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The low-energy properties of a homogeneous one-dimensional electron system are completely specified by
two Tomonaga-Luttinger parametets anduv, . In this paper we discuss microscopic estimates of the values
of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic proper-
ties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional
electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-
consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground
state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from
spin-density wave to localized in character as the density is lowered. Our resiits éoe in good agreement
with weak-coupling perturbative estimatk§®" at high densities, but deviate strongly at low densities, espe-
cially when the electron-electron interaction is screened at long distdﬁffé& n*2 vanishes at small carrier
densityn, whereas we conjecture thigf,— 1/2 whenn—0, implying thatk , should pass through a minimum
at an intermediate density. Observation of this nonmonotonic dependence could be used to measure the
effective interaction range in a realistic semiconductor quantum wire geometry. In the spin sector we find that
the spin velocity decreases with increasing interaction strength or decreasitrgng correlation effects make
it difficult to obtain fully consistent estimates af, from Hartree-Fock calculations. We conjecture that
v,lvpxen/Vy, whereVy is the interaction strength, in the limit—0.
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I. INTRODUCTION AND OVERVIEW however, in estimating the values of these parameters. This is
especially important because the distinction between Fermi
It has been known for some time that one-dimensionaliquids and Luttinger liquids on the basis of a set of experi-
(1D) metals are different from their higher-dimensional mental data over a limited temperature or energy range is
Fermi-liquid cousing:? It is generally believed that at low sometimes subtle, and the range of energies over which TL
energies and long wavelengths, one-dimensional electrobehavior is expected is often not accurately known. Approxi-
systems can, under very general circumstances, be describate values of expected TL parameters can play a role in
as Tomonaga-LuttingefTL) liquids? although it has nearly determining whether or not an experimental result reflects
always been difficult to provide incontrovertible experimen-TL behavior® In addition, as this approximate calculation
tal evidence. Interest in TL liquids has been heightened irshows, the problem of understanding the value of the two
recent years by new physical realizations, including quantunindependent TL parameters of a homogeneous one-
Hall edge system$® carbon nanotubées’ and semiconduc- dimensional electron system is a challenging many-body
tor quantum wire$® in particular. Like Fermi-liquid theory, problem that is interesting in its own right.
TL theory can be used to relate low-temperature, low- Four TL parameters characterize the low-energy proper-
frequency, long-wavelength properties to a small number ofies of interacting spinful electrons moving in one channel.
parameters in which the microscopic physics of particulafFor the charge = p) or spin (v=0) sector, the parameter
systems is encoded. For example, TL theory predicts that fd£, fixes the exponents for most of the power laws anpds
continuous one-channel quantum wires, the quantized corthe velocity of the long wavelength excitations. Symmetries
ductance is renormalized by the fa&fpr at frequencies in the charge or in the spin sector reduce the number of
larger thah! ve/L (L is the wire length and( the Fermi  independent parameters in the case of a one-dimensional
velocity). Surprisingly, low-energy orthogonality catastro- electron gas system: spin rotation invariance enfdfciés
phes lead to spectral functions that follow power [%¥s =1 while Galilean invariance implies tHﬁtvp=vF/Kp.
specified in terms of the same parameter. In many cages The latter identity does not apply, for example, in lattice
to logarithmically slowly varying prefactot$'* associated models since it requires continuous translational invariance;
with the presence of marginal operators such as backscattén that casev, and K, must be determined independently.
ing in the spin sectgmonuniversal power laws specified by This leavesK, andv,, as the only two independent TL pa-
TL theory parameters are also predicted for the behavior ofameters for single-channel semiconductor quantum wires,
correlation functions at distances much larger than the spatiaince they can be accurately described by a continuum enve-
range of interactions(The strictly infinite range Coulomb lope function approximation.
interaction case requires special considerattori8. Micro- In Fermi liquids a traditional and successful strategy has
scopic theory still has an important role at low energiesseparated the phenomenological application of Fermi liquid
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theory from the microscopic evaluation of its parameters. Tckinetic energy in the microscopic Hamiltonidis a conse-
date most theoretical TL activity has focused on phenomenoguence Eq(1) cannot be used to estimakg, when interac-
logical applications; confident interpretation of experimentstions are strong.

will require reliable microscopic estimates of the theory's How interactions influence the spin sector is even less
parameters for the various physical systems of current inteicertain. According to textbook knowledgehe spin velocity
est. The evaluation of Fermi-liquid parameters in two- andvould not be altered by interaction forces that act only on
three-dimensional metals is one of the classic early topics ifPatial coordinates and thus not in the spin sector. Other
many-electron physics, with considerable recent progres§Ork includes exchange contributions in the Bose form of
coming from quantum Monte Carlo calculatiolsStill, use- ~ the Hamiltonian in a way violating the $P) invariance

ful physical insight and reasonable accuracy have resulteB/OPeY.K,=1. On the other hand, changesup/vr are

from less computationally cumbersome approaches. In thiguite crucial to various physical properties. It influences, for

paper we discuss what can and cannot be learned about t tance, the magnetic susceptibility, tge‘actor,. and spin
values of TL parameters in semiconductor quantum wires ransport properties. The latter are particularly important for

, : - tential one-dimensional spintronic devié8sin one-
he ph f th . ;
and the physics of their dependencies on system geometﬁ?mensmnal channef,for example, the spin conductarite

ing unrestri Hartree-Fock estim f groun - . . . .
using unrestricted Hartree-Fock estimates of grou dSta'[eeand Rashba precession in the presence of spin orbit

ergies. The Hartree-Fock approximation can yield very reli- Y )
able estimates for the boundary expon&htescribing tun- coupling®® depend onv,,.. Most directlyv,, can be measured

neling into the end of quantum wires and, as a microscopigy inelastic Raman scattering in the “depolarized” configu-

approach, gives information about quantities not reliably aciriat;]?rgoygv;th perpendicularly polarized incident and outgoing

cessible in the TL formalism, including absolute values for

the prefactors of power laws. To date relations between the microscopic electron-

