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Coexistence of the bond-order wave and antiferromagnetism
in a two-dimensional half-filled Peierls-Hubbard model
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The two-dimensional Peierls-Hubbard model is studied at half filling within both Hartree-Fock and Kotliar-
Ruckenstein slave-boson theory. The interplay between two types of long-range order, bond-order wave
~BOW! and antiferromagnetism~AFM!, is analyzed for two representative dimerization patterns, correspond-
ing both to the same wave vector (p,p). For each pattern, the Peierls dimerization~and associated BOW! is
weakened and finally suppressed with increasing Hubbard on-site interaction, and correspondingly AFM is
gradually enhanced. In particular, a coexistence regime with both BOW and AFM order is established in the
parameter space of electron-lattice and Hubbard interactions.
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I. INTRODUCTION

The Peierls instability towards spatially broken symme
is an important phenomenon in low-dimensional materia1

The one-dimensional~1D! case has been widely discussed
the context of polyacetylene (CH)x based on the Su
Schrieffer-Heeger~SSH! model,2,3 where lattice displace
ments couple to electron hopping. For a half-filled band
bitrary small electron-lattice~e-l! coupling will induce a
lattice dimerization~disregarding quantum lattice fluctua
tions!, which is associated with a periodic modulation of t
bond hopping, a so-called on-bond charge-density wave
bond-order wave~BOW!.4 It has been established that th
Hubbard on-site Coulomb electron-electron~e-e! interaction
U will enhance the bond alternation initially for small valu
and finally suppress it at large values ofU.5–8

In two dimensions few theoretical investigations exist,8–12

some of which connect the physics of Peierls systems to
of the high-Tc copper oxides.9,10 Moreover, these investiga
tions may be of direct relevance to those quasi-tw
dimensional~2D! materials that show a Peierls instabili
such as transition-metal oxide bronzes likeAMo6O17 ~A
5Na, K, Tl! ~Ref. 13! and possibly organic conductors su
as a-(BEDT-TTF)2MHg(SCN)4 (M5K, Rb, Tl!.14,11 As
an effective minimal model, in this context, the 2D versi
of the SSH model was investigated.9,10,12With only nearest-
neighbor ~nn! hopping on a square lattice, the electron
Fermi surface is perfectly nested at half filling with nesti
vector Q5(p,p). Two possible alternation patterns for th
lattice distortion and the concurrent bond hopping com
with this Q, as illustrated in Fig. 1. Whereas for Fig. 1~a! the
dimerization is in both directions, it is only in one directio
for Fig. 1~b!.9 Similar to the 1D case, already for an infin
tesimal e-l coupling, the 2D SSH model goes through
Peierls instability into one of the dimerized states of Fig. 112

When a Hubbard on-site Coulomb interactionU is
included—the model is then the so-called Peierls-Hubb
model—results differ qualitatively from the 1D case. N
merical calculations on a small 2D lattice9,10 indicated that
the Peierls instability will be frustrated onceU.0.15 An in-
0163-1829/2002/65~8!/085102~8!/$20.00 65 0851
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tuitive explanation is that the on-site Coulomb interacti
favors a spin-density wave~SDW! long-range order, that is
antiferromagnetism~AFM!, while the dimerization associ
ated with BOW harmonizes with a spin-singlet formatio
between those two nn spins that are connected by a st
bond. As we know, due to the same nesting effect, the p
2D half-filled Hubbard model~without consideration of a
Peierls instability! has been shown to exhibit AFM long
range order for anyU.0. This is in contrast to the 1D cas
where no true long-range AFM order is formed and the c
related state rather corresponds to a resonating valence-
state with strong weight from nn singlets.16 Consequently,
one may envisage, for finite e-l coupling~denoted ash, see
below! and e-e on-site interactionU, a competition between
BOW and AFM as the underlying physics in the 2D ha
filled Peierls-Hubbard model. In the largeU limit, Zhang and
Prelovsek have studied the corresponding spin-Peierls~SP!
instability and found that the SP state, competing with AF
does not appear unless the spin-lattice coupling~analogous
to h here! exceeds a threshold.17

The details of the competition between the two orde
states were studied only for the above limiting case and
situation is not clear for general values ofh andU. In par-

