal spin-stiffness matrix—the inverse of
differ. Section VI suggests experiments aimed at directlythe spin-susceptibility matriy 5. Equation(5) is the well-
measuring the spin transresistivity and the spin-diffusiorknown Einstein relation between the mobility and the diffu-
constant in metals or semiconductors. sion constant, generalized here to the case of spin-polarized
Electron-gas theory predicts that, at sufficiently low tem-transport. The first term of Ed4) is the drift current asso-
peratures and densities, the homogeneous electron gas undeiated with the electrostatic field, the second is the diffusion
goes a ferromagnetic transiti8i.Such a transition could be, current associated with the gradient of the electronic densi-
in principle, observed in a doped semiconductor. Section Vlties. These two terms cancel out exactly in a situation of
examines the behavior of spin-diffusion constant in the paralocal equilibrium, due to the Einstein relation and the fact
magnetic phase and how the occurrence of ferromagnetismtnat[)(*l]aﬁzSaﬁ.
as a second-order phase transition would affect it. Our cal- On a formal level the main effect of the Coulomb inter-
culations show that the diffusion constant vanishes at thaction is the appearance of nonvanishiof§diagonal ele-
transition temperature and increases as the system becomeentsof the conductivity and spin-stiffness matrices; |
fully spin polarized with decreasing temperature. #0 implies that an electric field acting only on the up-spin
electrons must necessarily drag along a current of down-spin
electrons. Conversely, a current of up-spin electrods (
#0) flowing against a background of stationary down-spin
electrons §, =0) will necessarily induce a gradient of spin-

The theory of diffusive transport in metals and semicon-gown electrochemical potentiéjl: _le:eplTjT’ where
ductors is based on the assumption of a local linear relation; , is the resistivity matrix, inverse to-,;. We shall see

ship between the current densities of up- and down-spin eleqater how one can make use of these effects for a direct
trons and the gradient of the local electrochemical potentialsaxperimental measure of the spin Coulomb drag.

The other noteworthy feature ;) #0: this means that
the chemical potential of up spingf(n,,n;,T)/dn, is a
function of both up and down spin densities. Thus a distur-
bance acting on one of the two spin populations will affect
the other through Coulomb correlation.

Il. GENERAL THEORY |

A. Drift-diffusion equation

—e3a<F>=—§ Tap(NVip(r). (1)

Here e is the absolute value of the electron charge,
J(r) (=1 or |) are number currents® and theelectro-
chemicalpotentialsy,(r) are given by the electrostatic po-
tential ¢(F) plus the local chemical potential, which can be
spin dependent,

B. Structure of the resistivity matrix

Although the homogeneous resistivity matrix can be cal-
culated from first-principle Kubo formulas and/or transport
equations its general structufencluding the off-diagonal
terms, due mostly to the Coulomb interacbias best under-

, . stood at the phenomenological level. We first present the
Here f(n;,n|,T) is the free energy per unit volume of & hhanomenological picture and then justify it from a more
homogeneous interacting electron gas evaluated at the 10cg;ma1 consideration of the Landau transport equation.

H e e H .11 > >
spin densitiesn,(r) and uniform temperaturél;™ o Let E(t) andE,(t) be uniform effective electric fields,

=lim,_,0,5(q=0,w) is the homogeneous conductivity - _ : .
matrix of the electron gas, whose structure, in the presence of¢ Vi, , that couple to up and down spins, respectively.

1 9f(ny,n;,T)
e an, '

Yo(N)=p(r)— )

interactions, will be elucidated below.
Substituting Eq(2) in Eq. (1) and writing

_of(ny,n;,T)
T

*f(ny,n; T
n l
IN,dNg B

we obtain
el(r*>=§ [Tap(N)V (1) —€D,p(1)Vng(r)],
where the diffusion matriD,z is given by
ezDaﬁ:2 O'Q),S%B
Y

and

#*f(n;,n;,T)
“B= on,ang

We restrict ourselves to the linear-response regime,, Ifs
the velocity of the center of mass of electrons of spjrand
N, the number of such electrons, then the equation of motion

for v, has the form

)

* *

—Ngvot+—Ngvg,
Ta T

a

M*N,0,=—eN,E,+F—
@)

wherem* is the effective mass of the carriers ane= — .
Let us examine the meaning of the various terms in Eq.
(7). The first term on the right-hand side is the net force
(5) exerted by the electric field on spin-electrons.

The second term,fgg, is the Coulomb force exerted by

(4)

spins of theoppositeorientationz on spin« electrons. No-
tice that the net force exerted by spins of the same orienta-
©6) tion vanishes by virtue of Newton’s third law. For exactly the

=C =C .
same reason we must ha¥e = —F~ , and by Galilean
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invariance this force can only depend on the relative velociticomponent by electron-impurity collisions that flip the spin
of the two components. Hence, in the linear approximationfrom « to «. Because electrons emerging from collisions

we can write have a randomized momentum distribution with nearly zero
e average, we expectrg()‘1 to be smaller than even the al-
ﬁgzz — ym*NaFa(Ja_J;)’ (8 ready small spin-flip rates_f]la. Indeed, we shall see in the

next section that€,) ! vanishes for short-range scatterers
wheren=n,+n, is the total density. Equatiof8) defines in the Born approximation.
the spin-drag coefficienty. Fourier transforming the equation of motigr) for the
The third term on the right-hand side of Ed) combines  current densityj ,(w) = —en,v (), we find
two distinct physical effects. One is the net force exerted on
spinw electrons by electron-impurity collisions thdd not

flip the spin of the incoming electrons. The other is the rate . n,e’. ny, 1)\.

at which momentum is lost to the component as a result of (o] o(@)=— FEa(‘") Tl rt T_) Ja(w)
electron-impurity collisions that flip the spin from to a. :