For noninteracting electrons the TL parameter=1. electron interaction and resulting TL parameters have been

With repulsive interactions its value should decrease and ggzt?r?;'séfg d?ﬁaﬂﬁeﬁoﬁa@rﬂaﬂyggZ?Jeé:%%l e%gt:rr]zs;chguch
to zero in the limit of very strong or long-rangitfgnterac- ! ’ u '

tions. For the microscopic interaction potentgix—x’) the t-J _model.34 For the latter tv_vo models _the gr_ound s'gate? en-
formula ergies are known exz_:\ctly, either analytically in certain limit- _
ing cases or by solving the Bethe-ansatz equations numeri-
cally. For these repulsive short-range interaction mo#gls
is found to be confined to the range ¥K ,<1. In the limit
of either infinite interaction strength or vanishing particle
density it has been argu&dhat these models are equivalent
to noninteracting spinless fermions wih being replaced by
2Kg so thatK,—1/2 in either of these limits in order to
recover the correct asymptotic decay of the density-density
correlation function. For the-J model, TL parameters away
V(k):J dx V(x)coskx. (2)  from the supersymmetric poind{t=2) have been obtained
by using ground state energies from exact diagonalization

, _ _calculations”® The Sutherland model for spinless fermions,
Relation (1) can be motivated by lowest-order perturbatlonwherev(x):)\/Xz has proven to be a TL at low energs.

theory, or by the random phase approximatidhough it g1, asymptotic decay of its one-particle Green’s function

gpsses.thepl\:ock (.:ont;:pl:]tmn fgr spmfulbelt_actrons I'nb One'implies thatkK ,=2/(1+ y1+2\) with 1=K ,=0 for repul-
dimension. Any naive higher-order perturbative contributiong o interactions) >0. The compressibility of this system is
is divergent; only the infinite subsums that are conveniently : ) S

. . A roportional toK¢ and satisfies Eq.3) below. For quantum
captured using a perturbative renormalization approach are : P - . .
finite 22 Equation (1) completely ignores the renormalizing wires with long but finite-range Coulomb interactions the

influence of short-wavelength modes in determining the acyalues of the TL parameters have been determined previ-

tual values of the effective interaction. Higher-order pertur—al:)i:/)gv?r/ ter:(;el?ri:i\g oqnu?l:ttaunmur:\]/lboer;tifCzrr[c?clggl(;l:":gtlgﬁt?ée
bative renormalization group calculations demonstrate how ' P

the interaction parameters are coupled and renormalize f%g g]tgdpi;ezl rsepaas%en;%rlgvzxg thIZi(ZSchiIr%lthlsatgonn?h(;a?aﬁeec%rf-
short-wavelength contributions are integrated Su®ne im- P 9

portant example is backscattering, across the Fermi line, dg::'glee :liz}sr:telzs I?lve;r\tlzlchlrl::r ?ﬁglfgef dg/I!]OSI;[te rg{ﬂ?e rve\z/ztélrtg
opposite-spin fermions, the so-callgg process, that spoils - np yreg

: .~ _interactions are strongest is difficult to reach. In this work we
the separate conservation of the number of left- and right- ) . . -

. . . . BN ~ “also exploit the thermodynamic relations between the uni-
moving particles of a given spin and therewith is not in-

cluded in the TL model. This interaction, which is finite in fc;]r;r: ztitéitg?mlzporresigw:maxseghaghgséa&?;erg'ggze
leading-order perturbation theory, scales to zero durin 9 : q '

K, *=1+4mV(k=0)/7n (1)

is commonly used in the literatufef., for example, the first
reference of Ref. b It depends on the carrier density the
effective masan, and thek=0 Fourier component of the
interaction

renormalization, restoring the TL at low energfé&ven for 3

a model of spinless e_:lectrons, t_he parameters will rescale at 1 R(E/L) v, T ovE

low energies, reflecting other irrelevant operators that are Pl vt e T 3)
omitted in the TL model such as nonlinear dispersion of the K an P K5
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0.6 17 electron interaction, Eq12) predicts thatk goes to zero
g whereas HF theory yields a finite limiting value afterhas
04

passed through a minimum. This minimum is also repro-
duced by the harmonic approximation. In the latter approxi-
mation, howeverx diverges an—0. We shall give argu-
ALAS A LA A AL AL ments supporting the conjecture that the tiyestays finite

6 3 0 3 6 asn—0 and indeed thaK,—1/2 in this limit.

ke /7 We also analyze the spin sector and compare different
approaches in the attempt to determine the spin velacity

: > R O The simplest estimate is again low-order perturbation theory
function of position along the wirg in units of the mean electron for the magnetic susceptibility. Other estimates can be ob-

spacing forked=0.15 andR/d=5.66. We argue that these charge . _. . . . -
densities in the broken symmetry Hartree-Fock states are a goot ined by starting with the assumption that the system is

o . ; . ; : Close to an antiferromagnetic Heisenberg spin chain at low
approximation to typical configurations in the fluctuating one-

dimensional electron liquid that does not have broken translationa?ensm_es' It rns QUt that the eSt.ImateS for th.at follow
symmetry. rom different plausible schemes differ substantially. Further-

more, at smaller particle densities they are not in good agree-

where the last equality uses Galilean invariance. ment with earlier Quantum Monte Carl@MC) estimate’’