FIG. 1. Lattice distortion patterns~a! and ~b!. In the figure a
thick solid line corresponds to a strong bond with hopping integ
t(11d), a dashed line corresponds to a weak bond with hopp
integralt(12d), and a thin solid line corresponds to a normal bo
with hopping integralt. Both patterns correspond to phonons wi
wave vector (p,p). The dimerization is along two axes for patte
~a!, while only along thex axis for pattern~b!.
©2002 The American Physical Society02-1
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QINGSHAN YUAN AND THILO KOPP PHYSICAL REVIEW B65 085102
ticular, a basic problem has to be solved: does BOW dis
pear once the AFM order sets in, or is a coexistence of
two ordered states possible? It was previously argued by
zumdar within a real-space approach that the appearanc
the AFM should coincide with the disappearance of
BOW,10 which was, however, not verified. To clarify thi
issue, which is the topic of this paper, one needs to explic
calculate the two order parameters for the BOW and AF
with varying h and/orU.

In this paper we make use of both the Hartree-Fock~HF!
and Kotliar-Ruckenstein slave-boson~SB! approach18 to
treat the Hubbard interaction. The HF results are usu
valid at weak coupling, and they can be used as a basis
further elaborate studies. In the context of investigations
density wave instabilities, the HF theory may give plausi
results even in one dimension,19 where one would expect i
to be worst because of strong fluctuations. In dimensi
higher than one, as considered here, qualitatively correc
sults are expected from the HF theory. In order to extend
controlled weak coupling results to intermediate values ofU,
we evaluate BOW and AFM within a slave-boson mean-fi
approach, which is considered to be appropriate to inter
late from weak to strong coupling.20

The paper is organized as follows. In the following se
tion, the model Hamiltonian is introduced, and then the
and SB approaches are formulated. The self-consistent e
tions for the order parameters are derived in both theories
Sec. III, numerical results are presented. The main results
shown in Fig. 2, where the coexistence of BOW and AFM
found to be possible for each of the two patterns, in cont

FIG. 2. Optimal values for the dimerizationd and AFM m as
functions ofU at h50.5. In each panel, the dashed lines are
pattern~a! and the solid ones are for pattern~b!; the thick lines are
the SB results and the thin ones are the HF results.
08510
p-
e
a-
of

e

y

ly
or
n

e

s
e-
e

d
o-

-

ua-
In
re

st

to Mazumdar’s argument. A complete comparison is ma
between the results derived from both approaches. Con
sive remarks are given in Sec. IV. An Appendix comple
the SB formulation.

II. FORMULATION

We begin with the 2D half-filled Peierls-Hubbard mode

H5Ht1HU1HK ~1!

with

Ht52t (
i , j ,s

@11a~ui , j
x 2ui 11,j

x !#~ci , j ,s
† ci 11,j ,s1H.c.!

2t (
i , j ,s

@11a~ui , j
y 2ui , j 11

y !#~ci , j ,s
† ci , j 11,s1H.c.!,

HU5U(
i , j

ni , j ,↑ni , j ,↓ ,

HK5
K

2 (
i , j

@~ui , j
x 2ui 11,j

x !21~ui , j
y 2ui , j 11

y !2#,

whereci , j ,s
† (ci , j ,s) is the creation~annihilation! operator for

an electron at site (i , j ) with spin s ( i denotesx coordinate
and j denotes y coordinate!, ni , j ,s is defined asni , j ,s

5ci , j ,s
† ci , j ,s , ui , j

x/y is the displacement component of si
( i , j ) in x/y direction,t is the nn hopping parameter, anda is
the electron-lattice coupling constant.21 HU is the Hubbard
on-site interaction with the repulsion strengthU. The last
term HK is the lattice elastic potential energy, withK the
elastic constant. The phonons are treated in adiabatic
proximation.

