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Coexistence of the bond-order wave and antiferromagnetism
in a two-dimensional half-filled Peierls-Hubbard model
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The two-dimensional Peierls-Hubbard model is studied at half filling within both Hartree-Fock and Kotliar-
Ruckenstein slave-boson theory. The interplay between two types of long-range order, bond-order wave
(BOW) and antiferromagnetisfAFM), is analyzed for two representative dimerization patterns, correspond-
ing both to the same wave vector (7). For each pattern, the Peierls dimerizatiand associated BOWSs
weakened and finally suppressed with increasing Hubbard on-site interaction, and correspondingly AFM is
gradually enhanced. In particular, a coexistence regime with both BOW and AFM order is established in the
parameter space of electron-lattice and Hubbard interactions.
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[. INTRODUCTION tuitive explanation is that the on-site Coulomb interaction
favors a spin-density wavSDW) long-range order, that is,
The Peierls instability towards spatially broken symmetryantiferromagnetism{AFM), while the dimerization associ-
is an important phenomenon in low-dimensional matefials.ated with BOW harmonizes with a spin-singlet formation
The one-dimensiondlLD) case has been widely discussed inbetween those two nn spins that are connected by a strong
the context of polyacetylene (CH)based on the Su- bond. As_we know, due to the same nestin_g effe_ct, the pure
Schrieffer-Heeger(SSH model??® where lattice displace- 2D_ half-_fllled _I-_|ubbard modelwithout cons!d_eratlon of a
ments couple to electron hopping. For a half-filled band arPeierls instability has been shown to exhibit AFM long-
bitrary small electron-latticee-l) coupling will induce a 'ange order for anyJ>0. This is in contrast to the 1D case
lattice dimerization(disregarding quantum lattice fluctua- Where no true long-range AFM order is formed and the cor-

tions), which is associated with a periodic modulation of therelated state rather corresponds to a resonating valence-bond

bond hopping, a so-called on-bond charge-density wave Osrtate with strong weight from nn singléfs Consequently,

bond-order wavgBOW).# It has been established that the one may envisage, for finite e-| couplidenoted as, see

) : : below) and e-e on-site interactidd, a competition between
Hubbard on-site Coulomb electron-electr@ie interaction BOW and AFM as the underlying physics in the 2D half-

U will enhance the bond alternation initiall% for small values filled Peierls-Hubbard model. In the largelimit, Zhang and
and finally suppress it at large vglue_sLd)f o ~ Prelovsek have studied the corresponding spin-Pei&is
In two dimensions few theoretical investigations ekist] instability and found that the SP state, competing with AFM,
some of which connect the physics of Peierls systems to thgjges not appear unless the spin-lattice couplamglogous
of the highT, copper oxides:'° Moreover, these investiga- to 5 here exceeds a threshold.
tions may be of direct relevance to those quasi-two- The details of the competition between the two ordered
dimensional(2D) materials that show a Peierls instability states were studied only for the above limiting case and the
such as transition-metal oxide bronzes liR&10s0;; (A situation is not clear for general values pfandU. In par-
=Na, K, Tl) (Ref. 13 and possibly organic conductors such
as a-(BEDT-TTF),MHg(SCN), (M=K, Rb, Th.***As  ____ .
an effective minimal model, in this context, the 2D version
of the SSH model was investigated?12With only nearest-
neighbor (nn) hopping on a square lattice, the electronic |
Fermi surface is perfectly nested at half filing with nesting
vector Q= (1, ). Two possible alternation patterns for the F---- - - ===
lattice distortion and the concurrent bond hopping comply
with this Q, as illustrated in Fig. 1. Whereas for Figalthe - -
dimerization is in both directions, it is only in one direction
for Fig. 1(b).° Similar to the 1D case, already for an infini- @ ®
tesimal e-l coupling, the 2D SSH model goes thro_uzgh @ FIG. 1. Lattice distortion patterng) and (b). In the figure a
Peierls instability into one of the dimerized states of Fig 1. tjck solid line corresponds to a strong bond with hopping integral
When a Hubbard on-site Coulomb interactidhh is  t(1+ ), a dashed line corresponds to a weak bond with hopping
included—the model is then the so-called Peierls-Hubbarghtegralt(1— 8), and a thin solid line corresponds to a normal bond
model—results differ qualitatively from the 1D case. Nu- with hopping integrat. Both patterns correspond to phonons with
merical calculations on a small 2D lattic€ indicated that  wave vector ¢, ). The dimerization is along two axes for pattern
the Peierls instability will be frustrated ont&>0.2°> Anin-  (a), while only along thex axis for pattern(b).