Accordingly, the momentum relaxation ratg® is written as n, 1).

the sum of non-spin-flip and spin-flip contributions;,* - F”J“_, Jol®). ©

= Tniat Torw - SPin-flip times have been found to be very
long both in metal§ 7¢; ,~1 ns(Ref. 12] and in semicon-
ductors| 75¢ ,~ 10 ns(Refs. 3 and #, whereas non-spin-flip The resistivity matrixp,,- is defined as the coefficient of
times are usually much short@f the order 10%-10 4 ns).  proportionality between the electric field and the current, i.e.,
Thus, for most practical purposes,;l%T,}%a. EazEa,paa,fa/ . A quick comparison between this defini-

Finally, the last term on the right-hand side of Eg)  tion and Eq.(9) shows that the complete form of the resis-
represents the rate at which momentum is fed into dhe tivity matrix p,g4 is

oom* m* n, m* m* m*
ot s T hone” T ne?
enT nTe TT nT n nTe TT n
p= . . . (10
m m om* m* n; m*
- 0o —+t—F—+—

Notice that this matrix is symmetric, due to the relationfunction in Landau theory of Fermi liquitf. This is simply

1/n; 7/ =1/n;7{, which will be proved in the next section. the classical Boltzmann equation for quasiparticles in a self-
Due to the extreme smallness of the spin-flip rates,1/ consistent field described by Landau parameters. In the ho-

the off-diagonal resistivitfalso referred to as “spin transre- M0geneous case the self-consistent field coincidesawith the
sistivity”) is controlled almost entirely by the Coulomb in- classical electric field and the distribution functiép(kt)

teraction term, i.e., we can safely assume obeys the well-known kinetic equation
of (k) - afOk) [ af (Kt
__m (11) ekl —ei, Lo [ b a
P Y it IR a |,

andy is directly proportional to the spin transresistivity. But wheref((K) is the equilibrium distribution function.

then, Galilean invariance and Newton's third law demand The collision term[4f,(k,t)/dt]c, has contributions
that the same, | appear also as a correction to the ordinaryfrom the Coulomb interaction as well as spin-flip and non-
diagonal resistivity. This effect is quite distinct from the SPin-flip electron-impurity interactions. The various contri-
“trivial” renormalizations due to the electronic screening of butions are listed below.

these interactions. Coulomb collisions:
At ; afa(lz’t) © Cilern mR k! ! !l
C. Derivation from Landau transport equation Y =— . 92 o W~(ka,pB;k'a’,p'B")
In this section we provide a microscopic justification of coll PRpTpac
the phenomenological Eq7) and give explicit expressions X Skt pir +p' Ot B a,+ﬁ,{fa(|2)fﬁ(5)
for the electron-impurity relaxation rates. We start from the ' R ’ ) R
linearized transport equation for the quasiparticle distribution X[1=f o (K)[1=Ffg(p")]-[1—fu(K)]
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X[1—=f4(p)]f o (K )F 5 (P} :_2 O (e,) K2 -
X5(Eka+ €pp— Ek’,ﬁ’_ep’ﬁ’), (13) Tnf,a K ﬁeka nad K’
whereWC(ka,pB;k'a’,p’ B’) is the probability of the Cou- X (1=k-k') 8 €a— €cra), (19

lomb scattering procedse,pS—k’a’,p’ B’ and e, is the
energy of a particle of momentu#n and spina relative to
the chemical potential. The conservations of momentum, en-

ergy, and spin are explicitly displayed. B —2 €ka

wherek andk’ are unit vectors in the directions kfandk’:

Non-spin-flip electron-impurity collisions: Tsfa_ - 5€ka n,d ' a)
af (k)| " o N N X 8( €y €r2)s (20)
(%) == 3 W(Ka K @)[fo(K)— Fo(K")] (™
coll
1 1 O (e, I
X O( €k €kra)s (14 = £2 W3f(ka, k' a)k- K’

o T, ngd X & Y
where W' (ka,k’ @) is the probability of the non-spin-flip
(nf) scattering processa— k' . X O(€a— €kra)- (21
Spin-flip electron-impurity collisions:
Notice that 1#s;, and 1/, arise, respectively, from the
first and the second term on the right side of ELp). The
key difference between these two relaxation rates is that the

expression for the latter involves an angular average of the
X 8(€a™ €kra), (19 scattering probability with weight factde- k’ = cos(@). This
, average vanishes in the Born approximation for short-range
Whi:ews (ka k si;) s l:t]e probability of the spin-fliris) scatterers, since the scattering probability becomes isotropic
scattering processa— . - S . . )
In order to obtain a closed equation of motion for the(mdependent ok andk’) in this special case. Quite gener

currents, such as E¢9), we must multiply both sides of Eq. ally, one can expect ], to be much smaller than 4, in

12) by —eKm* m overk. and then express the inte- agreement with the qualitative arguments given in the previ-
( y —exm, su ' P ous section. This means that the spin transresistivity is al-
grated collision term

most entirely a Coulomb interaction effect, and therefore its

» sf
(—&fa;tk ’t)) == W'(Ka,K a)[ f4(K)— fo(k)]
coll Kk’

¢ (K measurement can shed light on the nature of the Coulomb
= _§ o ? oKD correlation between up- and down-spin electrons. This is one
Fo=2 K (16) 1 bew electrons. 1

K at coll of the main points we wanted to make in this section.

_ _ Finally, notice that Eq(21) implies the identity
back in terms of the currents. Of course, this cannot be done

rigorously, but for an isotropic system slightly perturbed

from equilibrium one can assufffehat the distribution func- o1 (22
tion of the state with currents,= —en,v, is given by n7 N
R (O)(e W) - . s .
£ (K =FO(e,)— : k 5.(1)-K. 17) \(Afg)l)ch guarantees the symmetry of the resistivity matrix Eq.
ko .

