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Orbital effect of an in-plane magnetic field on quantum transport in chaotic lateral dots
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We show that an in-plane magnetic field is able to break time-reversal symmetry of the orbital motion of
electrons in two-dimensional semiconductor structures, due to the momentum-dependent inter-subband mixing,
which results in supression of weak localization effect. Then, we analyze the influence of the in-plane field on
weak localization correction and universal fluctuations of conductance in large-area chaotic semiconductor
quantum dots.
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A high sensitivity of phase-coherent transport throu
quantum dots to external perturbations has recently ena
one to transform studies of mesoscopic effects1–4 into a spec-
troscopic tool for detecting tiny energetic changes in
electron gas5 and for studying electron dephasing and inel
tic relaxation rates.6,7 A convenient object,8 once used as a
mesoscopic thermometer,9 consists of a lateral semicondu
tor dot weakly coupled to the reservoirs via two leads,l and
r, each withNl ,r*1 open conducting channels, and, the
fore, quantum conductancesgl ,r5(2e2/h)Nl ,r . Information
concerning fine energetic characteristics of single-part
electron states in a dot can be extracted from the varia
and parametric correlations of universal conductance fluc
tions ~UCF!, dg5g2^^g&&, measured as random oscilla
tions of the dot conductance,g around the mean value
^^g&&5glgr /(gl1gr)1gWL , upon variation of a perpen
dicular magnetic field,1,3 the Fermi energy,2,3 or the dot
shape8 and combined with the analysis of parametric dep
dences of the weak localization part in the average dot c
ductance,gWL .

Energetic resolution of such a spectroscopy is set by
level broadening of single-particle states in a particular
vice, which is limited by the carrier escape into the leads

tesc
215~Nl1Nr !D/h,

whereD52p\2/mS is the mean level spacing of single
particle states of spin-polarized electrons with massm in a
dot with areaS. The use of larger dots with weaker couplin
to the leads increases the sensitivity of the dot conducta
to the variation of external parameters. The use of larger d
also enables one to assess directly the low excitation en
characteristics of the two-dimensional~2D! electron gas,
since the electron properties in 1410 mm2-area dots con-
taining 1032104 particles are less affected by the confin
ment effects. Recently, large area dots were used for stud
spin polarization of a 2D electron gas.5 In order to enhance
coupling between a magnetic field and electron spin, J. F
et al.5 used a magnetic field finely tuned to lay exactly p
allel to the plane of 2D electrons and observed a suppres
of the variancê ^dg2(Bi)&& by an in-plane fieldBi much
stronger than that associated with a mere spin splitt
which can be understood in terms of spin-orbit coupling
0163-1829/2002/65~8!/081306~4!/$20.00 65 0813
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the 2D gas.10,11 It has been observed in further studies12 that
an application of an in-plane magnetic field also results i
complete suppression of a weak localization part of the c
ductance, which cannot be attributed solely to the interp
between spin-orbit coupling and Zeeman splitting,11 but re-
quires lifting the time-reversal symmetry of the orbital m
tion by the in-plane field. In the present publication, we sh
that, due to a finite extentlz of the electron wave function
across the heterostructure, even a perfectly tuned in-p
magnetic field may break time-reversal symmetry of the
bital motion of effectively 2D electrons. We compute the ra
of such time-reversal symmetry breaking in 2D semicond
tor structures and, then, determine the range of fieldsBi that
would affect WL and UCF’s in experimentally studied qua
tum dot devices,5 in addition to spin-related phenomena.

The Lorentz force generated by a planar field on electr
moving acrossBi within the 2D plane mixes up the electro
motion along and across the confinement direction, thus
sulting in the electron momentum,p dependent subban
mixing and, therefore, in a modification of the 2
dispersion,13,14 E(p)→E(Bi ,p). In particular, ~a! the 2D
electron mass increases in the direction perpendicular toBi ,
whereas~b! in heterostructures which have no inversio
symmetry in the form of confining potential,Bi also lifts the
p→2p symmetry in the dispersion law:13 E(Bi ,p)2E(Bi ,
2p)}(p•@Bi3 lz#)

3Þ0. The change in dispersion~b! has
potential to reduce the fundamental symmetry of chaotic
from orthogonal~o! to unitary (u), as a perpendicular mag
netic field would do. The efficiency of time-reversal symm
try breaking by an in-plane magnetic field can be charac
ized using the ratetBi

21;bBi
61aBi

2 specified in Eq.~8!. A
similar conclusion has recently been made in Ref. 15. W
out spin-related effects, this parameter would determine
value of the WL correction,gWL(Bi)[^^g(Bi)&&2^^g&&u
and of the variance of UCF,̂̂ dg2(Bi)&&, as compared to
their nominal values, gWL(0)[^^g&&o2^^g&&u and
^^dg2&&u :16,17

gWL~Bi!5gWL~0!@11tBi
21/tesc

21#21;
~1!