For an analytical treatment on an infinite lattice, we ha
to work with a definite distorted lattice, rather than allowin
the distortions to arise arbitrarily. In this paper, we constr
the discussion to the lattice distortions within the two co
monly used dimerization patterns shown in Fig. 1. These
patterns correspond to the nesting vectorQ5(p,p) and re-
alize an unconditional Peierls instability that occurs fora
→0 andU50. Explicitly they are written as

ui , j
x 2ui 11,j

x 5~21! i 1 ju, ui , j
y 2ui , j 11

y 5~21! i 1 ju

for pattern~a! and

ui , j
x 2ui 11,j

x 5~21! i 1 ju, ui , j
y 2ui , j 11

y 50

for pattern~b!. For convenience, two dimensionless para
eters are defined: the dimerization amplituded5au and the
electron-lattice coupling constanth5a2t/K. Throughout the
paper the hopping integralt is taken as the energy unit.

In the following, we will construct the analytical formula
based on the HF and SB approaches, respectively, and l
the numerical calculations to the following section.

r
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A. Hartree-Fock theory

In our model, the on-site charge-density wave is not
vored and the total electron number on each site is unifo
and equal to one at half filling. Then the expectation value
the electron density with a given spin may be simply
sumed aŝni , j ,s&5 1

2 @11s(21)i 1 jm# when the AFM order
is taken into account, wherem represents the staggere
n
e

te

,

it
on
a
o

08510
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magnetization. In HF approximation ~equivalent
to Hartree here! the local Hubbard term may
be decoupled as U( i , jni , j ,↑ni , j ,↓→U( i , j (ni , j ,↑^ni , j ,↓&
1^ni , j ,↑&ni , j ,↓2^ni , j ,↑&^ni , j ,↓&). Then the Hamiltonian be-
comes quadratic and may be easily diagonalized in mom
tum space. For a bipartite lattice the final electronic spec
are derived as follows, for patterns~a! and ~b!, respectively,
«k,a
6 56AU2m2/414@~coskx1cosky!21d2~sinkx1sinky!2#, ~2!

«k,b
6 56AU2m2/414@~coskx1cosky!21d2sin2kx#. ~3!
ith
the

the
sfied
t is
he
the

th
n

Each branch above (2 or 1) is twofold degenerate. The
wave vectork5(kx ,ky) is restricted to the reduced Brilloui
zone,2p,kx6ky<p. With inclusion of constant terms th
ground-state energy is

En52(
k

«k,n
2 1NU~11m2!/41EL,n ,

wheren5a, b represent patterns~a! and~b!, respectively,N
is the total number of lattice sites andEL,n denote the lattice
elastic energies for both patterns,EL,a52EL,b5Nd2/h.

The self-consistent equations for dimerizationd and mag-
netizationm are found by minimization of the ground-sta
energy. They read]En /]d50 and ]En /]m50. The latter
results in~except for a trivial solutionm50)

15
U

N (
k

1

u«k,n
2 u

, ~4!

and the former leads to

15
4h

N (
k

~sinkx1sinky!2

u«k,a
2 u

~5!

for pattern~a! and

15
8h

N (
k

sin2kx

u«k,b
2 u

~6!

for pattern~b!.

B. Slave-boson theory

In the spirit of the Kotliar-Ruckenstein SB approach18

four auxiliary bosonsei , j
(†) , pi , j ,s

(†) (s5↑,↓), di , j
(†) are intro-

duced to label the four different states for an arbitrary s
( i , j ), which can be empty, singly occupied by an electr
with spin up or down, or doubly occupied. The unphysic
states in the enlarged Hilbert space are eliminated by imp
ing two sets of local constraints
e

l
s-

ei , j
† ei , j1(

s
pi , j ,s

† pi , j ,s1di , j
† di , j51 ~completeness!, ~7!

and

pi , j ,s
† pi , j ,s1di , j

† di , j5ci , j ,s
† ci , j ,s

~correctness of fermion occupancy for a given spin!. ~8!

For a bipartite lattice, we introduce a set of bosons, w
separate Lagrange multipliers for each sublattice. At
mean-field level, the bosons are replaced byc numbers and
assumed to be site independent on each sublattice. At
same time, the constraints above are softened to be sati
only on the average on each sublattice. This treatmen
equivalent to making a saddle-point approximation in t
path-integral formulation. For concreteness, we introduce
following parametrization for sublatticeA ~and similar pa-
rameters are defined for sublatticeB): eA , pAs , dA as aver-
age values of the boson operatorsei , j

(†) , pi , j ,s
(†) , di , j

(†) , respec-
tively, and lA , lA

s as Lagrange multipliers associated wi
the constraints~7!, ~8!, respectively. Then the Hamiltonia
~1! may be recast into the following form@we choose pattern
~a! as an example#:

H52t~11d! (
i , j PA,s

zs~ai , j ,s
† bi 11,j ,s1ai , j ,s

† bi , j 11,s1H.c.!