Substituting this into Eqs(13)—(15), and linearizing with
respect to the currents wherever needed, we arrive, after tedll. CALCULATION OF THE SPIN TRANSRESISTIVITY
dious but straightforward manipulations, at the desired equa-
tion of motion (9), with the following expressions for the
various relaxation times:

The theory of the spin transresistivity has been worked
out in Ref. 6. This theory closely parallels the theory of the
ordinary Coulomb drag between parallel two-dimensional

n (K—K")? electron or hole-gas layérshut differs in some important
y=— - - details, as the fact that electrons of opposite spin interact
m* NNy kpk'p’ 2dkgT with the sameset of impurities, so that certain electron-

R — impurity terms which appear in the Kubo formulation of the
XWE(ka,paika,p’a) 6gspirp transresistivity do not vanish upon disorder averaging. For-

tunately, it turned out that these terms cancel out exactly at

X 5 + = ! - > f(o) H i
(€kat €pu™ €0 €pra) T (€ka) low frequency @<Eg) and to leading order in the electron-

X fg))(ep;)fgxo)(_ ek,a)fg_))(_ €0ra), (18)  electron and electron-impurity interactiohs. ' o
The final outcome of Ref. 6 was that the spintransresistiv-
whered is the number of spatial dimensions; ity, for =0, is given by
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,1

B 1@
T = — —Uvo=
P nTnle2V§d: 392

(2

f”ﬂ X01(d, 0" ) xo,(q, —@") 3
0

T |e(q,0')|?sink(Bw’2)’

where B=1/kgT, kg is the Boltzmann constantyp,
=4me?/ge is the Fourier transform of the Coulomb inter-
action with e the dielectric constant of the materidl,is the
volume of the systemy,,(q,) is the noninteracting spin-
resolved density-density response function, afd,w)=1
—0gX01(0,©) —vgxo (. @) is the random-phase approxi-
mation (RPA) dielectric function. This expression, which is
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M Gaas
12
g 10} § 15
S 8t ..:,: 1 k
T 2os
8 6_ “-z .n )
>4} -
?‘e ) Ny
n,
O —p— T T
0 0.5 1 1.5 2 25 3
T,

FIG. 1. Spin transresistivity,, as a function of temperature

based on an approximate decoupling of a four-point responsgescaled byTg) for GaAs parametersnf* =0.06Mm,, e=12, u

function (generalized RPA, see Ref),6s valid in the weak

=3x10° cn?/V s). Each curve corresponds to a different density:

Coulomb and impurity scattering regime, characterized by1=15x10"cm™3, n,=1.5x10" cm™3, na=1.5x10cm™>.

fil 7o<kgT, where 1p=(n;/n)7;+(n;/n)7 . Because of
the “high” temperature, weak-localization effects are negli-
gible.

Equation(23) will be our starting point: at variance with

Inset: comparison betwegr} | and its analytical approximation in
the nondegenerate regime vs temperatuescaled byTg) for n
:nz.

the calculation of Ref. 6 we present our results not only inthe degenerate and the nondegenerate regimes. As can be

the low-temperature limitwhich is relevant to metals and
where y~T?), but also in the nondegeneratgT>E and
qguasidegenerat&gT~Eg regimes (which are relevant to
doped semiconductorswhereEg=#%2(372n)2%2m* is the
Fermi energy?®

A. Numerical evaluation

To calculatep, | at finite temperature, we have used in Eq.
(23) the temperature-dependent expression for the thre

dimensional noninteracting spin-resolved density-density re-

sponse function

1
{ “” Ry
1+ eBlUlel(hw+eq) 217~ £,
1+ eBl(Legl(ho—eq)/21~&,)

1 1
E Ea* 3Ry

Xga(Qaw.T): -

XIn

] . (29

where a* is the effective Bohr radius,g=ga*, o
=hw/Ry, Ry=e?/2a* is the effective Rydbergé, is the
chemical potential for thea spin population, ande,
=#2g%/2m* . Equation(24) follows directly from the defini-
tion

" m
X0a(0 i T == 72 (Mo Nis o) o+ €= i),
k
(25

whereng,=1{exp(B(eq—&,))+1} is the average number
of a-spin electrons with energy,, .
Figure 1 showgp, | as a function of temperature and

e

seen,p;, is strongly enhanced as the density decreases,
mainly due to the prefactor dependened/n?. In fact its
maximum increases of almost two orders of magnitude, pass-
ing from 0.3 n{) cm for n=n, to 14 m{) cm for n=ns. In
the calculations of the following sections, we will mainly
focus on the density value=n,, corresponding to a Fermi
temperaturd =178 K. The inset of Fig. 1 presents for this
density value the comparison betwgen and its nondegen-
erate analytical approximatiofdashed lines discussed in
detail in Secs. Ill C.
We now turn to a quantitative assessment of the relevancy
of the spin Coulomb drag. First of all it is necessary to un-
derline that the spin drag is aimtrinsic effect of spin-
polarized transport: that is, while impurity scattering could in
principle be suppressed in a perfect crystal, the spin Cou-
lomb drag will always be present, even in the purest sample,
and dominate over phonon scattering at sufficiently low tem-
perature. However, since available samples are usually far
from perfection, it is reasonable to ask how the spin transre-
sistivity compares to the more familiar Drude resistivity. In
metals, as we shall show in detail in the next section, one
finds, at most,pw~10*2,uﬂ cm so thatp,| /pp is of the
order of few percent. The situation is very different for semi-
conductors: since both the Fermi temperatt@ewhichp;
peaks and the carrier density are considerably lower than in
metals,p;; can become comparable and even greater than
pp . This strong variation depends on specific semiconductor
characteristics, such as the effective mass, mobility, and den-
sity of the carriers.