Density-density correlation function calculations per- Although we are able to conclude thay is small at low
formed within the TL model have been usetb show that densities, our results for the spin sector do not substantially
long-range interactions V(|x|)~|x|"® put the one- improve on existing Monte Carlo results.
dimensional fermion system ground state into a Wigner crys-
tal whena<1, irrespective of the strength &f. The Cou-
lomb casea=1, is marginal and density-density correlations Il. MICROSCOPIC INTERACTION
dgcay extremgly slowly, §Iower than any power law at large Now we discuss the form of realistic interactioviglong
distances. This observation suggests that the_: ground Stafe x direction of a quantum wire. At interparticle separations
energyE, and therefore e}ngr=0 thermodynaml_c property 4x—x’| larger than the diameted of the wire V(|x
should be agcurqtely es'um_ated by the unregtrlcteq Hartre = x'|=d) = e/ e|x—x'| will be of the Coulomb form, irre-
Fock appro>'<|mat|on,.f_or V.Vh.'Ch th%F?round stasea Wigner spective of the detailed shape of the transversal potential. If
crystal. At h'.gh d_ensmes it is knownthat t_he Hartree-Fock the material enclosing the wire is insulating with dielectric
(HF) approximation reproduces the leading order perturba

. o . . constante’, the Coulomb form still holds at larger distances,
tive renormalization grou(RG) result forK, . Since it SPON™ 1yt with dielectrice replaced b§P ¢’. We assume here equal
tf"‘”e"“s'y bfeaks tra.nslatlonal 'sy'm.metry, the HF approximag;e e ciric constantg~ €', the case that applies to gateas
tion cor_relatlon fgnctlons have |nf|n|t¢_3 range. The_talls of theWeII as to cleaved edge overgrowth structur&sentually, at
correlation functions are therefore given slightly incorrectly. an interparticle separation exceeding the distaRd® the

Much more important for the energy however, is the accurat%losest metallic structures the interaction will be screened.

estimate of _the. magmtude of the §hort-d|stance qorrelatlonrhis metallic screening can be supplied by carriers in nearby
function oscillations, illustrated in Fig. 1. The dominant pe- etallic gates, including those used to define the quantum

; . " . om
riods for charg_e and spin densities are in agreement W|_th T\Nire. Assuming that the screening plane and the quantum
model calculations, which are however, not able to estimate . ' e parallelV/(|x—x'|>R)~ 1/x—x'|? because of the

:irz)enang@%Z;L;T%I?:C;:Z“mjslt.i lﬂézebreaalnczrr:\?ﬁgog ];Tjrr]]z'_formation of dipoles from image charges. The interacti$n
' P y P elow accounts for this cutoff at large particle separations.

tion whose decay properties are inaccessible to Hartree-Foc At distancesx|<d shorter than the wire width, the pre-

theory but can b? calculated from the TL theory._ The acCltise transverse form of the electronic wave function influ-
racy of self-consistent Hartree-Fock energy estimates, par- :
; " : ) ~encesV(|x|). For example, in 2D heterostructures all elec-
ticularly at low densities, has previously been established in

other interacting electron systerfs.
We compare our results for ground state energies an

02 b}

FIG. 1. Charge densities;(x) (solid) andn (x) (dashedas a

rons share a common growth direction wave function. If this
is also assumed for the in-plane direction perpendicular to

compressibilitiesk with estimates obtained within the har- h € WIre axes gnd if this latter wave function is taken as a
: - . . armonic oscillator ground state, we h&veV, p(x)
monic approximation to the classical Wigner crysiake ) 2l8d? 5012

Egs. (6) and (7)] and within perturbation theofy. The per- = (€ _/2\/;6‘1,)‘9 Ko(x“/8d7), whereK, denotes a Bessel
turbative expressionl2) we use(see below for the charge function. I_t is more _reallstlc to include finite thlcl_<ness in
sector TL parametek, turns out to be surprisingly accurate both confined directions. For example, for 3D wires with
over a wide range of carrier densities including typical ex-Circular cross sections, a model that might be appropriate for
perimental ones. Only below densities corresponding to Va|gleaved-edge-ovzergzrowth systems, we Havevap(x)
uesrg>1.3 of the usual parameter used to measure the = (e?/ V2/med)eX ™ erfc(x/\/2d) again using harmonic os-
interaction strength in metalsee belowdo we findsmaller  cillator ground states of widthd/ V2, now for both of the

« in the self-consistent HF solution than given by Ed<®)  transverse directions. Neither of these forms is smooth at
and(3). At even lower densitiee< 1/R, whereRis the long =0, an artifact of assuming factorized wave functions. At
but finite range discussed below that we use for the electrorshort distances, corresponding to high energies, the factoriza-
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of which are described in Appendix A. Results of these cal-
culations are included in subsequent figures.

The close proximity to the Wigner cryst@ivC) and the
Bose character of all of the low-energy excitations suggests
comparison with the ground state energy density of the har-
monic crystal in 1D,

kd WC__ =classical EJ'kF%
0 05 1 15 2 Eo =Eo 3 -kFZWw(k)' (6)

FIG. 2. Fourier transforms of three different forms of micro-
scopic electron-electron interaction&(k) = V(k)/vg, as described
in the text. Solid line, the forn{4) we use in the present work; ) 1
dashed line, the 2D heterostructures model; dash-dotted line, the 3D ESIaSS'CaIZZ E V(|i =] | 7 2K) (7)
cylindrical case intended for cleaved-edge-overgrowth systems. 1#]

is the classical contribution and the zero point energy follows
tion assumption needs to be refined. It leads to thd€rom the phonon dispersion
unphysically slow decay of the Fourier transforms

Van(K) = (6% ev ) °9“12K o (k2d2/2) and Vap(K) = (6% ev)