2t~12d! (
i , j PB,s

zs~bi , j ,s
† ai 11,j ,s1bi , j ,s

† ai , j 11,s1H.c.!

1NU~dA
21dB

2 !/21EL,a2lA (
i , j PA

S eA
21(

s
pAs

2

1dA
221D 2 (

i , j PA,s
lA

s~pAs
2 1dA

22ai , j ,s
† ai , j ,s!

2lB (
i , j PB

S eB
21(

s
pBs

2 1dB
221D

2 (
i , j PB,s

lB
s~pBs

2 1dB
22bi , j ,s

† bi , j ,s!, ~9!
2-3
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wherea†(a) and b†(b) are the electron creation~annihila-
tion! operators for sublatticeA andB, respectively. The hop
ping renormalization factorzs ensures the correct result i
the limit of vanishingU and takes the formzs5^zs

A&^zs
B&

with
r
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^zs
L&5

eLpLs1pLs̄dL

A~12eL
22pLs̄

2 !~12dL
22pLs

2 !
, L5A, B.

The Hamiltonian~9! may be diagonalized in momentum
space and the energy bands read
eks,a
6 5~lA

s1lB
s!/26A~lA

s2lB
s!2/414zs

2@~coskx1cosky!21d2~sinkx1sinky!2#. ~10!
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Similarly, the energy bands for pattern~b! are given by

eks,b
6 5~lA

s1lB
s!/2

6A~lA
s2lB

s!2/414zs
2@~coskx1cosky!21d2sin2kx#.

~11!

At half filling and zero temperature only the two lowe
(2) bands are occupied~the constantlA

s1lB
s is independent

of s as will be seen later!. Then the ground-state energy
expressed as (n5a, b)

En5(
ks

eks,n
2 1E01EL,n ~12!

with the constant

E05~N/2!@U~dA
21dB

2 !2lA~eA
21(spAs

2 1dA
221!

2lB~eB
21(spBs

2 1dB
221!2(slA

s~pAs
2 1dA

2 !

2(slB
s~pBs

2 1dB
2 !#.

The self-consistent equations are obtained from the
quirement that the ground-state energy is stationary with
spect to the parameters:eA(B) , pA(B)s , dA(B) , lA(B) , lA(B)

s ,
d. Except for the equation corresponding tod, they all have
the general form(ks]eks,n

2 /]X1]E0 /]X50, whereX rep-
resents one of the parameters. Analyzing these equations
applying the constraint (spA(B)s

2 12dA(B)
2

5(s^a(b) i , j ,s
† a(b) i , j ,s&51 at half filling, one may find the

solution satisfying the following relations:eA5eB5dA

5dB(5d), lA5lB(5l), pAs5pBs̄ , lA
s5lB

s̄ and (slA
s

5(slB
s5U. Consequently, the number of free parameter

substantially reduced. The final compact self-consist
equations are listed in the Appendix with several redefin
independent parametersd, l, lAB5lA

↑ 2lB
↑ 5lB

↓ 2lA
↓ , m

5pA↑
2 2pA↓

2 5pB↓
2 2pB↑

2 , where m denotes the same stag
gered magnetization as in HF theory.

III. NUMERICAL RESULTS AND DISCUSSIONS

We now focus on the numerical results obtained from
self-consistent equations. First, it is necessary to analytic
analyze the mean-field equations more thoroughly. Afte
replacement of the momentum summation by integrati
i.e., (k→N/2p2**2p/2

p/2 dk1dk2 (kx,y56k11k2), we exam-
e-
e-

nd

is
nt
d

e
ly
a
,

ine Eq.~4! in HF theory. It is easily seen that the right-han
side ~rhs! of Eq. ~4! assumes a different analytical behavi
for each of the two patterns due to their different respect
spectra. For pattern~a! the rhs is divergent atm50, irrespec-
tive of the value ofd, and decreases monotonically wit
increasingm until it reaches a value less than 1 atm51. This
implies for pattern~a! that Eq.~4! can be always solved with
a nonzero solution ofm as long asU.0. For pattern~b! it is
not always the case because the rhs is finite atm50 for any
d.0. Once this finite value is less than 1, one has to ad
the trivial m50 solution. The same conclusion may be o
tained by a similar analysis of the corresponding equation
the SB evaluation@see Eqs.~A3! and~A4! in the Appendix#.