In Fig. 2 we show the effect of the carrier mobility on
the ratiop, | /pp . We plotp;, /pp in respect to temperature
for an n-doped semiconductor as GaAs(=0.067T,, €

density}’ The data are calculated in the paramagnetic phase- 12, and n=1.5x10"" cm™3; upper panel and for a

and for semiconductor parametdf3aAs, i.e., m* =0.067,
e=12, and carrier densityn;=1.5x10¥cm 3, n,=1.5
X 10" cm 3, andnz=1.5x10" cm 3. p;, peaks at about

the Fermi temperatur@ég, underlying the crossing between

p-doped semiconductor, agGa,MnNAs (m*=0.5m,, €
=12, n=1.2x10" cm™3; lower panel. Each curve corre-
sponds to a different mobility value as reported in the figure
caption. The values increase from “A’ to “D.” In particular
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' ' ' ' ' ' ' ' ' (as labeled in the figujeEach curve peaks at a density such
that Te=T.

In conclusion, our calculations demonstrate that in semi-
conductors, afT~Tg, the spin Coulomb drag must defi-
nitely be considered an important contribution to the resis-
tivity for spin polarized currents.

Py, Pp

B. Degenerate limit

The only regime of practical importance in ordinary high-
density metals is the low-temperaturesT<Eg) and low-
' ' ' ' : ' ' ' ' frequency t w<Eg) one. In this regime the spin-Coulomb

or (Ga, Mn)As drag coefficient is controlled by a subset of all the processes
5t . that lead to the finite lifetime of a quasiparticle at the Fermi
a4 T, =444K surface, namely, the processes in which the quasiparticle in
o 7l guestion exchanges momentum with an electron of opposite
& 3l spin (scattering processes between parallel spin electrons do
! not cause relaxation of the spin currersince the inverse
2r quasiparticle lifetime at the Fermi surface is known in Fermi-
1L liquid theory to scale askgT/Eg)? we expect the same scal-
ing to hold for the spin drag coefficient at low temperature.
% 0 >0 300 00 3500 Thi.s expectation_ is confirmed by the detailed calculation,
T (K) which, atw=0 gives
FIG. 2. Upper panelp; | /pp as a function of temperature for _ ha* 27%(kgT)? 1
GaAs parameters nf* =0.067n,, e=12, n=1.5x10" cm 3). pr(T)=- e 3(RyY)? 24701
Each curve corresponds to a different mobiliy=10? cn?/V s, v
B=10° cn?/Vs, C=3x10°cn?/Vs, D=10 cn?/Vs, as la- skeardq 1
beled. Lower panel: same as upper panel but®a,MnAs param- f =, (26)
eters M* =0.5m,, =12, n=1.2x 10" cm3). o g°le(a/a*0)?

where ke=min(kg; ,kg|), with kg, the a spin population

the valueu=3x10° cn¥/V s (labeled as “C’), corresponds  Fermi wave vector andi,=n,a*3. Equation (26) shows
to the value measured for a spin packet in Ref. 4. As can bgyat, in the absence of impurities, | (T) is proportional to
seen, changing the material it is possible to increase the ratip2 This dependence is not affected by modifications in the
p+|/pp by an order of magnitude, to the point that the spinform of y,,(g,») due to the presence of impuriti&ssor
transresistivity can become greater than the Drude resistivity.SES’ rs the usual electron-gas parameter, the spin transre-

In Fig. 3 we show the dependence on the ratio/pp on  istivity is appreciablé|p; | (T=40 K)|=0.01 uQ cm®]. For
the carrier density for GaAs. The results are presented fo,rS:5' the Coulomb scattering time from E6L1) is y 1
two different temperaturesTE 20 K, dashed lines and ~10 13 s while 8s/v~10"1° s whered, is the spin relax-
=300 K, solid ling and two different values of the mobility atjon length:y~* is several orders of magnitude smaller than
the spin-flip time, confirming that neglecting spin-flip pro-
cesses is indeed a good approximation for this kind of metal.

0.6 |-
0.5 C. Nondegenerate limit
04 The nondegenerate limit is characterizedTey T . First
£ ' of all we calculate the nondegenerate limit of the noninter-
~, 03 acting temperature-dependent spectral function E%):
ﬁf starting from the definition Eq(25), we use the classical
0.2 expression for the fugacity expf,)=n,-873(8/2m* 7)%2
01 and obtain
0 , — V27Bm*n, Beqg
10 10 106 107 108 )(Oa(q,w,T)——Tex 4
n (cm _3)
Bhlw?\  [Pho
FIG. 3. p; /pp as a function of carrier density for GaAs param- xXexp — de sin 5> | 27
q

eters (M* =0.067M,, e=12). The solid curves are calculated at the

temperatureT =300 K, while the dashed curves &=20 K. For  In addition, in order to calculate the nondegenerate limit
each temperature two different mobilities are considei@e;3 p+,,» we have used the classical limit for the dielectric con-
x10° cm?/V's andD =10 cn?/V's, as labeled. stante(q,w) =1+ (4me?/eq?)(n/kgT). The final result is
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8e>\Vm*  x  xexp(—x)
p”(T)_W(kBTWZEZL RAPEEN R
ge?\/m*
~———[-1-C—In(\)], (29)

V23 (kgT)%2€

where the second expression, EB9), is valid in the limit
A<1, A\=1%k3/kgT4m*, k3=4me’n/ekgT is the inverse
of the squared Debye screening length & 0.577 is the
Euler’s constant. Notice that, in the nondegenerate limit,
becomes almost independent of the total densiand inde-
pendent of the spin-density components,, while a
guantum-mechanical dependencefosurvives even in this
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0 0.6 T/ TF 1.2