0163-1829/2002/68)/0851028)/$20.00 65 085102-1 ©2002 The American Physical Society



QINGSHAN YUAN AND THILO KOPP PHYSICAL REVIEW B65 085102

025E ) ' ) T ] to Mazumdar’s argument. A complete comparison is made
between the results derived from both approaches. Conclu-
02 sive remarks are given in Sec. IV. An Appendix completes
the SB formulation.
0.15
2=
Il. FORMULATION
0.1
We begin with the 2D half-filled Peierls-Hubbard model
0.05
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FIG. 2. Optimal values for the dimerizatiof and AFM m as HKZE 2 [(uf;—ufy 1'j)2+(uiy’j—uiy,j+1)2],
i

functions ofU at »=0.5. In each panel, the dashed lines are for

pattern(a) and the solid ones are for pattein); the thick lines are T ) ) o
the SB results and the thin ones are the HF results. wherec; ; . (Ci ;) is the creatiorfannihilatior) operator for
an electron at sitei(j) with spino (i denotesk coordinate

ticular, a basic problem has to be solved: does BOW disap"ideJ denotesxyy coordinate, n;;, is defined asn;;,
ui;y is the displacement component of site

pear once the AFM order sets in, or is a coexistence of the, Cij,oCijor Uij ! )
two ordered states possible? It was previously argued by Md.+1) in x/y direction,tis the nn hopping parameter, ands
zumdar within a real-space approach that the appearance &€ €lectron-lattice coupling constétitHy is the Hubbard
the AFM should coincide with the disappearance of thePn-Site interaction with the repulsion strength The last
BOW, X which was, however, not verified. To clarify this €M Hk is the lattice elastic potential energy, with the
issue, which is the topic of this paper, one needs to explicitl)ﬁlasnc constant. The phonons are treated in adiabatic ap-

calculate the two order parameters for the BOW and AFMProximation. o _
with varying 7 and/orU. For an analytical treatment on an infinite lattice, we have

In this paper we make use of both the Hartree-Fg¢R) to wo_rk wi_th a defin_ite distprteq Iattice3 rather than aIIowing
and Kotliar-Ruckenstein slave-bosaiSB) approach to the dl_stortlo.ns to arise ar.b|trar.|Iy. In this paper, we constrain
treat the Hubbard interaction. The HF results are usuallyh® discussion to the lattice distortions within the two com-
valid at weak coupling, and they can be used as a basis fgponly used dimerization pattern_s shown in Fig. 1. These two
further elaborate studies. In the context of investigations oP@tterns correspond to the nesting vedgor (, ) and re-
density wave instabilities, the HF theory may give pIausibIea“Ze an uncond|t|o_na_\l Peierls msta_blllty that occurs for
results even in one dimensidhiwhere one would expect it —0 andU=0. Explicitly they are written as
to be worst because of strong fluctuations. In dimensions o o
higher than one, as considered here, qualitatively correct re- Ui ;—u 1, =(—=1)""u, u/;—uf; ;=(-1)""u
sults are expected from the HF theory. In order to extend the
controlled weak coupling results to intermediate valuesof for pattern(a) and
we evaluate BOW and AFM within a slave-boson mean-field
approach, which is considered to be appropriate to interpo- uf(,,-—uiﬁl,j:(—l)i*ju, uj—u’; ;=0
late from weak to strong couplirfg.