The numerical solutions ford and m are displayed as
functions of U in Fig. 2 for both patterns and in both ap
proaches, whereby the e-l couplingh is fixed at 0.5. Glo-
bally, it is seen that for both patternsd tends to decrease an
m to increase with growingU. This supports the notion tha
the on-site interaction tends to favor the AFM order and
suppress the Peierls dimerization. We elaborate the detai
the following paragraphs.

In HF ~see all the thin lines!, it is found that for pattern~a!
m becomes finite~although small at smallU) and simulta-
neouslyd begins to decrease onceU.0; while for pattern
~b! m stays zero for smallU up to U.Um.1.34 where it
becomes finite and correspondingly,d first keeps itsU50
value and then starts to decrease forU.Um . The dimeriza-
tion disappears at the same critical valueUc.2 for both
patterns and it approaches zero smoothly and quickly w
U is close toUc . Comparing the results form vs U between
the two patterns, it is clear that pattern~a! is more favorable
to the formation of AFM order than pattern~b!. We will
come to this point later.

Most of the above qualitative results are also found in
approach~see all the thick lines!. On the other hand, the
differences between SB and HF results are clear as w
which we want to emphasize here. A distinct quantitat
difference is that for each of the patterns the AFM ord
derived from SB approach is~much! weaker than that from
HF theory, and correspondingly the dimerization decrease
zero over a larger range ofU. The critical value for the
disappearance ofd now becomesUc.2.38, and the neces
sary Hubbard interaction to induce finitem in the case of
pattern~b! is Um.1.56. Both values are larger than the co
responding ones from the HF theory, which is understa
able. As is well known, the HF theory usually overestima
2-4
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COEXISTENCE OF THE BOND-ORDER WAVE AND . . . PHYSICAL REVIEW B65 085102
the tendency towards AFM order. The SB theory, as an
proved approach to fluctuation contributions, should lead
slower formation of AFM, which complies with our findings

A further important difference between the SB and H
results is observed in the regionU,Um for pattern ~b!,
where the AFM order has not yet formed. From the so
lines in the upper panel of Fig. 2, it is seen that the dim
ization d keeps a constant value in HF theory, while it d
creases slowly with increase ofU in SB approach. This dis
agreement may be understood as follows. In HF theory,
e.g., Eq.~3!, the HubbardU becomes irrelevant once th
order parameterm is zero: the value ford will be the same as
that withoutU. In SB approach, however, the HubbardU is
relevant even atm50 by affecting the probability of double
occupancyd2. As U increases, the double occupancy is d
favored, i.e., the quantityd2 decreases. Correspondingly th
effective hoppingtzs decreases too~cf., the expression forW
in the Appendix!, which may be understood equivalently
an increase of the elastic constantK or a reduction of the e-
couplingh. This signifies a decreasing dimerization. In th
point the HF theory fails to catch the correct physics
assuming the probability of double occupancy as a cons
1/4 that is correct only forU→0.

Furthermore, we can check the stability between both p
terns by comparison of the ground-state energies calcul
in all cases, which are shown in Fig. 3. For each pattern
SB approach gives a lower energy than the HF theory in
whole range ofU. Also, it is seen within each approach th
pattern~b! has a lower energy than pattern~a!, which signi-
fies that pattern~b! is more stable.