FIG. 4. Spin stiffnessS, rescaled by its noninteracting approxi-
mation S,; vs T/Tg and for different carrier densities. The lowest
carrier density isn,=4.2x10' cm 3. The density increases by a
factor 100 for each curve up to the valog=4.2x 10" cm™3 for

the upper curve. The cusp corresponds to the onset of ferromag-

regime.p,, tends to zero askgT) ~¥4n(kgT) asT—. The it

inset of Fig. 1 illustrates the comparison between and its
asymptotic form. This approximation becomes valid Tor
>Tg, but, sinceTz~n?3 such limit is fulfilled only at very

Equation(33) is very similar to Eq(26), the result obtained
low carrier densities.

when both components are degenerate. This is a consequence
of the fact that, in the appropriate regime, the nondegenerate
spectral function Eq(32) presents the same dependence in
" andq as the degenerate one. We want to underline that, in
this limit, p; (T) is independent o, and that in any case
,—0 for T—0.

D. Mixed (degeneraténondegeneratg case

A very interesting limit is the one corresponding to a spin-
polarization process, for which,—n andn;,—0. This is
indeed relevant for one of the problems we want to analyzef,’T
i.e., a semiconductor with strongly spin-polarized carriers.
This system is in a very peculiar state: its minority down-
spin population is nondegenerate, i.&gT>Eg , Eg,
=#2(67°n,)%%2m*, while, for low enough temperatures,
the majority up-spin population is degenerate, ikl The other ingredient entering the drift-diffusion expres-
<Eg;. The expression for the noninteracting spin-resolvedsion for the current, Eq4), is the longitudinal spin stiffness
density-density response functions entering the spin transrgnatrix S, ;. In particular we are interested in the combina-
sistivity Eq. (23) can then be taken from the previous sub-tion S= azf(n*m*T)/amzz(STT_ST1+SLL_SLT)/4’ where
sections and are given by m=n,—n,, which gives the curvature of the free energy
with respect to the magnetization at constant density. This
guantity coincides with the inverse of the longitudinal spin
susceptibility of the uniform electron gas.

We evaluatedS numerically starting from the formulas
provided by Tanaka and Ichimatfiwho calculated the free-
energy density of the three-dimensional electron gas as a
function of temperature, density, and spin polarization.

Figure 4 showsS divided by its noninteracting valug,;

BM* w2\ ' as a function of the dimensionless temperaf€: for vari-
—2) —, ous densities, starting with=4.2x 10" cm™? for the upper

2q curve (labeledn;,) down ton=4.2x 10 cm™2 for the low-

(32 est one(labeledn,), decreasing by two orders of magnitude

where EQq.(30) is valid up to first order inw’ and Eq.(32) from one curve to the next. " -

represents the classical limit (>0) of Eq.(27). Using Egs. Two regimes are clearly \3/ISIb|_€3. For de_nsmgs larger than
(30)—(32), and the approximation, due to the small density of2 critical valuenc.:4_2>< 1_01 cm the spin stiffness de—.
down-spin carriers(q,’)~¢1(q,0), the expression for the Cr€ases monotonically with decreasing temperature settling
spin transresistivity b;acomesT e to a finite value in the ground statéop two curves For

densities lower than; a second-order ferromagnetic transi-
tion occurs: the critical temperatuiie. raises from~0 atn
=n. to a sizeable fraction of the Fermi temperaturenat
=4.2x10" cm 3. As in any second-order transition, the
spin stiffness vanishes at the transition temperatufer T

<T. the spontaneous magnetizatiﬁ'is given by thestable
minimum of the free energy, which satisfies the conditions

IV. SPIN STIFFNESS OF AN INTERACTING
SPIN-POLARIZED ELECTRON GAS

* 2 ’

" (dw' T)=— for 0<q<2kg;, (30
X6:(q ) 273 a<2kg;, (30

=0 otherwise (31

and

m* 1/2
Xgi(q,w';T)=—<_2 ) Bn exp| —

- ha* 2\m (kgT)¥2 1
prtt)==—=2 =
9 (Ry)l/Z nT

e
e
o q?lei(q/a*,0)?

(33
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af(n,m,T) to a constant zero-temperature limit, smaller than the nonin-
~om =0, teracting value, in agreement with the Landau theory of
m=m Fermi liquids.
) For n<n; the low-temperature phase is ferromagnetic,
g_t? f(n,m,T) -0 (34) and in this case the density of majority spin electrons) (
- om? o approaches the total density, while the density of minority

spin electronsif) tends to zero fo — 0. To understand the

Obviously, ferromagnetism shows up only at extremely lowbehavior of the spin stiffness shown in Fig. 4 we assume
densities, and the electron-gas model may break down wethat, in the nearly 100% polarized limit the free energy can
before getting to such densities: it is nevertheless instructivbe written as the sum of the ground-state energy of the de-
to study the repercussions of the behavioiSafn the spin- generate interacting up-spin gas plus the free energy of an
diffusion constant both above and below the critical densityinfinitely dilute noninteracting down spin gas:

Let us now consider the limiting behaviors of the spin
stiffness at high T>Tg) and low (T<Tg) temperatures. f(ny,n;, T)=€o(ny) —kgTn In(1—¢)+const, (38)

