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Tomonaga-Luttinger parameters for quantum wires
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The low-energy properties of a homogeneous one-dimensional electron system are completely specified by
two Tomonaga-Luttinger parametersKr andvs . In this paper we discuss microscopic estimates of the values
of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic proper-
ties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional
electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-
consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground
state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from
spin-density wave to localized in character as the density is lowered. Our results forKr are in good agreement
with weak-coupling perturbative estimatesKr

pert at high densities, but deviate strongly at low densities, espe-
cially when the electron-electron interaction is screened at long distances.Kr

pert;n1/2 vanishes at small carrier
densityn, whereas we conjecture thatKr→1/2 whenn→0, implying thatKr should pass through a minimum
at an intermediate density. Observation of this nonmonotonic dependence could be used to measure the
effective interaction range in a realistic semiconductor quantum wire geometry. In the spin sector we find that
the spin velocity decreases with increasing interaction strength or decreasingn. Strong correlation effects make
it difficult to obtain fully consistent estimates ofvs from Hartree-Fock calculations. We conjecture that
vs /vF}n/V0, whereV0 is the interaction strength, in the limitn→0.

DOI: 10.1103/PhysRevB.65.085104 PACS number~s!: 71.10.Pm, 71.10.Hf, 71.45.Lr
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I. INTRODUCTION AND OVERVIEW

It has been known for some time that one-dimensio
~1D! metals are different from their higher-dimension
Fermi-liquid cousins.1,2 It is generally believed that at low
energies and long wavelengths, one-dimensional elec
systems can, under very general circumstances, be desc
as Tomonaga-Luttinger~TL! liquids,3 although it has nearly
always been difficult to provide incontrovertible experime
tal evidence. Interest in TL liquids has been heightened
recent years by new physical realizations, including quan
Hall edge systems,4,5 carbon nanotubes,6,7 and semiconduc-
tor quantum wires8,9 in particular. Like Fermi-liquid theory,
TL theory can be used to relate low-temperature, lo
frequency, long-wavelength properties to a small numbe
parameters in which the microscopic physics of particu
systems is encoded. For example, TL theory predicts tha
continuous one-channel quantum wires, the quantized c
ductance is renormalized by the factor10 Kr at frequencies
larger than11 vF /L (L is the wire length andvF the Fermi
velocity!. Surprisingly, low-energy orthogonality catastr
phes lead to spectral functions that follow power laws12,5

specified in terms of the same parameter. In many cases~up
to logarithmically slowly varying prefactors13,14 associated
with the presence of marginal operators such as backsca
ing in the spin sector! nonuniversal power laws specified b
TL theory parameters are also predicted for the behavio
correlation functions at distances much larger than the sp
range of interactions.~The strictly infinite range Coulomb
interaction case requires special considerations.15,16! Micro-
scopic theory still has an important role at low energi
0163-1829/2002/65~8!/085104~11!/$20.00 65 0851
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however, in estimating the values of these parameters. Th
especially important because the distinction between Fe
liquids and Luttinger liquids on the basis of a set of expe
mental data over a limited temperature or energy rang
sometimes subtle, and the range of energies over which
behavior is expected is often not accurately known. Appro
mate values of expected TL parameters can play a role
determining whether or not an experimental result refle
TL behavior.9 In addition, as this approximate calculatio
shows, the problem of understanding the value of the t
independent TL parameters of a homogeneous o
dimensional electron system is a challenging many-bo
problem that is interesting in its own right.

Four TL parameters characterize the low-energy prop
ties of interacting spinful electrons moving in one chann
For the charge (n5r) or spin (n5s) sector, the paramete
Kn fixes the exponents for most of the power laws andvn is
the velocity of the long wavelength excitations. Symmetr
in the charge or in the spin sector reduce the number
independent parameters in the case of a one-dimensi
electron gas system: spin rotation invariance enforces17 Ks

51 while Galilean invariance implies that18 vr5vF /Kr .
The latter identity does not apply, for example, in latti
models since it requires continuous translational invarian
in that casevr and Kr must be determined independentl
This leavesKr and vs as the only two independent TL pa
rameters for single-channel semiconductor quantum wi
since they can be accurately described by a continuum e
lope function approximation.

In Fermi liquids a traditional and successful strategy h
separated the phenomenological application of Fermi liq
©2002 The American Physical Society04-1
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theory from the microscopic evaluation of its parameters.
date most theoretical TL activity has focused on phenome
logical applications; confident interpretation of experime
will require reliable microscopic estimates of the theor
parameters for the various physical systems of current in
est. The evaluation of Fermi-liquid parameters in two- a
three-dimensional metals is one of the classic early topic
many-electron physics, with considerable recent progr
coming from quantum Monte Carlo calculations.19 Still, use-
ful physical insight and reasonable accuracy have resu
from less computationally cumbersome approaches. In
paper we discuss what can and cannot be learned abou
values of TL parameters in semiconductor quantum wir
and the physics of their dependencies on system geom
using unrestricted Hartree-Fock estimates of ground state
ergies. The Hartree-Fock approximation can yield very r
able estimates for the boundary exponents20 describing tun-
neling into the end of quantum wires and, as a microsco
approach, gives information about quantities not reliably
cessible in the TL formalism, including absolute values
the prefactors of power laws.

For noninteracting electrons the TL parameterKr51.
With repulsive interactions its value should decrease and
to zero in the limit of very strong or long-ranging16 interac-
tions. For the microscopic interaction potentialV(x2x8) the
formula

Kr
215A114mV~k50!/p2n ~1!

is commonly used in the literature~cf., for example, the first
reference of Ref. 5!. It depends on the carrier densityn, the
effective massm, and thek50 Fourier component of the
interaction

V~k!5E dx V~x!coskx. ~2!