It is worthwhile to point out that the BOW is alway
associated with the finite dimerization. In order to see th
we have calculated the BOW that is characterized b
modulation of the hopping amplitude. Explicitly, we defin
the expectation valuesh1

x5^ai , j ,s
† bi 11,j ,s1H.c.&, h2

x

FIG. 3. Ground-state energies~per site! as functions ofU at h
50.5, corresponding to Fig. 2~with the same line labels!. Each line
stops at its own critical pointUc . The original values of these
energies are shown in the inset. All energies are in units oft.
08510
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5^bi,j,s
† ai11,j ,s1H.c.& (s is irrelevant! for the alternating

bond hoppings along thex axis, and similar valuesh1
y , h2

y for
the hoppings along they axis. By symmetry, we haveh1,2

x

5h1,2
y for pattern~a! andh1

y5h2
y for pattern~b!. All the quan-

tities are calculated in both theories and plotted as functi
of U in Fig. 4. The BOW is exhibited by the inequalit
betweenh1

x and h2
x for each pattern.22 It is clear for each

approach that such an inequality is present within 0,U
,Uc , the same region where the dimerization is finite.

Numerically, Tang and Hirsch9 studied the same mode
and calculated the energy gain from dimerization as a fu
tion of U for the pattern~b! shown here. By studying how th
energy gain changes withU, they found originally that the
HubbardU has little effect on the dimerization until it is
large enough to suppress it, and later corrected that
dimerization is disfavored as soon asU is present. The finite-
size effect was cautioned by the authors themselves. T
principal result, i.e., the HubbardU is unfavorable to dimer-
ization, is consistent with ours, especially with the SB resu
for pattern ~b!. Although it seems that the suppression
dimerization byU is faster in our results than what the
displayed, no direct comparison is available because t
calculated neither the order parameters nor the ground-s
energies. Obviously, further numerical calculations on la
size systems are necessary for better comparison.

The main contribution in our work is that the order p
rameters as functions ofU are explicitly obtained so that th
interplay between BOW and AFM becomes transparent. T
problem proposed in the introduction is then naturally a
swered. It is clearly seen in Fig. 2 that the BOW and AF
may coexist for both patterns. For pattern~a! the coexistence

FIG. 4. Expectation valuesh1,2
x , h1,2

y as functions ofU for both
patterns. In each panel, the solid lines show the quantityh1

x and the
dot-dashed lines giveh2

x ; the thick lines are the SB results and th
thin ones are the HF results. For pattern~a!, h1,2

y 5h1,2
x . For pattern

~b!, h1
y5h2

y , which are plotted by the dashed lines in the low
panel.
2-5
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QINGSHAN YUAN AND THILO KOPP PHYSICAL REVIEW B65 085102
~i.e., d.0, m.0) appears as long asU.0 and pure AFM
order exists forU.Uc . For pattern~b! the coexistence is
limited to the regionUm,U,Uc . These results are not fa
vorable to the argument by Mazumdar that the AFM emer
with the disappearance of the BOW.10 In fact, the valence-
bond approach adopted by Mazumdar in real space is app
ing. It states that, in order to implement a symmetry-brok
state ~e.g., BOW!, ‘‘extreme configurations’’ with shortes
repeat units have to be identified. For 2D systems, he ch
pattern~a! as the realization of the Peierls state and arg
that the extreme configuration for BOW is a combination
zigzag chains, and the nn sites within each chain are do
occupied and unoccupied, respectively. However, the pat
selected in his work is not the pattern with the lowest ene
and furthermore, the considered extreme configuration is
tually disfavored, even for weak Coulomb on-site intera
tion, as is verified in the exactU→0 approach of this paper
It implies that spin fluctuations are more pronounced th
charge fluctuations in the BOW state of the half-filled sy
tem.

Eventually, we determine the coexistence regions for
ferent h in both theories. The results are shown in Fig.
where different phases are indicated in the parameter p
(U,h). For pattern~a!, only two phases exist, either a sta
with coexisting BOW and AFM or a pure AFM state. How
ever, for pattern~b! pure BOW and AFM states exist, whic
are separated by a coexisting state — the region between
thick ~SB! or thin ~HF! lines in Fig. 5. As for the methods
globally speaking, the SB approach pushes the AFM orde
the higherU regime than the HF theory.