Here,

oo

wz(k)=% > V' (jal2kp)[1—cos jkmi2ke)]  (8)

x ek’d*2E. (K2d2/2) as seen in Fig. 2, whe, is the expo- =1
nential integral. Also included in Fig. 2 is the more realistic of harmonic excitations. The primes denote derivatives with
form, .

respect to the argument. BoB§***“?and E¥'® provide rig-

A 2 orous lower bounds to the true ground state energy since the
V(k)=W[Ko(kd)—Ko(k\/d2+4R2)], (4) quartic term of the Coulomb interaction is positive when

BRF expanded in a power series and the fermionic antisymmetry
which accounts for the image potential term from a remoteconstraint, ignored by Ed6), increases the true fermionic
screening plane separated By-d. Its real space form is €nergy further. This latter observation remains true also for
displayed in Eq(A4). This interaction remains finite fdc ~ SPin-carrying electrons since spin cannot provide complete
—0 and decreases more quickly for lagand will be used ~antisymmetry for symmetric spatial wave functions for more
in the present work. Here and in the following we measuréhan two particles. .
the interaction in units of the Fermi velocity so thdtis Figure 3 also includes the lowest-order perturbation

dimensionless in Ed4). Its strength, in comparison with the theory estimate
kinetic energy, scales with the dimensionless parameter

2 2 2k
:=1/(2nag) = 7/ (4krag) depending on density and the ef- Egert:vF_kF 2v FkF\‘/(o)_i "d k(2ke— k)\‘/(k),
fective Bohr radiusag. In our calculations we assuna 3m 72 2m%J)o ke
=2d. (€)
Thus, two parameters obtained by taking the Hamiltonian's expectation value in

the noninteracting electron state, to obtain the positive Har-
R/d and ked (®  tree and the negative exchange contribution. The variational

characterize the range and the strength of our model intera®/inciple ensures that E(Q) is a rigorous upper bound to the
tion (4), respectively. They both can be extracted quite reli-9round state energy. The true ground state energy must lie
ably from experimentR from the sample layout andfrom  Petween these two bounds. o , .

the energy~ 1/md? of intersubband excitations. Typical dis- The energy densities are plotted in dimensionless units,
tances to metallic gates and typical wire width, as reported,

e.g., in Refs. 8 and 9, correspond to valuesRéd ranging eo(kF)::EO/L
from 5 to 14. Typical single-wall carbon nanotube systems, kﬁ/m’

on the other hand, would correspond to much largéd ) ) ) ]
values because of their extremely small diameters. Many ofthich have the value 1#8 without interactions. The HF en-

. HF . . _ . .
our calculations are foR/d=5.66 or 35.36. Note also that €rdiesey’ , seen in Fig. &) for R/d=5.66 and in Fig. &)
electron densities should be sufficiently lowke< 2 for R{d=35.3§, gpproach this value in the weakly interact-
within the parabolic approximation for the transverse con/ng high-density limit,kg—c.

finemen} to prevent occupation of the second subband. ~ For densities abovid=0.5, corresponding tos<0.8,
e, agrees quite well with the perturbative estimege This

is despite the fact that the self-consistent charge-density

modulation already shows significant amplitude in this re-
According to Eq.(3) we need to calculate ground state gime as seen in Fig. 5 below.

energies for different particle densities. In this work we em- Below kpd<0.3 (r¢=1.3), the three approximations start

ploy the unrestricted Hartree-Fock approximation the detailso spread apart significantly. As—0. perturbation theory

(10

Ill. GROUND STATE ENERGY
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0.5 S o 15 F (@
(a) 1 L L \ )
0t . L . : 0 02 04 06 08 1
0 02 04 06 08 1 kpd
krd 8
6 T T T T K—l
€p 6 :
4
: 4
2 F
H 2 1
(b) 0 0.2 04
kpd
O 1 1 1 1
0 01 02 03 04 05 FIG. 4. 1K, versuskgd for (a) R/d=5.66 and(b) R/d=35.36.
krd The same approximations are included as in Fig. 3, together with

» 3 the commonly used formulél), dash-dotted line.
FIG. 3. Ground state energy densitiegkg) =(Eq/L)/(kg/m)

for (a) R/d=5.66 and(b) R/d=35.36 in the HF methodsolid
line). The perturbative estimatdEg. (9), long-dashed lingestab-
lishes an upper bound while the harmonic chain estimates, omittin
[Eq. (7), dotted lind or including quantum fluctuationgeq. (6), . .
dashed ling both establish lower bounds to the true ground state UKP={1+[2V(k=0)~V(k=2kp/m}"% (12
energy.

with respect to the arguments. Also included in these figures
bs the result from expressidil) and the perturbative estimate

which follows from Egs.(3) and (9). Note that only this
form, with the Fock term included, satisfies the physical re-

result divergesgl®™~ 1/kg, while e}/°~kE? goes to zero. 'O : ; 1es :
The mean field resut™ approaches a finite value, a result guirement that spinless fermions cannot “feel” contact inter-
0 ' actions and that therefor, equals unity for this model.

which seems plausible since the zero point quantum fluctuaz; . ; . .

tion energy exceeds the classical interaction energy of t%g]c((iguianféag;r glfzilllg tﬁillg)aljliaszﬁrc]itglg t?:qz?rlgﬁcsaitcisne’

Wi tal at low densities for interactions decaying,_ : : o
\gner crystal at oW censiies for inieractions ecaymg“ke Eq. (1). Figure 4 also includes Kﬁ' and 1KZVC, calcu-

faster than~1/x—x'|? at large particle separations. We ted f th dina h . il i
speculate that realistic quantum wires, which never havted from the corresponding harmonic crystal energy esti-