The paper is organized as follows. In the following sec-for pattern(b). For convenience, two dimensionless param-
tion, the model Hamiltonian is introduced, and then the HFeters are defined: the dimerization amplitutte «u and the
and SB approaches are formulated. The self-consistent equalectron-lattice coupling constamt= «’t/K. Throughout the
tions for the order parameters are derived in both theories. Ipaper the hopping integralis taken as the energy unit.

Sec. lll, numerical results are presented. The main results are In the following, we will construct the analytical formulas
shown in Fig. 2, where the coexistence of BOW and AFM isbased on the HF and SB approaches, respectively, and leave
found to be possible for each of the two patterns, in contrasthe numerical calculations to the following section.
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A. Hartree-Fock theory magnetization. In  HF  approximation (equivalent

In our model, the on-site charge-density wave is not fal0 Hartree here the local Hubbard term may
vored and the total electron number on each site is uniforfP®  decoupled as UZ;;n; ;0 —UZ; (ni; (N )
and equal to one at half filling. Then the expectation value 01'+<ni,j,T>ni,j,l_<n|,J,T><n|,],1>) Then the Hamiltonian be-
the electron density with a given spin may be simply as-comes quadratic and may be easily diagonalized in momen-
sumed agn; j ,) = 3[14+o(—1)""'m] when the AFM order tum space. For a bipartite lattice the final electronic spectra
is taken into account, wheren represents the staggered are derived as follows, for pattertig) and(b), respectively,

e a= * VU?M?/4+ 4[ (cosk,+ cosky)?+ 8%(sink,+sinky)?], 2

ey p= = VU?mM?/4+ 4[ (cosk,+ cosk,) 2+ 8%sir’k,]. ©)

Each branch above—( or +) is twofold degenerate. The . N .

wave vectok = (ky ,k,) is restricted to the reduced Brillouin ei,jei,j"_; Pij.oPijotdi;dij=1 (completeness  (7)
zone,— m<k,*k,=<. With inclusion of constant terms the

ground-state energy is and

T T T
S oo 4+d'.d . =c' C;
E,=2> &, +NU(1+m?)/4+E_ ,, Pri.oPiyo GG = G oG

k ' '
(correctness of fermion occupancy for a given $pi(B)

wherev=a, b represent pattern®) and (b), respectivelyN

is the total number of lattice sites aig , denote the lattice For a bipartite lattice, we [ntroduce a set of bqsons, with
elastic energies for both patterr, ,= 2E, L =N&% 7. separate Lagrange multipliers for each sublattice. At the

The self-consistent equations for dimerizati®dand mag- mean-field level, the bosons are replacedchyumbers and

netizationm are found by minimization of the ground-state assumed to be site independent on each sublattice. At the
energy. They readE,/35=0 andJE,/dm=0. The latter S2M€ time, the constraints above are softened to be satisfied

results in(except for a trivial solutiorm=0) only on the average on each sublattice. This treatment is

equivalent to making a saddle-point approximation in the
path-integral formulation. For concreteness, we introduce the
U 1 following parametrization for sublattic& (and similar pa-

1= N E leg,| ' @ rameters are defined for sublattiBg: e, pa,, da @s aver-
" age values of the boson operateﬁ) pl(?g, df‘]), respec-
and the former leads to tively, and\ 5, A% as Lagrange multipliers associated with
the constraintg7), (8), respectively. Then the Hamiltonian
4y (sink,+sin ky)2 (1) may be recast into the following forfmve choose pattern
=N« (5  (a) as an example
|8k,a|
for pattern(a) and H= 1+<‘5)I 12:1 (,(af’j’gbiﬂ'j,(ﬂr af’j’gbi,jﬂ';r H.c)
87 sirtk,
1I=x > (6) t(1-9) E (r(biT,j,(raHl,j,oJr biT,j,oai,jJrl,oJF H.c.
© lewsl ie:
for pattern(b). +NU(d2+d3)/2+E .~ a 2> | €+ p3,
i,jeA o