Finally, we come back to the difference between the
sults for the two patterns. As explained above, pattern~a! is
more favorable to the formation of AFM than pattern~b!. It
may be roughly understood from their different dimerizati
structures. As seen from Fig. 1, for pattern~b!, each site is

FIG. 5. Stable phases for BOW, AFM, and the coexisting st
~C! in the parameter space (U,h) for pattern~a! @upper panel# and
pattern~b! @lower panel#. The thick lines show the SB results an
the thin ones show the HF results.
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connected to only one nn site by a strong bond when
BOW ~or dimerization! forms. Thus, a spin singlet on thi
strong bond is apt to prevail in the presence ofU, which will
resist the AFM. On the other hand, for pattern~a!, each site
connects two nn sites with strong bonds. This, on the c
trary, makes the construction of spin singlets on these str
bonds difficult and AFM is favored.

IV. CONCLUSION

We have investigated the Peierls-Hubbard model in t
dimensions at half filling within both HF and SB approac
Two dimerization patterns, corresponding to the same w
vector (p,p), are considered and the interplay between t
long-range order states, BOW, and AFM is addressed.
each pattern, it is found that the Peierls dimerization~and
associated BOW! is weakened by the on-site interactionU as
soon asU is present and finally suppressed at a criticalU
5Uc . Correspondingly, the AFM is favored byU. Whereas
for pattern~a!, see Fig. 2, AFM is induced onceU.0, it is
not activated untilU5Um for pattern~b!. For both patterns,
the coexistence of BOW and AFM is possible. SB and H
evaluations lead mostly to the same qualitative results
quantitatively the former approach results in larger values
Uc andUm . Whereas the HF evaluation provides us with t
exact weak coupling (U→0) result, the SB approach ex
tends the findings to intermediate coupling, and corre
charge and spin fluctuation contributions beyond HF. Es
cially, the reduction of charge fluctuations byU decreases the
dimerizationd consistently in the regionU,Um for pattern
~b!.
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APPENDIX: SELF-CONSISTENT EQUATIONS
IN THE SB APPROACH

In this appendix we implement the formulation of the S
approach. With respect to the parametersd, l, lAB , m, d,
the self-consistent equations are derived as follows for p
tern ~a!:

d522C1I 2 /l, ~A1!

2l5U/212~C2 /A~11m!/22d2

1C3 /A~12m!/22d2!I 2 , ~A2!

lAB54~C3 /A~12m!/22d22C2 /A~11m!/22d2!I 2 ,
~A3!

m52lABI 1 , ~A4!

154hWI3 , ~A5!

e
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where

I 15
1

N (
k

1

AlAB
2 /414W@~coskx1cosky!21d2~sinkx1sinky!2#

,

I 25
1

N (
k

~coskx1cosky!21d2~sinkx1sinky!2

AlAB
2 /414W@~coskx1cosky!21d2~sinkx1sinky!2#

,

I 35
1

N (
k

~sinkx1sinky!2

AlAB
2 /414W@~coskx1cosky!21d2~sinkx1sinky!2#

,

W5z↑
25z↓

25

16d4SA~11m!/22d21A~12m!/22d2D 4

~12m2!2 ,

C15
64d3~A~11m!/22d21A~12m!/22d2!3

~12m2!2 HA~12m!/22d2@~12m!/21d2#1d2A~11m!/22d2

12m
1m→2mJ ,

C25

64d4~A~11m!/22d21A~12m!/22d2!3S12d21A~11m!/22d2A~12m!/22d2D
~12m2!2~12m!

,

C35

64d4~A~11m!/22d21A~12m!/22d2!3S12d21A~11m!/22d2A~12m!/22d2D
~12m2!2~11m!

.

The equations for pattern~b! are the same as those above except that the expression (sinkx1sinky)
2 in I 1,2,3 is substituted

by sin2kx , and the Eq.~A5! is changed into

158hWI3 . ~A6!

Correspondingly, the ground-state energies may be written in the simple form

Ea522(
k

AlAB
2 /414W@~coskx1cosky!21d2~sinkx1sinky!2#1NUd22NmlAB/21EL,a

for pattern~a! and

Eb522(
k

AlAB
2 /414W@~coskx1cosky!21d2sin2kx#1NUd22NmlAB/21EL,b

for pattern~b!.
We point out that for both patterns there always exists a trivial solution withm50 @consider Eqs.~A3! and~A4! and note

that C25C3 at m50#. Moreover, we checked that ford50 the results presented by Fre´sardet al. ~e.g., staggered magnet
zation, ground-state energy! for the pure Hubbard model20 are reproduced.
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