: we
strictly infinite-range interactions, always cross over into theMates of Eqs(7) and(6) using Eq.(3). The result fork,
hard sphere gases at sufficiently low densities. For this sy§1as been obtained first in Ref. 44. _ _
tem it is known that the ground state energy approagges Over a wide range of densities, including the typical ex-

. 4/3m~0.4244(cf. Refs. 3 and 48 irrespective of the par- Perimental regime, all of these approximations coarsely
ticle type, fermionic or bosonic, and irrespective of the par-29ree, though none of them can provide a rigorous bound on

ticle’s spin. The “radius” of the hard spheres is unimportant th€ €xact compressibility a€ , . As for the ground state en-

when ke—0. Among the approximations discussed abovetraies, the approximations start to deviate severely from one

el is the only one that stays finite in this limit, though the ;"_‘:Ilmhzr ﬁt smaller d?nsi';ies, ﬁorrespondingtsta;.% iOth .
jimit it approaches is larger than 443 and harmonic estimates show nonmonotonic behavior o

1/K, as a function of density, in agreement with recent quan-
tum Monte Carld’ calculations. If, as we have conjectured,

IV. TL PARAMETER K, ey approaches a constant fig—0,

Figure 4 shows
" K, (ke—0) =[3meg(kg—0)] "2 (13

aa
1K,= E{klzzeg(kF)+6[kFe(,)(kF)+eO(kF)]} (1) Note that the HF compressibility approaches a constant in
the low-density limit. Conjecturing again that at mean par-
versuskgd for R/d=5.66 [Fig. 4a)] and for R/d=35.36 ticle separations exceeding the interaction ramkges 7/2R,
[Fig. 4(b)]. Equation(11) follows from relation Eq.(3) to- the system crosses over into the hard core Bose gas with
gether with Eq.(10); the primes again denote derivatives e;—4/3m, Eq. (13) would yield
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P2kpt— | ]
0.5 Pokpl— 4
pilPo Pakp - K
ol e 3
-0.5} . 2
02 04 06 08 1 o . , .
kpd 1
0 5 10 15 20
FIG. 5. Amplitudes for the R and 4 -periodic components R/d
of the charge-density modulationg and p, versuskgd for R/d
=35.36 in units ofpy=2kg/. FIG. 6. 1K, versusR/d for ked=0.15 in the HF methodsolid
line), perturbation theoryEq. (12), long-dashed ling and for the
harmonic chaifEq. (7), dashed line and Ed6), dotted ling.
K,—1/2. (14

V. SPIN SECTOR

We note, for example, that the Hubbard model approaches as mentioned already in the Introduction, it is much more
(14) at small fillings, independent of the interaction strengthgitficult to estimate how interactions influence the spin sec-
U. The zarsne_holds true for the Fermi gas with contactor particularly its low-energy TL parametey,, than it is to
repulsion™ It is an important observation that the limiting egtimate the charge sector parameter. In the model originally

valueK;"(ke—0)~0.29 to 0.35 foR/d=50, . . . ,8clearly  proposed by Lutting@rwith left- and right-going particles
exceedsl/8, which would be the limiting value for the ex- treated as distinguishable, the spin velocity is

tended Hubbard mod¥l that has both on-site and near- unrenormalized’ v,=vg, because the exchange term van-

neighbor interactions. On the other hand, as seen in Fig. 4ghes, leaving magnetic properties of the system independent
the minimum value foK, at aboutkeR~1 is considerably of interactions. For the Hubbard model, on the other hand, it
smaller than 1/2, so that, contrary to the Hubbard model, thes known that the spin velocif§iis dependent on interactions
limit (14) would have to be approachdbm belowwith  and particle densityp, vanishing liken? at small densityn
decreasing carrier densities in quantum wires. for any finite interaction strength. The spin TL parameter is

~Upon inspecting Fig. 4 more closely a regime can berejated to a thermodynamic quantity, the magnetic suscepti-
identified at densities somewhat above the maximum objlity, by*°

1K, where 1K'" exceedsl/KP®". As seen in Fig. 5, the

relative increase in stiffness appears along with a significant B 0 2 2K,

4kg-periodic contribution to the charge-density modulation. x=4[mvedreo(m)] “mv (16)
Figure 5 shows the two lowest Fourier coefficients 7

wherem=(n;—n,)/n is the magnetization per particle and
, € is the dimensionless ground state energy density as de-
0;=0:(q=j2kp)=(-1)e(q=j2kp)=0-; (19 fined in Eq.(10). Relation(16) actually holds for any inter-
acting electron system in the single-channel TL phdgé.
for j=1,2 in units of the mean density,=2ke/ . In view Evaluatingeo(m) for the microscopic model perturbatively
of Eq. (15), which follows from Eq.(A7) of Appendix A,  Would give
4kge-periodic modulations of the charge density,(x) ~ -
+0,(x) are given by thg =2 contribution in Fig. 5. The vo/vp=1=V(2kg)/, (17)
appearance of a substantjat 2 Fourier component, &d | 5jng Eq.(16) andK,=1. Alternatively one also could im-
~0.5, marks the crossover from spin-density wave to WigneboSe a spin curreriti(nR — N —Ng;+n,,)/n per particle
crystal self-consistent solutions of the HF equations. A simir " () "Yic the right—(le}t-) mi)vingTdensfity of spirs] and
lar conclusion has been drawn from the extremely slow Spaﬁqegsuresthe change in ground state energy
tial decay of the density-density correlation function in the
presence of long-range interactidnand from recent quan-
tum Monte Carlo studie¥. With smaller 1R this regime of xi=4[ mPvedtey(l)] 1=
Wigner crystal-like states marked by enhanced stiffness ex-

tends down to smaller densities and becomes more praeerturbatively this gives an unchanged spin velocity, a result
nounced. The variation of K/ with Ris depicted in Fig. 6  that simply reflects the fact that lowest-order perturbation
for the densityked=0.15. AtkgR>1 all of the approximate theory cannot describe drag effetbetween the density
estimates are consistent with the logarithmic increasg, 1/ fluctuations of opposite spins and thus leaves the system Gal-
~ yIn R/d suggested by perturbation theory. kgR>1, the ilean invariant in spin sector. Solving Eq4.6) and(18) for
electrostatic energy is so dominant that the energy lapd K, yieldsK,>1 as a perturbative result for repulsive inter-
are relatively insensitive to correlations. actions that would contradict §B) invariance in a TL

v K, (18)