B. Slave-boson theory

+di_1> E )\A(pA(I+dA a| g, U'a'l i U')

In the spirit of the Kotliar-Ruckenstein SB approdéh, iAo

four auxiliary bosonse(}), p" (o=1,1), d}) are intro-

duced to label the four dlfferent states for an arbitrary site 2 2 2
egt +dg—1
(i,]), which can be empty, singly occupied by an electron B.JEE B g Peo s )
with spin up or down, or doubly occupied. The unphysical
states in the enlarged Hilbert space are eliminated by impos- A +d2 bl b 9
ing two sets of local constraints i ,EEB - 5(Ps, oPigo) ©
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wherea'(a) andb'(b) are the electron creatiofannihila-

) ) X Ly eLPLsT Pl _
tion) operators for sublatticA andB, respectively. The hop- (zg)= = , L=A, B.
ping renormalization factor, ensures the correct result in V(1-ef—p?)(1-d?—p?,)
the limit of vanishingU and takes the fornz,=(z5)(z2)  The Hamiltonian(9) may be diagonalized in momentum
with space and the energy bands read
|
€icr.a= (NAT N2+ VON—NG)2/4+ 472 (cosky+ cosky)?+ &6%(sinky+ sink,)?]. (10
|

Similarly, the energy bands for pattefo) are given by ine Eqg.(4) in HF theory. It is easily seen that the right-hand
. . Y side (rhg) of Eq. (4) assumes a different analytical behavior
€kob= (At Ag)/2 for each of the two patterns due to their different respective

spectra. For patter(@) the rhs is divergent ah=0, irrespec-
tive of the value of8, and decreases monotonically with
(11 increasingm until it reaches a value less than Inat 1. This
implies for patterna) that Eq.(4) can be always solved with

a nonzero solution af as long agJ>0. For patterr(b) it is

not always the case because the rhs is finitmat0 for any
6>0. Once this finite value is less than 1, one has to adopt
the trivial m=0 solution. The same conclusion may be ob-
tained by a similar analysis of the corresponding equations in

+ J(NZ—N§) %4+ 4Z5] (cosk, + cosk,) 2+ 67sirPk,].

At half filling and zero temperature only the two lower
(—) bands are occupigthe constank 3+ \g is independent
of o as will be seen later Then the ground-state energy is
expressed asv=a, b)

E, =2 €t EotEL, (120 the SB evaluatiofisee Eqs(A3) and(A4) in the Appendiy.
ko The numerical solutions fob6 and m are displayed as
with the constant functions ofU in Fig. 2 for both patterns and in both ap-
proaches, whereby the e-l couplingis fixed at 0.5. Glo-
Eo=(N/2)[U(di+d3) — a(€3+ 2, pa,+di—1) bally, it is seen that for both patter@stends to decrease and
5 2 5 or2 2 m to increase with growindJ. This supports the notion that
—Ag(€g+2,Pg,+dg—1) — Z NA(Pa, T dR) the on-site interaction tends to favor the AFM order and to
_ o2 2 suppress the Peierls dimerization. We elaborate the details in
2 hg(Pg,tdp)]-

the following paragraphs.

The self-consistent equations are obtained from the re- !N HF (see all the thin lingsit is found that for patterie)
quirement that the ground-state energy is stationary with re?? becomes finite(although small at smalU) and simulta-
spect to the parameter; g , Pace)os dam) s M) )\Z(B)' neously é begins to decrease ont&>0; while for pattem
5. Except for the equation correspondingdothey all have () m stays zero for smalU up to U>Uy,=1.34 where it

the general formE, de;, ,JaX+ dEq/dX=0, whereX rep- becomes finite and correspondingdy first keeps i'tsU=.O
resents one of the pararﬁeters. Analyzing these equations aﬁalue _and then starts to decreas_e_lftiPUm. The dimeriza-