) o where €y5(n) is the ground-state energy density of a degen-
A. High-temperature limit erate liquid of up-spin electrons, and=(n;—n,)/(n,
In the high-temperature limtT>Tg(n)] the free-energy +N|) is the degree of spin polarization. Obviously, this ap-
density of the electron gas has the following expansion: ~ Proximation ignores the correlation between down- and up-
spin electrons, or, more precisely, presumes that this correla-
tion is smaller than the entropic terkyTnIn(1—-¢) for ¢
f(ny,n,, T)=ksT>X n[In(n,A3)—1] —1.
* Starting from Eq(398) it is trivial to show that the minor-
KaT ity spin density vanishes foF—0 as
+—= > n2\3—272e?\2

3/2 ’
2°% a n,~ neso(M/keT (39)
2 2m'? e¥n®? where ej(n) =dey(n)/dn<0 at low density, while the spin
X2 M-, (35 o
P 3 (kBT)1/2 stiffness goes as
where \y=(27A2/m*kgT)Y? is the thermal wavelength. kgT
The first term is the free energy of the classical ideal gas, the S~ 4_”1 (40)

second term is the leading quantum correction for noninter-

acting Fermiong® the third term is the leading quantum/ which diverges exponentially fof —0. This is precisely
interaction correction, namely, the high-temperature exwhat our numerical calculations, based on the formulas of
change free enerdy, the last term is the leading classical Ref. 18, indicate. As we shall see, this result is important in
interaction correction from Debye-Huckel theory. Only the understanding the behavior of the diffusion constant of a
first three terms depend on the magnetization, and therefognipolar spin packet when the system is fully spin polarized.
contribute to the spin stiffness. Taking a second derivative

with respect to magnetization we find, after simple calcula- V. EVOLUTION OF A SPIN PACKET
tions,
We will now examine the motion of a spin packet under
3 2 2 113 the effect of a uniform electric field. We are going to gener-
S nyn | NAT  8w%en 3 . - . . .
Sy I e [ 213 36 alize the derivation sketched in Ref. 7 discussing also the
1+ 2 1/2 (n)\T) ’ ( ) . . . . .
Se n= |2 ksT subtleties involved in the implementation of the charge neu-

trality constraint. At variance with Ref. 7, we will focus on
whereS; is the Curie spin stiffness of an ideal classical gasthe general case of different scattering times for the two spin
of densityn: populations. Additionally we will underline how familiar
concepts such as the relationship between mobility and con-
ductivity or the Einstein relationship are modified by includ-
ing Coulomb interaction between different spin populations.

We are going to describe the time evolution of a spin

Notice that the leading interaction correction to the noninterpacket obtained by injecting aexcessspin density near the
acting spin stiffness is negative, in agreement with the beerigin at timet=0. To solve this problem we start from the
havior seen in Fig. 4. generalized continuity equations for the spin-density compo-

nents,

kgTn
¢ 4nin;’

(37

B. Low-temperature limit

. . . AAN(T t An,(r,t) Ang(r.t
Let us now examine what happens in the lirfit-0. o ):_ o )+ oA
Above the critical densityr; the spin stiffness simply tends at Tsf,a Tsf,a

—~V-J3/(r), (41
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where An,(r,t)=n,(r,t)—n®  n©® s the equilibrium
value of thea-density component andy; , is its spin-flip

relaxation time. Substituting in this equation the drift-

diffusion expression for the current E¢4), we obtain the
two equations

gAN, (1) Ana(F,t)+An;(F,t)
at Tsf,a Tst,a

o

+EE f“VA AL
eﬁﬂnﬁ(nﬁ) Ta"g
+2, [VD,sVng+D,5V2(Anp], (42
2
(=1 or |) where

Ea=§ Tap- (43)

Equation (42 includes the termo,V-Ele=o,(An,

PHYSICAL REVIEW B5 085109

D,=Dae—Dua, (46)

Ma=Maat Maa (47)

E is an externally applied electric field, and the maigix,
is defined as

(?Uaﬁ z?(Taﬁ
Ny ogn,

eMaBE (48)

do, ) . -
= tza—mﬁ, plus ifa=7, minus otherwise. (49)

This is a generalization of the familiar relation between mo-
bility and conductivity: it takes into account the dependence
of the mobility u,z on both spin-density components. The
second term in Eq(48) accounts for the reduction of the
mobility in the « channel due to the drag of the spin
population on thex population.

The electrostatic field has the same sign for both spin
components, while the density gradients have opposite signs

+An))/e. This term is “dangerous” because it contains the[see Eq_(44)]: as a consequence the mobilitie_s enter@&)
product of a large quantity, times a small quantity, the @S @ Spin symmetric combinati¢gq. (47)] while the diffu-

der of the other quantities of interest in the calculation. (49)].

It is tempting, but wrong, to invoke the local charge neu- |f we consider the linear regime—i.e., we neglect terms of
trality constraint the order of ¥n,)?—Eq. (48) reduces to the more familiar

Any(r)=—An(r) (44) Tap=€Nylap (50

at this point. Instead, we will first combine the two compo- . e
nents of Eqs(42) to eliminate the space chargg {(E) term, 1-€.,
and only after doing that we can impose, without serious loss > >
of accuracy, the charge neutrality constraint. To eliminate thpﬁA m(r,t) =_ Am(r,t)