Relation ~1! can be motivated by lowest-order perturbati
theory, or by the random phase approximation,21 though it
misses the Fock contribution for spinful electrons in on
dimension. Any naive higher-order perturbative contributi
is divergent; only the infinite subsums that are convenien
captured using a perturbative renormalization approach
finite.22 Equation~1! completely ignores the renormalizin
influence of short-wavelength modes in determining the
tual values of the effective interaction. Higher-order pert
bative renormalization group calculations demonstrate h
the interaction parameters are coupled and renormaliz
short-wavelength contributions are integrated out.23 One im-
portant example is backscattering, across the Fermi line
opposite-spin fermions, the so-calledg1 process, that spoils
the separate conservation of the number of left- and rig
moving particles of a given spin and therewith is not
cluded in the TL model. This interaction, which is finite
leading-order perturbation theory, scales to zero dur
renormalization, restoring the TL at low energies.24 Even for
a model of spinless electrons, the parameters will resca
low energies, reflecting other irrelevant operators that
omitted in the TL model such as nonlinear dispersion of
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kinetic energy in the microscopic Hamiltonian.3 As a conse-
quence Eq.~1! cannot be used to estimateKr when interac-
tions are strong.

How interactions influence the spin sector is even l
certain. According to textbook knowledge25 the spin velocity
would not be altered by interaction forces that act only
spatial coordinates and thus not in the spin sector. O
work15 includes exchange contributions in the Bose form
the Hamiltonian in a way violating the SU~2! invariance
property,Ks51. On the other hand, changes invs /vF are
quite crucial to various physical properties. It influences,
instance, the magnetic susceptibility, theg factor, and spin
transport properties. The latter are particularly important
potential one-dimensional spintronic devices.26 In one-
dimensional channels,27 for example, the spin conductance28

and Rashba precession in the presence of spin o
coupling29 depend onvs . Most directlyvs can be measured
by inelastic Raman scattering in the ‘‘depolarized’’ config
ration with perpendicularly polarized incident and outgoi
light.30,31

To date relations between the microscopic electr
electron interaction and resulting TL parameters have b
established for models of primarily theoretical interest, su
as the Kondo lattice model,32 the Hubbard model,33 and the
t-J model.34 For the latter two models the ground state e
ergies are known exactly, either analytically in certain lim
ing cases or by solving the Bethe-ansatz equations num
cally. For these repulsive short-range interaction modelsKr

is found to be confined to the range 1/2<Kr<1. In the limit
of either infinite interaction strength or vanishing partic
density it has been argued33 that these models are equivale
to noninteracting spinless fermions withkF being replaced by
2kF so that Kr→1/2 in either of these limits in order to
recover the correct asymptotic decay of the density-den
correlation function. For thet-J model, TL parameters awa
from the supersymmetric point (J/t52) have been obtained
by using ground state energies from exact diagonaliza
calculations.35 The Sutherland model for spinless fermion
whereV(x)5l/x2, has proven to be a TL at low energies.36

The asymptotic decay of its one-particle Green’s funct
implies thatKr52/(11A112l) with 1>Kr>0 for repul-
sive interactions,l.0. The compressibility of this system i
proportional toKr

2 and satisfies Eq.~3! below. For quantum
wires with long but finite-range Coulomb interactions t
values of the TL parameters have been determined pr
ously by extensive quantum Monte Carlo calculations37

However, the limits on the number of particles and latti
points in real space for which these calculations can be
ried out in a reasonable time places limits on the range
particle densities over which accurate Monte Carlo res
can be obtained. In particular the low-density regime wh
interactions are strongest is difficult to reach. In this work
also exploit the thermodynamic relations between the u
form static compressibilityk and the TL parameter in the
charge sector. For quantum wires we have~cf. Refs. 3 and
33!

1
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where the last equality uses Galilean invariance.
Density-density correlation function calculations pe

formed within the TL model have been used15 to show that
long-range interactions V(uxu);uxu2a put the one-
dimensional fermion system ground state into a Wigner cr
tal whena,1, irrespective of the strength ofV. The Cou-
lomb case,a51, is marginal and density-density correlatio
decay extremely slowly, slower than any power law at la
distances. This observation suggests that the ground
energyE0 and therefore anyT50 thermodynamic property
should be accurately estimated by the unrestricted Hart
Fock approximation, for which the ground stateis a Wigner
crystal. At high densities it is known25 that the Hartree-Fock
~HF! approximation reproduces the leading order pertur
tive renormalization group~RG! result forKr . Since it spon-
taneously breaks translational symmetry, the HF approxi
tion correlation functions have infinite range. The tails of t
correlation functions are therefore given slightly incorrec
Much more important for the energy however, is the accur
estimate of the magnitude of the short-distance correla
function oscillations, illustrated in Fig. 1. The dominant p
riods for charge and spin densities are in agreement with
model calculations, which are however, not able to estim
the amplitude of the oscillations. In the real correlation fun
tion, these oscillations are multiplied by an envelope fu
tion whose decay properties are inaccessible to Hartree-F
theory but can be calculated from the TL theory. The ac
racy of self-consistent Hartree-Fock energy estimates,
ticularly at low densities, has previously been established
other interacting electron systems.38