. . 2 2 tion disappears at the same critical valug=2 for both
applying the constraint  X,pjag),t 2d4 () atterns and it approaches zero smoothly and quickly when
=3 (a(b)|; ,a(b); ; ,)=1 at half filling, one may find the P2 pproach y ang quickly

) SRR . ) U is close toU.. Comparing the results fan vs U between
solution satisfying the following relationsea=eg=da  yhe two patterns, it is clear that pattdia) is more favorable
=dg(=d), Na=Ng(=\), Par=Psss AMAi=Ng and Z,A{  to the formation of AFM order than patterf). We will
=23 ,\g=U. Consequently, the number of free parameters isome to this point later.
substantially reduced. The final compact self-consistent Most of the above qualitative results are also found in SB
equations are listed in the Appendix with several redefinedpproach(see all the thick lings On the other hand, the
independent parameteds N\, Aag=Aa—A5;=A5—\4, m differences between SB and HF results are clear as well,
=Pa;—Pa,=P3,—P3;, where m denotes the same stag- which we want to emphasize here. A distinct quantitative

gered magnetization as in HF theory. difference is that for each of the patterns the AFM order
derived from SB approach ignuch weaker than that from
IIl. NUMERICAL RESULTS AND DISCUSSIONS HF theory, and correspondingly the dimerization decreases to

zero over a larger range df. The critical value for the
We now focus on the numerical results obtained from thelisappearance of now becomesJ.=2.38, and the neces-
self-consistent equations. First, it is necessary to analyticallgary Hubbard interaction to induce finita in the case of
analyze the mean-field equations more thoroughly. After gattern(b) is U,,=1.56. Both values are larger than the cor-
replacement of the momentum summation by integrationresponding ones from the HF theory, which is understand-
e, 2 —N272[ [T dkydk, (Ky,=*k;+ky), we exam-  able. As is well known, the HF theory usually overestimates
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FIG. 3. Ground-state energiéger sitg as functions ofU at » U
=0.5, corresponding to Fig. @ith the same line labelsEach line FIG. 4. Expectation values} ,, hY, as functions ol for both
stops at its own critical pointJ;. The original values of these patterns. In each panel, the solid lines show the quahfitgnd the
energies are shown in the inset. All energies are in units of dot-dashed lines givh} ; the thick lines are the SB results and the

.__thin ones are the HF results. For pattéan h} ,=h} ,. For pattern
the tendency towards AFM order. The SB theory, as an im; pattéa h ,=hi , P

Y=hY i i i
proved approach to fluctuation contributions, should lead to %Qngll h2, which are plotted by the dashed fines in the lower
slower formation of AFM, which complies with our findings.

A further important difference between the SB and HF + o )
results is observed in the regidd<U,, for pattern(b), =(Dijcdi+1j,+H.C) (o is irrelevan} for the alternating
where the AFM order has not yet formed. From the solidbond hoppings along theaxis, and similar valuelsy , h for
lines in the upper panel of Fig. 2, it is seen that the dimerthe hoppings along thg axis. By symmetry, we havh],
ization 5 keeps a constant value in HF theory, while it de- =h{ ,for pattern(a) andh=h} for pattern(b). All the quan-
creases slowly with increase ofin SB approach. This dis- tities are calculated in both theories and plotted as functions
agreement may be understood as follows. In HF theory, seef U in Fig. 4. The BOW is exhibited by the inequality
e.g., Eq.(3), the HubbardU becomes irrelevant once the betweenh’ and h} for each patterd? It is clear for each
order parametamis zero: the value fos will be the same as  approach that such an inequality is present withi
that withoutU. In SB approach, however, the Hubbdsds  <U_, the same region where the dimerization is finite.
relevant even am=0 by affecting the probability of double  Numerically, Tang and Hirschstudied the same model
occupancyd?. As U increases, the double occupancy is dis-and calculated the energy gain from dimerization as a func-
favored, i.e., the quantitg® decreases. Correspondingly the tion of U for the patterr(b) shown here. By studying how the
effective hoppingz,, decreases to@f., the expression foW  energy gain changes witl, they found originally that the
in the Appendix, which may be understood equivalently as HubbardU has little effect on the dimerization until it is
an increase of the elastic const&nor a reduction of the e-l large enough to suppress it, and later corrected that the
coupling ». This signifies a decreasing dimerization. In this dimerization is disfavored as soonldss present. The finite-
point the HF theory fails to catch the correct physics bysize effect was cautioned by the authors themselves. Their
assuming the probability of double occupancy as a constargrincipal result, i.e., the Hubbard is unfavorable to dimer-
1/4 that is correct only fotJ—0. ization, is consistent with ours, especially with the SB results