: +DV2AM(r,t) + uE- VAM(r 1),
V-E term we multiply each component of EG2) by the at Ts

conductivity o, of the opposite channel, and, in order to get (51)
the equation of motion for the excess spin density, we subwhere
tract the equation foe: spins from the equation fak spins.
Only at this point we impose the local charge neutrality con- E Tatle
straint Eq.(44). With this procedure we obtain the correct o« (52
drift-diffusion equation Ms™ ~
> 7,
- - o V[D, VAM(r t
AMEY _AmEY ; 7aV[DVAM(T.L)] 1 1 53
- e nn
at Ts 2 E'a T 2 (1/0-11)
o and
> Tala
+ L EﬁAm(F,t), (45) 2 oD,
> o, De=—— (54)
’ > o,

where Am(r,t)=m(r,t) —m(® is the excess spin density ¢
following spin injection, m®=n{"—n(® and m(r 1) :Ez 4 :kEzi_T_E. 1
=n,(r,t)—n,(r,t) is the net spin density at point and e S5 en S [(nn,/n?)(pp;+pp,)—pr ]
time t. In Eq. (45), 7¢=(1/7sq;+1lrg ) " is the spin- i
relaxation time, which is very lon$*? (55)
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are the effective mobility and diffusion constaftsHere VI. EXPERIMENTAL OBSERVATION OF INTERACTION
D= Pua—puss S, is given by EQ(37), pp,=m*/ne’r, is EFFECTS IN SPIN-POLARIZED TRANSPORT

the ordinary Drude resistivity associated with thespin A. Direct observation of spin Coulomb drag
channel, ang;|—a negative number—is the spin-drag tran-

sresistivity discussed in Sec. Ill. ; . :
We underline that in reality the range of validity of Eq. the eﬁegt c_)f-the Spin Cou_lomb drag anq measuring the spin
(51) extends beyond the linear approximation into the claglransresistivity. We described the experiment as it coul.d be
sical regime, i.e., to high carrier densities or high temperadone on metals, but the same scheme could be applied to
tures, since in that regime the relationship between densitgemiconductorsin which the drag effect is larggrprovided
and conductivity is linear. The solution of E1), with the ~ that an appropriate method of injecting spin current is used.
initial dition Am(F O):AMé(F) has the form of a .The central idea |s.to use a paramagnetic metal film of
Initia con ket th 'd i q ,h f f the el .thicknessL < 6 sandwiched between two ferromagnets po-
(.3aus§|ar1 packet that dri .ts under the efiect o _t Ef eleClNGarized in the same direction. If a battery is connected to the
field E with a pace determined by, , and spreads in time at  ferromagnets, it will induce apin-polarizedcurrent? from
a rate determined bfps.” The mobility and diffusion con-  the first ferromagnet“injector” ) through the paramagnet
stants of electron-hole packets of similar shape can be meand toward the second ferromagnéteceiver” ),24 If the
sured through the Haynes-Shockley experinfért:similar injector and receiver are chosen to balf metals i.e.,
experiment can then determipg and D, independently. they have only electron states of spiirat the Fermi level,
We stress that Eq$52)—(55) apply to the general case in  the circuit will behave as an open circuit for sgirelectrons.
which the scattering times for the two spin componenfs  These electrons, due to the spin Coulomb drag effect
may differ. Equationg52) and (54) show that the mobility  only, will accumulate in the direction of the receiver creating
and the diffusion constants of the Backet are weighted aveig gradient in the spirl density. As the stationary state is
ages of, respectively, the mobilitigs, and diffusion con- approached, the resulting electrochemical potential will ex-

stantsD,, of the two spin channels, the weight being the&ctly compensate the spin-drag force. By measuring this
conductivity}; of the oppositechannel. This is due to the built-up electrochemical potential due to spirelectrons, it

local charge neutrality constraint E¢4), that forces the two will be _p?si;gle to have a direct measure of the spin
components of the disturbance to travel together, so that thtéa’r;\sresrlls i b lculati - tal
conductivity of each spin channel is strongly influenced by S Shown Dy our caicuialions, we expect, in metals, a

. B . 2 . 2
the motion of the disturbance in the other channel. In thd€S'SUVItY of the. orderl Of. 10 '“Q cm proport|ona_1l FO.T
noninteracting limit Eqs(52) and (54) reduce to the expres- (degenerate regimewhile in semiconductors a resistivity as

- - high as 102-10 3 Q cm for T=T
sions presented in Ref. 5. F-

Equation(53) can be seen as the generalization to a spin
packet of the ordinary relationship between mobility and B. Haynes-Shockley experiment
conductivity, while Eq(55) is the corresponding generaliza-  The Haynes-Shockley experiméhtiemonstrated the drift
tion of the Einstein relation. Notice that, because the up- an@nd diffusion of minority carriers in a doped semiconductor.
down-spin components diffuse in opposite directions, fric-The experiment allows a direct and independent measure of
tion arises between them, implying that the spin transresisthe minority carrier diffusion and mobility coefficients. After
tivity enters Eq.(55) to decrease the packet diffusion. More- 3 pulse of excess carriers is created at some point in the
over the spin stiffnesSis reduced by Coulomb interactions semiconductor, it drifts under the action of an electric field,
(see Fig. 4, and so it will be the rate of diffusion of the spin for a known distancé, after which it is monitored. By mea-
packet. It is interesting to notice that the presenc@ofin  suring the drift time and the width of the packet, it is then
Eq. (55) represents an intrinsic mechanism by which diffu- possible to compute both the mobility and the diffusion con-
sion is regulatedi.e., remains finiteeven when the system stant of the packet, which coincide with those of the minority
is very pure angp,— 0. To derive the last expression in EQ. carriers.
(55), we made use explicitly of the structure of the matrix The experiments of Ref. 4 can be seen as a Haynes-

In Ref. 6 we proposed an experiment aimed at detecting

pap discussed in Sec. IIB. S Shockley-type experiment, since they are based on a direct
If 7=7,=7p, the expression ofs andDs is simplified,  monitoring in space and time of unipolar spin packets. In
and we obtaih these experiments, Kikkawa and Awschalom were able to

measure independently the diffusion and the mobility of the
spin packets. In the next section we are going to compare our
_ psksT E 1 (56) theoretical results with their experimental findings.
° e Scl-py/pp’