085104-6



TOMONAGA-LUTTINGER PARAMETERS FOR QUANTUM WIRES PHYSICAL REVIEW B5 085104

K 1 T T T
= T e
g 0.75 | e 1
w ,'"
2 05} / e.HF e .
> [ pert e
0.25 F i 1
oo ®
0 e L L
0 0.2 0.4 0.6 0.8
A AV, A ked
0 2 4 6 8 10 12
2kex/n

FIG. 8. Estimates of spin velocitias, /vg, based on the self-

FIG. 7. Charge densities; (x) (solid ling) andn (x) (dashed consistent Hartree-Fock squtichF)_, on pe_rturbation _theor&perl) _
line) along the wirex in units of the mean electron spacing, as in [Cf'_ Eq.b(19)], a(r;d on ]Ehe comparison with the antiferromagnetic
Fig. 1 but for finite magnetizatiom=1/6 per spin. Heisenberg model)) [cf. Eq. (21)]

An alternative attempt to estimate the spin velocity starts
m the argument that the electron spin sector would evolve
at low particle densities towards that of an antiferromagnetic
Heisenberg spin chain, as suggested by the staggered spin
pert_ 2 i \/Ai density profile found in the mean field solution, Fig. 1. This
Vg _;(XXI) =vp\V1=V(2Zkg)/m, (19 argument is also suggested by the pronounced antiferromag-
netic correlations found in the TL liquid spin sector, particu-

indeed agrees clearly better with the QMC dathan Eq.  larly for long-range interactiod$and in finite pieces of one-

N * . . . 4 . . . .
(7 Equaton(19 5 ncluded n Fgue & Ay Smensonal wie antferonagrete spin chans we
the perturbative estimat€®" vanishes and for smallég- the P P ’

Fock term in Eq.(19) favors a spin-polarized ground state model, at low energies and have been intensively investi-
) N - ' gated, for instance, by employing manifestly @WUspin ro-
This result contradicts very general arguments that guarant y empioying y @Vsp

) . I tion invariant non-Abelian bosonizatidf>®
a nonmagnetic ground state for any nonsingular pair interac- In the antiferromagnetic Heisenberg chain, spin excita-
tion potential in one dimensiotf. The true spin velocity '

- 2 tions (magnong move at velocit
should stay positive and approach zero only at vanishing (magnong y

particle density. v o= 2K,

That the extraction of spin velocities from HF calculations
is less reliable than the extraction of charge TL parameters i¢hereJ is the nearest-neighbor coupling constant. One pos-
already clear because of the incorrectly broken spinsibility to guess the magnitude dfis to compare the HF
rotational invariance in the HF ground state. In the HF spinestimates for the ground state energy of unpolarized
density wave state we evaluate the spin susceptibility by poelectrons with the ground state energ§® of fully spin-
larizing spins along the quantization axes. We can considgpolarized electrons. For the antiferromagnetic Heisenberg
only cases with rational ratios of the spin-up and spin-dowrchain this energy differencé(1+In2) per spirt® is known
carrier densities. Because the periods of the spin-up and spiexactly. Equating the energy differences gives
down density waves differ in these solutions, it is more con-
venient to use a real space basis, discretizing spéce J= ™ UF_kF
=X;)— (i) as described in Appendix B. Self consistent so- 1+In2 2
lutions are shown in Fig. 7. At finite magnetization this struc-
ture contains now “defects,” reflecting the loss of the
4kg-periodic component in the charge-dengity modulatiins. o= 773(e8°'— eg'F)/8(1+ In2) 1)
At leastN=44 electrons have been consideredMa 401 7
grid points, the smaller particle densities are basedNon follows. Equation(21) is included in Fig. 8. The transition
=84 andM =801 to avoid lattice artifacts to a high accu- into the spin-polarized ground state occurkal=0.19 (¢
racy. These sizes are clearly beyond what currently can be2.07) for R/d=5.66. Equation(20) can be checked for
treated with numerical many-body approaches, such as quanensistency in the noninteracting limikz—o, whereuv,,
tum Monte Carlo, but pose no problem here. Spin velocities-ve. Magnons would move at velocityvg if J
obtained fromESF(m)/L by virtue of Eq.(16) are included =4vgkp/7?=0.41vke. On the other hand, ef®—e5F)
in Fig. 8. Belowked=0.2 it is very difficult to extract posi- — 1/ in this limit so that Eq.(20) yields J=0.3Q Kkg. In
tive spin velocities. We see that self-consistency pushes thé@ew of the fact that the weak-interaction limit is poorly de-
point of vanishing spin velocity and th@rroneoustransi-  scribed by the antiferromagnetic spin chain this picture
tion into a ferromagnetic ground state down to smaller denseems amazingly consistent.
sities compared to the perturbative estimate in @§), but Recently, Calmels and Gold have calculated magnetic
the transition still occurs. susceptibilities of quantum wir@$,though for a different

model. To enforce the SB) symmetry we can combine Egs. fro
(16) and(18) and solve fow , by eliminatingK ;. The result,