We compare our results for ground state energies
compressibilitiesk with estimates obtained within the ha
monic approximation to the classical Wigner crystal@see
Eqs. ~6! and ~7!# and within perturbation theory.39 The per-
turbative expression~12! we use~see below! for the charge
sector TL parameterKr turns out to be surprisingly accura
over a wide range of carrier densities including typical e
perimental ones. Only below densities corresponding to
ues r s.1.3 of the usualr s parameter used to measure t
interaction strength in metals~see below! do we findsmaller
k in the self-consistent HF solution than given by Eqs.~12!
and~3!. At even lower densitiesn&1/R, whereR is the long
but finite range discussed below that we use for the elect

FIG. 1. Charge densitiesn↑(x) ~solid! andn↓(x) ~dashed! as a
function of position along the wirex in units of the mean electron
spacing forkFd50.15 andR/d55.66. We argue that these charg
densities in the broken symmetry Hartree-Fock states are a g
approximation to typical configurations in the fluctuating on
dimensional electron liquid that does not have broken translatio
symmetry.
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electron interaction, Eq.~12! predicts thatk goes to zero
whereas HF theory yields a finite limiting value afterk has
passed through a minimum. This minimum is also rep
duced by the harmonic approximation. In the latter appro
mation, however,k diverges asn→0. We shall give argu-
ments supporting the conjecture that the trueKr stays finite
asn→0 and indeed thatKr→1/2 in this limit.

We also analyze the spin sector and compare differ
approaches in the attempt to determine the spin velocityvs .
The simplest estimate is again low-order perturbation the
for the magnetic susceptibility. Other estimates can be
tained by starting with the assumption that the system
close to an antiferromagnetic Heisenberg spin chain at
densities. It turns out that the estimates forvs that follow
from different plausible schemes differ substantially. Furth
more, at smaller particle densities they are not in good ag
ment with earlier Quantum Monte Carlo~QMC! estimate.37

Although we are able to conclude thatvs is small at low
densities, our results for the spin sector do not substanti
improve on existing Monte Carlo results.

II. MICROSCOPIC INTERACTION

Now we discuss the form of realistic interactionsV along
thex direction of a quantum wire. At interparticle separatio
ux2x8u larger than the diameterd of the wire V(ux
2x8u*d)5e2/eux2x8u will be of the Coulomb form, irre-
spective of the detailed shape of the transversal potentia
the material enclosing the wire is insulating with dielect
constante8, the Coulomb form still holds at larger distance
but with dielectrice replaced by40 e8. We assume here equa
dielectric constantse;e8, the case that applies to gated8 as
well as to cleaved edge overgrowth structures.9 Eventually, at
an interparticle separation exceeding the distanceR to the
closest metallic structures the interaction will be screen
This metallic screening can be supplied by carriers in nea
metallic gates, including those used to define the quan
wire. Assuming that the screening plane and the quan
wire are parallel,V(ux2x8u.R);1/ux2x8u3 because of the
formation of dipoles from image charges. The interaction~4!
below accounts for this cutoff at large particle separation

At distancesuxu&d shorter than the wire width, the pre
cise transverse form of the electronic wave function infl
encesV(uxu). For example, in 2D heterostructures all ele
trons share a common growth direction wave function. If t
is also assumed for the in-plane direction perpendicula
the wire axes and if this latter wave function is taken a
harmonic oscillator ground state, we have41 V2D(x)
5(e2/2Aped)ex2/8d2

K0(x2/8d2), whereK0 denotes a Besse
function. It is more realistic to include finite thickness
both confined directions. For example, for 3D wires w
circular cross sections, a model that might be appropriate
cleaved-edge-overgrowth systems, we have42 V3D(x)
5(e2/A2/ped)ex2/2d2

erfc(x/A2d) again using harmonic os
cillator ground states of widthsd/A2, now for both of the
transverse directions. Neither of these forms is smooth ax
50, an artifact of assuming factorized wave functions.
short distances, corresponding to high energies, the facto

od
-
al
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WOLFGANG HÄUSLER, LARS KECKE, AND A. H. MACDONALD PHYSICAL REVIEW B65 085104
tion assumption needs to be refined. It leads to
unphysically slow decay of the Fourier transform
V̂2D(k)5(e2/evF)e

k2d2/2K0(k2d2/2) and V̂3D(k)5(e2/evF)
3ek2d2/2E1(k2d2/2) as seen in Fig. 2, whereE1 is the expo-
nential integral. Also included in Fig. 2 is the more realis
form,

V̂~k!5
2

aBkF
@K0~kd!2K0~kAd214R2!#, ~4!

which accounts for the image potential term from a rem
screening plane separated byR@d. Its real space form is
displayed in Eq.~A4!. This interaction remains finite fork
→0 and decreases more quickly for largek and will be used
in the present work. Here and in the following we meas
the interaction in units of the Fermi velocity so thatV̂ is
dimensionless in Eq.~4!. Its strength, in comparison with th
kinetic energy, scales with the dimensionless parameter s
ª1/(2naB)5p/(4kFaB) depending on densityn and the ef-
fective Bohr radiusaB . In our calculations we assumeaB
52d.

Thus, two parameters

R/d and kFd ~5!

characterize the range and the strength of our model inte
tion ~4!, respectively. They both can be extracted quite r
ably from experiment,R from the sample layout andd from
the energy;1/md2 of intersubband excitations. Typical dis
tances to metallic gates and typical wire width, as repor
e.g., in Refs. 8 and 9, correspond to values forR/d ranging
from 5 to 14. Typical single-wall carbon nanotube system
on the other hand, would correspond to much largerR/d
values because of their extremely small diameters. Man
our calculations are forR/d55.66 or 35.36. Note also tha
electron densities should be sufficiently low (kFd,A2
within the parabolic approximation for the transverse co
finement! to prevent occupation of the second subband.