^^dg2~Bi!&&5^^dg2&&u$11@11tBi
21/tesc

21#22%.
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The latter parameters can be measured as the UCF’s fin
prints in the ‘‘shape of a dot’’ space in multigate devices,8 or
by varying the Fermi energy in backgated dots. The rise
the mass anisotropy upon the increase ofBi would also
manifest itself: as a change in a UCF pattern scanned
function of a perpendicular magnetic field. A varying disp
sion relation for electrons studied at different fields,Bi1 and
Bi2, can be characterized using the ratetd

21(Bi1 ,Bi2)
}(Bi1

2 2Bi2
2 )2 in Eq. ~6!, which can be used to describe aut

correlation properties of a fullB'-dependent UCF pattern,

^^dg~Bi1!dg~Bi2!&&u

^^dg2&&u

5F11
td

21~Bi1 ,Bi2!

tesc
21 G22

. ~2!

The effective 2D Hamiltonianfor electrons in a hetero
structure with a potential profileV(z) and in the presence o
an in-plane magnetic field can be obtained from the
Hamiltonian,

Ĥ3D52
\2]z

2

2m
1V~z!1

S 2 i\¹2
e

c
AD 2

2m
1u~r ,z!, ~3!

using the plane wave representation,Cp5eip•r /\w0p(z) for
the lowest subband electrons. Here,A5(z2z0)Bi3 lz is the
vector potential,z05^0uzu0& is the center of mass position o
the electron wave functionu0&[w0

(0)(z) in the lowest sub-
band for Bi50, andu(r ,z) is a combination of Coulomb
potential of impurities and lateral potential forming the qua
tum dot. Due to mixing between subbandsu0& andun.0& by
an in-plane magnetic field,z-dependent componentsw0p(z)
are different for different in-plane momenta,p, and we use
both the perturbation theory analysis18 and a numerical self-
consistent-field technique to findw0p(z) and the energy
E(Bi ,p) for each plane wave state.

For a weak or intermediate-strength magnetic fieldBi ,
the effective 2D Hamiltonian takes the form

Ĥ2D5
p2

2m
2p'

2 g~Bi!1p'
3 b~Bi!1u~r !. ~4!

In Eq. ~4!, p52 i\¹2(e/c)a(r ) is a purely 2D momen-
tum operator, andp'5p•@Bi3 lz#/Bi is its component per-
pendicular toBi . Two additional terms in the free-electro
dispersion part of Hˆ

2D are the result of thep'-dependent
inter-subband mixing. The first of them lifts rotational sym
metry by causing an anisotropic mass enhancement.13 It in-
creases the 2D density of states and, for a 2D gas with a fi
sheet density, it reduces the Fermi energy calculated from
bottom of the 2D conduction band,EF(Bi)5EF

0

2@g(Bi)/2#pF
2 . A cubic term in Ĥ2D is related to the time-

reversal symmetry breaking byBi . Note that, depending on
the choice of a gauge, one may also generate a lineap'

term, but this one can be eliminated by a trivial gauge tra
formation. A perturbation theory analysis of this problem
discussed in Ref. 18, and for a moderate field it results in
parametric dependencesg;m21(lz /lB)4 and b
;(lz /m\)(lz /lB)6.
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To obtain quantitative estimates for parametersg andb,
we evaluated the electron dispersion at in-plane magn
fields using a full self-consistent numerical method. T
quantum-well confining potentialV(z) was constructed us
ing the nominal growth parameters of the sample studied
Ref. 5 which was an Al.34Ga.66As/GaAs heterojunction.V(z)
also included Hartree and exchange-correlation poten
generated by the free carriers in the quantum well. The H
tree potential was derived from thez-dependent 3D density
of electrons by numerical solution of the Poisson equati
The exchange-correlation term was calculated within
local-density approximation.19 A flat-band boundary condi-
tion was used, i.e., we assumed that the electric field p
duced by donors in the~Al,Ga!As barrier is screened out in
the GaAs buffer layer by the 2D electron gas. In each loop
the self-consistent procedure we solved numerically
Schrödinger equation with the Hamiltonian in Eq.~3! to get
the 3D electron density, neglectingu(r ,z). Then, a newV(z)
was constructed, which entered the next loop of the pro
dure until the self-consistency condition was achieved. T
numerically obtained dependences ofg and b on the in-
plane magnetic field for an electron sheet density of
31011 cm22 are shown in insets of Fig. 1. At low fields
g;Bi

2 andb;Bi
3 , as anticipated in the perturbation theo

treatment. The proportionality coefficients are plotted in F
1 versus the electron sheet density. Both the effective-m
renormalization in the quadratic term of energy dispersio
and the time-reversal symmetry breaking cubic term
larger at lower 2D electron gas densities, due to a wea
confining electric field~i.e., longerlz).