VIl. PARAMAGNETIC SEMICONDUCTORS AND

% . . L SPONTANEOUS FERROMAGNETIC TRANSITION
wherepp=m*/ne?rp is now the ordinary Drude resistivity,

and us=e7p/m*, which shows that, under the assumption ~We will now focus on the results of our calculations for
that up-spin and down-spin electrons have equal mobilitiesthe diffusion constant of the spin packet in the paramagnetic
the mobility of the packet coincides with the ordinary homo-regime (,=n,). In order to single out the interaction con-
geneous mobility. tribution to Dy, in Fig. 5 we plot the ratid¢/D,,;, where
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i ready underlined in Sec. Il A, the higher the mobility, the
--------- more important becomes the rafip; ||/pp , that can reach
09l values even greater than(dee Figs. 2 and)3The diffusion
constant in these cases is then regulated by the spin-drag
2 0.8 F effect that cannot be neglected.
5. By looking at the behavior of the spin stiffneésig. 4)
~ 07¢ and at Egs(55) and (56), it is clear that, when the electron
061 gas undergoes a ferromagnetic transitien, will display
large variations. In fact S (and soD,) vanishes at the tran-
0.5+ ' § sition temperaturelT. and increases sharply as the system
I 5 7 = . settles in the fully polarized state. In the case of intrinsic
10 10 10 10 10 ferromagnetism, the critical behavior Bf, is completely due
n (cm ™) to Coulomb interactions among carriers: in this regime of

extremely low carrier density in fact, even whan=T_,

rescaled by its noninteracting approximatiog; vs density for dif- E“fODC' ?n tTOOtgﬁé Ssllcsie,_is g]se dzyrifrgt:;t”ey d piglasrlezces

ferent temperatures: solid lines correspondTte 300 K, dashed LY PL1/PD—Y, c T A o
IV B, so thatDg reduces to the diffusion constant of carriers

lines toT=20 K and dotted lines td=1.6 K. For each tempera- f minori - . hich d . h
ture, we plot also the curve obtained considering interactions onl)p minority orientation(which are nondegenerajé.e., to the

- _ 7
through the spin Coulomb drag effeitabeled SD. In all the cal-  classical value =kgTule.

culations the dielectric constant of the semiconductar=i42 and As a final remark, we would like to underline that semi-
the mobility isu=3x 10° cm?/V s. conductors doped wittmagneticimpurities (for example,

Mn) can undergo a ferromagnetic transition at rather high
carrier densitie$>?°n~ 10?° cm2 for (Ga,MnAs, and tem-
peraturesT <T.~110 K2° Our theory on the dynamics of a
spin packet can be extended to these systems with similar
5esults7. This extension will not be pursued here.

FIG. 5. The interacting diffusion constant of a spin padRet

D, represents the fully interacting calculation according to
Eq. (56) andD,,; is the noninteracting diffusion constant, as
in Ref. 5. The figure shows results fordoped GaAs, at
three different temperatures and for densities relevant t
the experiments of Ref. 4. As expected, we see that

D./D,i<1 always; moreover the interaction correction can

be as high as 50%. The solid lines correspond to the calcu- Vill. CONCLUSIONS

lations performed at a temperatuiie=300 K, the dashed In this paper, we have tried to demonstrate the importance

lines to T=20 K, and the dotted lines 1@ =1.6 K. The 4t many.body effects in spin-polarized transport. We have
curves marked with “SD” correspond to the case in which giscyssed in detail the spin Coulomb drag effect, an intrinsic
interactions inDs are taken into account only through the goyrce of friction in spin transport that can limit spin currents
spin Coulomb drag effect. The figure shows clearly that agyen in the purest materials. We have worked out the behav-
low temperatures the most important many-body contribuior of the spin transresistivity,, in different physical re-
tion to the diffusion is due to the softening of the spin stiff- gimes and shown that it ranges from £00) cm in metals to

ness, while, already at 20 K the spin-drag contribution be-5-3_10-2 () cm in semiconductors. Moreover. the ratio
comes relevant, to represent most of the interaction effects %t ’

. - _ 11/pp, which is only a few percents in metals, becomes
room temperature. Despite the significant reduction due Qg mnaraple to, or evefarger than unityin semiconductors.
the mteractlor; corrt_actlonD:5 remains still conS|der§1ny We hope that an experimental group will soon take up the
larger tharD.;,” consistent with experimental observatidns. challenge of measuring the spin transresistivity, for example,

We see thaD/D,j—1 for high densities. This is due to ,rygh the experiment we suggest, in order to confirm the
the enhancement of screening in this regime, so that the Pfheory.
tlcles. tend to behave as noninteracting ones. In the high- \ne have also demonstrated the importance of including
density regimeS~S,;, as can be seen in Fig. 4. If the tem- coylomb interactions in guantitativetheory of spin diffu-
perature is high enough, the spin drag still reduces thgjon and shown that a measure D for a unipolar spin
diffusion constant by a sizable amount, but eventually, evepcket would be a sensitive probe of many-body effects such
this contribution disappears with increasing density, BRd 55 the spin Coulomb drag and the Coulomb enhancement of
—Dpi. At low density, the system enters the nondegeneratg, e spin susceptibility.
regime T>Tg(n), so thatboth D;—D. and Dp—Dc, Finally we have discussed the behaviorxf at and be-
whereD = uskgT/e is the classical noninteracting diffusion |5y a spontaneous ferromagnetic ordering transition and

constant. However, in the noninteracting theattye nonde- found thatD exhibits a critical behavior.
generate limitD/D.—1 is approached from above, while,

due to the spin Coulomb drad)./D.—1 from below
always’

We want to stress thdd also displays a marked depen-
dence on the sample mobility that affects the diffusion con- We gratefully acknowledge support from NSF grant No.
stant through Drude resistivity, [see Eq.(56)]. As we al- DMR-0074959.
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