III. GROUND STATE ENERGY

According to Eq.~3! we need to calculate ground sta
energies for different particle densities. In this work we e
ploy the unrestricted Hartree-Fock approximation the det

FIG. 2. Fourier transforms of three different forms of micr

scopic electron-electron interactions,V̂(k)5V(k)/vF , as described
in the text. Solid line, the form~4! we use in the present work
dashed line, the 2D heterostructures model; dash-dotted line, th
cylindrical case intended for cleaved-edge-overgrowth systems
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of which are described in Appendix A. Results of these c
culations are included in subsequent figures.

The close proximity to the Wigner crystal~WC! and the
Bose character of all of the low-energy excitations sugge
comparison with the ground state energy density of the h
monic crystal in 1D,

E0
WC5E0

classical1
1

2E2kF

kF dk

2p
v~k!. ~6!

Here,

E0
classical5

1

2L (
iÞ j

V~ u i 2 j up/2kF! ~7!

is the classical contribution and the zero point energy follo
from the phonon dispersion

v2~k!5
1

m (
j 51

`

V9~ j p/2kF!@12cos~ jkp/2kF!# ~8!

of harmonic excitations. The primes denote derivatives w
respect to the argument. BothE0

classicalandE0
WC provide rig-

orous lower bounds to the true ground state energy since
quartic term of the Coulomb interaction is positive wh
expanded in a power series and the fermionic antisymm
constraint, ignored by Eq.~6!, increases the true fermioni
energy further. This latter observation remains true also
spin-carrying electrons since spin cannot provide comp
antisymmetry for symmetric spatial wave functions for mo
than two particles.

Figure 3 also includes the lowest-order perturbat
theory estimate

E0
pert5

vFkF
2

3p
1

2vFkF
2

p2
V̂~0!2

vF

2p2E0

2kF
dk~2kF2k!V̂S k

kF
D ,

~9!

obtained by taking the Hamiltonian’s expectation value
the noninteracting electron state, to obtain the positive H
tree and the negative exchange contribution. The variatio
principle ensures that Eq.~9! is a rigorous upper bound to th
ground state energy. The true ground state energy mus
between these two bounds.

The energy densities are plotted in dimensionless unit

e0~kF!ª
E0 /L

kF
3/m

, ~10!

which have the value 1/3p without interactions. The HF en
ergiese0

HF , seen in Fig. 3~a! for R/d55.66 and in Fig. 3~b!
for R/d535.36, approach this value in the weakly intera
ing high-density limit,kF→`.

For densities abovekFd*0.5, corresponding tor s&0.8,
e0

HF agrees quite well with the perturbative estimate~9!. This
is despite the fact that the self-consistent charge-den
modulation already shows significant amplitude in this
gime as seen in Fig. 5 below.

Below kFd&0.3 (r s*1.3), the three approximations sta
to spread apart significantly. AskF→0. perturbation theory

3D
4-4
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TOMONAGA-LUTTINGER PARAMETERS FOR QUANTUM WIRES PHYSICAL REVIEW B65 085104
result diverges,e0
pert;1/kF , while e0

WC;kF
1/2 goes to zero.

The mean field resulte0
HF approaches a finite value, a resu

which seems plausible since the zero point quantum fluc
tion energy exceeds the classical interaction energy of
Wigner crystal at low densities for interactions decayi
faster than;1/ux2x8u2 at large particle separations. W
speculate that realistic quantum wires, which never h
strictly infinite-range interactions, always cross over into
hard sphere gases at sufficiently low densities. For this
tem it is known that the ground state energy approachee0
→4/3p'0.4244~cf. Refs. 3 and 43!, irrespective of the par-
ticle type, fermionic or bosonic, and irrespective of the p
ticle’s spin. The ‘‘radius’’ of the hard spheres is unimporta
when kF→0. Among the approximations discussed abo
e0

HF is the only one that stays finite in this limit, though th
limit it approaches is larger than 4/3p.

IV. TL PARAMETER Kr

Figure 4 shows

1/Kr5S p

2
$kF

2e09~kF!16@kFe08~kF!1e0~kF!#% D 1/2

~11!

versuskFd for R/d55.66 @Fig. 4~a!# and for R/d535.36
@Fig. 4~b!#. Equation~11! follows from relation Eq.~3! to-
gether with Eq.~10!; the primes again denote derivative

FIG. 3. Ground state energy densitiese0(kF)5(E0 /L)/(kF
3/m)

for ~a! R/d55.66 and~b! R/d535.36 in the HF method~solid
line!. The perturbative estimate@Eq. ~9!, long-dashed line# estab-
lishes an upper bound while the harmonic chain estimates, omi
@Eq. ~7!, dotted line# or including quantum fluctuations@Eq. ~6!,
dashed line# both establish lower bounds to the true ground st
energy.
08510
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with respect to the arguments. Also included in these figu
is the result from expression~1! and the perturbative estimat

1/Kr
pert5$11@2V̂~k50!2V̂~k52kF!#/p%1/2, ~12!

which follows from Eqs.~3! and ~9!. Note that only this
form, with the Fock term included, satisfies the physical
quirement that spinless fermions cannot ‘‘feel’’ contact inte
actions and that thereforeKr equals unity for this model.
Since the factor of 2 in Eq.~12! is absent in the spinless cas
Eq. ~12! indeed fulfills this Pauli principle requirement, un
like Eq. ~1!. Figure 4 also includes 1/Kr

cl and 1/Kr
WC, calcu-

lated from the corresponding harmonic crystal energy e
mates of Eqs.~7! and ~6! using Eq.~3!. The result forKr

WC

has been obtained first in Ref. 44.
Over a wide range of densities, including the typical e

perimental regime, all of these approximations coars
agree, though none of them can provide a rigorous bound
the exact compressibility orKr . As for the ground state en
ergies, the approximations start to deviate severely from
another at smaller densities, corresponding tor s*1.5. Both
HF and harmonic estimates show nonmonotonic behavio
1/Kr as a function of density, in agreement with recent qu
tum Monte Carlo37 calculations. If, as we have conjecture
e0 approaches a constant forkF→0,

Kr~kF→0!5@3pe0~kF→0!#21/2. ~13!