elo'—efif) (20)

from which
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microscopic interaction, using standard heuristic approximaliquids, all these predictions depend only on few phenom-
tions from electron gas theo?§.By virtue of Eq.(16) these  enological parameters. In the case of quantum wires with
data allow us to extract spin velocitie§®, which turn outto  only one subband occupied there is only one parameter per
be slightly larger than ous"' values. Note that the pertur- degree of freedonk, for the charge sector ang, for the
bative estimate shown in Fig. 2 of Ref. 57 uses FLj) spin sector. In the absence of interactions these parameters
while in Fig. 8 Eq.(19) is included. Compared with E¢19)  assume the valugs,=1 andv,=v. In this work we have
the datavS® do not exceed®", similarly as the HF data. investigated how the microscopic pair potentiélx—x’)
This, however, contradicts the behavior obtained usinghangesk, andv,. We have considered a realistic, trac-
QMC, wherev QY€ clearly exceedsP*™. We conclude that table, and sufficiently general form faf(x—x"), Eq. (A4),
HF and other approximations of the mean field type carfhat depends on the diameteof the quantum wire, wh!ch is
provide only a qualitative guideline to, . All of these at- measurable through the subband energy, and the distance to
tempts, however, agree in predicting spin velocities that deth® nearest metallic gaté as given by the sample layout.
pend on the interaction ardbcreasavith increasing interac- OUr approach is to relate the two TL parameters to thermo-
tion strength. This result calls attention to the frequentdynamic quantities that we estimate on the basis of self-
assumptions in the literature that interactions not explicitlyconsistent, unrestricted Hartree-FoGKF) approximations
depending on spin would leave, unchanged® This result for the ground state energy. , .
should show up in current experiments, such as those de- In the charge sector this strategy is found to_yleld reason-
scribed in Ref. 9, where typical values fRgd~0.3 are in ably accurate rgsult_s_. At densities corrgspondmgstels
the regime investigated here. As already pointed out in thé/€ confirm applicability of the perturbative formula2) for
Introduction, this parameter should influence measurabl&,- This regime includes most of the experiments based on
quantities, such as the spin-splitting enhancement factor, R&emiconducting heterostructufeS. At somewhat smaller
man scattering in depolarized configurat®Brspin transport ~densities Eq(12) evenoverestimates K. In this regime we
propertie?® and Rashba precessith. f|nd_ enhanced stlﬁne§s_compareq to perturbation theory, sig-
Let us now discuss the low-density limit using our con- naling the clo_se proximity qf a Wigner-crystal state. For this
jecture that quantum wires become equivalent to the on-sitEaSon quantitative corrections to H42) may arise when

Hubbard mode(HM) in the limit of small particle densities. R>d, for example, in carbon nanotubes. In quantum wires
Hubbard model (lattice constant a) parameters, t  fabricated on the basis of semiconducting heterostructures

with gates, the perturbative formula may be used even down
He densities Re/m~1/R. The proximity to the Wigner-
) - ) crystal state competes with the finite interaction range in
Coulomb barrier for a two-electron exchangé(k) is de-  hage systems. Irrelevant or marginal operators in the micro-
fined in Eq.(2). To Ie3“?|pg80rder /U the spin velocity of - gcopic Hamiltonian, such as nonlinear single-particle disper-
the Hubbard moded ;" is sion or backward scattering in the spin sector, turn out to be
unexpectedly inefficient to renormalize the TL parameters in
the charge sector up to moderate interaction strengths. With
' decreasing density the values ¥y clearly fall short of 1/8,
which is the minimum assumed by the extended Hubbard
model including repulsions on neighboring lattice sites and
HM often is considered to emulate models of finite interaction
T =4m7/3V(k=0) (22  range.
UF At smaller densities, however, the perturbative estimate

: . pert ; i ; i
for small kea, where the lattice constant is irrelevant. Note K, 1S not “_al'ablﬁ- In partlc:ilar, it _doils not reproduce the
that V~uvr? and thuso?™=k2. This result agrees with the HOnMmonotonic behavior o, found in the HF approxima
. . - . ; tion with a minimum as a function of density. Eventually, as
strong interaction limit of the continuum version, the elec- . . .
. . . . . ke— 0 we conjecture that quantum wires approach the uni-
tron gas with repulsive contact interactidiisRestoring

. . versality class of the Hubbard model with only on-site repul-
quantum wire parameters, E¢2) translates into sion and thak ,— 1/2 in that limit, though, unlike the Hub-

v 27 kea bard model, this limiting value should be approactiemn
—= S (23)  belowas the particle density is lowered.
UF 3 In(2R/d) The nonmonotonic dependencekof on density predicted

for R/d>1. The available QMC data are consistent with Eq.here should show up in any of the power lawsvealed by
(23), though, as in the charge sector, they are not conclusivBseudogaps in the density of statesExamples include the

=v/2kea? andU=V(k=0)vF/a, can be related to micro-
scopic parameters by equating the effective mass and t