In Ĥ2D in Eq. ~4!, disorder is incorporated in the form o
a scattering potentialu(r )' ^0uu(r ,z)u0&. This can be char-
acterized by the value of the mean free path,l @h/pF , or a

FIG. 1. Calculated dependence of parametersg and b on the
sheet density of 2D electrons. Insets show the effect ofBuu on sym-
metric, @E(p')1E(2p')#/2 and antisymmetric, @E(p')2E
(2p')#/2 parts of the 2D electron dispersion in a broader range
Buu , where a pertubative expansion is not applicable.
6-2
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momentum relaxation timet related to the diffusion coeffi-
cient D5vF

2t/2. The modification of the electron density o
states byBi only slightly affects the value of the electro
mean free path. The presence of a parallel field also cha
the symmetry of Born amplitudes of scattering betwe
plane waves Cp5eip•r /\w0p(z), f pp85^Cpuu(r ,z)uCp8&.
Due to the momentum-dependent subband mixing,f pp8 ac-
quires an addition,f pp85 f pp8

(0) $11(p'1p'8 )Biz%, where

z5
e

mc (
n>1

^0uu~p2p8,z!un&

^0uu~p2p8,z!u0&

^nuzu0&
«n2«0

,

which is equivalent to the presence of a random gauge fi
in the effective 2D Hamiltonian,20,21

a52@Bi3 lz# (
n>1

^0uu~r ,z!un&^nuzu0&
«n2«0

.

The latter can be interpreted as a result of an effective ‘‘cu
ing’’ of a 2D plane by impurities in systems withz-dependent
scattering potential, which in the presence of an in-pla
magnetic field generates a random effective perpendic
field component,b'5@rota#z . In systems, where scatterin
is dominated by Coulomb centers behind a spacer an
almost independent ofz, a smaller effect may be taken int
account,da5h@Bi3 lz#(@Bi3 lz#•¹)2u(r ). However,da has
a negligible influence on the quantum transport characte
tics of 2D electrons, as compared to the effect of dispers

Quantum transport characteristics of chaotic dots (W
and UCF’s)are studied in this paper by modeling dots as
billiards filled with a short-range disorder. It has been sho
before that the results obtained for a zero-dimensional li
of diffusive systems,tesc@L2/D and L. l , are universally
applicable to the description of WL and UCF’s in a bro
variety of quantum chaotic billiards,4,22 even in ballistic
ones.23,4 We also used a semiclassical diagrammatic l
guage to calculate two-particle correlation functions, Co
eronsPC(v;R,R8) and diffusonsPd(v;R,R8).3 These cor-
relation functions emerge in the form of ladder diagra
from the perturbation theory analysis upon averaging o
disorder the Kubo-formula conductance. Schematically,
form of a weak localization correction and of the varian
and correlation function of UCF can be represented as

gWL~Bi!}*dRW~R!PC~0;R,R!

and

^^dg~Bi1!dg~Bi2!&&

}*dRdR8W~R!W~R8!(d,CuPd,C~v;R,R8!u2,

wherev5EF(Bi1)2EF(Bi2), andEF(Bi) is the Fermi en-
ergy of the 2D gas calculated from the bottom of the
conduction band determined in Eq.~4!. Dispersionless
weight factorsW(R) both take care of the particle numb
conservation upon diffusion inside a dot24 and incorporate
coupling parameters to the leads. In the zero-dimensio
limit, both gWL and ^^dg(Bi1)dg(Bi2)&& are dominated by
the lowest Cooperon~diffuson! relaxation modetesc

211tC(d)
21

determined by the interplay of the escape to the reserv
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and the Cooperon~diffuson! suppression by time-reversa
symmetry breaking~the difference in condition of quantum
diffusion!. The latter effect can be analyzed for an infini
system, where the derivation is simplified by the use of F
rier representation for Cooperons~diffusons!.

Using the Fourier form, the equation for the diffuso
~Cooperon! correlation function,P•Pd(C)(v,q)5t21, can
be obtained from the analysis of a kernel (\51),

P~v,q!512E dp

2pnt
GBi1

R ~«,p!GBi2

A ~«2v,6@p2q# !,

where sign1/2 is related to diffuson~Cooperon!, respec-
tively. Disorder-averaged retarded and advanced sin
particle Green functions,GR,A correspond to different value
of Bi . GR,A were calculated pertubatively with respect to
terms containingBi , which relies on the assumption tha
within the relevant parametric regime the variation of t
energy,dE(pF) induced byBi is small in comparison with
the scattering rate,dE!h/t. The result has the form of the
diffusion equation,

@2 i $v1d%2D¹21td
21#Pd5d~R2R8!. ~5!