Note that the HF compressibility approaches a constan
the low-density limit. Conjecturing again that at mean p
ticle separations exceeding the interaction range,kF!p/2R,
the system crosses over into the hard core Bose gas
e0→4/3p, Eq. ~13! would yield

g

e

FIG. 4. 1/Kr versuskFd for ~a! R/d55.66 and~b! R/d535.36.
The same approximations are included as in Fig. 3, together
the commonly used formula~1!, dash-dotted line.
4-5
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Kr→1/2. ~14!

We note, for example, that the Hubbard model approac
~14! at small fillings, independent of the interaction streng
U. The same holds true for the Fermi gas with cont
repulsion.3,45 It is an important observation that the limitin
valueKr

HF(kF→0)'0.29 to 0.35 forR/d550, . . . ,8clearly
exceeds1/8, which would be the limiting value for the ex
tended Hubbard model46 that has both on-site and nea
neighbor interactions. On the other hand, as seen in Fig
the minimum value forKr at aboutkFR;1 is considerably
smaller than 1/2, so that, contrary to the Hubbard model,
limit ~14! would have to be approachedfrom below with
decreasing carrier densities in quantum wires.

Upon inspecting Fig. 4 more closely a regime can
identified at densities somewhat above the maximum
1/Kr

HF, where 1/Kr
HF exceeds1/Kr

pert. As seen in Fig. 5, the
relative increase in stiffness appears along with a signific
4kF-periodic contribution to the charge-density modulatio
Figure 5 shows the two lowest Fourier coefficients

% j[%↑~q5 j 2kF!5~21! j%↓~q5 j 2kF!5%2 j ~15!

for j 51,2 in units of the mean density%052kF /p. In view
of Eq. ~15!, which follows from Eq.~A7! of Appendix A,
4kF-periodic modulations of the charge density%↑(x)
1%↓(x) are given by thej 52 contribution in Fig. 5. The
appearance of a substantialj 52 Fourier component, atkFd
;0.5, marks the crossover from spin-density wave to Wig
crystal self-consistent solutions of the HF equations. A si
lar conclusion has been drawn from the extremely slow s
tial decay of the density-density correlation function in t
presence of long-range interactions15 and from recent quan
tum Monte Carlo studies.37 With smaller 1/R this regime of
Wigner crystal-like states marked by enhanced stiffness
tends down to smaller densities and becomes more
nounced. The variation of 1/Kr

HF with R is depicted in Fig. 6
for the densitykFd50.15. At kFR@1 all of the approximate
estimates are consistent with the logarithmic increase 1Kr

;Aln R/d suggested by perturbation theory. ForkFR@1, the
electrostatic energy is so dominant that the energy andKr

are relatively insensitive to correlations.

FIG. 5. Amplitudes for the 2kF- and 4kF-periodic components
of the charge-density modulationsr1 and r2 versuskFd for R/d
535.36 in units ofr052kF /p.
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V. SPIN SECTOR

As mentioned already in the Introduction, it is much mo
difficult to estimate how interactions influence the spin s
tor, particularly its low-energy TL parametervs , than it is to
estimate the charge sector parameter. In the model origin
proposed by Luttinger2 with left- and right-going particles
treated as distinguishable, the spin velocity
unrenormalized,47 vs5vF , because the exchange term va
ishes, leaving magnetic properties of the system indepen
of interactions. For the Hubbard model, on the other hand
is known that the spin velocity48 is dependent on interaction
and particle density,n, vanishing liken2 at small densityn
for any finite interaction strength. The spin TL parameter
related to a thermodynamic quantity, the magnetic susce
bility, by49

x[4@p2vF]m
2 e0~m!#215

2Ks

pvs
, ~16!

wherem5(n↑2n↓)/n is the magnetization per particle an
e0 is the dimensionless ground state energy density as
fined in Eq.~10!. Relation~16! actually holds for any inter-
acting electron system in the single-channel TL phase.50,17

Evaluatinge0(m) for the microscopic model perturbativel
would give

ṽs /vF512V̂~2kF!/p, ~17!

using Eq.~16! andKs51. Alternatively one also could im-
pose a spin currentl 5(nR↑2nR↓2nL↑1nL↓)/n per particle
@nRs (nLs) is the right-~left-! moving density of spins# and
measure the change in ground state energy

x l[4@p2vF] l
2e0~ l !#215

2

pvsKs
. ~18!

Perturbatively this gives an unchanged spin velocity, a re
that simply reflects the fact that lowest-order perturbat
theory cannot describe drag effects51 between the density
fluctuations of opposite spins and thus leaves the system
ilean invariant in spin sector. Solving Eqs.~16! and ~18! for
Ks yields Ks.1 as a perturbative result for repulsive inte
actions that would contradict SU~2! invariance in a TL

FIG. 6. 1/Kr versusR/d for kFd50.15 in the HF method~solid
line!, perturbation theory@Eq. ~12!, long-dashed line#, and for the
harmonic chain@Eq. ~7!, dashed line and Eq.~6!, dotted line#.
4-6
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model. To enforce the SU~2! symmetry we can combine Eqs
~16! and~18! and solve forvs by eliminatingKs . The result,

vs
pert5

2

p
~xx l !