U—x 2
HM 27rat

sin 4kga
U, ] -

4kra

so that

kg—0

enough to really confirm the low-density equivalence. current for tunneling into the enfiv(w)~w™ = "2] or
into the middle[ v(w)~w®*¥~2)4 of a single-mode
VI. SUMMARY AND DISCUSSION wire (assumingK ,=1) and the currenit(V) ~ Vs flowing

through a single tunnel barrier along the wire at small volt-

Many nontrivial theoretical predictions for low-energy agesV. Experimental observation of this nonmonotonic de-
measurable properties based on the TL model exist in thpendence of the exponent would give direct experimental
literature. Much in the spirit of the Landau theory of Fermi access to the microscopic range of the electron-electron in-
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teraction; the position and the height of the maximuri(;ﬁ1 potentials, which itself depend o# and thus have to be
both depend ok obtained self-consistentlys=1,| are spin quantum num-
Our approach is less successful in estimating the spin sebders. Occupation of only the lowest subband is assumed to-
tor TL parameter ., at least when it differs considerably gether with periodic boundary conditions for the wire of
from vg. We have discussed perturbation theory and tried tdength L. Parabolic dispersion for the kinetic energy in Eq.
obtain meaningful estimates fay, from the HF spin- (Al) is described by a band mass=kg/ve. The kinetic
density-wave states. The similarity to the antiferromagneticenergy is not linearized.
Heisenberg spin chain, evident from correlation function For some of our calculations, particularly those focussing
considerations, suggests that exchange coupling strengti®) properties of the spin sector, Sec. V, we solved the HF
and therefore spin velocities, can be estimated by comparingquations(Al) directly in real space, using
the ground state energies of unpolarized and fully spin-

polarized electrons. None of these variants lead to results of o2 1 1

the same quantitative reliability as those obtained fiojf. V([x))=— - (A4)

Coni i - - i - €\ x®+d? x2+d?+4R?
onjecturing again a crossover into the universality class of

the Hubbard model in the limit dt— 0 yields the predic-

tion of a linear dependence of threlative spin velocity  in Egs.(A2) and(A3) and a lattice grid of at least 401 points.

v, lvexke/Vq on the particle density/, is the zeroth Fou- Any of the results for the charge sector can be obtained ei-

rier component of the interactiovi(x—x"). ther using a real space basis or also, slightly more efficiently,
It is important to know the spin velocities for attempts to @ k-space basis, introduced now. Expanding

realize “spintronic” devices where spins rather than charges

are transporte€f using, for example, the Rashba spin pre- , -

cession mechanisth through quasi-one-dimensional Pes(X) = €0 U €12 (A5)

constrictions’’ Here, in agreement with QMC estimat¥s, .

we have collected strong evidence that spin-density excita- - . .

tions move at speeds (?onsiderably slowgr than trile Fern’1mO Bloch waves, and similarly the periodic potentighe)

i . . O
velocity, already in present day deviceshereked~0.3. and(A3), yields HF equations for the coefficientss:
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zone this is an eigenvalue equation for matrices indexed by
APPENDIX A: HARTREE-FOCK THEORY the band indice$, WhiCh, hOWEVGr, inside the CUf'y bracket

depends on the solution of E@A6). Within the “unre-

To formulate the mean field theory we introduce single-stricted” HF scheme we allow for charge- and spin-density-
particle wave functiong/ solving the Schrdinger equation  wave solutions breaking the symmetry of continuous trans-
lations and thereby lower the ground state energy. Solutions
are found to show K-periodic oscillations of the charge

UF - ! ! !
{ - 2_|(F‘?>%+§ Ve (%) | e X) L dX'V5(x,X") e(X") densitye(x)=e,(x)+ o (x), where

= &sthis(X) (A1)

with the Hartree

(A7)

. ke dk 2 2’7T
QT(X):f—kF |4 (x)|*=e, X+4_k|: :
" L (L ke We solved Eq(A6) iteratively, starting with a sinusoidal spin
Vg (X)= ﬂfo dX'V(X—X')f ) dKlns (x')|? (A2)  density waveu(Q) ;= 8, o/ 12+ 58);| /2. The final solution al-
o ways obeysl;  1=(—1)'uj ;. which in view of Eq.(A7)
yields Zg-periodic modulations of the spin densigy; (x)
—@,(x). Atypical density modulation at stronger interaction
L ke is shown in Fig. 1.
VE(X,X')= —V(X—X')f dkigs(X") hs(X)  (A3) The single-particle energies,s, obtained with Eq(A6),
2m —ke determine the ground state energy

and the nonlocal exchange
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2 fkp dk

+3 ko dkjdxj dx' VE(XX ) X0 e X').

(A8)

g f dkj dXVE (0 [ )2

Half of the interaction has to be subtracted to repair for |ts

double counting in Eq(A6). Differentiating Eq/L twice
with respect tokg yields our estimate foK,, according to
Eq. (3).

Most of the results are obtained for &points in the

PHYSICAL REVIEW B65 085104

APPENDIX B: HARTREE-FOCK THEORY FOR
SUSCEPTIBILITIES

In spin space we use a lattice representatigx=x;)
— (i) of the Hamiltonian. TheV X M matricesH;; , repre-
senting Eq.(Al), contain contributions from the kinetic en-
ergy Hij=2(M/7N)2vke and H;ji.1=—(M/7N)%v ke,
the (local) Hartree termH;; == V(|i—j|L/M)|¢s(j)]?,
and the (nonloca) Fock term Hj= -3 V(i

—j|L/M) (i) ¥nes(j) , the latter acting only on spiswave
functions. Here,\N/(x)EZf:_wV(erIL) accounts for peri-
odic boundary conditionpV(x) is defined in Eq(A4)] and

Brillouin zone (in some cases for very small densities wethe real and normalized eigenvectafgy(j) of H;; are in-

increased this number to 2B4The Milne rule, being accu-
rate to seventh order in the spacing betwk@@mints, is used

dexed by their spirs=*=1 and momentum-Kkgs<k=<Kkg
=(1+sm)kg with k being an integer multiple of 2/L and

m the magnetization per particle. The Hartree-Fock approxi-
mation to the ground state energy then is obtained as in
EqQ. (A8).

for the k integrations. We included=-3,...,3 bands,
though in most casegs= —2, . .. ,2would have sufficed due
to the rapid decay of the Coulomb interactionkispace.
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