It containsṽ5v1d with d5pF
2@g(Bi1)2g(Bi2)#/2\ and

the rate

td
215

tpF
4

8\2
@g~Bi1!2g~Bi2!#21

2z2

t
pF

2@Bi12Bi2#2 ~6!

The first term in Eq.~6! comes from the deformation of
Fermi circle byBi , the second takes into account the fie
effect upon the scattering of plane waves. Equation~5! also
contains the difference between the electron kinetic ener
in two measurements of conductance,v5EF(Bi1)
2EF(Bi2), each of them shifted,EF(Bi)5EF

02 1
2 pF

2g(Bi)
with respect to the Fermi energyEF

0 in the electron gas with
the same sheet density atBi50. The latter fact is important
since, for lateral dots where electron density is fixed, o
should substitute ṽ5v1d50, so that only the
Bi-dependent anisotropy of the electron wavelength alo
the Fermi line affects the interference pattern of current c
riers.

The Cooperon equation derived after the calculation
the integral inP(v,q) can be represented in the form

@2 i ṽ1D~2 i¹2q!21tC
211td

21#PC5d~R2R8!. ~7!

It contains an additional decay rate,tC
21(Bi1 ,Bi2),

tC
215

tpF
6

8\2 Fb~Bi1!1b~Bi2!

2 G2

1
z2pF

2

2t
@Bi11Bi2#2

which accounts for dephasing between electrons encirc
the same chaotic trajectory in reverse directions, the resu
lifting the time-reversal symmetry by an in-plane magne
field. The corresponding dephasing ratetBi

215tC
21(Bi ,Bi),
6-3
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tBi
215

tpF
6

8\2
b2~Bi!1

2z2pF
2Bi

2

t
, ~8!

can be used when describing the WL correction to the c
ductivity of 2D electron gases in semiconductor heterostr
tures and field transistors. The second term in this rate wo
be dominant in low-mobility structures with strongly asym
metric potential disorder, such as the interface roughnes
impurities positioned inside the electron accumulation lay
The first term in Eq.~8! would be the main one in high
mobility structures with carrier scattering at remote char
behind the spacer.

To mention, a shift in the Cooperon gauge in Eq.~7!,

q53/2\pF
2mb~Bi!@Bi3 lz#/Bi ,

is the result of the following artifact: cubic term in the effe
tive electron dispersion not only lifts the inversion symme
of the lineE(Bi ,p)5EF(Bi), but also shifts its geometrica
center with respect to the true bottom of the 2D conduct
band. Since in conductance calculations only electrons w
E5EF matter, such a shift would be eliminated by choosi
a slightly modified initial gauge, which can now be correct
by applying a gauge transformationPC5eiq•RP̃C directly to
the Cooperon. One may say that the phase-coherent tran
is only affected by theBi-induced (p→2p)-asymmetric dis-
tortion of the Fermi circle into an oval, but not by a shift
such an oval in the momentum space.
08130
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Finally, we can apply the rate of time-reversal symme
breaking due to the in-plane field in Eq.~8! to analyze the
WL correction to the quantum dot conductance in Eq.~1!,
and also theo→u crossover in conductance fluctuations u
der conditions that the magnetic-field direction is finelytun
to have only the in-plane component12 and the UCF are stud
ied by slightly varying the shape or area of a dot using
multiple gates technique8. In a ballistic billiard, or in a het-
erostructure withz-independent scattering potential, it wou
be dominated byBi

6 dependence~also found in Ref. 15! that
we attribute to the effect of the cubic term generated byBi in
the 2D electron dispersion, thus giving rise to a relative
sharp crossover between ‘‘flat’’ regions related to orthogo
and unitary symmetry regimes. For a large-area (8mm2)
quantum dot with electron density 231011 cm22 studied by
Folk and co-workers,5,12 we estimated the crossover field a
Bi50.640.8 T. When studying the crossover, one has
take into account that the in-plane field also causes fluc
tions in conductance, without breaking time-reversal symm
try, as described by Eqs.~2,6!. For the same parameters of
structure, we estimated the field where such a random de
dence would appear asBi;0.3 T, and the result in Eq.~6!
suggests that, for a perfectly in-plane field orientation, va
tion of the UCF fingerprint is faster at higher fields.

We thank B. Altshuler, C. Marcus and J. Meyer for di
cussions and for information concerning unpublish
works.12,15 This research was funded by EPSRC, NAT
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