21/25vFA12V̂~2kF!/p, ~19!

indeed agrees clearly better with the QMC data37 than Eq.
~17!. Equation~19! is included in Figure 8. AtV̂(2kF)5p
the perturbative estimatevs

pert vanishes and for smallerkF the
Fock term in Eq.~19! favors a spin-polarized ground stat
This result contradicts very general arguments that guara
a nonmagnetic ground state for any nonsingular pair inte
tion potential in one dimension.52 The true spin velocity
should stay positive and approach zero only at vanish
particle density.

That the extraction of spin velocities from HF calculatio
is less reliable than the extraction of charge TL paramete
already clear because of the incorrectly broken sp
rotational invariance in the HF ground state. In the HF sp
density wave state we evaluate the spin susceptibility by
larizing spins along the quantization axes. We can cons
only cases with rational ratios of the spin-up and spin-do
carrier densities. Because the periods of the spin-up and s
down density waves differ in these solutions, it is more co
venient to use a real space basis, discretizing spacec(x
5xi)→c( i ) as described in Appendix B. Self consistent s
lutions are shown in Fig. 7. At finite magnetization this stru
ture contains now ‘‘defects,’’ reflecting the loss of th
4kF-periodic component in the charge-density modulation53

At least N544 electrons have been considered onM5401
grid points, the smaller particle densities are based onN
584 andM5801 to avoid lattice artifacts to a high acc
racy. These sizes are clearly beyond what currently can
treated with numerical many-body approaches, such as q
tum Monte Carlo, but pose no problem here. Spin veloci
obtained fromE0

HF(m)/L by virtue of Eq.~16! are included
in Fig. 8. BelowkFd50.2 it is very difficult to extract posi-
tive spin velocities. We see that self-consistency pushes
point of vanishing spin velocity and the~erroneous! transi-
tion into a ferromagnetic ground state down to smaller d
sities compared to the perturbative estimate in Eq.~19!, but
the transition still occurs.

FIG. 7. Charge densitiesn↑(x) ~solid line! and n↓(x) ~dashed
line! along the wirex in units of the mean electron spacing, as
Fig. 1 but for finite magnetizationm51/6 per spin.
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An alternative attempt to estimate the spin velocity sta
from the argument that the electron spin sector would evo
at low particle densities towards that of an antiferromagne
Heisenberg spin chain, as suggested by the staggered
density profile found in the mean field solution, Fig. 1. Th
argument is also suggested by the pronounced antiferrom
netic correlations found in the TL liquid spin sector, partic
larly for long-range interactions15 and in finite pieces of one
dimensional wires.54 Antiferromagnetic spin chains ar
known to represent microscopic models, such as the Hubb
model, at low energies and have been intensively inve
gated, for instance, by employing manifestly SU~2! spin ro-
tation invariant non-Abelian bosonization.14,55

In the antiferromagnetic Heisenberg chain, spin exc
tions ~magnons! move at velocity

vs5p2J/4kF ,

whereJ is the nearest-neighbor coupling constant. One p
sibility to guess the magnitude ofJ is to compare the HF
estimates for the ground state energye0

HF of unpolarized
electrons with the ground state energye0

pol of fully spin-
polarized electrons. For the antiferromagnetic Heisenb
chain this energy difference,J(11 ln 2) per spin,56 is known
exactly. Equating the energy differences gives

J5
p

11 ln 2

vFkF

2
~e0

pol2e0
HF! ~20!

from which

vs
J /vF5p3~e0

pol2e0
HF!/8~11 ln 2! ~21!

follows. Equation~21! is included in Fig. 8. The transition
into the spin-polarized ground state occurs atkFd50.19 (r s
52.07) for R/d55.66. Equation~20! can be checked for
consistency in the noninteracting limit,kF→`, where vs

→vF . Magnons would move at velocityvF if J
54vFkF /p250.41vFkF . On the other hand, (e0

pol2e0
HF)

→1/p in this limit so that Eq.~20! yields J50.30vFkF . In
view of the fact that the weak-interaction limit is poorly d
scribed by the antiferromagnetic spin chain this pictu
seems amazingly consistent.

Recently, Calmels and Gold have calculated magn
susceptibilities of quantum wires,57 though for a different

FIG. 8. Estimates of spin velocitiesvs /vF , based on the self-
consistent Hartree-Fock solution~HF!, on perturbation theory~pert!
@cf. Eq. ~19!#, and on the comparison with the antiferromagne
Heisenberg model~J! @cf. Eq. ~21!#.
4-7
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microscopic interaction, using standard heuristic approxim
tions from electron gas theory.58 By virtue of Eq.~16! these
data allow us to extract spin velocitiesvs

CG, which turn out to
be slightly larger than ourvs

HF values. Note that the pertur
bative estimate shown in Fig. 2 of Ref. 57 uses Eq.~17!
while in Fig. 8 Eq.~19! is included. Compared with Eq.~19!
the datavs

CG do not exceedvs
pert, similarly as the HF data

This, however, contradicts the behavior obtained us
QMC, wherevs

QMC clearly exceedsvs
pert. We conclude that

HF and other approximations of the mean field type c
provide only a qualitative guideline tovs . All of these at-
tempts, however, agree in predicting spin velocities that
pend on the interaction anddecreasewith increasing interac-
tion strength. This result calls attention to the freque
assumptions in the literature that interactions not explic
depending on spin would leavevs unchanged.25 This result
should show up in current experiments, such as those
scribed in Ref. 9, where typical values forkFd'0.3 are in
the regime investigated here. As already pointed out in
Introduction, this parameter should influence measura
quantities, such as the spin-splitting enhancement factor,
man scattering in depolarized configuration,31 spin transport
properties,28 and Rashba precession.29