Furthermore, we can check the stability between both patfor pattern(b). Although it seems that the suppression of
terns by comparison of the ground-state energies calculatetimerization byU is faster in our results than what they
in all cases, which are shown in Fig. 3. For each pattern thelisplayed, no direct comparison is available because they
SB approach gives a lower energy than the HF theory in thealculated neither the order parameters nor the ground-state
whole range olU. Also, it is seen within each approach that energies. Obviously, further numerical calculations on large
pattern(b) has a lower energy than pattef@, which signi-  size systems are necessary for better comparison.
fies that patterrib) is more stable. The main contribution in our work is that the order pa-

It is worthwhile to point out that the BOW is always rameters as functions &f are explicitly obtained so that the
associated with the finite dimerization. In order to see thisinterplay between BOW and AFM becomes transparent. The
we have calculated the BOW that is characterized by groblem proposed in the introduction is then naturally an-
modulation of the hopping amplitude. Explicitly, we define swered. It is clearly seen in Fig. 2 that the BOW and AFM
the expectation values h>{=<a;ﬁj]0bi+1,jlg+ H.c), h} may coexist for both patterns. For pattéan the coexistence
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5 @ - . . - connected to only one nn site by a strong bond when the
BOW (or dimerization forms. Thus, a spin singlet on this

4 | strong bond is apt to prevail in the presencéJofvhich will
3k AFM i resist the AFM. On the other hand, for pattéay, each site

) connects two nn sites with strong bonds. This, on the con-
2t . trary, makes the construction of spin singlets on these strong

¢ bonds difficult and AFM is favored.

IV. CONCLUSION

We have investigated the Peierls-Hubbard model in two
dimensions at half filling within both HF and SB approach.
Two dimerization patterns, corresponding to the same wave
vector (m,), are considered and the interplay between two
long-range order states, BOW, and AFM is addressed. For
each pattern, it is found that the Peierls dimerizatiand
associated BOWis weakened by the on-site interactioras
soon asU is present and finally suppressed at a critidal
=U.. Correspondingly, the AFM is favored ly. Whereas

n for pattern(a), see Fig. 2, AFM is induced ondé>0, it is

FIG. 5. Stable phases for BOW, AFM, and the coexisting statenot activated untilJ =U,, for pattern(b). For both patterns,

(C) in the parameter spacé)(#) for pattern(a) [upper pandland  the coexistence of BOW and AFM is possible. SB and HF
pattern(b) [lower pane]. The thick lines show the SB results and evaluations lead mostly to the same qualitative results and
the thin ones show the HF results. quantitatively the former approach results in larger values of
U. andU,,. Whereas the HF evaluation provides us with the
exact weak couplingy—0) result, the SB approach ex-
tends the findings to intermediate coupling, and corrects
charge and spin fluctuation contributions beyond HF. Espe-

(i.e., >0, m>0) appears as long 43>0 and pure AFM
order exists forlU>U,.. For pattern(b) the coexistence is
limited to the regionJ ,,<U<U,.. These results are not fa-

vorable to the argument by Mazumdar that the AFM emerge%ially, the reduction of charge fluctuations bydecreases the

with the disappearance of the BO\WIn_fact, the vale_:nce- imerizationé consistently in the regiob <U,, for pattern
bond approach adopted by Mazumdar in real space is appez% 3)
D).