Let us now discuss the low-density limit using our co
jecture that quantum wires become equivalent to the on-
Hubbard model~HM! in the limit of small particle densities
Hubbard model ~lattice constant a) parameters, t

5vF/2kFa
2 andU5V̂(k50)vF /a, can be related to micro

scopic parameters by equating the effective mass and
Coulomb barrier for a two-electron exchange.V̂(k) is de-
fined in Eq.~2!. To leading order int/U the spin velocity of
the Hubbard modelvs

HM is48

vs
HM ——→

U→` 2pat2

U S 12
sin 4kFa

4kFa
D ,

so that

vs
HM

vF
54p/3V̂~k50! ~22!

for small kFa, where the lattice constant is irrelevant. No
that V̂;vF

21 and thusvs
HM}kF

2 . This result agrees with the
strong interaction limit of the continuum version, the ele
tron gas with repulsive contact interactions.45 Restoring
quantum wire parameters, Eq.~22! translates into

vs

vF
——→

kF→0 2p

3

kFaB

ln~2R/d!
~23!

for R/d@1. The available QMC data are consistent with E
~23!, though, as in the charge sector, they are not conclu
enough to really confirm the low-density equivalence.

VI. SUMMARY AND DISCUSSION

Many nontrivial theoretical predictions for low-energ
measurable properties based on the TL model exist in
literature. Much in the spirit of the Landau theory of Ferm
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liquids, all these predictions depend only on few pheno
enological parameters. In the case of quantum wires w
only one subband occupied there is only one parameter
degree of freedom,Kr for the charge sector andvs for the
spin sector. In the absence of interactions these param
assume the valuesKr51 andvs5vF . In this work we have
investigated how the microscopic pair potentialV(x2x8)
changesKr and vs . We have considered a realistic, tra
table, and sufficiently general form forV(x2x8), Eq. ~A4!,
that depends on the diameterd of the quantum wire, which is
measurable through the subband energy, and the distan
the nearest metallic gatesR, as given by the sample layou
Our approach is to relate the two TL parameters to therm
dynamic quantities that we estimate on the basis of s
consistent, unrestricted Hartree-Fock~HF! approximations
for the ground state energy.

In the charge sector this strategy is found to yield reas
ably accurate results. At densities corresponding tor s&1.3
we confirm applicability of the perturbative formula~12! for
Kr . This regime includes most of the experiments based
semiconducting heterostructures.8,31 At somewhat smaller
densities Eq.~12! evenoverestimates Kr . In this regime we
find enhanced stiffness compared to perturbation theory,
naling the close proximity of a Wigner-crystal state. For th
reason quantitative corrections to Eq.~12! may arise when
R@d, for example, in carbon nanotubes. In quantum wi
fabricated on the basis of semiconducting heterostructu
with gates, the perturbative formula may be used even do
to densities 2kF /p'1/R. The proximity to the Wigner-
crystal state competes with the finite interaction range
these systems. Irrelevant or marginal operators in the mi
scopic Hamiltonian, such as nonlinear single-particle disp
sion or backward scattering in the spin sector, turn out to
unexpectedly inefficient to renormalize the TL parameters
the charge sector up to moderate interaction strengths. W
decreasing density the values forKr clearly fall short of 1/8,
which is the minimum assumed by the extended Hubb
model including repulsions on neighboring lattice sites a
often is considered to emulate models of finite interact
range.

At smaller densities, however, the perturbative estim
Kr

pert is not reliable. In particular, it does not reproduce t
nonmonotonic behavior ofKr found in the HF approxima-
tion with a minimum as a function of density. Eventually,
kF→0 we conjecture that quantum wires approach the u
versality class of the Hubbard model with only on-site rep
sion and thatKr→1/2 in that limit, though, unlike the Hub
bard model, this limiting value should be approachedfrom
belowas the particle density is lowered.

The nonmonotonic dependence ofKr on density predicted
here should show up in any of the power laws5 revealed by
pseudogaps in the density of statesn. Examples include the
current for tunneling into the end@n(v);v (1/Kr21)/2# or
into the middle @n(v);v (Kr11/Kr22)/4# of a single-mode
wire ~assumingKs51) and the currentI (V);V1/Kr flowing
through a single tunnel barrier along the wire at small vo
agesV. Experimental observation of this nonmonotonic d
pendence of the exponent would give direct experimen
access to the microscopic range of the electron-electron
4-8
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teraction; the position and the height of the maximum inKr
21

both depend onR.
Our approach is less successful in estimating the spin

tor TL parametervs , at least when it differs considerabl
from vF . We have discussed perturbation theory and tried
obtain meaningful estimates forvs from the HF spin-
density-wave states. The similarity to the antiferromagne
Heisenberg spin chain, evident from correlation functi
considerations, suggests that exchange coupling stren
and therefore spin velocities, can be estimated by compa
the ground state energies of unpolarized and fully sp
polarized electrons. None of these variants lead to result
the same quantitative reliability as those obtained fromKr

HF.
Conjecturing again a crossover into the universality class
the Hubbard model in the limit ofkF→0 yields the predic-
tion of a linear dependence of therelative spin velocity
vs /vF}kF /V0 on the particle density.V0 is the zeroth Fou-
rier component of the interactionV(x2x8).

It is important to know the spin velocities for attempts
realize ‘‘spintronic’’ devices where spins rather than charg
are transported,26 using, for example, the Rashba spin pr
cession mechanism59 through quasi-one-dimensiona
constrictions.27 Here, in agreement with QMC estimates37

we have collected strong evidence that spin-density exc
tions move at speeds considerably slower than the Fe
velocity, already in present day devices,9 wherekFd'0.3.
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APPENDIX A: HARTREE-FOCK THEORY

To formulate the mean field theory we introduce sing
particle wave functionsc solving the Schro¨dinger equation

H 2
vF

2kF
]x

21(
s8

Vs8
H

~x!J cks~x!2E
0

L

dx8Vs
E~x,x8!cks~x8!

5«kscks~x! ~A1!

with the Hartree

Vs8
H

~x!5
L

2pE0

L

dx8V~x2x8!E
2kF

kF
dkucks8~x8!u2 ~A2!

and the nonlocal exchange

Vs
E~x,x8!5

L

2p
V~x2x8!E

2kF

kF
dkcks* ~x8!cks~x! ~A3!
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potentials, which itself depend onc and thus have to be
obtained self-consistently;s5↑,↓ are spin quantum num
bers. Occupation of only the lowest subband is assumed
gether with periodic boundary conditions for the wire
length L. Parabolic dispersion for the kinetic energy in E
~A1! is described by a band massm5kF /vF . The kinetic
energy is not linearized.

For some of our calculations, particularly those focuss
on properties of the spin sector, Sec. V, we solved the
equations~A1! directly in real space, using

V~ uxu!5
e2

e S 1

Ax21d2
2

1

Ax21d214R2D ~A4!

in Eqs.~A2! and~A3! and a lattice grid of at least 401 point
Any of the results for the charge sector can be obtained
ther using a real space basis or also, slightly more efficien
a k-space basis, introduced now. Expanding

cks~x!5eikx(
j

uj ,k,se
i j 2kFx ~A5!

into Bloch waves, and similarly the periodic potentials~A2!
and ~A3!, yields HF equations for the coefficientsuj ,k,s :

05F1

2 S 2 j 2
k

kF
D 2

2
«ks

kFvF
Guj ,k,s1

L

2kFp
(
j 8 j 9

uj 9,k,sE
2kF

kF
dk8

3H V̂„2~ j 2 j 9!…(
s8

u2 j 1 j 81 j 9,k8,s8
* uj 8,k8,s8

2V̂S 2~ j 2 j 8!2
k

kF
1

k8

kF
Du2 j 1 j 81 j 9,k8,s

* uj 8,k8,sJ . ~A6!

For eachs561 andk52kF , . . . ,kF inside the Brillouin
zone this is an eigenvalue equation for matrices indexed
the band indicesj, which, however, inside the curly bracke
depends on the solution of Eq.~A6!. Within the ‘‘unre-
stricted’’ HF scheme we allow for charge- and spin-densi
wave solutions breaking the symmetry of continuous tra
lations and thereby lower the ground state energy. Soluti
are found to show 4kF-periodic oscillations of the charg
density%(x)5%↑(x)1%↓(x), where

%↑~x![E
2kF

kF
dkuck↑~x!u25%↓S x1

2p

4kF
D . ~A7!

We solved Eq.~A6! iteratively, starting with a sinusoidal spi
density waveuj ,k,s

(0) 5d j ,0 /A21sd u j u,1/2. The final solution al-
ways obeysuj ,k,↑5(21) juj ,k,↓ , which in view of Eq.~A7!
yields 2kF-periodic modulations of the spin density%↑(x)
2%↓(x). A typical density modulation at stronger interactio
is shown in Fig. 1.

The single-particle energies«ks , obtained with Eq.~A6!,
determine the ground state energy
4-9
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E0

L
5(

s
E

2kF

kF dk

2p
«ks2

1

2 (
ss8

E
2kF

kF dk

2pE0

L

dxVs8
H

~x!ucks~x!u2

1(
s
E

2kF

kF dk

2pE dxE
0

L

dx8Vs
E~x,x8!cks* ~x!cks~x8!.

~A8!

Half of the interaction has to be subtracted to repair for
double counting in Eq.~A6!. Differentiating E0 /L twice
with respect tokF yields our estimate forKr , according to
Eq. ~3!.

Most of the results are obtained for 82k points in the
Brillouin zone ~in some cases for very small densities w
increased this number to 234!. The Milne rule, being accu
rate to seventh order in the spacing betweenk points, is used
for the k integrations. We includedj 523, . . . ,3 bands,
though in most casesj 522, . . . ,2would have sufficed due
to the rapid decay of the Coulomb interaction ink-space.
.J

E.

.

n,

tre

,
v.
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APPENDIX B: HARTREE-FOCK THEORY FOR
SUSCEPTIBILITIES

In spin space we use a lattice representationc(x5xi)
→c( i ) of the Hamiltonian. TheM3M matricesHi j , repre-
senting Eq.~A1!, contain contributions from the kinetic en
ergy Hii 52(M /pN)2vFkF and Hii 6152(M /pN)2vFkF ,

the ~local! Hartree termHii 5(k jsṼ(u i 2 j uL/M )ucks( j )u2,
and the ~nonlocal! Fock term Hi j 52(kṼ(u i
2 j uL/M )cks( i )cks( j ), the latter acting only on spin-s wave
functions. Here,Ṽ(x)[( l 52`

` V(x1 lL ) accounts for peri-
odic boundary conditions@V(x) is defined in Eq.~A4!# and
the real and normalized eigenvectorscks( j ) of Hi j are in-
dexed by their spins561 and momentum2kFs<k<kFs
5(11sm)kF with k being an integer multiple of 2p/L and
m the magnetization per particle. The Hartree-Fock appro
mation to the ground state energyE0 then is obtained as in
Eq. ~A8!.
by
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