ing. It states that, in order to implement a symmetry-broke

state (e.g., BOW, “extreme configurations” with shortest ACKNOWLEDGMENTS
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tually disfavored, even for weak Coulomb on-site interac-

tion, as is verified in the exat! — 0 approach of this paper. APPENDIX: SELF-CONSISTENT EQUATIONS
It implies that spin fluctuations are more pronounced than IN THE SB APPROACH
charge fluctuations in the BOW state of the half-filled sys-

In this appendix we implement the formulation of the SB

tem. :
. . . . approach. With respect to the parametérs., Aag, m, 6,
Eventgally, we detgrmme the coexistence regions fgr dif the self-consistent equations are derived as follows for pat-
ferent » in both theories. The results are shown in Fig. 5,

where different phases are indicated in the parameter plantgm @:

(U, n). For pattern(a), only two phases exist, either a state d=—2C4l,/\, (A1)

with coexisting BOW and AFM or a pure AFM state. How-

ever, for patterr(b) pure BOW and AFM states exist, which —N=U/2+2(C,/\(1+m)/2—d?

are separated by a coexisting state — the region between two

thick (SB) or thin (HF) lines in Fig. 5. As for the methods, +C3/N(1—m)2—d?)l,, (A2)

globally speaking, the SB approach pushes the AFM order to

the higherU regime than the HF theory. Mag=4(C3/\(1—m)/2—d?—C,/\(1+m)/2—d?)1,,
Finally, we come back to the difference between the re- (A3)

sults for the two patterns. As explained above, patteyns

more favorable to the formation of AFM than patteh). It M= —Aagl1, (A4)

may be roughly understood from their different dimerization

structures. As seen from Fig. 1, for pattdh), each site is 1=479Wlj, (A5)
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where

1 1
N Ek: VN ag/d+ AW (cosk,+ cosk,)2+ 8%(sink,+ sink,)?]’

Iy

(cosk,+ cosky)?+ 8%(sink, + sink,)?
K VNAgl4+4W[ (cosk,+ cosk,) 2+ 8%(sink,+ sinky)?]’

| IEE (sinky+ sinky)?
SN% VNagl4+ AW (cosk,+ cosk,) 2+ 8%(sink,+ sink,)?]’
16d4(¢(1+m)/2—d2+ \/(1—m)/2—d2)4
W=z2=7°= ,
T 1 (1_m2)2 ’

oo 64d3(\(1+m)/2—d?+ \(1—m)/2— d2)3[ V(1—m)/2—d?[(1—m)/2+d?]+d?\(1+m)/2—d?

1 (1_m2)2 1-m +m—>—m],

64d*(\(1+m)/2—d?+ (1—m)/2— d2)3( 1-d?+\(1+m)/2— d2\/(1— m)/2— dz)

C2= (1—m?)?(1—m) ’

64d*(\(1+m)/2—d?+ (1—m)/2— d2)3( 1-d?+\(1+m)/2— dz\/(l— m)/2— dz)

Cs= A—md2(1+m)

The equations for patterfio) are the same as those above except that the expressidg-sin ky)2 in I, 3is substituted
by sirtk,, and the Eq(A5) is changed into

1=87Wlj. (A6)

Correspondingly, the ground-state energies may be written in the simple form

Ea=—22, \Zg/4+4W[(cosk,+ cosk,)2+ 6%(sink, + sink )]+ NUd?— Nm\ag/2+ E, ,
k

for pattern(a) and

Ep=—22, \\Ag/4+4W[(cosk,+cosk,)?+ &6%sirPk,]+ NUd?—Nm\ag/2+E
k

for pattern(b).

We point out that for both patterns there always exists a trivial solution mitD [consider Eqs(A3) and (A4) and note
that C,=C; at m=0]. Moreover, we checked that fai=0 the results presented by Bezdet al. (e.g., staggered magneti-
zation, ground-state energfor the pure Hubbard mod@lare reproduced.
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